
�

II.2. Geometry 83

Menninger, K. 1992. Number Words and Number Symbols:
A Cultural History of Numbers. New York: Dover. (Trans-
lated by P. Broneer from the revised German edition of
1957/58: Zahlwort und Ziffer. Eine Kulturgeschichte der
Zahl. Göttingen: Vandenhoeck und Ruprecht.)

Reid, C. 2006. From Zero to Infinity: What Makes Numbers
Interesting. Natick, MA: A. K. Peters.

II.2 Geometry
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1 Introduction

The modern view of geometry was inspired by the novel
geometrical theories of hilbert [VI.63] and Einstein in
the early years of the twentieth century, which built in
their turn on other radical reformulations of geometry
in the nineteenth century. For thousands of years, the
geometrical knowledge of the Greeks, as set out most
notably in euclid’s [VI.2] Elements, was held up as a
paradigm of perfect rigor, and indeed of human know-
ledge. The new theories amounted to the overthrow of
an entire way of thinking. This essay will pursue the his-
tory of geometry, starting from the time of Euclid, con-
tinuing with the advent of non-Euclidean geometry, and
ending with the work of riemann [VI.49], klein [VI.57],
and poincaré [VI.61]. Along the way, we shall exam-
ine how and why the notions of geometry changed so
remarkably. Modern geometry itself will be discussed
in later parts of this book.

2 Naive Geometry

Geometry generally, and Euclidean geometry in partic-
ular, is informally and rightly taken to be the math-
ematical description of what you see all around you:
a space of three dimensions (left–right, up–down, for-
wards–backwards) that seems to extend indefinitely
far. Objects in it have positions, they sometimes move
around and occupy other positions, and all of these
positions can be specified by measuring lengths along
straight lines: this object is twenty meters from that
one, it is two meters tall, and so on. We can also mea-
sure angles, and there is a subtle relationship between
angles and lengths. Indeed, there is another aspect
to geometry, which we do not see but which we rea-
son about. Geometry is a mathematical subject that is
full of theorems—the isosceles triangle theorem, the
Pythagorean theorem, and so on—which collectively
summarize what we can say about lengths, angles,
shapes, and positions. What distinguishes this aspect

of geometry from most other kinds of science is its
highly deductive nature. It really seems that by tak-
ing the simplest of concepts and thinking hard about
them one can build up an impressive, deductive body
of knowledge about space without having to gather
experimental evidence.

But can we? Is it really as simple as that? Can we have
genuine knowledge of space without ever leaving our
armchairs? It turns out that we cannot: there are other
geometries, also based on the concepts of length and
angle, that have every claim to be useful, but that dis-
agree with Euclidean geometry. This is an astonishing
discovery of the early nineteenth century, but, before it
could be made, a naive understanding of fundamental
concepts, such as straightness, length, and angle, had
to be replaced by more precise definitions—a process
that took many hundreds of years. Once this had been
done, first one and then infinitely many new geometries
were discovered.

3 The Greek Formulation

Geometry can be thought of as a set of useful facts
about the world, or else as an organized body of know-
ledge. Either way, the origins of the subject are much
disputed. It is clear that the civilizations of Egypt and
Babylonia had at least some knowledge of geometry—
otherwise, they could not have built their large cities,
elaborate temples, and pyramids. But not only is it dif-
ficult to give a rich and detailed account of what was
known before the Greeks, it is difficult even to make
sense of the few scattered sources that we have from
before the time of Plato and Aristotle. One reason for
this is the spectacular success of the later Greek writer,
and author of what became the definitive text on geom-
etry, Euclid of Alexandria (ca. 300 b.c.e.). One glance at
his famous Elements shows that a proper account of
the history of geometry will have to be about some-
thing much more than the acquisition of geometrical
facts. The Elements is a highly organized, deductive
body of knowledge. It is divided into a number of dis-
tinct themes, but each theme has a complex theoret-
ical structure. Thus, whatever the origins of geom-
etry might have been, by the time of Euclid it had
become the paradigm of a logical subject, offering a
kind of knowledge quite different from, and seemingly
higher than, knowledge directly gleaned from ordinary
experience.

