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8 I. Introduction

[IV.16], general relativity and the einstein equa-

tions [IV.13], and operator algebras [IV.15] describe
some fascinating examples of how mathematics and
physics have enriched each other.

I.2 The Language and Grammar of
Mathematics

1 Introduction

It is a remarkable phenomenon that children can learn
to speak without ever being consciously aware of the
sophisticated grammar they are using. Indeed, adults
too can live a perfectly satisfactory life without ever
thinking about ideas such as parts of speech, subjects,
predicates, or subordinate clauses. Both children and
adults can easily recognize ungrammatical sentences,
at least if the mistake is not too subtle, and to do this
it is not necessary to be able to explain the rules that
have been violated. Nevertheless, there is no doubt that
one’s understanding of language is hugely enhanced by
a knowledge of basic grammar, and this understanding
is essential for anybody who wants to do more with
language than use it unreflectingly as a means to a
nonlinguistic end.

The same is true of mathematical language. Up to
a point, one can do and speak mathematics without
knowing how to classify the different sorts of words
one is using, but many of the sentences of advanced
mathematics have a complicated structure that is much
easier to understand if one knows a few basic terms
of mathematical grammar. The object of this section
is to explain the most important mathematical “parts
of speech,” some of which are similar to those of nat-
ural languages and others quite different. These are
normally taught right at the beginning of a university
course in mathematics. Much of The Companion can be
understood without a precise knowledge of mathemat-
ical grammar, but a careful reading of this article will
help the reader who wishes to follow some of the later,
more advanced parts of the book.

The main reason for using mathematical grammar is
that the statements of mathematics are supposed to
be completely precise, and it is not possible to achieve
complete precision unless the language one uses is free
of many of the vaguenesses and ambiguities of ordinary
speech. Mathematical sentences can also be highly com-
plex: if the parts that made them up were not clear and
simple, then the unclarities would rapidly accumulate
and render the sentences unintelligible.

To illustrate the sort of clarity and simplicity that is

needed in mathematical discourse, let us consider the

famous mathematical sentence “Two plus two equals

four” as a sentence of English rather than of mathemat-

ics, and try to analyze it grammatically. On the face of it,

it contains three nouns (“two,” “two,” and “four”), a verb

(“equals”) and a conjunction (“plus”). However, looking

more carefully we may begin to notice some oddities.

For example, although the word “plus” resembles the

word “and,” the most obvious example of a conjunc-

tion, it does not behave in quite the same way, as is

shown by the sentence “Mary and Peter love Paris.” The

verb in this sentence, “love,” is plural, whereas the verb

in the previous sentence, “equals,” was singular. So the

word “plus” seems to take two objects (which happen

to be numbers) and produce out of them a new, sin-

gle object, while “and” conjoins “Mary” and “Peter” in

a looser way, leaving them as distinct people.

Reflecting on the word “and” a bit more, one finds

that it has two very different uses. One, as above, is to

link two nouns, whereas the other is to join two whole

sentences together, as in “Mary likes Paris and Peter

likes New York.” If we want the basics of our language

to be absolutely clear, then it will be important to be

aware of this distinction. (When mathematicians are at

their most formal, they simply outlaw the noun-linking

use of “and”—a sentence such as “3 and 5 are prime

numbers” is then paraphrased as “3 is a prime number

and 5 is a prime number.”)

This is but one of many similar questions: anybody

who has tried to classify all words into the standard

eight parts of speech will know that the classification is

hopelessly inadequate. What, for example, is the role of

the word “six” in the sentence “This section has six sub-

sections”? Unlike “two” and “four” earlier, it is certainly

not a noun. Since it modifies the noun “subsection” it

would traditionally be classified as an adjective, but

it does not behave like most adjectives: the sentences

“My car is not very fast” and “Look at that tall build-

ing” are perfectly grammatical, whereas the sentences

“My car is not very six” and “Look at that six building”

are not just nonsense but ungrammatical nonsense. So

do we classify adjectives further into numerical adjec-

tives and nonnumerical adjectives? Perhaps we do, but

then our troubles will be only just beginning. For exam-

ple, what about possessive adjectives such as “my” and

“your”? In general, the more one tries to refine the clas-

sification of English words, the more one realizes how

many different grammatical roles there are.
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2 Four Basic Concepts

Another word that famously has three quite distinct
meanings is “is.” The three meanings are illustrated in
the following three sentences.

(1) 5 is the square root of 25.
(2) 5 is less than 10.
(3) 5 is a prime number.

