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where the aj,i1,...,in are indeterminates. If we write

g1f1 + · · · + gmfm as a polynomial in the variables

x1, . . . , xn, then all the coefficients must vanish, save

the constant term which must equal 1. Thus we get

a system of linear equations in the indeterminates

aj,i1,...,in . The solvability of systems of linear equations

is well-known (with good computer implementations).

Thus we can decide if there is a solution with deggj �
100. Of course it is possible that 100 was too small

a guess, and we may have to repeat the process with

larger and larger degree bounds. Will this ever end?

The answer is given by the following result, which was

proved only recently.

Effective Nullstellensatz. Let f1, . . . , fm be polyno-

mials of degree less than or equal to d in n variables,

where d � 3, n � 2. If they have no common zero,

then g1f1 + · · · + gmfm = 1 has a solution such that

deggj � dn − d.

For most systems, one can find solutions such that

deggj � (n−1)(d−1), but in general the upper bound

dn − d cannot be improved.

As explained above, this provides a computational

method for deciding whether or not a system of polyno-

mial equations has a common solution. Unfortunately,

this is rather useless in practice as we end up with

exceedingly large linear systems. We still do not have a

computationally effective and foolproof method.

13 So, What Is Algebraic Geometry?

To me algebraic geometry is a belief in the unity of

geometry and algebra. The most exciting and profound

developments arise from the discovery of new connec-

tions. We have seen hints of some of these; many more

were left unmentioned. Born with Cartesian coordin-

ates, algebraic geometry is now intertwined with cod-

ing theory, number theory, computer-aided geometric

design, and theoretical physics. Several of these con-

nections have emerged in the last decade, and I hope

to see many more in the future.

Further Reading

Most of the algebraic geometry literature is very tech-

nical. A notable exception is Plane Algebraic Curves

(Birkhäuser, Boston, MA, 1986), by E. Brieskorn and

H. Knörrer, which starts with a long overview of alge-

braic curves through arts and sciences since antiquity,

with many nice pictures and reproductions. A Scrap-
book of Complex Curve Theory (American Mathemat-
ical Society, Providence, RI, 2003), by C. H. Clemens,
and Complex Algebraic Curves (Cambridge University
Press, Cambridge, 1992), by F. Kirwan, also start at an
easily accessible level, but then delve more quickly into
advanced subjects.

The best introduction to the techniques of algebraic
geometry is Undergraduate Algebraic Geometry (Cam-
bridge University Press, Cambridge, 1988), by M. Reid.
For those wishing for a general overview, An Invitation
to Algebraic Geometry (Springer, New York, 2000), by
K. E. Smith, L. Kahanpää, P. Kekäläinen, and W. Traves, is
a good choice, while Algebraic Geometry (Springer, New
York, 1995), by J. Harris, and Basic Algebraic Geometry,
volumes I and II (Springer, New York, 1994), by I. R.
Shafarevich, are suitable for more systematic readings.

IV.5 Arithmetic Geometry
Jordan S. Ellenberg

1 Diophantine Problems, Alone and in Teams

Our goal is to sketch some of the essential ideas of
arithmetic geometry; we begin with a problem which,
on the face of it, involves no geometry and only a bit of
arithmetic.

Problem. Show that the equation

x2 +y2 = 7z2 (1)

has no solution in nonzero rational numbers x, y , z.

(Note that it is only in the coefficient 7 that (1) differs
from the Pythagorean equation x2 + y2 = z2, which
we know has infinitely many solutions. It is a feature of
arithmetic geometry that modest changes of this kind
can have drastic effects!)

Solution. Suppose x, y , z are rational numbers satis-
fying (1); we will derive from this a contradiction.

If n is the least common denominator of x, y , z, we
can write

x = a/n, y = b/n, z = c/n
such that a, b, c, and n are integers. Our original
equation (1) now becomes(

a
n

)2

+
(
b
n

)2

= 7
(
c
n

)2

,

and multiplying through by n2 one has

a2 + b2 = 7c2. (2)
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If a, b, and c have a common factor m, then we can
replace them by a/m, b/m, and c/m, and (2) still holds
for these new numbers. We may therefore suppose that
a, b, and c are integers with no common factor.

We now reduce the above equation modulo 7 (see
modular arithmetic [III.58]). Denote by ā and b̄ the
reductions of a and bmodulo 7. The right-hand side of
(2) is a multiple of 7, so it reduces to 0. We are left with

ā2 + b̄2 = 0. (3)

Now there are only seven possibilities for ā, and seven
possibilities for b̄. So the analysis of the solutions of
(3) amounts to checking the forty-nine choices of ā, b̄
and seeing which ones satisfy the equation. A few min-
utes of calculation are enough to convince us that (3) is
satisfied only if ā = b̄ = 0.

But saying that ā = b̄ = 0 is the same as saying that
a and b are both multiples of 7. This being the case,
a2 and b2 are both multiples of 49. It follows that their
sum, 7c2, is a multiple of 49 as well. Therefore, c2 is
a multiple of 7, and this implies that c itself is a mul-
tiple of 7. In particular, a, b, and c share a common
factor of 7. We have now arrived at the desired contra-
diction, since we chose a, b, and c to have no common
factor. Thus, the hypothesized solution leads us to a
contradiction, so we are forced to conclude that there
is not, in fact, any solution to (1) consisting of nonzero
rational numbers.1

In general, the determination of rational solutions to
a polynomial equation like (2) is called a Diophantine
problem. We were able to dispose of (2) in a paragraph,
but that turns out to be the exception: in general, Dio-
phantine problems can be extraordinarily difficult. For
instance, we might modify the exponents in (2) and
consider the equation

x5 +y5 = 7z5. (4)

I do not know whether (4) has any solutions in nonzero
rational numbers or not; one can be sure, though, that
determining the answer would be a substantial piece
of work, and it is quite possible that the most powerful
techniques available to us are insufficient to answer this
simple question.

More generally, one can take an arbitrary commuta-
tive ring [III.81] R, and ask whether a certain polyno-
mial equation has solutions in R. For instance, does
(2) have a solution with x, y , z in the polynomial
ring C[t]? (The answer is yes. We leave it as an exercise

1. Exercise: why does our argument not obtain a contradiction from
the solution x = y = z = 0?

to find some solutions.) We call the problem of solving

a polynomial equation over R a Diophantine problem

over R. The subject of arithmetic geometry has no pre-

cise boundary, but to a first approximation one may say

that it concerns the solution of Diophantine problems

over subrings of number fields [III.63]. (To be honest,

a problem is usually called Diophantine only when R is

a subring of a number field. However, the more general

definition suits our current purposes.)