Rather, therefore, than attempt to elucidate the early
history of geometry, this essay will trace the high road



�

84 II. The Origins of Modern Mathematics

of geometry’s claim on our attention: the apparent cer-
tainty of mathematical knowledge. It is exactly this
claim to a superior kind of knowledge that led even-
tually to the remarkable discovery of non-Euclidean
geometry: there are geometries other than Euclid’s that
are every bit as rigorously logical. Even more remark-
ably, some of these turn out to provide better models
of physical space than Euclidean geometry.

The Elements opens with four books on the study
of plane figures: triangles, quadrilaterals, and circles.
The famous theorem of Pythagoras is the forty-seventh
proposition of the first book. Then come two books on
the theory of ratio and proportion and the theory of
similar figures (scale copies), treated with a high degree
of sophistication. The next three books are about whole
numbers, and are presumably a reworking of much
older material that would now be classified as elemen-
tary number theory. Here, for example, one finds the
famous result that there are infinitely many prime num-
bers. The next book, the tenth, is by far the longest,
and deals with the seemingly specialist topic of lengths
of the form

√
a±

√
b (to write them as we would). The

final three books, where the curious lengths studied in
Book X play a role, are about three-dimensional geom-
etry. They end with the construction of the five regular
solids and a proof that there are no more. The discov-
ery of the fifth and last had been one of the topics that
excited Plato. Indeed, the five regular solids are crucial
to the cosmology of Plato’s late work the Timaeus.

Most books of the Elements open with a number
of definitions, and each has an elaborate deductive
structure. For example, to understand the Pythagorean
theorem, one is driven back to previous results, and
thence to even earlier results, until finally one comes
to rest on basic definitions. The whole structure is
quite compelling: reading it as an adult turned the
philosopher Thomas Hobbes from incredulity to last-
ing belief in a single sitting. What makes the Elements
so convincing is the nature of the arguments employed.
With some exceptions, mostly in the number-theoretic
books, these arguments use the axiomatic method.
That is to say, they start with some very simple axioms
that are intended to be self-evidently true, and proceed
by purely logical means to deduce theorems from them.

For this approach to work, three features must be
in place. The first is that circularity should be care-
fully avoided. That is, if you are trying to prove a state-
ment P and you deduce it from an earlier statement,
and deduce that from a yet earlier statement, and so
on, then at no stage should you reach the statement

P again. That would not prove P from the axioms,
but merely show that all the statements in your chain
were equivalent. Euclid did a remarkable job in this
respect.

The second necessary feature is that the rules of
inference should be clear and acceptable. Some geomet-
rical statements seem so obvious that one can fail to
notice that they need to be proved: ideally, one should
use no properties of figures other than those that have
been clearly stated in their definitions, but this is a diffi-
cult requirement to meet. Euclid’s success here was still
impressive, but mixed. On the one hand, the Elements
is a remarkable work, far outstripping any contempo-
rary account of any of the topics it covers, and capable
of speaking down the millennia. On the other, it has
little gaps that from time to time later commentators
would fill. For example, it is neither explicitly assumed
nor proved in the Elements that two circles will meet
if their centers lie outside each other and the sum of
their radii is greater than the distance between their
centers. However, Euclid is surprisingly clear that there
are rules of inference that are of general, if not indeed
universal, applicability, and others that apply to math-
ematics because they rely on the meanings of the terms
involved.

The third feature, not entirely separable from the
second, is adequate definitions. Euclid offered two, or
perhaps three, sorts of definition. Book I opens with
seven definitions of objects, such as “point” and “line,”
that one might think were primitive and beyond def-
inition, and it has recently been suggested that these
definitions are later additions. Then come, in Book I
and again in many later books, definitions of familiar
figures designed to make them amenable to mathemat-
ical reasoning: “triangle,” “quadrilateral,” “circle,” and
so on. The postulates of Book I form the third class of
definition and are rather more problematic.

Book I states five “common notions,” which are rules
of inference of a very general sort. For example, “If
equals be added to equals, the wholes are equals.” The
book also has five “postulates,” which are more nar-
rowly mathematical. For example, the first of these
asserts that one may draw a straight line from any point
to any point. One of these postulates, the fifth, became
notorious: the so-called parallel postulate. It says that
“If a straight line falling on two straight lines make the
interior angles on the same side less than two right
angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than two
right angles.”
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Parallel lines, therefore, are straight lines that do not
meet. A helpful rephrasing of Euclid’s parallel postulate
was introduced by the Scottish editor, Robert Simson. It
appears in his edition of Euclid’s Elements from 1806.
There he showed that the parallel postulate is equiva-
lent, if one assumes those parts of the Elements that
do not depend on it, to the following statement: given
any line m in a plane, and any point P in that plane that
does not lie on the line m, there is exactly one line n
in the plane that passes through the point P and does
not meet the line m. From this formulation it is clear
that the parallel postulate makes two assertions: given
a line and a point as described, a parallel line exists and
it is unique.

