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X. Then one can check that 〈f ,Unf 〉 = µ(A ∩ T−nA).
It follows that

〈f ,AN,M(f)〉 = 1
N −M

N−1∑
n=M

µ(A∩ T−nA).

If we let N − M tend to infinity, then AN,Mf tends
to a U -invariant function g. Since g is U -invariant,
〈f ,g〉 = 〈Unf ,g〉 for every n, and therefore 〈f ,g〉 =
〈AN,M(f), g〉 for every N and M , and finally 〈f ,g〉 =
〈g,g〉. By the Cauchy–Schwarz inequality, this is at least
(
∫
g(x)dµ)2 = (

∫
f(x)dµ)2 = µ(A)2. Therefore, we

deduce that

lim
N−M→∞

1
N −M

N−1∑
n=M

µ(A∩ T−nA) � (µ(A))2.

If you choose two “random sets” of measure µ(A),
then their intersection will typically be (µ(A))2, so the
inequality above is saying that the average intersection
ofAwith T−nA is at least as big as the “expected” inter-
section. This result, due to Khinchin, gives more precise
information about the nature of Poincaré recurrence.

When a unitary operator is defined in terms of a
measure-preserving transformation as above, it is nat-
ural to ask whether the averages converge not just in
the sense of the L2-norm but also in the more clas-
sical sense of convergence almost everywhere. (For a
related thought in a different context, see carleson’s

theorem [V.5].) The answer is that they do, as was
shown by birkhoff [VI.78] soon after he learned of
von Neumann’s theorem. He proved that for each inte-
grable function f one could find a function f∗ such
that f∗(Tx) = f∗(x) for almost every x, and such
that

lim
N→∞

1
N

N−1∑
n=0

f(Tnx) = f∗(x)

for almost every x. Suppose that the transformation T
is ergodic, let A ⊂ X be a set of positive measure, and
let f(x) be the characteristic function of A. It follows
from Birkhoff’s theorem that for almost every x ∈ X
one has

lim
N→∞

1
N

N−1∑
n=0

f(Tnx) =
∫
f dµ
µ(X)

= µ(A)
µ(X)

.

Since the expression

lim
N→∞

1
N

N−1∑
n=0

f(Tnx)

describes the frequency of visits of Tnx to the setA, we
see that in an ergodic system the images x,Tx, T 2x, . . .
of a typical point x ∈ A visit A with a frequency that
equals the proportion of the space occupied by A.

The ergodic theorems of von Neumann and Birkhoff
have been generalized over the years in many differ-
ent directions. These far-reaching extensions of ergodic
theorems, and more generally the ergodic method, have
found impressive applications in such diverse fields
as statistical mechanics, number theory, probability
theory, harmonic analysis, and combinatorics.
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The Fermat–Euler Theorem
See modular arithmetic [III.58]

V.10 Fermat’s Last Theorem

Many people, even if they are not mathematicians, are
aware of the existence of Pythagorean triples: that is,
triples of positive integers (x,y, z) such that x2+y2 =
z2. These give us examples of right-angled triangles
with integer side lengths, of which the best known is
the “(3,4,5) triangle.” For any two integers m and n,
we have that (m2−n2)2+(2mn)2 = (m2+n2)2, which
gives us an infinite supply of Pythagorean triples, and
in fact every Pythagorean triple is a multiple of a triple
of this form.

fermat [VI.12] asked the very natural question of
whether similar triples existed for higher powers: that
is, could there be a solution in positive integers of the
equation xn + yn = zn for some power n � 3? For
instance, is it possible to express a cube as a sum of
two other cubes? Or rather, Fermat famously claimed
that it was not possible, and that he had a proof that
space did not permit him to write down. Over the next
three and a half centuries, this problem became the
most famous unsolved problem in mathematics. Given
the amount of effort that went into it, one can be virtu-
ally certain that Fermat did not in fact have a proof: the
problem appears to be irreducibly difficult, and solv-
able only by techniques that were developed much later
than Fermat.
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The fact that Fermat’s question was an easy one to

think of does not on its own guarantee that it is inter-

esting. Indeed, in 1816 gauss [VI.26] wrote in a letter

that he found it too isolated a problem to interest him.

At the time, that was a reasonable remark: it is often

extremely hard to determine whether a given Diophan-

tine equation has a solution, and it is therefore easy to

come up with hard problems of a similar nature to Fer-

mat’s last theorem. However, Fermat’s last theorem has

turned out to be exceptional in ways that even Gauss

could not have been expected to foresee, and nobody

would now describe it as “isolated.”