In the first of these sentences, “is” could be replaced
by “equals”: it says that two objects, 5 and the square
root of 25, are in fact one and the same object, just as
it does in the English sentence “London is the capital of
the United Kingdom.” In the second sentence, “is” plays
a completely different role. The words “less than 10”
form an adjectival phrase, specifying a property that
numbers may or may not have, and “is” in this sentence
is like “is” in the English sentence “Grass is green.” As
for the third sentence, the word “is” there means “is an
example of,” as it does in the English sentence “Mercury
is a planet.”

These differences are reflected in the fact that the
sentences cease to resemble each other when they are
written in a more symbolic way. An obvious way to write
(1) is 5 = √

25. As for (2), it would usually be written
5 < 10, where the symbol “<” means “is less than.” The
third sentence would normally not be written symbol-
ically because the concept of a prime number is not
quite basic enough to have universally recognized sym-
bols associated with it. However, it is sometimes useful
to do so, and then one must invent a suitable symbol.
One way to do it would be to adopt the convention that
if n is a positive integer, then P(n) stands for the sen-
tence “n is prime.” Another way, which does not hide
the word “is,” is to use the language of sets.

2.1 Sets

Broadly speaking, a set is a collection of objects, and in
mathematical discourse these objects are mathematical
ones such as numbers, points in space, or even other
sets. If we wish to rewrite sentence (3) symbolically,
another way to do it is to define P to be the collection,
or set, of all prime numbers. Then we can rewrite it
as “5 belongs to the set P .” This notion of belonging
to a set is sufficiently basic to deserve its own symbol,
and the symbol used is “∈.” So a fully symbolic way of
writing the sentence is 5 ∈ P .

The members of a set are usually called its elements,
and the symbol “∈” is usually read “is an element of.”
So the “is” of sentence (3) is more like “∈” than “=.”

Although one cannot directly substitute the phrase “is
an element of” for “is,” one can do so if one is prepared
to modify the rest of the sentence a little.

There are three common ways to denote a specific
set. One is to list its elements inside curly brackets:
{2,3,5,7,11,13,17,19}, for example, is the set whose
elements are the eight numbers 2, 3, 5, 7, 11, 13, 17,
and 19. The majority of sets considered by mathemati-
cians are too large for this to be feasible—indeed, they
are often infinite—so a second way to denote sets is
to use dots to imply a list that is too long to write
down: for example, the expressions {1,2,3, . . . ,100}
and {2,4,6,8, . . . } can be used to represent the set of
all positive integers up to 100 and the set of all positive
even numbers, respectively. A third way, and the way
that is most important, is to define a set via a property :
an example that shows how this is done is the expres-
sion {x : x is prime and x < 20}. To read an expres-
sion such as this, one first reads the opening curly
bracket as “The set of.” Next, one reads the symbol
that occurs before the colon. The colon itself one reads
as “such that.” Finally, one reads what comes after the
colon, which is the property that determines the ele-
ments of the set. In this instance, we end up saying,
“The set ofx such thatx is prime andx is less than 20,”
which is in fact equal to the set {2,3,5,7,11,13,17,19}
considered earlier.

Many sentences of mathematics can be rewritten in
set-theoretic terms. For example, sentence (2) earlier
could be written as 5 ∈ {n : n < 10}. Often there is
no point in doing this (as here, where it is much eas-
ier to write 5 < 10) but there are circumstances where
it becomes extremely convenient. For example, one of
the great advances in mathematics was the use of Carte-
sian coordinates to translate geometry into algebra
and the way this was done was to define geometrical
objects as sets of points, where points were themselves
defined as pairs or triples of numbers. So, for exam-
ple, the set {(x,y) : x2 + y2 = 1} is (or represents)
a circle of radius 1 with its center at the origin (0,0).
That is because, by the Pythagorean theorem, the dis-
tance from (0,0) to (x,y) is

√
x2 +y2, so the sentence

“x2 +y2 = 1” can be reexpressed geometrically as “the
distance from (0,0) to (x,y) is 1.” If all we ever cared
about was which points were in the circle, then we could
make do with sentences such as “x2 + y2 = 1,” but in
geometry one often wants to consider the entire cir-
cle as a single object (rather than as a multiplicity of
points, or as a property that points might have), and
then set-theoretic language is indispensable.
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A second circumstance where it is usually hard to do
without sets is when one is defining new mathematical
objects. Very often such an object is a set together with
a mathematical structure imposed on it, which takes the
form of certain relationships among the elements of the
set. For examples of this use of set-theoretic language,
see sections 1 and 2, on number systems and alge-
braic structures, respectively, in some fundamental

mathematical definitions [I.3].
Sets are also very useful if one is trying to do meta-

