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uses all available information; it is related to the prob-
lem of reconstructing a 3D structure from a 2D projec-
tion. The operation has been fully described and is now
available in Mathematica.

The generalized inverse also enables one to handle
redundant axes in quasicrystals, but usually the inter-
esting problems are nonlinear. Other inverse problems
include the following.

(i) Finding the arrangement of atoms that gives rise
to the observed scattering patterns of X-rays or
electrons from a crystal.

(ii) Reconstructing a 3D image from 2D projections in
microscopy or X-ray tomography.

(iii) Reconstructing the geometry of a molecule given
probable interatomic distances (and perhaps bond
angles and torsion angles).

(iv) Finding the way in which a protein molecule folds
to give an active site, given the sequence of con-
stituent amino acids.

(v) Finding the pathway to producing a molecule syn-
thetically, given that it occurs in nature.

(vi) Finding the sequence of rules that generate a mem-
brane or a plant or another biological object, given
that it takes a certain shape.

Some questions of this type do not have unique an-
swers. For example, the classic question as to whether
the shape of a drumhead can be determined from its
vibration spectrum (can you hear the shape of a drum?)
has been answered in the negative: two vibrating mem-
branes with different shapes may have the same spec-
trum. It was thought that this ambiguity might also be
the case for crystal structures. Linus Pauling suggested
that there might be two different crystal structures that
were homometric (that is, giving the same diffraction
pattern), but no definite example has been found.

5 Conclusion

As the examples in this article show, mathematics and
chemistry have a symbiotic relationship, with develop-
ments in one often stimulating advances in the other.
Many interesting problems, including several that we
have mentioned here, are still waiting to be solved.
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VII.2 Mathematical Biology
Michael C. Reed

1 Introduction

Mathematical biology is an extremely large and diverse
field. It studies objects ranging from molecules to glob-
al ecosystems and the mathematical methods come
from many of the subdisciplines of the mathematical
sciences: ordinary and partial differential equations,
probability theory, numerical analysis, control theory,
graph theory, combinatorics, geometry, computer sci-
ence, and statistics. The most that one short article can
do is to illustrate by selected examples this diversity
and the range of new mathematical questions that arise
naturally in the biological sciences.

2 How Do Cells Work?

From the simplest point of view, cells are large bio-
chemical factories that take inputs and manufacture
lots of intermediate products and outputs. For exam-
ple, when a cell divides, its DNA must be copied
and that requires the biochemical synthesis of large
numbers of adenine, cytosine, guanine, and thymine
molecules. Biochemical reactions are usually catalyzed
by enzymes, proteins that facilitate a reaction but are
not used up by it. Consider, for example, a reaction in
which chemical A is converted to chemical B with the
help of an enzyme E. If a(t) and b(t) are the respec-
tive concentrations of A and B at time t, then one typi-
cally writes down a differential equation for b(t), which
takes the form

b′(t) = f(a, b, E)+ · · · − · · · .
Here, f is the rate of production, which typically
depends on a, b, and E. Of course B may be produced
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by other reactions (which would lead to additional pos-
itive terms +· · · ) and may be used as a substrate itself
in still other reactions (which would lead to additional
negative terms −· · · ). So, given a particular cell func-
tion or biochemical pathway, we can just write down
the appropriate set of nonlinear coupled ordinary dif-
ferential equations for the chemical concentrations and
solve it by hand or by machine computation. However,
this straightforward approach is often unsuccessful.
First of all, there are a lot of parameters (and variables)
in these equations and measuring them in the context
of real living cells is difficult. Second, different cells
behave differently and may have different functions, so
we would expect the parameters to be different. Third,
cells are alive and change what they are doing, so the
parameters may themselves be functions of time. But
the greatest difficulty is that the particular pathway
under study is not really isolated. Rather, it is embed-
ded in a much larger system. How do we know that our
model system will continue to behave in the same way
when embedded in this larger context? We need new
theorems in dynamical systems that answer questions
such as this, not for general “complex systems” but for
the particular kinds of complex systems that arise in
important biological problems.

Cells continue to accomplish many basic tasks even
though their environments (i.e., their inputs) are con-
stantly changing. A brief example of this phenomenon,
which is known as homeostasis, will illustrate the prob-
lem of “context.” Let us suppose that the chemical reac-
tion above is one step in the pathway for making the
thymines necessary for cell division. If the cell is a can-
cer cell, we would like to turn off this pathway, and a
reasonable way to try to do this would be to put into the
cell a compound X that binds to E, thereby reducing the
amount of free enzyme available to make the reaction
run. Two homeostatic mechanisms immediately come
into play. First, a typical reaction is inhibited by its
product: that is, f decreases as b increases. This makes
biological sense because it ensures that B is not over-
produced. So, when the amount of free E is reduced and
the rate f declines, the resulting decrease in b drives
the rate up again. Second, if the rate f is lower than
usual, the concentration a typically rises since A is not
being used up as quickly, which also drives the rate
f up again since f increases as a increases. Given the
network in which A and B are embedded, one can imag-
ine calculating how much f will drop if we put a cer-
tain amount of X into the cell. In fact, f may drop even
less than we calculate because of another homeostatic

mechanism that is not even in our network. The enzyme
E is a protein produced by the cell via instructions from
a gene. It turns out that sometimes the concentration
of free E inhibits the messenger RNA that codes for
the production of E itself. Then, if we introduce X and
reduce free E, the inhibition is removed and the cell
automatically increases its rate of production of E, thus
raising the amount of free E and with it raising the
reaction rate f .

This illustrates a fundamental difficulty in study-
ing cell biochemistry, indeed a difficulty in studying
many biological systems. These systems are very large
and very complex. To gain understanding, it is natural
to concentrate on particular relatively simple subsys-
tems. But one always has to be aware that the subsys-
tems exist in a larger context that may contain vari-
ables (excluded by the simplification) that are crucial
for understanding the behavior and biological function
of the subsystem itself.