By the time of Gauss’s remark, the problem had been

solved for n = 3 (by euler [VI.19]) and n = 4 (by Fer-

mat; this is the easiest case). The first serious connec-

tion between Fermat’s last theorem and more general

mathematical concerns came with the work of kum-

mer [VI.40] in the middle of the nineteenth century. An

important observation that had been made by Euler is

that it can be fruitful to study Fermat’s last theorem

in larger rings [III.81 §1], since these, if appropriately

chosen, allow one to factorize the polynomial zn−yn.

Indeed, if we write 1, ζ, ζ2, . . . , ζn−1 for the nth roots

of 1, then we can factorize it as

(z −y)(z − ζy)(z − ζ2y) · · · (z − ζn−1y). (1)

Therefore, if xn + yn = zn then we have two rather

different-looking factorizations of xn inside the ring

generated by 1 and ζ (namely the factorization in (1)

above, and xxx · · ·x), and it is reasonable to hope that

this information might be exploited. However, there

is a serious problem: the ring generated by 1 and ζ
does not enjoy the unique factorization property

[IV.1 §§4–8], so one’s sense of being close to a contra-

diction when faced with these two factorizations is not

well-founded. Kummer, in connection with the search

for higher reciprocity laws [V.28], had met this diffi-

culty and had defined the notion of an ideal [III.81 §2]:

very roughly, if you enlarge a ring by adding in Kum-

mer’s “ideal numbers,” then unique factorization is

restored. Using these concepts, Kummer was able to

prove Fermat’s last theorem for every prime number p
that was not a factor of the class number [IV.1 §7] of

the corresponding ring. He called such primes regular.

This connected Fermat’s last theorem with ideas that

have belonged to the mainstream of algebraic num-

ber theory [IV.1] ever since. However, it did not solve

the problem, since there are infinitely many irregular

primes (though this was not known in Kummer’s day).

It turned out that more complicated ideas could be
used for individual irregular primes, and eventually an
algorithm was developed that could check for any given
n whether Fermat’s last theorem was true for that n.
By the late twentieth century, the theorem had been
verified for all exponents up to 4 000 000. However, a
general proof came from a very different direction.

The story of the eventual proof by Andrew Wiles
has been told many times, so we shall be very brief
about it here. Wiles did not study Fermat’s last theo-
rem directly, but instead solved an important special
case of the Shimura–Taniyama–Weil conjecture, which
connects elliptic curves [III.21] and modular forms

[III.59]. The first hint that elliptic curves might be rel-
evant came when Yves Hellegouarch noticed that the
elliptic curve y2 = x(x − ap)(x − bp) would have
rather unusual properties if ap + bp was also a pth
power. Gerhard Frey realized that such a curve might
be so unusual that it would contradict the Shimura–
Taniyama–Weil conjecture. Jean-Pierre Serre came up
with a precise statement (the “epsilon conjecture”) that
would imply this, and Ken Ribet proved Serre’s con-
jecture, thus establishing that Fermat’s last theorem
was a consequence of the Shimura–Taniyama–Weil con-
jecture. Wiles suddenly became very interested indeed,
and after seven years of intensive and almost secret
work he announced a solution to a case of the Shimura–
Taniyama–Weil conjecture that was sufficient to prove
Fermat’s last theorem. It then emerged that Wiles’s
proof contained a serious mistake, but with the help of
Richard Taylor he managed to find an alternative and
correct argument for that portion of the proof.

The Shimura–Taniyama–Weil conjecture asserts that
“all elliptic curves are modular.” We finish by giving
a rough idea of what this means. (A few more details
can be found in arithmetic geometry [IV.5].) Associ-
ated with any elliptic curve E is a sequence of numbers
an(E), one for each positive integer n. For each prime
p, ap(E) is related to the number of points on the ellip-
tic curve (modp); it is easy to derive from these values
the values of an(E) for composite n. Modular forms
are holomorphic functions [I.3 §5.6] with certain
periodicity properties defined on the upper half-plane;
associated with each modular form f is a fourier