mathematics, that is, to prove statements not about
mathematical objects but about the process of math-
ematical reasoning itself. For this it helps a lot if one
can devise a very simple language—with a small vocab-
ulary and an uncomplicated grammar—into which it
is in principle possible to translate all mathematical
arguments. Sets allow one to reduce greatly the num-
ber of parts of speech that one needs, turning almost
all of them into nouns. For example, with the help
of the membership symbol “∈” one can do without
adjectives, as the translation of “5 is a prime number”
(where “prime” functions as an adjective) into “5 ∈ P”
has already suggested.1 This is of course an artificial
process—imagine replacing “roses are red” by “roses
belong to the set R”—but in this context it is not impor-
tant for the formal language to be natural and easy to
understand.

2.2 Functions

Let us now switch attention from the word “is” to some
other parts of the sentences (1)–(3), focusing first on
the phrase “the square root of” in sentence (1). If we
wish to think about this phrase grammatically, then we
should analyze what sort of role it plays in a sentence,
and the analysis is simple: in virtually any mathematical
sentence where the phrase appears, it is followed by
the name of a number. If the number is n, then this
produces the slightly longer phrase, “the square root
of n,” which is a noun phrase that denotes a number
and plays the same grammatical role as a number (at
least when the number is used as a noun rather than as
an adjective). For instance, replacing “5” by “the square
root of 25” in the sentence “5 is less than 7” yields a
new sentence, “The square root of 25 is less than 7,”
that is still grammatically correct (and true).

One of the most basic activities of mathematics is
to take a mathematical object and transform it into

1. For another discussion of adjectives see arithmetic geometry

[IV.5 §3.1].

another one, sometimes of the same kind and some-
times not. “The square root of” transforms numbers
into numbers, as do “four plus,” “two times,” “the
cosine of,” and “the logarithm of.” A nonnumerical
example is “the center of gravity of,” which transforms
geometrical shapes (provided they are not too exotic or
complicated to have a center of gravity) into points—
meaning that if S stands for a shape, then “the center of
gravity of S” stands for a point. A function is, roughly
speaking, a mathematical transformation of this kind.

It is not easy to make this definition more precise. To
ask, “What is a function?” is to suggest that the answer
should be a thing of some sort, but functions seem to
be more like processes. Moreover, when they appear in
mathematical sentences they do not behave like nouns.
(They are more like prepositions, though with a definite
difference that will be discussed in the next subsec-
tion.) One might therefore think it inappropriate to ask
what kind of object “the square root of” is. Should one
not simply be satisfied with the grammatical analysis
already given?

As it happens, no. Over and over again, through-
out mathematics, it is useful to think of a mathemati-
cal phenomenon, which may be complex and very un-
thinglike, as a single object. We have already seen a sim-
ple example: a collection of infinitely many points in the
plane or space is sometimes better thought of as a sin-
gle geometrical shape. Why should one wish to do this
for functions? Here are two reasons. First, it is conve-
nient to be able to say something like, “The derivative
of sin is cos,” or to speak in general terms about some
functions being differentiable and others not. More gen-
erally, functions can have properties, and in order to
discuss those properties one needs to think of func-
tions as things. Second, many algebraic structures are
most naturally thought of as sets of functions. (See,
for example, the discussion of groups and symmetry
in [I.3 §2.1]. See also hilbert spaces [III.37], function

spaces [III.29], and vector spaces [I.3 §2.3].)
If f is a function, then the notation f(x) = y means

that f turns the object x into the object y . Once one
starts to speak formally about functions, it becomes
important to specify exactly which objects are to be
subjected to the transformation in question, and what
sort of objects they can be transformed into. One of
the main reasons for this is that it makes it possible to
discuss another notion that is central to mathematics,
that of inverting a function. (See [I.4 §1] for a discussion
of why it is central.) Roughly speaking, the inverse of a
function is another function that undoes it, and that it
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undoes; for example, the function that takes a number
n to n− 4 is the inverse of the function that takes n to
n+ 4, since if you add four and then subtract four, or
vice versa, you get the number you started with.

Here is a function f that cannot be inverted. It takes
each number and replaces it by the nearest multiple
of 100, rounding up if the number ends in 50. Thus,
f(113) = 100, f(3879) = 3900, and f(1050) = 1100.
It is clear that there is no way of undoing this process
with a function g. For example, in order to undo the
effect of f on the number 113 we would need g(100)
to equal 113. But the same argument applies to every
number that is at least as big as 50 and smaller than
150, and g(100) cannot be more than one number at
once.