Although cells exhibit remarkable homeostasis, they
also undergo spectacular changes. For example, cell
division requires unzipping of the DNA, synthesis of
two new complementary strands, the movement apart
of the two new DNAs, and the pinching off of the
mother cell to produce two daughters. How does a cell
do all this? In the case of yeast cells, which are compar-
atively simple, the actions of the biochemical pathways
are quite well understood, partly because of the mathe-
matical work of John Tyson. But as our brief discussion
makes clear, biochemistry is not all there is to cell divi-
sion; an important additional feature is motion. Materi-
als are being transported all the time throughout cells
from one specific place to another (so their motion is
not just diffusion), and indeed, cells themselves move.
How does this happen? The answer is that materials
are transported by special molecules called molecular
motors that turn the energy of chemical bonds into
mechanical force. Since bonds are formed and broken
stochastically (that is, some randomness is involved),
the study of molecular motors leads naturally to new
questions in stochastic ordinary and partial dif-

ferential equations [IV.24]. A good introduction to
the mathematics of cell biology is Fall et al. (2002).

3 Genomics

To understand the mathematics that was involved in
sequencing the human genome it is useful to start with
the following simple question. Suppose that we cut up a
line segment into smaller segments and are presented
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with the pieces. If we are told the order in which the
pieces came in the original segment, then we can put
them back together and reconstruct the segment. In
general, since there are many possible orders, we can-
not reconstruct the segment without extra informa-
tion of this kind. Now suppose that we have cut up
the segment in two different ways. Think of the line
segment as an interval I of real numbers, and let the
pieces be A1, A2, . . . , Ar when you cut it up the first
way, and B1, B2, . . . , Bs when you cut it up the other
way. That is, the sets Ai form a partition of the inter-
val I into subintervals, and the sets Bj form another
partition. For simplicity, assume that no Ai shares an
endpoint with any Bj , except for the two endpoints of
I itself.

Suppose that we know nothing about the order in
which the pieces Ai and Bj come in I. In fact, suppose
that all we know about them is which Ai overlap with
which Bj : that is, which of the intersections Ai∩Bj are
nonempty. Can we use this information to work out the
original order of the pieces Ai and thereby reconstruct
the interval I (or its reflection)? The answer will some-
times be yes and sometimes no. If it is yes, then we
would like to find an efficient algorithm for doing the
reconstruction, and if it is no, then we would like to
know how many different reconstructions are consis-
tent with the given information. This so-called restric-
tion mapping problem is really a problem in graph

theory [III.34]: the vertices of the graph correspond
to the sets Ai or Bj , and there is an edge between Ai
and Bj if Ai ∩ Bj �= ∅.

A second problem is whether we can find the original
order of the Ai (or the Bj ) if what we are told is the
length of each set Ai and each set Bj , and the set of
all the lengths of the intersections Ai∩Bj . The catch is
that we are not told which length corresponds to which
intersection. This is called the double digest problem.
Again one would like to be able to tell when there is only
one solution, or to place an upper bound on the number
of possible reconstructions if there is more than one.

Human DNA is, for our purposes here, a word of
length approximately 3 × 109 over a four-letter alpha-
bet A, G, C, T. That is, it is a sequence of length 3 × 109

in which each entry is A, G, C, or T. In the cell, the
word is bound letter by letter to the “complementary”
word, which is determined by the rule that A can only be
bound to T, and C can only be bound to G. (For example,
if the word is ATTGATCCTG, then the complementary
word is TAACTAGGAC.) In this brief discussion we will
ignore the complementary word.

Since DNA is so long (it would be approximately two
meters if one stretched it out into a straight line) it is
very hard to handle experimentally, but the sequence
of letters in short segments of approximately five hun-
dred letters can be determined by a process called
gel chromatography. There are enzymes that cut DNA
wherever specific very short sequences occur. So if
we digest a DNA molecule with one of these enzymes
and digest another copy with a different enzyme, we
can hope to determine which fragments from the first
digestion overlap fragments from the second digestion
and then use techniques from the restriction mapping
problem to reconstruct the original DNA molecule. The
interval I corresponds to the whole DNA word, and the
sets Ai to the fragments. This involves sequencing and
comparing the fragments, which has its own difficul-
ties. However, lengths of fragments are not so hard
to determine, so another possibility is to digest with
the first enzyme and measure lengths, digest with the
second and measure lengths, and finally digest with
both and measure lengths. If one does this, then the
problem one obtains is essentially the double digest
problem.

To completely reconstruct the DNA word one takes
many copies of the word, digests with enzymes, and
selects at random enough fragments that together they
have a high probability of covering the word. Each
of the fragments is cloned, in order to get enough
mass, and then sequenced by gel chromatography. Both
processes can introduce errors, so one is left with a
very large number of sequenced fragments with known
error rates for the letters. These need to be compared
to see if they overlap: that is, to see if the sequence
near the end of one fragment is the same as (or very
similar to) the sequence at the beginning of another.
This alignment problem is itself difficult because of the
large number of possibilities involved. So, in the end we
have a very large restriction mapping problem except
that we can only say that given fragments overlap with
probabilities that are themselves hard to estimate. A
further difficulty is that DNA tends to have large blocks
that repeat in different parts of the word. As a result of
these complications, the problem is much harder than
the restriction mapping problem described earlier. It
is clear that graph theory, combinatorics, probability
theory, statistics, and the design of algorithms all play
central roles in sequencing a genome.