series [III.27] that takes the form

f(q) = a1(f )q + a2(f )q2 + a3(f )q3 + · · · .
Let us call an elliptic curve E modular if there is a mod-
ular form f such that ap(E) = ap(f) for all but finitely
many primes p. If you are presented with an elliptic
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curve, it is not at all clear how to set about finding a
modular form associated with it in this way. However, it
always seemed to be possible, even if the phenomenon
was a mysterious one. For instance, if E is the ellip-
tic curve y2 + y = x3 − x2 − 10x − 20, then there is
a modular form f such that ap(E) = ap(f) for every
primep apart from 11. This modular form is the unique
complex function (up to scaling) that satisfies a certain
periodicity property with respect to the group Γ0(11),
which consists of all matrices ( a bc d ) such that a, b, c,
and d are integers, c is a multiple of 11, and the deter-

minant [III.15] ad−bc is 1. It is far from obvious that a
definition of this type should have anything to do with
elliptic curves.

Wiles proved that all “semistable” elliptic curves are
modular, not by showing how to associate a modular
form with each such elliptic curve, but by using a sub-
tle counting argument that guaranteed that the modu-
lar form had to exist. The full conjecture was proved
a few years later, by Christophe Breuil, Brian Conrad,
Fred Diamond, and Richard Taylor, which put the icing
on the cake of one of the most celebrated mathematical
achievements of all time.

V.11 Fixed Point Theorems

1 Introduction

The following is a variant of a well-known mathematical
puzzle. A man is on a train from London to Cambridge
and has a bottle of water with him. Prove that there is at
least one moment on the journey when the volume of
air in the bottle, as a fraction of the volume of the bottle
itself, is exactly equal to the fraction of his journey that
he has completed. (For instance, the bottle might be
two fifths full, and therefore three fifths empty, at the
precise moment when he is three fifths of the way from
London to Cambridge. Note that we do not assume that
the bottle is full at the start of the journey or empty at
the end.)

The solution, if you have not seen this sort of ques-
tion before, is surprisingly simple. For each x between
0 and 1 let f(x) be the proportion of air in the bottle
when the proportion of the journey that has been com-
pleted is x. Then 0 � f(x) � 1 for every x, since the
volume of air in the bottle cannot be negative and can-
not exceed the volume of the bottle. If we now set g(x)
to be x−f(x), then we see that g(0) � 0 and g(1) � 0.
Since g(x) varies continuously with x, there must be
some moment at which g(x) = 0, so that f(x) = x,
which is what we wanted.

What we have just proved is a slightly disguised form
of one of the simplest of all fixed point theorems. We
could state it more formally as follows: if f is a contin-
uous function from the closed interval [0,1] to itself,
then there must exist an x such that f(x) = x. This x
we call a fixed point of f . (We deduced the result from
the intermediate value theorem, a basic result in analy-
sis that states that if g is a continuous function from
[0,1] to R such that g(0) � 0 and g(1) � 0, then there
must be some x such that g(x) = 0.)

In general, a fixed point theorem is a theorem that
asserts that a function that satisfies certain conditions
must have a fixed point. There are many such the-
orems, a small sample of which we shall discuss in
this article. On the whole, they tend to have a noncon-
structive nature: they establish the existence of a fixed
point rather than defining one or telling you how to
find it. This is part of the reason that they are impor-
tant, since there are many examples of equations for
which one would like to prove that a solution exists
even when one cannot solve it explicitly. As we shall
see, one way of going about this is to try to rewrite the
equation in the form f(x) = x and apply a fixed point
theorem.

2 Brouwer’s Fixed Point Theorem

The fixed point theorem we have just proved is the one-
dimensional version of Brouwer’s fixed point theorem,
which states that if Bn is the unit ball of Rn (that is, the
set of all (x1, . . . , xn) such that x2

1 + · · · +x2
n � 1) and

f is a continuous function from Bn to Bn, then f must
have a fixed point. The set Bn is an n-dimensional solid
sphere, but all that matters is its topological character,
so we could take it to be another shape such as an n-
dimensional cube or simplex.

In two dimensions this says that a continuous func-
tion from the closed unit disk to itself must have a fixed
point. In other words, if you had a circular sheet of rub-
ber on a table and you picked it up and put it back down
within the circle where it started, having folded it and
stretched it as much as you liked, there would always
have to be a point that ended up in the same place as
before.

To see why this is true, it is helpful to reformulate
the statement. Let D = B2 be the closed unit disk. If
we had a continuous function f from D to D with no
fixed point, then we could define a continuous function
g from D to its boundary ∂D as follows: for each x,
follow a straight path from f(x) to x and continue on