It is worth noting that Euclid himself was probably
well aware that the parallel postulate was awkward. It
asserts a property of straight lines that seems to have
made Greek mathematicians and philosophers uncom-
fortable, and this may be why its appearance in the Ele-
ments is delayed until proposition 29 of Book I. The
commentator Proclus (fifth century c.e.), in his exten-
sive discussion of Book I of the Elements, observed that
the hyperbola and asymptote get closer and closer as
they move outwards, but they never meet. If a line and a
curve can do this, why not two lines? The matter needs
further analysis. Unfortunately, not much of the Ele-
ments would be left if mathematicians dropped the par-
allel postulate and retreated to the consequences of the
remaining definitions: a significant body of knowledge
depends on it. Most notably, the parallel postulate is
needed to prove that the angles in a triangle add up to
two right angles—a crucial result in establishing many
other theorems about angles in figures, including the
Pythagorean theorem.

Whatever claims educators may have made about
Euclid’s Elements down the ages, a significant number
of experts knew that it was an unsatisfactory compro-
mise: a useful and remarkably rigorous theory could be
had, but only at the price of accepting the parallel pos-
tulate. But the parallel postulate was difficult to accept
on trust: it did not have the same intuitively obvious
feel of the other axioms and there was no obvious way
of verifying it. The higher one’s standards, the more
painful this compromise was. What, the experts asked,
was to be done?

One Greek discussion must suffice here. In Proclus’s
view, if the truth of the parallel postulate was not obvi-
ous, and yet geometry was bare without it, then the only
possibility was that it was true because it was a theo-
rem. And so he gave it a proof. He argued as follows. Let

two lines m and n cross a third line k at P and Q, respec-
tively, and make angles with it that add up to two right
angles. Now draw a line l that crosses m at P and enters
the space between the lines m and n. The distance
between l and m as one moves away from the point P
continually increases, said Proclus, and therefore line l
must eventually cross line n.

Proclus’s argument is flawed. The flaw is subtle, and
sets us up for what is to come. He was correct that
the distance between the lines l and m increases indef-
initely. But his argument assumes that the distance
between lines m and n does not also increase indefi-
nitely, and is instead bounded. Now Proclus knew very
well that if the parallel postulate is granted, then it can
be shown that the lines m and n are parallel and that
the distance between them is a constant. But until the
parallel postulate is proved, nothing prevents one say-
ing that the lines m and n diverge. Proclus’s proof does
not therefore work unless one can show that lines that
do not meet also do not diverge.

Proclus’s attempt was not the only one, but it is typi-
cal of such arguments, which all have a standard form.
They start by detaching the parallel postulate from
Euclid’s Elements, together with all the arguments and
theorems that depend on it. Let us call what remains
the “core” of the Elements. Using this core, an attempt
is then made to derive the parallel postulate as a the-
orem. The correct conclusion to be derived from Pro-
clus’s attempt is not that the parallel postulate is a the-
orem, but rather that, given the core of the Elements,
the parallel postulate is equivalent to the statement
that lines that do not meet also do not diverge. Aganis,
a writer of the sixth century c.e. about whom almost
nothing is known, assumed, in a later attempt, that par-
allel lines are everywhere equidistant, and his argument
showed only that, given the core, the Euclidean defini-
tion of parallel lines is equivalent to defining them to
be equidistant.

Notice that one cannot even enter this debate unless
one is clear which properties of straight lines belong to
them by definition, and which are to be derived as the-
orems. If one is willing to add to the store of “common-
sense” assumptions about geometry as one goes along,
the whole careful deductive structure of the Elements
collapses into a pile of facts.