With any particular equation like (2), one can asso-

ciate infinitely many Diophantine problems, one for

each commutative ring R. A central insight—in some

sense the basic insight—of modern algebraic geometry

is that this whole gigantic ensemble of problems can

be treated as a single entity. This widening of scope

reveals structure that is invisible if we consider each

problem on its own. The aggregate we make of all these

Diophantine problems is called a scheme. We will return

to schemes later, and will try, without giving precise

definitions, to convey some sense of what is meant by

this not very suggestive term.

A word of apology: I will give only the barest sketch

of the immense progress that has taken place in arith-

metic geometry in recent decades—there is simply too

much to cover in an article of the present scope. I have

chosen instead to discuss at some length the idea of

a scheme, assuming, I hope, minimal technical know-

ledge on the part of the reader. In the final section,

I shall discuss some outstanding problems in arith-

metic geometry with the help of the ideas developed

in the body of the article. It must be conceded that the

theory of schemes, developed by Grothendieck and his

collaborators in the 1960s, belongs to algebraic geom-

etry as a whole, and not to arithmetic geometry alone.

I think, though, that in the arithmetic setting, the use

of schemes, and the concomitant extension of geomet-

ric ideas to contexts that seem “nongeometric” at first

glance, is particularly central.

2 Geometry without Geometry

Before we dive into the abstract theory of schemes, let

us splash around a little longer among the polynomial

equations of degree 2. Though it is not obvious from

our discussion so far, the solution of Diophantine prob-

lems is properly classified as part of geometry. Our goal

here will be to explain why this is so.

Suppose we consider the equation

x2 +y2 = 1. (5)
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One can ask: which values of x,y ∈ Q satisfy (5)? This
problem has a flavor very different from that of the pre-
vious section. There we looked at an equation with no
rational solutions. We shall see in a moment that (5),
by contrast, has infinitely many rational solutions. The
solutions x = 0, y = 1 and x = 3

5 , y = − 4
5 are rep-

resentative examples. (The four solutions (±1,0) and
(0,±1) are the ones that would be said, in the usual
mathematical parlance, to be “staring you in the face.”)

Equation (5) is, of course, immediately recognizable
as “the equation of a circle.” What, precisely, do we
mean by that assertion? We mean that the set of pairs of
real numbers (x,y) satisfying (5) forms a circle when
plotted in the Cartesian plane.

So geometry, as usually construed, makes its en-
trance in the figure of the circle. Now suppose that we
want to find more solutions to (5). One way to proceed
is as follows. Let P be the point (1,0), and let L be a
line through P of slope m. Then we have the following
geometric fact.

(G) The intersection of a line with a circle consists of
either zero, one, or two points; the case of a single
point occurs only when the line is tangent to the
circle.

From (G) we conclude that, unless L is the tangent line
to the circle at P, there is exactly one point other than
P where the line intersects the circle. In order to find
solutions (x,y) to (5), we must determine coordinates
for this point. So suppose L is the line through (1,0)
with slope m, which is to say it is the line Lm whose
equation is y = m(x − 1). Then in order to find the
x-coordinates of the points of intersection between Lm
and the circle, we need to solve the simultaneous equa-
tions y = m(x − 1) and x2 + y2 = 1; that is, we need
to solve x2 +m2(x − 1)2 = 1 or, equivalently,

(1 +m2)x2 − 2m2x + (m2 − 1) = 0. (6)

Of course, (6) has the solutionx = 1. How many other
solutions are there? The geometric argument above
leads us to believe that there is at most one solution
to (6). Alternatively, we can use the following algebraic
fact, which is analogous2 to the geometric fact (G).

(A) The equation (1 +m2)x2 − 2m2x + (m2 − 1) = 0
has either zero, one, or two solutions in x.

2. Note that (A), unlike (G), contains no mention of tangency; that is
because the notion of tangency is more subtle in the algebraic setting,
as we will see in section 4 below.

Of course, the conclusion of statement (A) holds for

any nontrivial quadratic equation in x, not just (6); it

is a consequence of the factor theorem.

In this case, it is not really necessary to appeal to any

theorem; one can find by direct computation that the

solutions of (6) are x = 1 and x = (m2 − 1)/(m2 +
1). We conclude that the intersection between the unit

circle and Lm consists of (1,0) and the point Pm with

coordinates (
m2 − 1
m2 + 1

,
−2m
m2 + 1

)
. (7)

Equation (7) establishes a correspondence m �→ Pm,

which associates with each slopem a solution Pm to (5).

What is more, since every point on the circle, other than

(1,0) itself, is joined to (1,0) by a unique line, we find

that we have established a one-to-one correspondence

between slopes m and solutions, other than (1,0), to

equation (5).

A very nice feature of this construction is that it

allows us to construct solutions to (5) not only over

R but over smaller fields, like Q: it is evident that, when

m is rational, so are the coordinates of the solution

yielded by (7). For example, taking m = 2 yields the

solution ( 3
5 ,−

4
5 ). In fact, not only does (7) show us that

(5) admits infinitely many solutions over Q, it also gives

us an explicit way to parametrize the solutions in terms

of a variablem. We leave it as an exercise to prove that

the solutions of (5) over Q, apart from (1,0), are in one-

to-one correspondence with rational values ofm. Alas,

rare is the Diophantine problem whose solutions can

be parametrized in this way! Still, polynomial equations

like (5) with solutions that can be parametrized by one

or more variables play a special role in arithmetic geom-

etry; they are called rational varieties and constitute by

any measure the best-understood class of examples in

the subject.

I want to draw your attention to one essential fea-

ture of this discussion. We relied on geometric intu-

ition (e.g., our knowledge of facts like (G)) to give us

ideas about how to construct solutions to (5). On the

other hand, now that we have erected an algebraic jus-

tification for our construction, we can kick away our

geometric intuition as needless scaffolding. It was a

geometric fact about lines and circles that suggested

to us that (6) should have only one solution other than

x = 1. However, once one has had that thought, one can

prove that there is at most one such solution by means

of the purely algebraic statement (A), which involves no

geometry whatsoever.
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The fact that our argument can stand without any ref-

erence to geometry means that it can be applied in sit-

uations that might not, at first glance, seem geometric.