Now let us consider the function that doubles a num-
ber. Can this be inverted? Yes it can, one might say:
just divide the number by two again. And much of the
time this would be a perfectly sensible response, but
not, for example, if it was clear from the context that
the numbers being talked about were positive integers.
Then one might be focusing on the difference between
even and odd numbers, and this difference could be
encapsulated by saying that odd numbers are precisely
those numbers n for which the equation 2x = n does
not have a solution. (Notice that one can undo the dou-
bling process by halving. The problem here is that the
relationship is not symmetrical: there is no function
that can be undone by doubling, since you could never
get back to an odd number.)

To specify a function, therefore, one must be care-
ful to specify two sets as well: the domain, which is
the set of objects to be transformed, and the range,
which is the set of objects they are allowed to be trans-
formed into. A function f from a set A to a set B is a
rule that specifies, for each element x of A, an element
y = f(x) of B. Not every element of the range needs
to be used: consider once again the example of “two
times” when the domain and range are both the set of
all positive integers. The set {f(x) : x ∈ A} of values
actually taken by f is called the image of f . (Slightly
confusingly, the word “image” is also used in a differ-
ent sense, applied to the individual elements of A: if
x ∈ A, then its image is f(x).)

The following symbolic notation is used. The expres-
sion f : A→ B means that f is a function with domain
A and range B. If we then write f(x) = y , we know that
x must be an element of A and y must be an element
of B. Another way of writing f(x) = y that is some-
times more convenient is f : x �→ y . (The bar on the

arrow is to distinguish it from the arrow in f : A → B,
which has a very different meaning.)

If we want to undo the effect of a function f : A→ B,
then we can, as long as we avoid the problem that
occurred with the approximating function discussed
earlier. That is, we can do it if f(x) and f(x′) are dif-
ferent whenever x and x′ are different elements of A.
If this condition holds, then f is called an injection. On
the other hand, if we want to find a function g that is
undone by f , then we can do so as long as we avoid the
problem of the integer-doubling function. That is, we
can do it if every element y of B is equal to f(x) for
some element x of A (so that we have the option of set-
ting g(y) = x). If this condition holds, then f is called
a surjection. If f is both an injection and a surjection,
then f is called a bijection. Bijections are precisely the
functions that have inverses.

It is important to realize that not all functions have
tidy definitions. Here, for example, is the specifica-
tion of a function from the positive integers to the
positive integers: f(n) = n if n is a prime number,
f(n) = k if n is of the form 2k for an integer k greater
than 1, and f(n) = 13 for all other positive integers n.
This function has an unpleasant, arbitrary definition
but it is nevertheless a perfectly legitimate function.
Indeed, “most” functions, though not most functions
that one actually uses, are so arbitrary that they can-
not be defined. (Such functions may not be useful as
individual objects, but they are needed so that the set of
all functions from one set to another has an interesting
mathematical structure.)

2.3 Relations

Let us now think about the grammar of the phrase “less
than” in sentence (2). As with “the square root of,” it
must always be followed by a mathematical object (in
this case a number again). Once we have done this we
obtain a phrase such as “less than n,” which is impor-
tantly different from “the square root of n” because it
behaves like an adjective rather than a noun, and refers
to a property rather than an object. This is just how
prepositions behave in English: look, for example, at
the word “under” in the sentence “The cat is under the
table.”

At a slightly higher level of formality, mathemati-
cians like to avoid too many parts of speech, as we have
already seen for adjectives. So there is no symbol for
“less than”: instead, it is combined with the previous
word “is” to make the phrase “is less than,” which is
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Figure 1 Similar shapes.

denoted by the symbol “<.” The grammatical rules for
this symbol are once again simple. To use “<” in a sen-
tence, one should precede it by a noun and follow it
by a noun. For the resulting grammatically correct sen-
tence to make sense, the nouns should refer to numbers
(or perhaps to more general objects that can be put in
order). A mathematical “object” that behaves like this
is called a relation, though it might be more accurate
to call it a potential relationship. “Equals” and “is an
element of” are two other examples of relations.

As with functions, it is important, when specifying
a relation, to be careful about which objects are to be
related. Usually a relation comes with a set A of objects
that may or may not be related to each other. For exam-
ple, the relation “<” might be defined on the set of all
positive integers, or alternatively on the set of all real
numbers; strictly speaking these are different relations.
Sometimes relations are defined with reference to two
sets A and B. For example, if the relation is “∈,” then
Amight be the set of all positive integers and B the set
of all sets of positive integers.