This deductive character of the Elements is clearly
something that Euclid regarded as important, but one
can also ask what he thought geometry was about. Was
it meant, for example, as a mathematical description
of space? No surviving text tells us what he thought
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about this question, but it is worth noting that the most
celebrated Greek theory of the universe, developed by
Aristotle and many later commentators, assumed that
space was finite, bounded by the sphere of the fixed
stars. The mathematical space of the Elements is infi-
nite, and so one has at least to consider the possibility
that, for all these writers, mathematical space was not
intended as a simple idealization of the physical world.

4 Arab and Islamic Commentators

What we think of today as Greek geometry was the
work of a handful of mathematicians, mostly concen-
trated in a period of less than two centuries. They were
eventually succeeded by a somewhat larger number of
Arabic and Islamic writers, spread out over a much
greater area and a longer time. These writers tend to be
remembered as commentators on Greek mathematics
and science, and for transmitting them to later West-
ern authors, but they should also be remembered as
creative, innovative mathematicians and scientists in
their own right. A number of them took up the study
of Euclid’s Elements, and with it the problem of the par-
allel postulate. They too took the view that it was not
a proper postulate, but one that could be proved as a
theorem using the core alone.

Among the first to attempt a proof was Thābit ibn
Qurra. He was a pagan from near Aleppo who lived and
worked in Baghdad, where he died in 901. Here there
is room to describe only his first approach. He argued
that if two lines m and n are crossed by a third, k, and
if they approach each other on one side of the line k,
then they diverge indefinitely on the other side of k. He
deduced that two lines that make equal alternate angles
with a transversal (the marked angles in figure 1) can-
not approach each other on one side of a transversal:
the symmetry of the situation would imply that they
approached on the other side as well, but he had shown
that they would have to diverge on the other side. From
this he deduced the Euclidean theory of parallels, but
his argument was also flawed, since he had not consid-
ered the possibility that two lines could diverge in both
directions.

The distinguished Islamic mathematician and scien-
tist ibn al-Haytham was born in Basra in 965 and died
in Egypt in 1041. He took a quadrilateral with two equal
sides perpendicular to the base and dropped a perpen-
dicular from one side to the other. He now attempted
to prove that this perpendicular is equal to the base,
and to do so he argued that as one of two original per-
pendiculars is moved toward the other, its tip sweeps

m

n

k

a

b

Figure 1 The lines m and n make equal alternate
angles a and b with the transversal k.

A

B B'

A'

D

C

Figure 2 AB and CD are equal, the angle ADC is a right
angle, A′B′ is an intermediate position of AB as it moves
toward CD.

out a straight line, which will coincide with the per-
pendicular just dropped (see figure 2). This amounts
to the assumption that the curve everywhere equidis-
tant from a straight line is itself straight, from which
the parallel postulate easily follows, and so his attempt
fails. His proof was later heavily criticized by Omar
Khayyam for its use of motion, which he found fun-
damentally unclear and alien to Euclid’s Elements. It
is indeed quite distinct from any use Euclid had for
motion in geometry, because in this case the nature
of the curve obtained is not clear: it is precisely what
needs to be analyzed.

The last of the Islamic attempts on the parallel pos-
tulate is due to Nas. ır al-D̄ın al-T. ūs̄ı. He was born in Iran
in 1201 and died in Baghdad in 1274. His extensive
commentary is also one of our sources of knowledge
of earlier Islamic mathematical work on this subject.
Al-T. ūs̄ı focused on showing that if two lines begin to
converge, then they must continue to do so until they
eventually meet. To this end he set out to show that

(∗) if l and m are two lines that make an angle of less
than a right angle, then every line perpendicular
to l meets the line m.
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He showed that if (∗) is true, then the parallel postulate
follows. However, his argument for (∗) is flawed.

It is genuinely difficult to see what is wrong with
some of these arguments if one uses only the tech-
niques available to mathematicians of the time. Islamic
mathematicians showed a degree of sophistication that
was not to be surpassed by their Western successors
until the eighteenth century. Unfortunately, however,
their writings did not come to the attention of the West
until much later, with the exception of a single work
in the Vatican Library, published in 1594, which was
for many years erroneously attributed to al-T. ūs̄ı (and
which may have been the work of his son).