For instance, suppose we wished to study solutions to

(5) over the finite field F7. Now this solution set would

not seem rightfully to be called “a circle” at all—it is

just a finite set of points! Nonetheless, our geometri-

cally inspired argument still works perfectly. The pos-

sible values of m in F7 are 0, 1, 2, 3, 4, 5, 6, and the

corresponding solutions Pm are (−1,0), (0,−1), (2,2),
(5,5), (5,2), (2,5), (0,1). These seven points, together

with (1,0), form the whole solution set of (5) over F7.

We have now started to reap the benefits of consid-

ering a whole bundle of Diophantine problems at once;

in order to find the solutions to (5) over F7, we used

a method that was inspired by the problem of find-

ing solutions to (5) over R. Similarly, in general, meth-

ods suggested by geometry can help us solve Diophan-

tine problems. And these methods, once translated into

purely algebraic form, still apply in situations that do

not appear to be geometric.

We must now open our minds to the possibility that

the purely algebraic appearance of certain equations is

deceptive. Perhaps there could be a sense of “geometry”

that was general enough to include entities like the

solution set of (5) over F7, and in which this particular

example had every right to be called a “circle.” And why

not? It has properties a circle has: most importantly for

us, it has either zero, one, or two intersection points

with any line. Of course, there are features of “circle-

ness” which this set of points lacks: infinitude, continu-

ity, roundness, etc. But these latter qualities turn out to

be inessential when we are doing arithmetic geometry.

From our viewpoint the set of solutions of (5) over F7

has every right to be called the unit circle.

To sum up, you might think of the modern point of

view as an upending of the traditional story of Carte-

sian space. There, we have geometric objects (curves,

lines, points, surfaces) and we ask questions such as,

“What is the equation of this curve?” or “What are the

coordinates of that point?” The underlying object is the

geometric one, and the algebra is there to tell us about

its properties. For us, the situation is exactly reversed:

the underlying object is the equation, and the various

geometric properties of solution sets of the equation

are merely tools that tell us about the equation’s alge-

braic properties. For an arithmetic geometer, “the unit

circle” is the equationx2 +y2 = 1. And the round thing

on the page? That is just a picture of the solutions to

the equation over R. It is a distinction that makes a
remarkable difference.

3 From Varieties to Rings to Schemes

In this section, we will attempt to give a clearer answer
to the question, “What is a scheme?” Instead of trying to
lay out a precise definition—which requires more alge-
braic apparatus than would fit comfortably here—we
will approach the question by means of an analogy.

3.1 Adjectives and Qualities

So let us think about adjectives. Any adjective, such as
“yellow” for instance, picks out a set of nouns to which
the adjective applies. For each adjective A, we might
call this set of nouns Γ (A). For instance, Γ (“yellow”) is
an infinite set that might look like {lemon, school bus,
banana, sun, . . . }.3 And anyone would agree that Γ (A)
is an important thing to know about A.

Now suppose that, moved by a desire for lexical par-
simony, a theoretician among us suggested that adjec-
tives could in fact be dispensed with entirely. If, instead
of A, we spoke only of Γ (A), we could get by with a
grammatical theory involving only nouns.

Is this a good idea? Well, there are certainly some
obvious ways that things could go wrong. For instance,
what if lots of different adjectives were sent to the same
set of nouns? Then our new viewpoint would be less
precise than the old one. But it certainly seems that if
two adjectives apply to exactly the same set of nouns,
then it is fair to say that the adjectives are the same, or
at least synonymous.

What about relationships between adjectives? For
instance, we can ask of two adjectives whether one
is stronger than another, in the way that “gigantic”
is stronger than “large.” Is this relationship between
adjectives still visible on the level of sets of nouns? The
answer is yes: it seems fair to say that A is “stronger
than” B precisely when Γ (A) is a subset of Γ (B). In other
words, what it means to say that “gigantic” is stronger
than “large” is that all gigantic things are large, though
some large things may not be gigantic.

So far, so good. We have paid a price in techni-
cal difficulty: it is much more cumbersome to speak
of infinite sets of nouns than it was to use simple,
familiar adjectives. But we have gained something, too:

3. Of course, in real life, there are nouns whose relationship with
“yellow” is not so clear-cut, but since our goal is to make this look like
mathematics, let us pretend that every object in the world is either
definitively yellow or definitively not yellow.
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the opportunity for generalization. Our theoretician—
whom we may now call a “set-theoretic grammarian”—
observes that there is, perhaps, nothing special about
the sets of nouns that happen to be of the form Γ (A) for
some already known adjective A. Why not take a con-
ceptual leap and redefine the word “adjective” to mean
“a set of nouns”? To avoid confusion with the usual
meaning of “adjective,” the theoretician might even use
a new term, like “quality,” to refer to his new objects of
study.

Now we have a whole new world of qualities to play
with. For example, there is a quality {“school bus”,
“sun”} which is stronger than “yellow,” and a quality
{“sun”} (not the same thing as the noun “sun”!) which is
stronger than the qualities “yellow,” “gigantic,” “large,”
and {“school bus”, “sun”}.

I may not have convinced you that, on balance, this
reconception of the notion of “adjective” is a good
idea. In fact, it probably is not, which is why set-theo-
retic grammar is not a going concern. The correspond-
ing story in algebraic geometry, however, is quite a
different matter.

3.2 Coordinate Rings

A warning: the next couple of sections will be difficult
going for those not familiar with rings and ideals—such
readers can either skip to section 4, or try to follow the
discussion after reading rings, ideals, and modules

[III.81] (see also algebraic numbers [IV.1]).

Let us recall that a complex affine variety (from now
on, just “variety”) is the set of solutions over C to some
finite set of polynomial equations. For instance, one
variety V we could define is the set of points (x,y)
in C2 satisfying our favorite equation

x2 +y2 = 1. (8)

Then V is what we called in the previous section “the
unit circle,” though in fact the shape of the set of
complex solutions of (8) is a sphere with two points
removed. (This is not supposed to be obvious.) It is a
question of general interest, given some variety X, to
understand the ring of polynomial functions that take
points on X to complex numbers. This ring is called the
coordinate ring of X, and is denoted Γ (X).

Certainly, given any polynomial in x and y , we can
regard it as a function defined on our particular vari-
ety V . So is the coordinate ring of V just the polyno-
mial ring C[x,y]? Not quite. Consider, for instance, the
function f = 2x2+2y2+5. If we evaluate this function

at various points on V ,

f(0,1) = 7, f (1,0) = 7,

f (1/
√

2,1/
√

2) = 7, f (i,
√

2) = 7, . . . ,

we notice that f keeps taking the same value; indeed,
since x2 + y2 = 1 for all (x,y) ∈ V , we see that f =
2(x2 + y2) + 5 takes the value 7 at every point on V .
So 2x2 +2y2 +5 and 7 are just different names for the
same function on V .