Sequence alignment is important in other problems
as well. In phylogenetics (see below) one would like
a way of saying how similar two genes or genomes
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are. When studying proteins, one can sometimes pre-
dict protein three-dimensional structure by searching
databases for known proteins with the most similar
amino acid sequence. To illustrate how complex these
problems are, consider a sequence {ai}1000

i=1 of one
thousand letters from our four-letter alphabet. We wish
to say how similar it is to another sequence {bi}1000

i=1 .
Naively, one could just compare ai with bi and define
a metric [III.56] like d({ai}, {bi}) = ∑δ(ai, bi). How-
ever, DNA sequences have evolved typically by inser-
tions and deletions as well as by substitutions. Thus
if the sequence ACACAC · · · lost its first C to become
AACAC · · · , the two sequences would be very far apart
in this metric even though they are very similar and
related in a simple way. The way around this difficulty
is to allow sequences to include a fifth symbol, –, which
stands for the place of a deletion or a place opposite an
insertion. Thus, given two sequences (of perhaps dif-
ferent lengths), we wish to find how they can be aug-
mented with dashes to give the minimum possible dis-
tance between them. A little thought will convince the
reader that it is not feasible to use a brute-force search
for a problem like this, even for the fastest computers—
there are so many potential augmentations that the
search would take far too long. Serious and thought-
ful algorithm development is required. Two excellent
introductions to the material discussed in this section
are Waterman (1995) and Pevzner (2000).

4 Correlation and Causality

The central dogma of molecular biology is DNA →
RNA → proteins. That is, information is stored in DNA,
it is transferred out of the nucleus by RNA, and the RNA
is then used in the cell to make proteins that carry out
the work of the cell through the metabolic processes
discussed in section 2. Thus DNA directs the life of the
cell. Like most things in biology, the true situation is
much more complicated. Genes, which are segments of
DNA that code for the manufacture of particular pro-
teins, are sometimes turned on and sometimes turned
off. Usually, they are partially turned on; that is, the
protein they code for is manufactured at some inter-
mediate rate. This rate is controlled by the binding (or
lack of binding) of small molecules or specific proteins
to the gene, or to the RNA that the gene codes for. Thus
genes can produce proteins that inhibit (or excite) other
genes; this called a gene network.

In a way, this was obvious all along. If cells can
respond to their environments by changing what they

do, they must be able to sense the environment and
signal the DNA to change the protein content of the
cell. Thus, while sequencing DNA and understanding
specific biochemical reactions are important first steps
in understanding cells, the hard and interesting work
to come is to understand networks of genes and bio-
chemical reactions. It is these networks, in which pro-
teins control genes and genes control proteins, that
carry out and control specific cellular functions. The
mathematics will be ordinary differential equations for
chemical concentrations and variables that indicate to
what extent a gene is turned on. Since transport into
and out of the nucleus occurs, partial differential equa-
tions will be involved. And, finally, since some of the
molecular species occur in very small numbers, con-
centration (molecules per unit volume) may not be a
useful approximation for computations about chem-
ical binding and dissociation: they are probabilistic
events.

Two kinds of statistical data can give hints about
the components of these gene networks. First, there
are large numbers of population studies that corre-
late specific genotypes to specific phenotypes (such as
height, enzyme concentration, cancer incidence). Sec-
ond, tools known as microarrays allow us to measure
the relative amounts of a large number of different mes-
senger RNAs in a group of cells. The amount of RNA
tells us how much a particular gene is turned on. Thus,
microarrays allow us to find correlations that may indi-
cate that certain genes are turned on at the same time
or perhaps in a sequence. Of course, correlation is not
causality and a consistent sequential relationship is
not necessarily causal either (sure, football causes win-
ter, a sociologist once said). Real biological progress
requires understanding the gene networks discussed
above; they are the mechanisms by which the genotypes
play out in the life of the cell.

A nice discussion of the relationship between popu-
lation correlations and mechanisms occurs in Nijhout
(2002), from which we take the following simple exam-
ple. Most phenotypic traits depend on many genes; sup-
pose that we consider a trait that depends on only two
genes. Figure 1 depicts a surface that shows how the
trait in an individual depends on how much each of
the genes is turned on. All three variables are scaled
from 0 to 1. Suppose that we study a population whose
members have a genetic makeup that puts the individ-
uals near the point X on the graph. If we do a statistical
analysis of the population, we will find that gene B is
highly statistically correlated to the trait, but gene A is
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Figure 1 A phenotypic surface.

not. On the other hand, if the individuals in the pop-
ulation all live near the point Y on the surface, we
will discover in our population study that gene A is
highly statistically correlated to the trait, but gene B is
not. More detailed examples with specific biochemical
mechanisms are discussed in Nijhout’s paper. Similar
examples can be given for microarray data. This does
not mean that population studies or microarray data
are unimportant. Indeed, in studying hugely complex
biological systems, statistical information can suggest
where to look for the mechanisms that will ultimately
give biological understanding.

5 The Geometry and Topology
of Macromolecules

To illustrate the natural geometric and topological
questions that arise when one studies macromolecules,
we will briefly discuss molecular dynamics, protein–
protein interactions, and the coiling of DNA. Genes
code for the manufacture of proteins, which are large
molecules made up of sequences of amino acids. There
are twenty amino acids, each coded by a triplet of
base pairs, and a typical protein might have five hun-
dred amino acids. Interactions among the amino acids
cause the protein to fold up into a complicated three-
dimensional shape. This three-dimensional structure is
crucial for the function of the protein since the exposed
groups and the nooks and crannies in the shape govern
the possible chemical interactions with small molecules
and other proteins. Three-dimensional structures of

proteins can be approximately determined by X-ray
crystallography and nontrivial inverse scattering cal-
culations. The forward problem—namely, given the
sequence of amino acids, predict the three-dimensional
structure of the protein—is important not only for
understanding existing proteins, but also for the phar-
macological design of new proteins to accomplish spe-
cific tasks. Thus, in the past twenty years a large field
called molecular dynamics has arisen, in which one uses
classical mechanical methods.

