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VI.60 William Burnside
b. London, 1852; d. West Wickham, England, 1927
Theory of groups; character theory; representation theory

Burnside’s mathematical abilities first showed them-
selves at school. From there he won a place at Cam-
bridge, where he read for the Mathematical Tripos and
graduated as 2nd Wrangler in 1875. For ten years he
remained in Cambridge as a Fellow of Pembroke Col-
lege, coaching student rowers and mathematicians. In
1885, having published three very short papers, he was
appointed professor at the Royal Naval College, Green-
wich. He married in 1886 and the next year, at the
age of thirty-five, he embarked on his career as a pro-
ductive mathematician. He was elected as a Fellow of
the Royal Society in 1893 on the basis of his contri-
butions in applied mathematics (statistical mechanics
and hydrodynamics), geometry, and the theory of func-
tions. Although he continued to contribute to these
areas throughout his working life, and added probabil-
ity theory to his fields of interest during World War I,
he turned to the theory of groups in 1893, and it is for
his discoveries in this subject that he is remembered.

Burnside treated every aspect of the theory of finite
groups. He was much concerned with the search for
finite simple groups, and made the famous conjecture,
finally proved by Walter Feit and John Thompson in
1962, that there are no simple groups of odd compos-
ite order (see the classification of finite simple

groups [V.7]). He helped to develop character theory,
which had been created by frobenius [VI.58] in 1896,
into a tool for proving theorems of pure group theory,
using it in 1904 to spectacular effect when he proved
his so-called pαqβ-theorem: the theorem that groups
whose orders are divisible by at most two different
prime numbers are soluble. By asking, in effect, whether
a group all of whose elements have finite order and
which is generated by finitely many elements must be
finite, he launched the huge area of research which for
much of the twentieth century was known as the Burn-
side problem (see geometric and combinatorial

group theory [IV.10 §5.1]).

Although cayley [VI.46] and the Reverend T. P. Kirk-
man had written about groups before him, he was the
only British mathematician to work in group theory
until Philip Hall started his mathematical career in
1928. Burnside’s influential book Theory of Groups
of Finite Order (1897) was written in the hope of
“arousing interest among English mathematicians in a
branch of pure mathematics which becomes the more
interesting the more it is studied.” Its influence in
his own country was minimal, however, until several
years after his death. It went to a second edition in
1911 (reprinted 1955), which differs from the first in
that it has been substantially revised and, in particu-
lar, it includes chapters about the character theory of
finite groups and its applications—mathematics which
had been much developed by Frobenius, Burnside, and
Schur over the fifteen years following the invention of
character theory in 1896.

Further Reading

Curtis, C. W. 1999. Pioneers of Representation Theory: Frobe-
nius, Burnside, Schur, and Brauer. Providence, RI: Ameri-
can Mathematical Society.

Neumann, P. M., A. J. S. Mann, and J. C. Tompson. 2004.
The Collected Papers of William Burnside, two volumes.
Oxford: Oxford University Press.
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VI.61 Jules Henri Poincaré
b. Nancy, France, 1854; d. Paris, 1912
Function theory; geometry; topology; celestial mechanics;
mathematical physics; foundations of science

Educated at the École Polytechnique and the École
des Mines in Paris, Poincaré began his teaching career
at the University of Caen in 1879. In 1881 he took
up an appointment at the University of Paris where,
from 1886, he held successive chairs until his death
in 1912. He was of a retiring nature and did not attract
graduate students, but his lecture courses provided the
basis for a number of treatises, mostly in mathematical
physics.

Poincaré came to international prominence in the
early 1880s when, fusing ideas from complex func-
tion theory, group theory, non-Euclidean geometry, and
the theory of ordinary linear differential equations, he
identified an important class of automorphic functions.
Named Fuchsian functions, in honor of the mathemati-
cian Lazarus Fuchs, they are defined on a disk and
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remain invariant under certain discrete groups of trans-

formations. Soon after, he identified the related but

more complicated Kleinian functions, which are auto-

morphic functions without a limit circle. His theory of

automorphic functions was the first significant appli-

cation of non-Euclidean geometry. It led to his discov-

ery of the disk model of the hyperbolic plane and later

inspired the uniformization theorem [V.34].