5 The Western Revival of Interest

The Western revival of interest in the parallel postu-
late came with the second wave of translations of Greek
mathematics, led by Commandino and Maurolico in the
sixteenth century and spread by the advent of print-
ing. Important texts were discovered in a number of
older libraries, and ultimately this led to the produc-
tion of new texts of Euclid’s Elements. Many of these
had something to say about the problem of parallels,
pithily referred to by Henry Savile as “a blot on Euclid.”
For example, the powerful Jesuit Christopher Clavius,
who edited and reworked the Elements in 1574, tried to
argue that parallel lines could be defined as equidistant
lines.

The ready identification of physical space with the
space of Euclidean geometry came about gradually dur-
ing the sixteenth and seventeenth centuries, after the
acceptance of Copernican astronomy and the aboli-
tion of the so-called sphere of fixed stars. It was can-
onized by newton [VI.14] in his Principia Mathemat-
ica, which proposed a theory of gravitation that was
firmly situated in Euclidean space. Although Newto-
nian physics had to fight for its acceptance, Newto-
nian cosmology had a smooth path and became the
unchallenged orthodoxy of the eighteenth century. It
can be argued that this identification raised the stakes,
because any unexpected or counterintuitive conclusion
drawn solely from the core of the Elements was now,
possibly, a counterintuitive fact about space.

In 1663 the English mathematician John Wallis took
a much more subtle view of the parallel postulate than
any of his predecessors. He had been instructed by Hal-
ley, who could read Arabic, in the contents of the apoc-
ryphal edition of al-T. ūs̄ı’s work in the Vatican Library,
and he too gave an attempted proof. Unusually, Wallis

also had the insight to see where his own argument was
flawed, and commented that what it really showed was
that, in the presence of the core, the parallel postulate
was equivalent to the assertion that there exist similar
figures that are not congruent.

Half a century later, Wallis was followed by the most
persistent and thoroughgoing of all the defenders of
the parallel postulate, Gerolamo Saccheri, an Italian
Jesuit who published in 1733, the year of his death,
a short book called Euclid Freed of Every Flaw. This
little masterpiece of classical reasoning opens with a
trichotomy. Unless the parallel postulate is known, the
angle sum of a triangle may be either less than, equal to,
or greater than two right angles. Saccheri showed that
whatever happens in one triangle happens for them all,
so there are apparently three geometries compatible
with the core. In the first, every triangle has an angle
sum less than two right angles (call this case L). In the
second, every triangle has an angle sum equal to two
right angles (call this case E). In the third, every trian-
gle has an angle sum greater than two right angles (call
this case G). Case E is, of course, Euclidean geometry,
which Saccheri wished to show was the only case pos-
sible. He therefore set to work to show that each of the
other cases independently self-destructed. He was suc-
cessful with case G, and then turned to case L “which
alone obstructs the truth of the [parallel] axiom,” as he
put it.

Case L proved to be difficult, and during the course
of his investigations Saccheri established a number of
interesting propositions. For example, if case L is true,
then two lines that do not meet have just one common
perpendicular, and they diverge on either side of it.
In the end, Saccheri tried to deal with his difficulties
by relying on foolish statements about the behavior of
lines at infinity: it was here that his attempted proof
failed.

Saccheri’s work sank slowly, though not completely,
into obscurity. It did, however, come to the attention
of the Swiss mathematician Johann Lambert, who pur-
sued the trichotomy but, unlike Saccheri, stopped short
of claiming success in proving the parallel postulate.
Instead the work was abandoned, and was published
only in 1786, after his death. Lambert distinguished
carefully between unpalatable results and impossibil-
ities. He had a sketch of an argument to show that in
case L the area of a triangle is proportional to the dif-
ference between two right angles and the angle sum
of the triangle. He knew that in case L similar trian-
gles had to be congruent, which would imply that the
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tables of trigonometric functions used in astronomy
were not in fact valid and that different tables would
have to be produced for every size of triangle. In par-
ticular, for every angle less than 60◦ there would be
precisely one equilateral triangle with that given angle
at each vertex. This would lead to what philosophers
called an “absolute” measure of length (one could take,
for instance, the length of the side of an equilateral tri-
angle with angles equal to 30◦), which leibniz’s [VI.15]
follower Wolff had said was impossible. And indeed it
is counterintuitive: lengths are generally defined in rel-
ative terms, as, for instance, a certain proportion of the
length of a meter rod in Paris, or of the circumference
of Earth, or of something similar. But such arguments,
said Lambert, “were drawn from love and hate, with
which a mathematician can have nothing to do.”