So Γ (V) is smaller than C[x,y]; it is the ring obtained
from C[x,y] by declaring two polynomials f and g
to be the same function whenever they take the same
value at every point of V . (More formally, we are defin-
ing an equivalence relation [I.2 §2.3] on the set of
complex polynomials in two variables.) It turns out that
f and g have this property precisely when their differ-
ence is a multiple of x2 +y2 −1. Thus, the ring of poly-
nomial functions on V is the quotient of C[x,y] by the
ideal generated by x2 +y2 − 1. This ring is denoted by
C[x,y]/(x2 +y2 − 1).

We have shown how to attach a ring of functions to
any variety. It is not hard to show that, if X and Y are
two varieties, and if their coordinate rings Γ (X) and
Γ (Y) are isomorphic [I.3 §4.1], then X and Y are in
a sense the “same” variety. It is a short step from this
observation to the idea of abandoning the study of vari-
eties entirely in favor of the study of rings. Of course,
we are here in the position of the set-theoretic gram-
marian in the parable above, with “variety” playing the
part of “adjective” and “coordinate ring” the part of “set
of nouns.”

Happily, we can recover the geometric properties of
a variety from the algebraic properties of its coordinate
ring; if this were not the case, the coordinate ring would
not be such a useful object! The relationship between
geometry and algebra is a long story—and much of it
belongs to algebraic geometry in general, not arithmetic
geometry in particular—but to give the flavor, let us
discuss some examples.

A straightforward geometric property of a variety is
irreducibility. We say a variety X is reducible if X can
be expressed as the union of two varieties X1 and X2,
neither of which is the whole of X. For example, the
variety

x2 = y2 (9)

in C2 is the union of the linesx = y andx = −y . A vari-
ety is called irreducible if it is not reducible. All varieties
are thus built up from irreducible varieties: the relation-
ship between irreducible varieties and general varieties
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is rather like the relationship between prime numbers

and general positive integers.

Moving from geometry to algebra, we recall that a

ring R is called an integral domain if, whenever f , g
are nonzero elements of R, their product fg is also

nonzero; the ring C[x,y] is a good example.

Fact. A variety X is irreducible if and only if Γ (X) is an

integral domain.

Experts will note that we are glossing over issues of

“reducedness” here.

We will not prove this fact, but the following exam-

ple is illustrative: consider the two functions f = x−y
and g = x + y on the variety X defined by (9). Nei-

ther of these functions is the zero function; note, for

instance, that f(1,−1) is nonzero, as is g(1,1). Their

product, however, is x2 −y2, which is equal to zero

on X; so Γ (X) is not an integral domain. Notice that

the functions f and g that we chose are closely related

to the decomposition of X as the union of two smaller

varieties.

Another crucial geometric notion is that of functions

from one variety to another. (It is common practice to

call such functions “maps” or “morphisms”; we will use

the three words interchangeably.) For instance, sup-

pose that W is the variety in C3 determined by the

equation xyz = 1. Then the map F : C3 → C2 defined

by

F(x,y, z) =
(

1
2
(x +yz), 1

2i
(x −yz)

)
maps points of W to points of V .

It turns out that knowing the coordinate rings of vari-

eties makes it very easy to see the maps between the

varieties. We merely observe that if G : V1 → V2 is a

map between varieties V1 and V2, and if f is a polyno-

mial function on V2, then we have a polynomial func-

tion on V1 that sends every point v to f(G(v)). This

function on V1 is denoted by G∗(f ). For example, if f
is the function x +y on V , and F is the map above,

F∗(f ) = 1
2 (x + yz) + 1

2i (x − yz). It is easy to check

that G∗ is a C-algebra homomorphism (that is, a homo-

morphism of rings that sends each element of C to

itself) from Γ (V2) to Γ (V1). What is more, one has the

following theorem.

Fact. For any pair of varieties V , W , the correspon-

dence sending G to G∗ is a bijection between the poly-

nomial functions sending W to V and the C-algebra

homomorphisms from Γ (V) to Γ (W).

You would not be far off in thinking of the statement
“there is an injective map from V to W” as analogous
to “quality A is stronger than quality B.”

The move to transform geometry into algebra is
not something one undertakes out of sheer love of
abstraction, or hatred of geometry. Instead, it is part
of the universal mathematical instinct to unify seem-
ingly disparate theories. I cannot put it any better
than Dieudonné (1985) does in his History of Algebraic
Geometry :

. . . from [the 1882 memoirs of] Kronecker and Dede-
kind–Weber dates the awareness of the profound anal-
ogies between algebraic geometry and the theory of
algebraic numbers, which originated at the same time.
Moreover, this conception of algebraic geometry is the
most simple and most clear for us, trained as we are
in the wielding of “abstract” algebraic notions: rings,
ideals, modules, etc. But it is precisely this “abstract”
character that repulsed most contemporaries, discon-
certed as they were by not being able to recover the
corresponding geometric notions easily. Thus the influ-
ence of the algebraic school remained very weak up
until 1920. . . . It certainly seems that Kronecker was
the first to dream of one vast algebraico-geometric con-
struction comprising these two theories at once; this
dream has begun to be realized only recently, in our
era, with the theory of schemes.

Let us therefore move on to schemes.

3.3 Schemes

We have seen that each variety X gives rise to a ring
Γ (X), and furthermore that the algebraic study of these
rings can stand in for the geometric study of varieties.
But just as not every set of nouns corresponds to an
adjective, not every ring arises as the coordinate ring
of a variety. For example, the ring Z of integers is not
the coordinate ring of a variety, as we can see by the
following argument: for every complex number a and
every variety V , the constant function a is a function on
V , and therefore C ⊂ Γ (V) for every variety V . Since Z

does not contain C as a subring, it is not the coordinate
ring of any variety.

Now we are ready to imitate the set-theoretic gram-
marian’s coup de grâce. We know that some, but not all,
rings arise from geometric objects (varieties); and we
know that the geometry of these varieties is described
by algebraic properties of these special rings. Why not,
then, just consider every ring R to be a “geometric
object” whose geometry is determined by algebraic
properties of R? The grammarian needed to invent a
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new word, “quality,” to describe his generalized adjec-
tives; we are in the same position with our rings-that-
are-not-coordinate-rings; we will call them schemes.