There are many situations in mathematics where one
wishes to regard different objects as “essentially the
same,” and to help us make this idea precise there is
a very important class of relations known as equiva-
lence relations. Here are two examples. First, in elemen-
tary geometry one sometimes cares about shapes but
not about sizes. Two shapes are said to be similar if
one can be transformed into the other by a combina-
tion of reflections, rotations, translations, and enlarge-
ments (see figure 1); the relation “is similar to” is an
equivalence relation. Second, when doing arithmetic

modulo m [III.59], one does not wish to distinguish
between two whole numbers that differ by a multiple
of m: in this case one says that the numbers are con-
gruent (mod m); the relation “is congruent (mod m)
to” is another equivalence relation.

What exactly is it that these two relations have in
common? The answer is that they both take a set (in
the first case the set of all geometrical shapes, and in
the second the set of all whole numbers) and split it into
parts, called equivalence classes, where each part con-
sists of objects that one wishes to regard as essentially
the same. In the first example, a typical equivalence
class is the set of all shapes that are similar to some
given shape; in the second, it is the set of all integers
that leave a given remainder when you divide bym (for
example, if m = 7 then one of the equivalence classes
is the set {. . . ,−16,−9,−2,5,12,19, . . . }).

An alternative definition of what it means for a rela-
tion ∼, defined on a set A, to be an equivalence relation
is that it has the following three properties. First, it is
reflexive, which means that x ∼ x for every x in A. Sec-
ond, it is symmetric, which means that if x and y are
elements of A and x ∼ y , then it must also be the case
that y ∼ x. Third, it is transitive, meaning that if x, y ,
and z are elements of A such that x ∼ y and y ∼ z,
then it must be the case that x ∼ z. (To get a feel for
these properties, it may help if you satisfy yourself that
the relations “is similar to” and “is congruent (mod m)
to” both have all three properties, while the relation
“<,” defined on the positive integers, is transitive but
neither reflexive nor symmetric.)

One of the main uses of equivalence relations is to
make precise the notion of quotient [I.3 §3.3] con-
structions.

2.4 Binary Operations

Let us return to one of our earlier examples, the sen-
tence “Two plus two equals four.” We have analyzed
the word “equals” as a relation, an expression that sits
between the noun phrases “two plus two” and “four”
and makes a sentence out of them. But what about
“plus”? That also sits between two nouns. However, the
result, “two plus two,” is not a sentence but a noun
phrase. That pattern is characteristic of binary opera-
tions. Some familiar examples of binary operations are
“plus,” “minus,” “times,” “divided by,” and “raised to
the power.”

As with functions, it is customary, and convenient,
to be careful about the set to which a binary operation
is applied. From a more formal point of view, a binary
operation on a set A is a function that takes pairs of
elements ofA and produces further elements ofA from
them. To be more formal still, it is a function with the
set of all pairs (x,y) of elements of A as its domain
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and with A as its range. This way of looking at it is
not reflected in the notation, however, since the symbol
for the operation comes between x and y rather than
before them: we write x +y rather than +(x,y).

There are four properties that a binary operation may
have that are very useful if one wants to manipulate
sentences in which it appears. Let us use the symbol ∗
to denote an arbitrary binary operation on some set A.
The operation ∗ is said to be commutative if x ∗y is
always equal to y ∗ x, and associative if x ∗ (y ∗ z) is
always equal to (x ∗y)∗ z. For example, the opera-
tions “plus” and “times” are commutative and associa-
tive, whereas “minus,” “divided by,” and “raised to the
power” are neither (for instance, 9 − (5 − 3) = 7 while
(9−5)−3 = 1). These last two operations raise another
issue: unless the setA is chosen carefully, they may not
always be defined. For example, if one restricts one’s
attention to the positive integers, then the expression
3 − 5 has no meaning. There are two conventions one
could imagine adopting in response to this. One might
decide not to insist that a binary operation should be
defined for every pair of elements of A, and to regard
it as a desirable extra property of an operation if it
is defined everywhere. But the convention actually in
force is that binary operations do have to be defined
everywhere, so that “minus,” though a perfectly good
binary operation on the set of all integers, is not a
binary operation on the set of all positive integers.

An element e of A is called an identity for ∗ if e∗x =
x∗e = x for every element x of A. The two most obvi-
ous examples are 0 and 1, which are identities for “plus”
and “times,” respectively. Finally, if ∗ has an identity e
and x belongs to A, then an inverse for x is an element
y such that x ∗ y = y ∗ x = e. For example, if ∗ is
“plus” then the inverse of x is −x, while if ∗ is “times”
then the inverse is 1/x.

These basic properties of binary operations are fun-
damental to the structures of abstract algebra. See
four important algebraic structures [I.3 §2] for
further details.