Suppose we have a protein that consists of N atoms.
Let xi denote the position (specified by three real
coordinates) of the ith atom, and let x denote the vec-
tor formed from all these coordinates (which belongs
to R3N ). For each pair of atoms, one attempts to write
down a good approximation to the potential energy,
Ei,j(xi, xj), due to their pairwise interaction. This could
be the electrostatic interaction, for example, or the
van der Waals interaction, which is a classical mechani-
cal formulation of quantum effects. The total potential
energy is E(x) ≡∑Ei,j(xi, xj) and Newton’s equations
of motion take the form

v̇ = −∇E(x), ẋ = v,
where v is the vector of velocities. Starting with some
initial conditions one can try to solve these equations
to follow the dynamics of the molecule. Note that this
is a very high-dimensional problem. A typical amino
acid has twenty atoms, so that is sixty coordinates right
there, and if we are looking at a protein made up of
five hundred amino acids, then x will be a vector with
thirty thousand coordinates. Alternatively, one could
assume that the protein will fold to the configuration
that has the minimum potential energy. Finding this
configuration would mean finding the roots of ∇E(x),
by newton’s method [II.4 §2.3] say, and then checking
to see which root gives the lowest energy. Again this is
an enormous computational task.

It is not surprising that molecular dynamics calcula-
tions have been only moderately successful and have
predicted the shapes of only relatively small molecules
and proteins. The numerical problems are substantial
and the choice of energy terms is somewhat specu-
lative. Even more importantly, context matters, as it
does in many biological problems. The way proteins
fold depends on properties of the solution in which
they sit. Many proteins have several preferred config-
urations and switch from one to the other depending
on interactions with small molecules or other proteins.
Finally, it has recently been discovered that proteins do
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not fold up by themselves from their linear configura-
tion to their three-dimensional shape, but are helped
and guided by other proteins called chaperones. It is
natural to ask whether there are quantifiable geometri-
cal units larger than points (atoms) that could reason-
ably form the basis for a good approximation to the
dynamics of large molecules.

A start has been made in this direction by research
groups studying the interactions of proteins with small
molecules and other proteins. These interactions are
fundamental to cell biochemistry, cell-transport pro-
cesses, and cell signaling, and so progress is vital to
understanding how cells work. Suppose one has two
large proteins that are bound to each other. The first
thing one would like to do is describe the geometry of
the binding region. One could do this as follows. Con-
sider an atom in either protein that is at point x. Given
another atom at point y , there is a plane that divides
R3 into two open half-spaces: the points closer to x
and the points closer to y . Now let Rx denote the inter-
section of all such open half-spaces as y ranges over
the positions of all other atoms: that is, Rx consists
of those points that are closer to x than to any other
atom. The union of the boundaries,

⋃
x ∂(Rx), called

a Voronoi surface, consists of triangles and pieces of
planes and has the property that each point on the sur-
face is equidistant from at least two atom positions.
To model the binding region between the two proteins,
we discard all pieces of the Voronoi surface that are
equidistant from two atoms that belong to the same
protein and keep just the ones that are equidistant
from two atoms that are in different proteins. This sur-
face goes off to infinity, so we clip off the parts that
are not “close” to either protein. The result is a sur-
face with a boundary made up of polyhedral faces that
is a reasonable approximation of the interaction inter-
face between the two proteins. (This is not quite an
accurate description: in the actual construction, “dis-
tance” is weighted in a way that depends on the atoms
involved.) Now choose colors representing the twenty
amino acids and color each side of each polyhedral
piece with the color of the amino acid that the clos-
est atom is in. This divides each side of the surface
into large colored patches corresponding to nearness
of a particular amino acid on that side. The coloring
of the two sides of the boundary surface will be differ-
ent, of course, and the placement of the patches gives
information about which amino acids in one protein are
interacting with which amino acids in the other. In par-
ticular, one amino acid in one protein may interact with

several in the other. This gives a way of using geometry
to classify the nature of the particular protein–protein
interaction.

Finally, let us touch on questions involving the pack-
aging of DNA. The basic problem is easy to see. As
mentioned earlier, the human DNA double helix when
stretched out linearly is about two meters long. A typ-
ical cell has a diameter of about one-hundredth of a
millimeter and its nucleus has a diameter of about one-
third that size. All of that DNA has to be packed into
the nucleus. How is this done?

At least the first stages are well understood. The
DNA double helix is wound around proteins called his-
tones, which consist of about two hundred base pairs
each, yielding chromatin, which is a sequence of such
DNA-wrapped histones connected by short segments
of DNA. Then the chromatin is itself wrapped up and
compacted; the geometrical details are not completely
understood. It is important to understand the packing
and the mechanisms that create it, because the life of
the cell requires unpacking! When the cell divides, the
entire DNA helix must be unzipped to form two sepa-
rate strands, which are the templates on which the two
new copies of DNA will be built. Clearly this cannot be
done all at once but must involve local unwinding of
the DNA off the histones, local unzipping, synthesis,
and then local repacking.

It is equally challenging to understand the sequence
of events that occurs when a protein is synthesized
from a gene. Transcription factors diffuse into the
nucleus and bind to specific short segments of DNA
(of about ten base pairs) in the regulatory region of
the gene. Of course, they will randomly bind wher-
ever they see the same segment. Typically, one needs
the binding of several different transcription factors
in the regulatory region along with RNA polymerase
to start transcription of a gene. That process involves
the unwinding of the gene-coding region from the his-
tones so that it can be transcribed, the transport of the
resulting RNA out of the nucleus, and the recompact-
ification of the DNA. To understand these processes
fully, one will have to solve problems in partial differ-
ential equations, geometry, combinatorics, probability
theory, and topology. DeWitt Sumners is the mathe-
matician who brought the topological problems in the
study of DNA (links, twists, knots, supercoiling) to the
attention of the mathematics community. A good ref-
erence for molecular dynamics and the general math-
ematical issues posed by biological macromolecules is
Schlick (2002).
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6 Physiology

When one first studies human physiological systems,
they seem almost miraculous. They accomplish enor-
mous numbers of tasks simultaneously. They are ro-
bust but capable of quick changes if the situation war-
rants. They are made up of large numbers of cells that
actively cooperate so that the tasks of the whole can be
done. It is the nature of many of these systems that
they are complex, controlled by feedback, and inte-
grated with each other. It is the job of mathematical
physiology to understand how they work. We will illus-
trate some of these points by discussing problems in
biological fluid dynamics.