So, after all this work, the definition of scheme is
rather prosaic—schemes are rings! (In fact, we are hid-
ing some technicalities; it is correct to say that affine
schemes are rings. Restricting our attention to affine
schemes will not interfere with the phenomena that
we are aiming to explain.) More interesting is to ask
how we can carry out the task whose difficulty “dis-
concerted” the early algebraic geometers—how can we
identify “geometric” features of arbitrary rings?

For instance, if R is supposed to be an arbitrary geo-
metric object, it ought to have “points.” But what are
the “points” of a ring? Clearly we cannot mean by this
the elements of the ring; for in the case R = Γ (X), the
elements of R are functions onX, not points onX. What
we need, given a point p on X, is some entity attached
to the ring R that corresponds to p.

The key observation is that we can think of p as a
map from Γ (X) to C: given a function f from Γ (X)
we map it to the complex number f(p). This map is a
homomorphism, called the evaluation homomorphism
at p. Since points on X give us homomorphisms on
Γ (X), a natural way to define the word “point” for the
ring R = Γ (X), without using geometry, is to say that
a “point” is a homomorphism from R to C. It turns out
that the kernel of such a homomorphism is a prime
ideal. Moreover, with the exception of the zero ideal,
every prime ideal of R arises from a point p of X. So a
very concise way to describe the points of X might be
to say that they are the nonzero prime ideals of R.

The definition we have arrived at makes sense for
all rings R, and not just those of the form R = Γ (X).
So we might define the “points” of a ring R to be its
prime ideals. (Considering all prime ideals, rather than
only the nonzero ones, turns out to be a wiser technical
choice.) The set of prime ideals of R is given the name
SpecR, and it is SpecR that we call the scheme associ-
ated with R. (More precisely, SpecR is defined to be a
“locally ringed topological space” whose points are the
prime ideals of R, but we will not need the full power
of this definition for our discussion here.)

We are now in a position to elucidate our claim,
made in the first section, that a scheme incorporates
into one package Diophantine problems over many dif-
ferent rings. Suppose, for instance, that R is the ring
Z[x,y]/(x2+y2−1). We are going to catalog the homo-
morphisms f : R → Z. To specify f , I merely have to
tell you the values of f(x) and f(y) in Z. But I cannot

choose these values arbitrarily: since x2 +y2 − 1 = 0
in R, it must be the case that

f(x)2 + f(y)2 − 1 = 0

in Z. In other words, the pair (f (x), f (y)) constitutes a
solution over Z to the Diophantine equation x2 +y2 =
1. What is more, the same argument shows that, for any
ring S, a homomorphism f : R → S yields a solution
over S to x2 +y2 = 1, and vice versa. In summary,

for each S, there is a one-to-one correspondence be-
tween the set of ring homomorphisms from R to S,
and solutions over S to x2 +y2 = 1.

This behavior is what we have in mind when we say that
the ring R “packages” information about Diophantine
equations over different rings.

It turns out, just as one might hope, that every inter-
esting geometric property of varieties can be computed
by means of the coordinate ring, which means it can be
defined, not only for varieties, but for general schemes.
We have already seen, for instance, that a variety X is
irreducible if and only if Γ (X) is an integral domain.
Thus, we say in general that a scheme SpecR is irre-
ducible if and only if R is an integral domain (or, more
precisely, if the quotient of R by its nilradical is an inte-
gral domain). One can speak of the connectedness of a
scheme, its dimension, whether it is smooth, and so
forth. All these geometric properties turn out, like irre-
ducibility, to have purely algebraic descriptions. In fact,
to the arithmetic geometer’s way of thinking, all these
are, at bottom, algebraic properties.

3.4 Example: Spec Z, the Number Line

The first ring we encounter in our mathematical educa-
tion—and the ring that is the ultimate subject of num-
ber theory—is Z, the ring of integers. How does it fit
into our picture? The scheme Spec Z has as its points
the set of prime ideals of Z, which come in two flavors:
there are the principal ideals (p), with p a prime num-
ber; and there is the zero ideal. (The fact that these are
the only prime ideals of Z is not a triviality; it can be
derived from the euclidean algorithm [III.22].)

We are supposed to think of Z as the ring of “func-
tions” on Spec Z. How can an integer be a function? Well,
I merely need to tell you how to evaluate an integer n at
a point of Spec Z. If the point is a nonzero prime ideal
(p), then the evaluation homomorphism at (p) is pre-
cisely the homomorphism whose kernel is (p); so the
value of n at (p) is just the reduction of n modulo p.
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At the point (0), the evaluation homomorphism is the
identity map Z → Z; so the value of n at (0) is just n.

4 How Many Points Does a Circle Have?

We now return to the method of section 2, paying
particular attention to the case where the equation
x2 +y2 = 1 is considered over a finite field Fp .

Let us write V for the scheme of solutions of x2 +
y2 = 1. For any ring R, we will denote by V(R) the set
of solutions of x2 +y2 = 1.

If R is a finite field Fp , the set V(Fp) is a subset of F2
p .

In particular, it is a finite set. So it is natural to wonder
how large this set is: in other words, how many points
does a circle have?

In section 2, guided by our geometric intuition, we
observed that, for every m ∈ Q, the point

Pm =
(
m2 − 1
m2 + 1

,
−2m
m2 + 1

)
lies on V .

The algebraic computation showing that Pm satisfies
the equation x2 + y2 = 1 is no different over a finite
field. So we might be inclined to think that V(Fp) con-
sists of p + 1 points: namely, the points Pm for each
m ∈ Fp , together with (1,0).

But this is not right: for instance, when p = 5 it is
easy to check that the four points (0,1), (0,−1), (1,0),
(−1,0) make up all of V(F5). Computing Pm for vari-
ous m, we quickly discover the problem; when m is 2
or 3, the formula for Pm does not make sense, because
the denominator m2 + 1 is zero! This is a wrinkle we
did not see over Q, where m2 + 1 was always positive.

What is the geometric story here? Consider the inter-
section of the line L2, that is, the line y = 2(x − 1),
with V . If (x,y) belongs to this intersection, then we
have

x2 + (2(x − 1))2 = 1,

5x2 − 8x + 3 = 0.