6 The Shift of Focus around 1800

The phase of Western interest in the parallel postu-
late that began with the publication of modern editions
of Euclid’s Elements started to decline with a further
turn in that enterprise. After the French revolution,
legendre [VI.24] set about writing textbooks, largely
for the use of students hoping to enter the École Poly-
technique, that would restore the study of elementary
geometry to something like the rigorous form in which
it appeared in the Elements. However, it was one thing
to seek to replace books of a heavily intuitive kind, but
quite another to deliver the requisite degree of rigor.
Legendre, as he came to realize, ultimately failed in his
attempt. Specifically, like everyone before him, he was
unable to give an adequate defense of the parallel pos-
tulate. Legendre’s Éléments de Géométrie ran to numer-
ous editions, and from time to time a different attempt
on the postulate was made. Some of these attempts
would be hard to describe favorably, but the best can
be extremely persuasive.

Legendre’s work was classical in spirit, and he still
took it for granted that the parallel postulate had to
be true. But by around 1800 this attitude was no longer
universally held. Not everybody thought that the postu-
late must, somehow, be defended, and some were pre-
pared to contemplate with equanimity the idea that it
might be false. No clearer illustration of this shift can
be found than a brief note sent to gauss [VI.26] by
F. K. Schweikart, a Professor of Law at the University
of Marburg, in 1818. Schweikart described in a page
the main results he had been led to in what he called
“astral geometry,” in which the angle sum of a triangle

was less than two right angles: squares had a partic-
ular form, and the altitude of a right-angled isosceles
triangle was bounded by an amount Schweikart called
“the constant.” Schweikart went so far as to claim that
the new geometry might even be the true geometry of
space. Gauss replied positively. He accepted the results,
and he claimed that he could do all of elementary
geometry once a value for the constant was given. One
could argue, somewhat ungenerously, that Schweikart
had done little more than read Lambert’s posthumous
book—although the theorem about isosceles triangles
is new. However, what is notable is the attitude of
mind: the idea that this new geometry might be true,
and not just a mathematical curiosity. Euclid’s Elements
shackled him no more.

Unfortunately, it is much less clear what Gauss him-
self thought. Some historians, bearing Gauss’s remark-
able mathematical originality in mind, have been in-
clined to interpret the evidence in such a way that
Gauss emerges as the first person to discover non-Eu-
clidean geometry. However, the evidence is slight, and
it is difficult to draw firm conclusions from it. There are
traces of some early investigations by Gauss of Euclid-
ean geometry that include a study of a new definition
of parallel lines; there are claims made by Gauss late in
life that he had known this or that fact for many years;
and there are letters he wrote to his friends. But there
is no material in the surviving papers that allows us
to reconstruct what Gauss knew or that supports the
claim that Gauss discovered non-Euclidean geometry.

Rather, the picture would seem to be that Gauss came
to realize during the 1810s that all previous attempts
to derive the parallel postulate from the core of Euclid-
ean geometry had failed and that all future attempts
would probably fail as well. He became more and more
convinced that there was another possible geometry
of space. Geometry ceased, in his mind, to have the
status of arithmetic, which was a matter of logic, and
became associated with mechanics, an empirical sci-
ence. The simplest accurate statement of Gauss’s posi-
tion through the 1820s is that he did not doubt that
space might be described by a non-Euclidean geometry,
and of course there was only one possibility: that of
case L described above. It was an empirical matter, but
one that could not be resolved by land-based measure-
ments because any departure from Euclidean geometry
was, evidently, very small. In this view he was sup-
ported by his friends, such as Bessel and Olbers, both
professional astronomers. Gauss the scientist was con-
vinced, but Gauss the mathematician may have retained
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a small degree of doubt, and certainly never devel-
oped the mathematical theory required to describe
non-Euclidean geometry adequately.

One theory available to Gauss from the early 1820s
was that of differential geometry. Gauss eventually
published one of his masterworks on this subject,
his Disquisitiones Generales circa Superficies Curvas
(1827). In it he showed how to describe geometry on
any surface in space, and how to regard certain fea-
tures of the geometry of a surface as intrinsic to the sur-
face and independent of how the surface was embed-
ded into three-dimensional space. It would have been
possible for Gauss to consider a surface of constant
negative curvature [III.78], and to show that triangles
on such a surface are described by hyperbolic trigono-
metric formulas, but he did not do this until the 1840s.
Had he done so, he would have had a surface on which
the formulas of a geometry satisfying case L apply.