The heart pumps blood throughout a circulatory sys-
tem that consists of vessels of diameter as large as
2.5 cm (the aorta) and as small as 6×10−4 cm (the cap-
illaries). Not only are the vessels flexible, but many are
surrounded by muscle and can contract to exert local
force on the blood. The main force-generating mech-
anism (the heart!) is approximately periodic, but the
period can change. The blood itself is a very compli-
cated fluid. About 40% of its volume is made up of cells:
red blood cells carry most of the oxygen and CO2; white
blood cells are immune system cells that hunt bacte-
ria; and platelets are part of the blood clotting process.
Some of these cells have diameters that are larger than
the smallest capillaries, which raises the nice question
of how they get through. You notice that we are very
far away from most of the simplifying assumptions of
classical fluid dynamics.

Here is an example of a circulatory-system question.
In a significant number of people, the mitral valve,
which is the inflow valve to the left side of the heart,
becomes defective. It is common to replace the valve
by an artificial one and this leads to an important ques-
tion: how should one design the artificial valve so that
the resulting flow in the left heart chamber has as few
stagnant points as possible, since clots tend to form at
these points? Charles Peskin did the pioneering work
on this problem. Here is another question. The white
blood cells are not carried in the middle of the fluid but
tend to roll along the walls. Why do they do that? It is
a good thing that they do, because their job is to sniff
out inflammation outside the blood vessel and, when
they find it, to stop and burrow through the blood ves-
sel wall to get to the inflamed site. Another circulatory
fluid dynamics question is discussed in section 10.

The circulatory system is connected to many other
systems. The heart has its own pacemaker cells, but its

frequency of contraction is regulated by the autonomic
nervous system. Through the baroreceptor reflex, the
sympathetic nervous system tightens blood vessels to
avoid a dramatic drop in blood pressure when we
stand. Overall average blood pressure is maintained by
a complicated regulatory feedback mechanism involv-
ing the kidneys. It is worthwhile remembering that all
these things are being accomplished by living tissues
whose parts are always decaying and being replaced.
For example, the gap junctions that transmit current at
very low resistance between heart muscle cells have a
half-life of approximately one day.

As a final example, we consider the lung, which
has a fractal branching structure that terminates after
twenty-three levels in about 600 million air sacs called
alveoli, in which oxygen and CO2 are exchanged with
the circulating blood. The Reynolds number of the air
flow varies by about three orders of magnitude between
the large vessels near the throat and the tiny vessels
near the alveoli. Premature infants often have respira-
tory difficulty because they lack surfactants that reduce
surface tension on the inner surfaces of the alveoli. The
high surface tension makes the alveoli collapse, which
makes breathing difficult. One would like the infants to
breathe in air that includes tiny aerosol drops of sur-
factant. How small should the drops be so that as much
surfactant as possible makes it to the alveoli?

The mathematics of physiology consists mostly of
ordinary and partial differential equations. However,
there is a new feature: many of these equations have
time delays. For example, the rate of respiration is con-
trolled by a brain center that senses the CO2 content
of blood. It takes almost fifteen seconds for blood to
go from the lungs to the left heart and from there
to the brain center. This time delay is even longer
in patients with weak hearts and often these patients
display Cheyne–Stokes breathing: very rapid breathing
alternates with periods of little or no breathing. Such
oscillations in control systems are well-known as the
time delay gets longer. Since partial differential equa-
tions are often involved, new mathematical results are
needed that go well beyond the standard theory of ordi-
nary differential equations with delay, which was initi-
ated by Bellman in the 1950s. An excellent reference
for the applications of mathematics to physiology is
Keener and Sneyd (1998).

7 What’s Wrong with Neurobiology?

The short answer is that there is not enough theory.
This may seem an odd thing to say, since neurobiology
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is the home of the Hodgkin–Huxley equations, which
are often cited as a triumph of mathematics in biol-
ogy. In a series of papers in the early 1950s, Hodgkin
and Huxley described several experiments, and gave a
theoretical basis for explaining them. Building on the
work of physicists and chemists (for example, Wal-
ter Nernst, Max Planck, and Kenneth Cole), they dis-
covered the relationship between certain ionic con-
ductances and the trans-membrane electrical potential,
v(x, t), in the axons of neurons, and they formulated
a mathematical model:

∂v
∂t

= α∂
2v
∂x2

+ g(v,y1, y2, y3),

∂yi
∂t

= fi(v,yi), i = 1,2,3.

Here the yi are related to the membrane conduc-
tances of various ions. The equations have solutions
that are pulses that keep their shape and travel at
constant velocity in a way that corresponds to the
observed behavior of action potentials in real neurons.
The ideas, both explicit and implicit, in these discover-
ies form the basis of much single-neuron physiology.
Of course, mathematicians should not be too proud
about this since Hodgkin and Huxley were biologists.
The Hodgkin–Huxley equations were part of the stim-
ulus for interesting work by mathematicians on travel-
ing waves and pattern formation in reaction–diffusion
equations.