3 Some Elementary Logic

3.1 Logical Connectives

A logical connective is the mathematical equivalent of a
conjunction. That is, it is a word (or symbol) that joins
two sentences to produce a new one. We have already
discussed an example, namely “and” in its sentence-
linking meaning, which is sometimes written by the
symbol “∧,” particularly in more formal or abstract

mathematical discourse. If P and Q are statements
(note here the mathematical habit of representing not
just numbers but any objects whatsoever by single let-
ters), then P∧Q is the statement that is true if and only
if both P and Q are true.

Another connective is the word “or,” a word that has
a more specific meaning for mathematicians than it
has for normal speakers of the English language. The
mathematical use is illustrated by the tiresome joke of
responding, “Yes please,” to a question such as, “Would
you like your coffee with or without sugar?” The sym-
bol for “or,” if one wishes to use a symbol, is “∨,” and
the statement P ∨Q is true if and only if P is true or
Q is true. This is taken to include the case when they
are both true, so “or,” for mathematicians, is always the
so-called inclusive version of the word.

A third important connective is “implies,” which is
usually written “⇒.” The statement P ⇒ Q means,
roughly speaking, that Q is a consequence of P , and
is sometimes read as “if P then Q.” However, as with
“or,” this does not mean quite what it would in English.
To get a feel for the difference, consider the following
even more extreme example of mathematical pedantry.
At the supper table, my young daughter once said, “Put
your hand up if you are a girl.” One of my sons, to tease
her, put his hand up on the grounds that, since she had
not added, “and keep it down if you are a boy,” his doing
so was compatible with her command.

Something like this attitude is taken by mathemati-
cians to the word “implies,” or to sentences containing
the word “if.” The statement P ⇒ Q is considered to
be true under all circumstances except one: it is not
true if P is true and Q is false. This is the definition
of “implies.” It can be confusing because in English
the word “implies” suggests some sort of connection
between P and Q, that P in some way causes Q or is
at least relevant to it. If P causes Q then certainly P
cannot be true without Q being true, but all a mathe-
matician cares about is this logical consequence and
not whether there is any reason for it. Thus, if you
want to prove that P ⇒ Q, all you have to do is rule
out the possibility that P could be true and Q false
at the same time. To give an example: if n is a posi-
tive integer, then the statement “n is a perfect square
with final digit 7” implies the statement “n is a prime
number,” not because there is any connection between
the two but because no perfect square ends in a 7. Of
course, implications of this kind are less interesting
mathematically than more genuine-seeming ones, but
the reward for accepting them is that, once again, one
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avoids being confused by some of the ambiguities and
subtle nuances of ordinary language.

3.2 Quantifiers

Yet another ambiguity in the English language is ex-
ploited by the following old joke that suggests that our
priorities need to be radically rethought.

(4) Nothing is better than lifelong happiness.
(5) But a cheese sandwich is better than nothing.
(6) Therefore, a cheese sandwich is better than life-

long happiness.

Let us try to be precise about how this play on words
works (a good way to ruin any joke, but not a tragedy
in this case). It hinges on the word “nothing,” which is
used in two different ways. The first sentence means
“There is no single thing that is better than lifelong
happiness,” whereas the second means “It is better to
have a cheese sandwich than to have nothing at all.” In
other words, in the second sentence, “nothing” stands
for what one might call the null option, the option of
having nothing, whereas in the first it does not (to have
nothing is not better than to have lifelong happiness).

Words like “all,” “some,” “any,” “every,” and “noth-
ing” are called quantifiers, and in the English language
they are highly prone to this kind of ambiguity. Math-
ematicians therefore make do with just two quanti-
fiers, and the rules for their use are much stricter. They
tend to come at the beginning of sentences, and can
be read as “for all” (or “for every”) and “there exists”
(or “for some”). A rewriting of sentence (4) that ren-
ders it unambiguous (and much less like a real English
sentence) is

(4′) For all x, lifelong happiness is better than x.

The second sentence cannot be rewritten in these
terms because the word “nothing” is not playing the
role of a quantifier. (Its nearest mathematical equiva-
lent is something like the empty set, that is, the set with
no elements.)

Armed with “for all” and “there exists,” we can be
clear about the difference between the beginnings of
the following sentences.

(7) Everybody likes at least one drink, namely water.
(8) Everybody likes at least one drink; I myself go for

red wine.

The first sentence makes the point (not necessarily cor-
rectly) that there is one drink that everybody likes,

whereas the second claims merely that we all have
something we like to drink, even if that something
varies from person to person. The precise formulations
that capture the difference are as follows.

(7′) There exists a drinkD such that, for every person
P , P likes D.

(8′) For every person P there exists a drink D such
that P likes D.