Since 5 = 0 and 8 = 3 in F5, the above equation can
be written as 3 − 3x = 0; in other words, x = 1, which
in turn implies that y = 0. In other words, the line L2

intersects the circle V at only one point!
We are left with two possibilities, both disturbing to

our geometric intuition. We might declare that L2 is tan-
gent to V ; but this means that V would have multiple
tangents at (1,0), since the vertical line x = 1 should
surely still be considered a tangent. The alternative is
to declare that L2 is not tangent to V ; but then we
are in the equally unsavory situation of having a line

which, while not tangent to the circle V , intersects it
at only one point. You are now beginning to see why I
did not include an algebraic definition of “tangent” in
statement (A) above!

This quandary illustrates the nature of arithmetic
geometry nicely. When we move into novel contexts,
like geometry over Fp , some features stay fixed (such
as “a line intersects a circle in at most two points”),
while others have to be discarded (such as “there exists
exactly one line, which we may call the tangent line to
the circle at (1,0), that intersects the circle at (1,0) and
no other point”4).

Notwithstanding these subtleties, we are now ready
to compute the number of points in V(Fp). First of
all, when p = 2 one can check directly that (0,1)
and (1,0) are the only two points in V(F2). (Another
common refrain in arithmetic geometry is that fields
of characteristic 2 often impose technical annoyances,
and are best dealt with separately.) Having treated this
case, we assume for the rest of this section that p
is odd. It follows from basic number theory that the
equation m2 + 1 = 0 has a solution in Fp if and only
if p ≡ 1 (mod 4), in which case there are exactly two
such m. So, if p ≡ 3 (mod 4), then every line Lm inter-
sects the circle at a point other than (1,0), and we have
p + 1 points in all. If p ≡ 1 (mod 4), there are two
choices of m for which Lm intersects V only at (1,0);
eliminating these two choices of m yields a total of
p − 1 points in V(Fp).

We conclude that |V(Fp)| is equal to 2 when p = 2,
to p − 1 when p ≡ 1 (mod 4), and to p + 1 when p ≡ 3
(mod 4). The interested reader will find the following
exercises useful: how many solutions are there to x2 +
3y2 = 1 over Fp? What about x2 +y2 = 0?

More generally, let X be the scheme of solutions of
any system of equations

F1(x1, . . . , xn) = 0, F2(x1, . . . , xn) = 0, . . . , (10)

where the Fi are polynomials with integral coeffi-
cients. Then one can associate with F a list of integers
N2(X),N3(X),N5(X), . . . , where Np(X) is the number
of solutions to (10) with x1, . . . , xn ∈ Fp . This list of
integers turns out to contain a surprising amount of
geometric information about the scheme X; even for
the simplest schemes, the analysis of these lists is a
deep problem of intense current interest, as we will see
in the next section.

4. In this case, the right attitude to adopt is that L2 is not tangent to
V , but that there are certain nontangent lines that intersect the circle
at a single point.
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5 Some Problems in Classical and
Contemporary Arithmetic Geometry

In this section I will try to give an impression of a few of
arithmetic geometry’s great successes, and to gesture
at some problems of current interest for researchers in
the area.

A word of warning is in order. In what follows, I will
be trying to give brief and nontechnical descriptions
of some mathematics of extreme depth and complex-
ity. Consequently, I will feel very free to oversimplify.
I will try to avoid making assertions that are actually
false, but I will often use definitions (like that of the
L-function attached to an elliptic curve) that do not
exactly agree with those in the literature.

5.1 From Fermat to Birch–Swinnerton-Dyer

The world is not lacking in expositions of the proof of
fermat’s last theorem [V.10] and I will not attempt
to give another one here, although it is without ques-
tion the most notable contemporary achievement in
arithmetic geometry. (Here I am using the mathemati-
cian’s sense of “contemporary,” which, as the old joke
goes, means “theorems proved since I entered graduate
school.” The shorthand for “theorems proved before I
entered graduate school” is “classical.”) I will content
myself with making some comments about the struc-
ture of the proof, emphasizing connections with the
parts of arithmetic geometry we have discussed above.

Fermat’s last theorem (rightly called “Fermat’s con-
jecture,” since it is almost impossible to imagine that
fermat [VI.12] proved it) asserts that the equation

A� + B� = C�, (11)

where � is an odd prime, has no solutions in positive
integers A, B, C .

The proof uses the crucial idea, introduced indepen-
dently by Frey and Hellegouarch, of associating with
any solution (A, B,C) of (11) a certain variety XA,B ,
namely the curve described by the equation

y2 = x(x −A�)(x + B�).
What can we say about Np(XA,B)? We begin with a sim-
ple heuristic. There are p choices for x in Fp . For each
choice of x, there are either zero, one, or two choices
for y , depending on whether x(x − A�)(x + B�) is
a quadratic nonresidue, zero, or a quadratic residue
in Fp . Since there are equally many quadratic residues
and nonresidues in Fp , we might guess that those two
cases arise equally often. If so, there would on average
be one choice of y for each of the p choices of x, which

inclines us to make the estimate Np(XA,B) ∼ p. Define
ap to be the error in this estimate: ap = p −Np(XA,B).
It is worth remembering that when X was the scheme
attached to x2 + y2 = 1, the behavior of p − Np(X)
was very regular; in particular, this quantity took the
value 1 at primes congruent to 1 mod 4 and −1 at
primes congruent to 3 mod 4. (We note, in particular,
that the heuristic estimate Np(X) ∼ p is quite good in
this case.) Might one hope that ap displays the same
kind of regularity?

In fact, the behavior of the ap is very irregular, as a
famous theorem of Mazur shows; not only do the ap
fail to vary periodically, even their reductions modulo
various primes are irregular!

Fact (Mazur). Suppose that � is a prime greater than 3,
and let b be a positive integer. It is not the case that
ap takes the same value (mod �) for all primes p
congruent to 1 (modb).5

On the other hand—if I may compress a 200-page
paper into a slogan—Wiles proved that, when A, B, C
is a solution to (11), the reductions mod � of the ap
necessarily behaved periodically, contradicting Mazur’s
theorem when � > 3. The case � = 3 is an old theorem
of euler [VI.19]. This completes the proof of Fermat’s
conjecture, and, I hope, bolsters our assertion that the
careful study of the values Np(X) is an interesting way
to study a variety X!

But the story does not end with Fermat. In general,
if f(x) is a cubic polynomial with coefficients in Z and
no repeated roots, the curve E defined by the equation

y2 = f(x) (12)

is called an elliptic curve [III.21] (note well that an
elliptic curve is not an ellipse). The study of rational
points on elliptic curves (that is, pairs of rational num-
bers satisfying (12)) has been occupying arithmetic
geometers since before our subject existed as such;
a decent treatment of the story would fill a book, as
indeed it does fill the book of Silverman and Tate
(1992). We can define ap(E) to be p −Np(E) as above.
First of all, if our heuristic Np(E) ∼ p is a good esti-
mate, we might expect that ap(E) is small compared
with p; and, in fact, a theorem of Hasse from the 1930s
shows that ap(E) � 2

√p for all but finitely many p.