However, not everything can be explained at the level
of just one neuron. Watch your hand as it reaches out
gracefully to pick up an object. Think about the so-
called ocular–vestibular reflex in which motions of the
head are automatically compensated for by motions
of the eyes so that your gaze can remain fixed. Con-
sider the fact that you are looking at stereotypical
black marks on a page and they mean something inside
your head. These are system properties, and the sys-
tems are large indeed. There are approximately 1011

neurons in the central nervous system and on average
each makes about one thousand connections to other
neurons. These systems will not be understood just
by examining their parts (the neurons) and, for obvi-
ous reasons, experimentation is limited. Thus, experi-
mental neurobiology, like experimental physics, needs
input from deep and imaginative theorists.

The lack of a large theory community interacting
robustly with experimentalists is to some extent a
historical accident. Grossberg asked how groups of
(quite simple) model neurons, if they were connected
in the right ways, could accomplish various tasks such

as pattern recognition and decision making, or could
exhibit certain “psychological” properties (Grossberg
1982). He also asked how these networks could be
trained. At about the same time it was shown that net-
works of neuron-like elements connected in the right
way could automatically compute good solutions of
large, difficult problems like the traveling salesman

problem [VII.5 §2]. These and other factors, including
the great interest in software engineering and artificial
intelligence, led to the emergence of a large community
of researchers studying “neural networks.” The mem-
bers of this community were mostly computer scien-
tists and physicists, so it was natural for them to con-
centrate on the design of devices, rather than biology.
This was noticed, of course, by experimental neurobi-
ologists, who lost interest in collaborating with these
theorists.

This brief history is of course an oversimplification.
There are mathematicians (and physicists and com-
puter scientists) who are essentially theoreticians for
neuroscience. Some of them work on hypothetical net-
works, typically either very small networks or networks
with strong homogeneity properties, to discover what
are the emergent behaviors of the systems. Others work
on modeling real physiological neural networks, often
collaboratively with biologists. Usually, the models con-
sist of ordinary differential equations for the firing
rates of the individual neurons or mean-field models
that involve integral equations. These mathematicians
have made real contributions to neurobiology.

But much more is needed, and to see why, it is use-
ful to think about just how difficult these problems
really are. First, there is no one-to-one correspondence
between the cells of the central nervous system in dif-
ferent members of the same species (except in spe-
cial cases like C. elegans). Second, neurons in the same
animal differ widely in their anatomy and physiology.
Third, the details of a particular network may well
depend on the life history of the animal. Fourth, most
neurons are somewhat unreliable devices in that they
give different outputs under repeated trials with the
same input. Finally, one of the prime characteristics of
neural systems is that they are plastic, adaptable, and
ever changing. After all, if you remember anything of
what is written here, then your head is different from
when you began. Between the level of the single neuron
and the psychological level, there are probably twenty
levels of networks, each network feeding into and being
controlled by networks at other levels. The mathemat-
ical objects that will enable us to classify, analyze, and



�

VII.2. Mathematical Biology 845

understand how this all works have probably not yet
been discovered.

8 Population Biology and Ecology

Let us begin with a simple example. Imagine a large
orchard of equally spaced trees and suppose that one
tree has a disease. The disease can be transmitted only
to nearest neighbors, and is transmitted with prob-
ability p. What is E(p), the expected percentage of
trees that will be infected? Intuitively, if p is small,
E(p) should be small, and if p is large, E(p) should
be close to 100%. In fact, one can prove that E(p)
changes very rapidly from being small to being large
as p passes through a small transition region around
a particular critical probability pc. One would expect p
to decrease as the distance, d, between trees increases;
farmers should choose d in such a way that p is less
than the critical probability, in order to make E(p)
small. We see here a typical issue in ecological prob-
lems: how does behavior on the large scale (tree epi-
demic or not) depend on behavior at the small scale
(the distance between trees). And, of course, the exam-
ple illustrates that understanding the biological situa-
tion requires mathematics. For other examples of sharp
global changes in probabilistic models, see probabilis-

tic models of critical phenomena [IV.25].

Suppose that we now widen our gaze to consider
forests—let us say the forests on the East coast of the
United States. We would like to understand how they
have come to be as they are. Most of them were not
planted in neat rows, so that is already a complica-
tion. But there are two other really new features. First,
there is not one species but many, and each species
of tree has different properties: shape, seed dispersal,
need for light, and so forth. The species are different,
but their properties affect each other because they are
living in the same space. Second, the species, and the
interactions between the species, are affected by the
physics of the environment. There are physical param-
eters that vary on long timescales, like average temper-
ature, and there are other parameters that vary on very
short timescales, like wind speed (for seed dispersal).
Certain properties of forests may depend on the fluc-
tuations in these parameters as much as on the values
themselves. Finally, one might have to take into account
the reaction of the ecosystem to catastrophic events
such as hurricanes or prolonged drought.

The difficulties are similar to those we have seen for
other problems in mathematical biology. One would

like to understand the emergent behavior on the large
scale. To do this one creates mathematical models that
relate the behavior on the small scale to the large scale.
However, on the small scale one is overwhelmed by the
biological details. Which of these details should be in
the model? Of course, there is no simple answer to this
because, in fact, this is the heart of what we want to
know. Which of the bewildering variety of local proper-
ties or variables give rise to the large-scale behavior and
by what mechanisms? Furthermore, it is not obvious
what kinds of model are best. Should we model each
individual and its interactions, or should we use popu-
lation densities? Should we use deterministic models or
stochastic models? These are also hard questions, and
the answers depend on the system being studied and
the questions being asked. A nice discussion of these
different modeling choices can be found in Durrett and
Levin (1994).