A surface, however, is not enough. We accept the
validity of two-dimensional Euclidean geometry be-
cause it is a simplification of three-dimensional Euclid-
ean geometry. Before a two-dimensional geometry sat-
isfying the hypotheses of case L can be accepted, it is
necessary to show that there is a plausible three-dimen-
sional geometry analogous to case L. Such a geometry
has to be described in detail and shown to be as plau-
sible as Euclidean three-dimensional geometry. This
Gauss simply never did.

7 Bolyai and Lobachevskii

The fame for discovering non-Euclidean geometry goes
to two men, bolyai [VI.34] in Hungary and lobachev-

skii [VI.31] in Russia, who independently gave very sim-
ilar accounts of it. In particular, both men described a
system of geometry in two and three dimensions that
differed from Euclid’s but had an equally good claim to
be the geometry of space. Lobachevskii published first,
in 1829, but only in an obscure Russian journal, and
then in French in 1837, in German in 1840, and again
in French in 1855. Bolyai published his account in 1831,
in an appendix to a two-volume work on geometry by
his father.

It is easiest to describe their achievements together.
Both men defined parallels in a novel way, as follows.
Given a point P and a line m there will be some lines
through P that meet m and others that do not. Sepa-
rating these two sets will be two lines through P that
do not quite meet m but which might come arbitrarily
close, one to the right of P and one to the left. This situ-
ation is illustrated in figure 3: the two lines in question

P

n'n''

m

Figure 3 The lines n′ and n′′ through P separate the lines
through P that meet the line m from those that do not.

P

Figure 4 A curve perpendicular to a family of parallels.

are n′ and n′′. Notice that lines on the diagram appear

curved. This is because, in order to represent them on

a flat, Euclidean page, it is necessary to distort them,

unless the geometry is itself Euclidean, in which case

one can put n′ and n′′ together and make a single line

that is infinite in both directions.

Given this new way of talking, it still makes sense to

talk of dropping the perpendicular from P to the line m.

The left and right parallels to m through P make equal

angles with the perpendicular, called the angle of par-

allelism. If the angle is a right angle, then the geometry

is Euclidean. However, if it is less than a right angle,

then the possibility arises of a new geometry. It turns

out that the size of the angle depends on the length

of the perpendicular from P to m. Neither Bolyai nor

Lobachevskii expended any effort in trying to show that

there was not some contradiction in taking the angle of

parallelism to be less than a right angle. Instead, they

simply made the assumption and expended a great deal

of effort on determining the angle from the length of

the perpendicular.

They both showed that, given a family of lines all par-

allel (in the same direction) to a given line, and given

a point on one of the lines, there is a curve through

that point that is perpendicular to each of the lines

(figure 4).

In Euclidean geometry the curve defined in this way

is the straight line that is at right angles to the fam-

ily of parallel lines and that passes through the given
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P

Figure 5 A curve perpendicular to
a family of Euclidean parallels.

QP

Figure 6 A curve perpendicular to
a family of Euclidean lines through a point.

point (figure 5). If, again in Euclidean geometry, one
takes the family of all lines through a common point Q
and chooses another point P, then there will be a curve
through P that is perpendicular to all the lines: the circle
with center Q that passes through P (figure 6).

The curve defined by Bolyai and Lobachevskii has
some of the properties of both these Euclidean con-
structions: it is perpendicular to all the parallels, but it
is curved and not straight. Bolyai called such a curve
an L-curve. Lobachevskii more helpfully called it a
horocycle, and the name has stuck.

Their complicated arguments took both men into
three-dimensional geometry. Here Lobachevskii’s argu-
ments were somewhat clearer than Bolyai’s, and both
men notably surpassed Gauss. If the figure defining a
horocycle is rotated about one of the parallel lines, the
lines become a family of parallel lines in three dimen-
sions and the horocycle sweeps out a bowl-shaped sur-
face, called the F -surface by Bolyai and the horosphere
by Lobachevskii. Both men now showed that something
remarkable happens. Planes through the horosphere
cut it either in circles or in horocycles, and if a triangle

is drawn on a horosphere whose sides are horocycles,
then the angle sum of such a triangle is two right angles.
To put this another way, although the space that con-
tains the horosphere is a three-dimensional version of
case L, and is definitely not Euclidean, the geometry you
obtain when you restrict attention to the horosphere is
(two-dimensional) Euclidean geometry!