During the same period Poincaré began pioneering

work on the qualitative theory of differential equations,

motivated in part by an interest in some of the fun-

damental questions of mechanics, notably the prob-

lem of the stability of the solar system. What was new

and important was his idea of thinking of the solu-

tions in terms of curves rather than functions, i.e.,

thinking geometrically rather than algebraically, and

it was this that marked a departure from the work

of his predecessors, whose research had been domi-

nated by power-series methods. From the mid 1880s

he began applying his geometric theory to problems in

celestial mechanics. His memoir on the three-body

problem [V.33] (1890) is famous both for providing

the basis for his acclaimed treatise, Les Méthodes Nou-

velles de la Mécanique Céleste (1892–99), and for con-

taining the first mathematical description of chaotic

behavior [IV.14 §1.5] in a dynamical system. Stabil-

ity was also at the heart of his investigation into the

forms of rotating fluid masses (1885). This work, which

contained the discovery of new, pear-shaped figures

of equilibrium, aroused considerable attention because
of its important implications for cosmogony in rela-
tion to the evolution of binary stars and other celestial
bodies.

Poincaré’s work on Fuchsian functions and on the
qualitative theory of differential equations led him to
recognize the importance of the topology (or, as it was
then called, analysis situs) of manifolds [I.3 §6.9]. And
in the 1890s he began to study the topology of man-
ifolds as a subject in its own right, effectively cre-
ating the powerful independent field of algebraic

topology [IV.6]. In a series of memoirs published
between 1892 and 1904, the last of which contains the
hypothesis known today as the poincaré conjecture

[IV.7 §2.4], he introduced a number of new ideas and
concepts, including Betti numbers, the fundamental

group [IV.6 §2], homology [IV.6 §4], and torsion.
A deep interest in physical problems lay behind

Poincaré’s achievements in mathematical physics. His
work in potential theory forms a bridge between that
of Carl Neumann on boundary-value problems and
that of fredholm [VI.66] on integral equations. He
introduced a technique known as the “méthode de
balayage” (“sweeping-out method”) for establishing
the existence of solutions to the dirichlet problem

[IV.12 §1] (1890); and he had the idea that the Dirich-
let problem itself should give rise to a sequence of
eigenvalues and eigenfunctions [I.3 §4.3] (1898). In
developing the theory for functions of several variables
he was led to the discovery of new results in com-
plex function theory. In Électricité et Optique (1890,
revised 1901), which derived from his university lec-
tures, he gave an authoritative account of the electro-
magnetic theories of Maxwell, Helmholtz, and Hertz. In
1905 he responded to Lorentz’s new theory of the elec-
tron, coming close to anticipating Einstein’s theory of
special relativity [IV.13 §1], thereby provoking con-
troversy among later writers about the question of pri-
ority. And in 1911 he attended the first Solvay Con-
ference on quantum theory, publishing an influential
memoir (1912) in its favor.

As Poincaré’s career developed, so too did his interest
in the philosophy of mathematics and science. His ideas
became widely known through four books of essays:
La Science et l’Hypothèse (1902), La Valeur de la Sci-
ence (1905), Science et Méthode (1908), and Dernières
Pensées (1913). As a philosopher of geometry he was a
proponent of the view, known as conventionalism, that
it is not an objective question which model of geometry
best fits physical space but is rather a matter of which
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model we find most convenient. By contrast, his posi-
tion on arithmetic was intuitionist. On the question of
foundational issues, he was largely critical. Although
sympathetic to the goals of set theory, he attacked
what he perceived as its counterintuitive results. (See
the crisis in the foundations of mathematics

[II.7 §2.2] for further discussion.)
Poincaré’s visionary geometric style led him to new

and brilliant ideas, which frequently connected differ-
ent branches of mathematics, but lack of detail often
made his work hard to follow. At times his approach
was censured for imprecision; it was in marked contrast
to that of hilbert [VI.63], his German counterpart,
whose work was rooted in algebra and rigor.