Let us focus again on a simple model: the so-called
SIRS model for the spread of a disease in a population.
A crucial parameter is the infectious contact number,
σ , which represents the average number of new infec-
tions that an infected individual creates in the suscep-
tible population. For a serious disease one would like
to bring the value of σ down to below 1 (so that an epi-
demic will be unlikely) by vaccination, which takes indi-
viduals from the susceptible category and puts them in
the removed category. Since vaccination is expensive
and it is difficult to vaccinate high percentages of the
population, it is an important public-health problem to
know how much vaccination is needed to bring σ to
below 1. A little reflection shows us how difficult this
problem really is. First of all, the population is not well
mixed, so one may not be able to ignore spatial separa-
tion, as is done in the SIRS model. Even more important,
σ depends on the social behavior of individuals and the
subclasses of the population to which they belong (as
anyone with small children in school will attest). Thus,
we see a genuinely new issue here: if an ecological prob-
lem involves animals, then the social behavior of the
animals may affect the biology.

In fact, the issues are even deeper. Individuals in
groups, or species, or subpopulations, vary and it is
just this variation on which natural selection acts. So,
to understand how an ecosystem got to where it is
today, one may have to take this individual variabil-
ity into account. Social behavior is also transmitted
from generation to generation, both biologically and
culturally, and therefore also evolves. For instance,
there are many examples of plant and animal species
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in which the biology of the plants and the sociology of
the animals clearly coevolved, to the benefit of both.
Game-theory models have been used to study the evo-
lution of certain human behaviors such as altruism.
Therefore, ecological problems, which sometimes seem
simple at first, are often very deep, because the biol-
ogy and its evolution are connected in complicated
ways to both the physics of the environment and
the social behavior of the animals. A good introduc-
tory review of these questions can be found in Levin
et al. (1997).

9 Phylogenetics and Graph Theory

Since Darwin, a deep ongoing problem in biology has
been to determine the history of the evolution of
species that has brought us to our current state. It is
natural when thinking about such questions to draw
directed graphs [III.34] in which the vertices, V , are
species (past or present) and an edge from species ν1

to species ν2 indicates that ν2 evolved directly from
ν1. Indeed, Darwin himself wrote down such graphs.
To explain the mathematical issues, we will consider a
simple special case. A connected graph with no cycles is
called a tree. If we distinguish a particular vertex, ρ, and
call it the root, then the tree is called rooted. The ver-
tices of the tree that have degree one (i.e., have only one
attached edge) are called leaves. We will assume that ρ
is not a leaf. Notice that, because there are no cycles,
there is exactly one path in the tree from ρ to each ver-
tex ν . We say that ν1 � ν2 if the path from ρ to ν2

contains ν1 (see figure 2). The problem is to determine
which trees with a given set of leavesX (current species)
and a given root vertex ρ (a hypothesized ancestral
species) are consistent with experimental information
and theoretical assumptions about the mechanisms of
evolution. Such a tree is called a rooted phylogenetic
X-tree. One can always add extra intermediate species,
so typically one imposes the additional restriction that
the phylogenetic trees be as simple as possible.

Suppose that we are interested in a certain character-
istic, the number of teeth, for example. We can use it to
define a function f fromX, the set of current species, to
the nonnegative integers: given a species x in X, we let
f(x) be the number of teeth of members of x. In gen-
eral, a character is a function from X to a set C of pos-
sible values of a particular characteristic (having or not
having a gene, the number of vertebrae, the presence
or absence of a particular enzyme, etc.). It is characters
such as these that are measured by biologists in current
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● ● ● ● ●
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root

leaves

ν1

ν2

Figure 2 A rooted tree.

species. In order to say something about evolutionary
history, one would like to extend the definition of f
from X to the larger set V of all the vertices in a phy-
logenetic tree. To do this, one specifies some rules for
how characters can change as species evolve. A charac-
ter is called convex if f can be extended to a function
f̄ from V to C in such a way that for every c ∈ C , the
subset f̄−1(c) of V is a connected subgraph of the tree.
That is, between any two species x and y with charac-
ter value c there should be a path back in evolutionary
history from x and forward again to y such that all the
species in between have the same value c. This essen-
tially forbids new values from arising and then revert-
ing back and forbids two values evolving separately (in
different parts of the tree). Of course, we have the cur-
rent species and lots of characters. What is unknown
is the phylogenetic tree, that is, the collection of inter-
mediate species and the relations between them that
link the current species to a common ancestor. A col-
lection of characters is called compatible if there exists
a phylogenetic tree on which they are all convex. Deter-
mining when this is the case and finding an algorithm
for constructing such a tree (or a minimal such tree)
is called the perfect phylogeny problem. This problem
is understood for collections of characters with binary
values, but not in general.

An alternative problem is the following. Note that we
have been treating all the edges alike when in fact some
may represent longer or shorter evolutionary steps.
Suppose that we have a functionw that assigns a posi-
tive number to each edge. Then, since there is a unique
shortest path between any two vertices in the tree, w
induces a distance function dw on V ×V , and in partic-
ular on X. Now, suppose that we are given a distance
function δ on X × X that tells us how far apart cur-
rent species are. The question is whether there exists
a phylogenetic tree and a weighting function w so that
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δ(x,y) = dw(x,y) for all x,y ∈ X. If so, one would
like an algorithm to construct the tree and the weights.
If not, one would like to construct a family of trees that
satisfy the relation approximately.

Finally, we note that there is a blossoming field of
Markov processes on trees where the partial order on
V forms the basis for the Markov condition. Not only
are there wonderful mathematical questions relating
the geometry of the tree to the processes, but there
are important issues for phylogenetics. Suppose that
one starts with characters defined only at the root and
then allows them to “evolve” down the tree by (possibly
different) Markov processes. Then, given the distribu-
tion of characters on the leaves, when can we recon-
struct the tree? These questions have even given rise
to problems in algebraic geometry.

Phylogenetics is useful not only for determining our
past but also for controlling our present and future: see
Fitch et al. (1997), where you can find a phylogenetic
reconstruction for the influenza A virus. An excellent
recent graduate text in this field is Semple and Steel
(2003).