5. The theorem proved by Mazur is stated by him in a very different
and much more general way: he proves that certain modular curves
do not possess any rational points. This implies that a version of the
fact above is true, not only for XA,B , but for any equation of the form
y2 = f(x), where f is a cubic polynomial without repeated roots. We
will leave it to the other able treatments of Fermat to develop that
point of view.
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It turns out that some elliptic curves have infinitely
many rational points, and some only finitely many. One
might expect that an elliptic curve with many points
over Q would tend to have more points over finite fields
as well, since the coordinates of a rational point can be
reduced mod p to yield a point over the finite field Fp .
Conversely, one might imagine that, by knowing the list
of numbers ap , one could draw conclusions about the
points of E over Q.

In order to draw such conclusions, one needs a nice
way to package the information of the infinite list of
integers ap . Such a package is given by the L-function

[III.47] of the elliptic curve, defined to be the following
function of a variable s:

L(E, s) =
∏′

p(1 − app−s + p1−2s)−1. (13)

The notation
∏′ means that this product is evaluated

over all primes apart from a finite set, which is easy
to determine from the polynomial f . (As is often the
case, we are oversimplifying; what I have written here
differs in some irrelevant-to-us respects from what is
usually called L(E, s) in the literature.) It is not hard to
check that (13) is a convergent product when s is a real
number greater than 3

2 . Not much deeper is the fact
that the right-hand side of (13) is well-defined when s
is a complex number whose real part exceeds 3

2 . What
is much deeper—following from the theorem of Wiles,
together with later theorems of Breuil, Conrad, Dia-
mond, and Taylor—is that we can extend L(E, s) to
a holomorphic function [I.3 §5.6] defined for every
complex number s.

A heuristic argument might suggest the following
relationship between the values of Np(E) and the
value of L(E,1). If the ap are typically negative (corre-
sponding to the Np(E) typically being greater than p)
the terms in the infinite product tend to be smaller
than 1; when the ap are positive, the terms in the
product tend to be larger than 1. In particular, one
might expect the value of L(E,1) to be closer to 0
when E has many rational points. Of course, this
heuristic should be taken with a healthy pinch of salt,
given that L(E,1) is not in fact defined by the infi-
nite product on the right-hand side of (13)! Nonethe-
less, the birch–swinnerton-dyer conjecture [V.4],
which makes precise the heuristic prediction above,
is widely believed, and supported by many partial
results and numerical experiments. We do not have the
space here to state the conjecture in full generality.
However, the following conjecture would follow from
Birch–Swinnerton-Dyer.

Conjecture. The elliptic curve E has infinitely many
points over Q if and only if L(E,1) = 0.

Kolyvagin proved one direction of this conjecture
in 1988: that E has finitely many rational points if
L(E,1) ≠ 0. (To be precise, he proved a theorem that
yields the assertion here once combined with the later
theorems of Wiles and others.) It follows from a the-
orem of Gross and Zagier that E has infinitely many
rational points if L(E, s) has a simple zero at s = 1. That
more or less sums up our present knowledge about the
relationship between L-functions and rational points
on elliptic curves. This lack of knowledge has not, how-
ever, prevented us from constructing a complex of ever
more rarefied conjectures in the same vein, of which
the Birch–Swinnerton-Dyer conjecture is only a tiny and
relatively down-to-earth sliver.

Before we leave the subject of counting points be-
hind, we will pause and point out one more beautiful
result: the theorem of andré weil [VI.93] bounding the
number of points on a curve over a finite field. (Because
we have not introduced projective geometry, we will
satisfy ourselves with a somewhat less beautiful formu-
lation than the usual one.) Let F(x,y) be an irreducible
polynomial in two variables, and let X be the scheme of
solutions of F(x,y) = 0. Then the complex points of X
define a certain subset of C2, which we call an algebraic
curve. Since X is obtained by imposing one polynomial
condition on the points of C2, we expect that X has
complex dimension 1, which is to say it has real dimen-
sion 2. Topologically speaking, X(C) is, therefore, a
surface. It turns out that, for almost all choices of F ,
the surface X(C) will have the topology of a “g-holed
doughnut” with d points removed, for some nonnega-
tive integers g and d. In this case we say that X is a
curve of genus g.

In section 2 we saw that the behavior of schemes over
finite fields seemed to “remember” facts arising from
our geometric intuition over R and C: our example there
was the fact that circles and lines intersect in at most
two points.

The theorem of Weil reveals a similar, though much
deeper, phenomenon.

Fact. Suppose the scheme X of solutions of F(x,y)
is a curve of genus g. Then, for all but finitely many
primes p, the number of points of X over Fp is at most
p + 1 + 2g√p and at least p + 1 − 2g√p − d.

Weil’s theorem illustrates the startlingly close bonds
between geometry and arithmetic. The more compli-
cated the topology of X(C), the further the number of
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Fp-points can vary from the “expected” answer of p.
What is more, it turns out that knowing the size of
the set X(Fq) for every finite field Fq allows us to
determine the genus of X. In other words, the finite
sets of points X(Fq) somehow “remember” the topol-
ogy of the space of complex points X(C)! In modern
language, we say that there is a theory applying to gen-
eral schemes, called étale cohomology, which mimics
the theory of cohomology applying to the topology of
varieties over C.

Let us return for a moment to our favorite curve, by
taking the polynomial F(x,y) = x2 + y2 − 1. In this
case, it turns out that X(C) has g = 0 and d = 2:
our previous result that X(Fp) contains either p + 1 or
p − 1 points therefore conforms exactly with the Weil
bounds. We also remark that elliptic curves always have
genus 1; so the theorem of Hasse alluded to above is a
special case of Weil’s theorem as well.

Recall from section 2 that the solutions to x2 +
y2 = 1, over R, over Q, or over various finite fields,
could be parametrized by the variable m. It was this
parametrization that enabled us to determine a sim-
ple formula for the size of X(Fp) in this case. We
remarked earlier that most schemes could not be so
parametrized; now we can make that statement a bit
more precise, at least for algebraic curves.

Fact. If X is a genus-0 curve, then the points of X can
be parametrized by a single variable.