This illustrates an important general principle: if you
take a sentence that begins “for every x there exists
y such that . . . ” and interchange the two parts so that
it now begins “there exists y such that, for every x,
. . . ,” then you obtain a much stronger statement, since
y is no longer allowed to depend on x. If the second
statement is still true—that is, if you really can choose
a y that works for all the x at once—then the first
statement is said to hold uniformly.

The symbols ∀ and ∃ are often used to stand for “for
all” and “there exists,” respectively. This allows us to
write quite complicated mathematical sentences in a
highly symbolic form if we want to. For example, sup-
pose we let P be the set of all primes, as we did earlier.
Then the following symbols make the claim that there
are infinitely many primes, or rather a slightly different
claim that is equivalent to it.

(9) ∀n ∃m (m > n) ∧ (m ∈ P).

In words, this says that for every n we can find some
m that is both bigger than n and a prime. If we wish to
unpack sentence (6) further, we could replace the part
m ∈ P by

(10) ∀a,b ab =m ⇒ ((a = 1) ∨ (b = 1)).

There is one final important remark to make about the
quantifiers “∀” and “∃.” I have presented them as if they
were freestanding, but actually a quantifier is always
associated with a set (one says that it quantifies over
that set). For example, sentence (10) would not be a
translation of the sentence “m is prime” if a and b were
allowed to be fractions: if a = 3 and b = 7

3 then ab = 7
without either a or b equaling 1, but this does not show
that 7 is not a prime. Implicit in the opening symbols
∀a,b is the idea that a and b are intended to be positive
integers. If this had not been clear from the context,
then we could have used the symbol N (which stands for
the set of all positive integers) and started sentence (10)
with ∀a,b ∈ N instead.



�

I.2. The Language and Grammar of Mathematics 15

3.3 Negation

The basic idea of negation in mathematics is very sim-

ple: there is a symbol, “¬,” which means “not,” and if

P is any mathematical statement, then ¬P stands for

the statement that is true if and only if P is not true.

However, this is another example of a word that has

a slightly more restricted meaning to mathematicians

than it has in ordinary speech.

To illustrate this phenomenon once again, let us take

A to be a set of positive integers and ask ourselves what

the negation is of the sentence “Every number in the set

A is odd.” Many people when asked this question will

suggest, “Every number in the set A is even.” However,

this is wrong: if one thinks carefully about what exactly

would have to happen for the first sentence to be false,

one realizes that all that is needed is that at least one

number in A should be even. So in fact the negation

of the sentence is, “There exists a number in A that is

even.”

What explains the temptation to give the first, incor-

rect answer? One possibility emerges when one writes

the sentence more formally, thus:

(11) ∀n ∈ A n is odd.

The first answer is obtained if one negates just the last

part of this sentence, “n is odd”; but what is asked for

is the negation of the whole sentence. That is, what is

wanted is not

(12) ∀n ∈ A ¬(n is odd),

but rather

(13) ¬(∀n ∈ A n is odd),

which is equivalent to

(14) ∃n ∈ A n is even.

A second possible explanation is that one is inclined

(for psycholinguistic reasons) to think of the phrase

“every element of A” as denoting something like a sin-

gle, typical element of A. If that comes to have the feel

of a particular number n, then we may feel that the

negation of “n is odd” is “n is even.” The remedy is not

to think of the phrase “every element of A” on its own:

it should always be part of the longer phrase, “for every

element of A.”

3.4 Free and Bound Variables

Suppose we say something like, “At time t the speed of
the projectile is v .” The letters t and v stand for real
numbers, and they are called variables, because in the
back of our mind is the idea that they are changing.
More generally, a variable is any letter used to stand
for a mathematical object, whether or not one thinks of
that object as changing through time. Let us look once
again at the formal sentence that said that a positive
integer m is prime:

(10) ∀a,b ab =m ⇒ ((a = 1) ∨ (b = 1)).

In this sentence, there are three variables, a, b, and m,
but there is a very important grammatical and semantic
difference between the first two and the third. Here are
two results of that difference. First, the sentence does
not really make sense unless we already know what m
is from the context, whereas it is important thata and b
do not have any prior meaning. Second, while it makes
perfect sense to ask, “For which values of m is sen-
tence (10) true?” it makes no sense at all to ask, “For
which values of a is sentence (10) true?” The letter m
in sentence (10) stands for a fixed number, not speci-
fied in this sentence, while the letters a and b, because
of the initial ∀a,b, do not stand for numbers—rather,
in some way they search through all pairs of positive
integers, trying to find a pair that multiply together to
give m. Another sign of the difference is that you can
ask, “What number is m?” but not, “What number is
a?” A fourth sign is that the meaning of sentence (10)
is completely unaffected if one uses different letters for
a and b, as in the reformulation

(10′) ∀c,d cd =m ⇒ ((c = 1) ∨ (d = 1)).