10 Mathematics in Medicine

It is clear that an improved understanding of biological
systems leads, at least indirectly, to improved medical
care. However, there are many cases in which mathe-
matics has a direct impact on medicine. We give two
brief examples.

Charles Taylor is a biomedical engineer at Stanford
who works on the fluid dynamics of the cardiovascular
system. He wants to use fast simulations of flows as
part of the medical decision-making process. Suppose
that a patient presents with leg weakness and is found
on magnetic resonance imaging (MRI) to have an arterial
constriction in the thigh. Typically, the surgical group
will meet and consider a variety of options including
shunting blood from other vessels to a point below
the constriction or shunting blood around the constric-
tion with vessels removed from some other site in the
patient’s body. Among a fairly large number of possi-
ble choices, the surgical group chooses based on what
they have been taught and on their own experience. The
characteristics of the flow after the graft are important
not just for recovery of function but to prevent the for-
mation of possibly destructive clots. An important dif-
ficulty is that patients treated successfully are rarely
seen again, so one does not know the actual characteris-
tics of the flow after the operation. Taylor wants to be in

on the discussion with the surgical team with immedi-
ate fluid dynamical simulations based on the patient’s
actual vasculature (as revealed by the MRI) for each pro-
posed graft suggested. And he wants followup on each
patient to check how well his simulations predicted the
actual postoperative flow.

David Eddy is an applied mathematician who has
worked on health policy for thirty years. He first
became prominent when he published Screening for
Cancer: Theory, Analysis and Design (Eddy 1980), which
grew out of his Ph.D. thesis. Because of this book,
the American Cancer Society changed its recommen-
dation for the frequency of Pap smears from once a
year to once every three years, since Eddy’s model-
ing showed that the change would have little effect on
the life expectancy of the average American woman. A
short calculation easily estimates the amount of money
saved in an economy that spends 15% of its gross
domestic product (GDP) on health care. Throughout his
career Eddy has criticized both the indiscriminate use
of diagnostic tests and the incorrect use of the results
by physicians and policy boards often ignorant of the
basic facts of conditional probability. He has criticized
specific health-policy guidelines as based on seat-of-
the-pants guesswork instead of quantitative analysis.
In a classic case he distributed questionnaires to physi-
cians at a conference on colorectal cancer. The physi-
cians were asked to estimate the percentage drop in
mortality from colorectal cancers if all Americans over
age fifty were to have the two most common diag-
nostic tests each year: fecal blood smear and flexible
sigmoidoscopy. The answers were approximately uni-
formly distributed in a range from 2% to 95%. Even
more startling was the fact that the physicians did not
even know that they disagreed so dramatically. He has
used mathematical models to analyze the costs and
benefits of new and existing surgeries, medical treat-
ments, and drugs, and he has participated robustly in
debates on the current health-policy crisis. Through-
out, he has pointed out that a hefty percentage of GDP
is spent on devices, drugs, and procedures with almost
no mathematical analysis of which are effective.

For more on the interrelations between mathemat-
ics and medicine, see mathematics and medical

statistics [VII.11].

11 Conclusions

Mathematics and mathematicians have played impor-
tant roles in many fields of biology that this brief
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article has not had the space to cover: immunology,

radiology, developmental biology, and the design of

medical devices and synthetic biomaterials, to name

just a few of the most obvious omissions. Neverthe-

less, this collection of examples and introductory dis-

cussions allows us to draw a few conclusions about

mathematical biology. The range of biological problems

needing explanation by mathematics is enormous and

techniques from many different branches of mathe-

matics are important. It is not so easy in mathemati-

cal biology to extract simple, clear mathematical ques-

tions to work on, because biological systems typically

operate in a complex environment where it is diffi-

cult to decide what should be counted as the system

and what as the parts. Finally, biology is a source of

new, interesting, and difficult questions for mathemati-

cians, whose participation in the biological revolution

is necessary for a full understanding of the biology

itself.
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VII.3 Wavelets and Applications
Ingrid Daubechies

1 Introduction

One of the best ways to understand a function is to
expand it in terms of a well-chosen set of “basic” func-
tions, of which trigonometric functions [III.92] are
perhaps the best-known example. Wavelets are fami-
lies of functions that are very good building blocks for
a number of purposes. They emerged in the 1980s from
a synthesis of older ideas in mathematics, physics,
electrical engineering, and computer science, and have
since found applications in a wide range of fields.
The following example, concerning image compression,
illustrates several important properties of wavelets.

2 Compressing an Image

Directly storing an image on a computer uses a lot of
memory. Since memory is a limited resource, it is highly
desirable to find more efficient ways of storing images,
or rather to find compressions of images. One of the
main ways of doing this is to express the image as a
function and write that function as a linear combina-
tion of basic functions of some kind. Typically, most
of the coefficients in the expansion will be small, and
if the basic functions are chosen in a good way it may
well be that one can change all these small coefficients
to zero without changing the original function in a way
that is visually detectable.

Digital images are typically given by large collections
of pixels (short for picture elements; see figure 1).

The boat image in figure 1 is made up of 256 × 384
pixels; each pixel has one of 256 possible gray values,
ranging from pitch black to pure white. (Similar ideas
apply to color images, but for this exposition, it is sim-
pler to keep track of only one color.) Writing a num-
ber between 0 and 255 requires 8 digits in binary; the
resulting 8-bit requirement to register the gray level for
each of the 256×384 = 98 304 pixels thus gives a total
memory requirement of 786 432 bits, for just this one
image.

This memory requirement can be significantly re-
duced. In figure 2, two squares of 36×36 pixels are high-
lighted, in different areas of the image. As is clear from
its blowup, square A has fewer distinctive characteris-
tics than square B (a blowup of which is shown in fig-
ure 1), and should therefore be describable with fewer
bits. Square B has more features, but it too contains