Further Reading

Barrow-Green, J. E. 1997. Poincaré and the Three Body
Problem. Providence, RI: American Mathematical Society.

Poincaré, J. H. 1915–56. Collected Works: Œuvres de Henri
Poincaré, eleven volumes. Paris: Gauthier Villars.

VI.62 Giuseppe Peano
b. Spinetta, Italy, 1858; d. Turin, 1932
Analysis; mathematical logic; foundations of mathematics

Known above all for his (and dedekind’s [VI.50]) axiom
system for the natural numbers, Peano made impor-
tant contributions to analysis, logic, and the axiomati-
zation of mathematics. He was born in Spinetta (Pied-
mont, Italy) as the son of a peasant, and from 1876
studied at the University of Turin, taking his doctoral
degree in 1880. He remained there until his death in
1932, becoming full professor in 1895.

During the 1880s Peano worked in analysis, achiev-
ing what are generally considered to be his most impor-
tant results. Particularly noteworthy are the continuous
space-filling Peano curve (1890), the notion of content
(a precedent of measure theory [III.55]) developed
independently by jordan [VI.52], and his theorems on
the existence of solutions for differential equations of
the first order (1886, 1890). The textbook he published
in 1884, Calcolo Differentiale e Principii di Calcolo Inte-
grale, partly based on lectures by his teacher Angelo
Genocchi, was noteworthy for its rigor and critical style,
and is counted among the very best nineteenth-century
treatises.

The years 1889–1908 saw Peano dedicating himself
intensively to symbolic logic, axiomatization, and pro-
ducing the encyclopedic Formulaire de Mathématiques
(1895–1908, five volumes). This ambitious assembly of

mathematical results, compactly presented in the sym-
bols of mathematical logic, was given completely with-
out proofs. This was by no means standard at the time,
but it shows what Peano expected from logic: it was
supposed to bring precision of language and brevity,
but not a greater level of rigor (something that was, by
contrast, crucial for frege [VI.56]). In 1891, together
with some colleagues, he founded the journal Rivista di
Matematica, gathering around him an important group
of followers.

Peano was an accessible man, and the way he mingled
with students was regarded as “scandalous” in Turin.
He was a socialist in politics, and a tolerant universal-
ist in all matters of life and culture. In the late 1890s
Peano became increasingly interested in elaborating a
universal spoken language, “Latino sine flexione”; the
last edition of the Formulario (1905–8) appeared in this
language.

Peano followed closely the work of German mathe-
maticians such as Hermann Grassmann, Ernst Schrö-
der, and Richard Dedekind; for example, the 1884
textbook defined the real numbers by Dedekind cuts,
and in 1888 he published Calcolo Geometrico Secondo
l’Ausdehnungslehre di H. Grassmann. In 1889 there
appeared (notably in Latin) a first version of the famous
peano axioms [III.67] for the set of natural numbers,
which he refined in volume 2 of the Formulaire (1898).
It aimed at filling the most significant gap in the foun-
dations of mathematics at a time when the arithmeti-
zation of analysis had essentially been completed. It
is no coincidence that other mathematicians (Frege,
Charles S. Peirce, and Dedekind) published similar work
in the same decade. Peano’s attempt is better rounded
than Peirce’s, but simpler and framed in more famil-
iar terms than those of Frege and Dedekind; because of
this, it has been more popular.

Peano’s work on the natural numbers was at the
crossroads of his diverse mathematical contributions,
linking naturally his previous research in analysis
with his later work on logical foundations, and being
a necessary prerequisite for the Formulaire project.
Actually, Arithmetices Principia can be regarded as a
simplification, refinement, and translation into logical
language (the “nova methodo” in its title) of Grass-
mann’s Lehrbuch der Arithmetik (1861). Grassmann
had striven to elaborate a stern deductive structure,
stressing proofs by mathematical induction and recur-
sive definitions. But curiously, unlike Peano, he did not
postulate an axiom of induction; thus, Peano presented
the basic assumptions much more clearly, bringing