The converse of this fact is more or less true as well
(though stating it properly requires us to say more than
we can here about “singular curves”). In other words, a
thoroughly algebraic question—whether the solutions
of a Diophantine equation can be parametrized—is
hereby given a geometric answer.

5.2 Rational Points on Curves

As we said above, some elliptic curves (which are curves
of genus 1) have finitely many rational points, and
others have infinitely many. What is the situation for
algebraic curves of other flavors?

We have already encountered a curve of genus 0 with
infinitely many points: namely, the curve x2 +y2 = 1.
On the other hand, the curve x2 + y2 = 7 also has
genus 0, and a simple modification of the argument of
the first section shows that this curve has no rational
points. It turns out these are the only two possibilities.

Fact. If X is a curve of genus 0, then X(Q) is either
empty or infinite.

Genus-1 curves are known to fall into a similar
dichotomy, thanks to the theorem of Mazur we alluded
to earlier.

Fact. If X is a genus-1 curve, then either X has at most
sixteen rational points or it has infinitely many rational
points.

What about curves of higher genus? In the early
1920s, Mordell made the following conjecture.

Conjecture. If X is a curve of genus greater than 2,
then X has finitely many rational points.

This conjecture was proved by Faltings in 1983;
in fact, he proved a more general theorem of which
this conjecture is a special case. It is worth remark-
ing that the work of Faltings involves a great deal of
importation of geometric intuition to the study of the
scheme Spec Z.

When you prove that a set is finite, it is natural to
wonder whether you can bound its size. For example, if
f(x) is a degree 6 polynomial with no repeated roots,
the curve y2 = f(x) turns out to have genus 2; so by
Faltings’s theorem there are only finitely many pairs of
rational numbers (x,y) satisfying y2 = f(x).

Question. Is there a constant B such that, for all
degree 6 polynomials with coefficients in Q and no
repeated roots, the equation y2 = f(x) has at most
B solutions?

This question remains open, and I do not think there
is a strong consensus about whether the answer will be
yes or no. The current world record is held by the curve

y2 = 378 371 081x2(x2 − 9)2 − 229 833 600(x2 − 1)2,

which was constructed by Keller and Kulesz and has
588 rational points.

Interest in the above question comes from its rela-
tion to a conjecture of Lang, which involves points
on higher-dimensional varieties. Caporaso, Harris, and
Mazur showed that Lang’s conjecture implies a posi-
tive answer to the question above. This suggests a nat-
ural attack on the conjecture: if one can find a way to
construct an infinite sequence of degree 6 polynomials
f(x) so that the equations y = f(x) have ever more
numerous rational solutions, then one has a disproof
of Lang’s conjecture! No one has yet been successful
at this task. If one could prove that the answer to the
question above was affirmative, it would probably bol-
ster our faith in the correctness of Lang’s conjecture,
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though of course it would bring us no nearer to turning
the conjecture into a theorem.

In this article we have seen only a glimpse of the
modern theory of arithmetic geometry, and perhaps I
have overemphasized mathematicians’ successes at the
expense of the much larger territory of questions, like
Lang’s conjecture above, about which we remain wholly
ignorant. At this stage in the history of mathematics,
we can confidently say that the schemes attached to
Diophantine problems have geometry. What remains
is to say as much as we can about what this geom-
etry is like, and in this respect, despite the progress
described here, our understanding is still quite unsat-
isfactory when compared with our knowledge of more
classical geometric situations.
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IV.6 Algebraic Topology
Burt Totaro

Introduction

Topology is concerned with the properties of a geomet-
ric shape that are unchanged when we continuously
deform it. In more technical terms, topology tries to
classify topological spaces [III.90], where two spaces
are considered the same if they are homeomorphic.
Algebraic topology assigns numbers to a topological
space, which can be thought of as the “number of holes”
in that space. These holes can be used to show that
two spaces are not homeomorphic: if they have differ-
ent numbers of holes of some kind, then one cannot
be a continuous deformation of the other. In the happi-
est cases, we can hope to show the converse statement:
that two spaces with the same number of holes (in some
precise sense) are homeomorphic.

Topology is a relatively new branch of mathematics,
with its origins in the nineteenth century. Before that,
mathematics usually sought to solve problems exactly:
to solve an equation, to find the path of a falling body,
to compute the probability that a game of dice will
lead to bankruptcy. As the complexity of mathemati-
cal problems grew, it became clear that most problems
would never be solved by an exact formula: a classic
example is the problem, known as the three-body

problem [V.33], of computing the future movements
of Earth, the Sun, and the Moon under the influence of
gravity. Topology allows the possibility of making qual-
itative predictions when quantitative ones are impossi-
ble. For example, a simple topological fact is that a trip
from New York to Montevideo must cross the equator
at some point, although we cannot say exactly where.

1 Connectedness and Intersection Numbers

Perhaps the simplest topological property is one called
connectedness. This can be defined in various ways, as
we shall see in a moment, but once we have a notion of
what it means for a space to be connected we can then
divide a topological space up into connected pieces,
called components. The number of these pieces is a sim-
ple but useful invariant [I.4 §2.2]: if two spaces have
different numbers of connected components, then they
are not homeomorphic.

For nice topological spaces, the different definitions
of connectedness are equivalent. However, they can be
generalized to give ways of measuring the number of
holes in a space; these generalizations are interestingly
different and all of them are important.

The first interpretation of connectedness uses the
notion of a path, which is defined to be a continuous
mapping f from the unit interval [0,1] to a given space
X. (We think of f as a path from f(0) to f(1).) Let us
declare two points of X to be equivalent if there is a
path from one to the other. The set of equivalence

classes [I.2 §2.3] is called the set of path components
of X and is written π0(X). This is a very natural way of
defining the “number of connected pieces” into which
X breaks up. One can generalize this notion by con-
sidering mappings into X from other standard spaces
such as spheres: this leads to the notion of homotopy
groups, which will be the topic of section 2.

A different way of thinking about connectedness is
based on functions from X to the real line rather than
functions from a line segment into X. Let us assume
that we are in a situation where it makes sense to dif-
ferentiate functions on X. For example, X could be an
open subset of some Euclidean space, or more gener-
ally a smooth manifold [I.3 §6.9]. Consider all the real-
valued functions on X whose derivative is everywhere
equal to zero: these functions form a real vector space

[I.3 §2.3], which we call H0(X,R) (the “zeroth cohom-
ology group of X with real coefficients”). Calculus tells
us that if a function defined on an interval has deriva-
tive zero, then it must be constant, but that is not true