One cannot, however, change m to n without estab-
lishing first that n denotes the same integer as m. A
variable such as m, which denotes a specific object, is
called a free variable. It sort of hovers there, free to take
any value. A variable like a and b, of the kind that does
not denote a specific object, is called a bound variable,
or sometimes a dummy variable. (The word “bound”
is used mainly when the variable appears just after a
quantifier, as in sentence (10).)

Yet another indication that a variable is a dummy
variable is when the sentence in which it occurs can
be rewritten without it. For instance, the expression∑100
n=1 f(n) is shorthand for f(1)+f(2)+· · ·+f(100),

and the second way of writing it does not involve the
letter n, so n was not really standing for anything in



�

16 I. Introduction

the first way. Sometimes, actual elimination is not pos-
sible, but one feels it could be done in principle. For
instance, the sentence “For every real number x, x is
either positive, negative, or zero” is a bit like putting
together infinitely many sentences such as “t is either
positive, negative, or zero,” one for each real number t,
none of which involves a variable.

4 Levels of Formality

It is a surprising fact that a small number of set-theo-
retic concepts and logical terms can be used to provide
a precise language that is versatile enough to express
all the statements of ordinary mathematics. There are
some technicalities to sort out, but even these can often
be avoided if one allows not just sets but also num-
bers as basic objects. However, if you look at a well-
written mathematics paper, then much of it will be
written not in symbolic language peppered with sym-
bols such as ∀ and ∃, but in what appears to be ordi-
nary English. (Some papers are written in other lan-
guages, particularly French, but English has established
itself as the international language of mathematics.)
How can mathematicians be confident that this ordi-
nary English does not lead to confusion, ambiguity, and
even incorrectness?

The answer is that the language typically used is a
careful compromise between fully colloquial English,
which would indeed run the risk of being unacceptably
imprecise, and fully formal symbolism, which would be
a nightmare to read. The ideal is to write in as friendly
and approachable a way as possible, while making sure
that the reader (who, one assumes, has plenty of experi-
ence and training in how to read mathematics) can see
easily how what one writes could be made more for-
mal if it became important to do so. And sometimes it
does become important: when an argument is difficult
to grasp it may be that the only way to convince oneself
that it is correct is to rewrite it more formally.

Consider, for example, the following reformulation
of the principle of mathematical induction, which un-
derlies many proofs:

(15) Every nonempty set of positive integers has a
least element.

If we wish to translate this into a more formal lan-
guage we need to strip it of words and phrases such as
“nonempty” and “has.” But this is easily done. To say
that a set A of positive integers is nonempty is simply

to say that there is a positive integer that belongs to A.
This can be stated symbolically:

(16) ∃n ∈ N n ∈ A.

What does it mean to say that A has a least element?
It means that there exists an element x of A such that
every elementy ofA is either greater than x or equal to
x itself. This formulation is again ready to be translated
into symbols:

(17) ∃x ∈ A ∀y ∈ A (y > x) ∨ (y = x).

Statement (15) says that (16) implies (17) for every setA
of positive integers. Thus, it can be written symbolically
as follows:

(18) ∀A ⊂ N

[(∃n ∈ N n ∈ A)
⇒ (∃x ∈ A ∀y ∈ A (y > x) ∨ (y = x))].

Here we have two very different modes of presenta-
tion of the same mathematical fact. Obviously (15) is
much easier to understand than (18). But if, for exam-
ple, one is concerned with the foundations of math-
ematics, or wishes to write a computer program that
checks the correctness of proofs, then it is better to
work with a greatly pared-down grammar and vocabu-
lary, and then (18) has the advantage. In practice, there
are many different levels of formality, and mathemati-
cians are adept at switching between them. It is this
that makes it possible to feel completely confident in
the correctness of a mathematical argument even when
it is not presented in the manner of (18)—though it is
also this that allows mistakes to slip through the net
from time to time.

I.3 Some Fundamental Mathematical
Definitions

The concepts discussed in this article occur throughout
so much of modern mathematics that it would be inap-
propriate to discuss them in part III—they are too basic.
Many later articles will assume at least some acquain-
tance with these concepts, so if you have not met them,
then reading this article will help you to understand
significantly more of the book.

1 The Main Number Systems

Almost always, the first mathematical concept that a
child is exposed to is the idea of numbers, and num-
bers retain a central place in mathematics at all levels.