Bolyai and Lobachevskii also knew that one can draw
spheres in their three-dimensional space, and they
showed (though in this they were not original) that the
formulas of spherical geometry hold independently of
the parallel postulate. Lobachevskii now used an inge-
nious construction involving his parallel lines to show
that a triangle on a sphere determines and is deter-
mined by a triangle in the plane, which also deter-
mines and is determined by a triangle on the horo-
sphere. This implies that the formulas of spherical
geometry must determine formulas that apply to the
triangles on the horosphere. On checking through the
details, Lobachevskii, and in more or less the same way
Bolyai, showed that the triangles on the horosphere are
described by the formulas of hyperbolic trigonometry.

The formulas for spherical geometry depend on the
radius of the sphere in question. Similarly, the formu-
las of hyperbolic trigonometry depend on a certain real
parameter. However, this parameter does not have a
similarly clear geometrical interpretation. That defect
apart, the formulas have a number of reassuring prop-
erties. In particular, they closely approximate the famil-
iar formulas of plane geometry when the sides of the
triangles are very small, which helps to explain how
this geometry could have remained undetected for so
long—it differs very little from Euclidean geometry in
small regions of space. Formulas for length and area
can be developed in the new setting: they show that
the area of a triangle is proportional to the amount by
which the angle sum of the triangle falls short of two
right angles. Lobachevskii, in particular, seems to have
felt that the very fact that there were neat and plausible
formulas of this kind was enough reason to accept the
new geometry. In his opinion, all geometry was about
measurement, and theorems in geometry were unfail-
ing connections between measurements expressed by
formulas. His methods produced such formulas, and
that, for him, was enough.

Bolyai and Lobachevskii, having produced a descrip-
tion of a novel three-dimensional geometry, raised the
question of which geometry is true: is it Euclidean
geometry or is it the new geometry for some value of
the parameter that could presumably be determined
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experimentally? Bolyai left matters there, but Loba-

chevskii explicitly showed that measurements of stellar

parallax might resolve the question. Here he was unsuc-

cessful: such experiments are notoriously delicate.

By and large, the reaction to Bolyai and Lobachev-

skii’s ideas during their lifetimes was one of neglect

and hostility, and they died unaware of the success

their discoveries would ultimately have. Bolyai and his

father sent their work to Gauss, who replied in 1832

that he could not praise the work “for to do so would be

to praise myself,” adding, for extra measure, a simpler

proof of one of Janos Bolyai’s opening results. He was,

he said, nonetheless delighted that it was the son of his

old friend who had taken precedence over him. Janos

Bolyai was enraged, and refused to publish again, thus

depriving himself of the opportunity to establish his

priority over Gauss by publishing his work as an article

in a mathematics journal. Oddly, there is no evidence

that Gauss knew the details of the young Hungarian’s

work in advance. More likely, he saw at once how the

theory would go once he appreciated the opening of

Bolyai’s account.

A charitable interpretation of the surviving evidence

would be that, by 1830, Gauss was convinced of the

possibility that physical space might be described by

non-Euclidean geometry, and he surely knew how to

handle two-dimensional non-Euclidean geometry using

hyperbolic trigonometry (although no detailed account

of this survives from his hand). But the three-dimen-

sional theory was known first to Bolyai and Lobachev-

skii, and may well not have been known to Gauss until

he read their work.

Lobachevskii fared little better than Bolyai. His ini-

tial publication of 1829 was savaged in the press by

Ostrogradskii, a much more established figure who

was, moreover, in St Petersburg, whereas Lobachevskii

was in provincial Kazan. His account in Journal für die

reine und angewandte Mathematik (otherwise known

as Crelle’s Journal) suffered grievously from referring

to results proved only in the Russian papers from

which it had been adapted. His booklet of 1840 drew

only one review, of more than usual stupidity. He did,

however, send it to Gauss, who found it excellent and

had Lobachevskii elected to the Göttingen Academy of

Sciences. But Gauss’s enthusiasm stopped there, and

Lobachevskii received no further support from him.

Such a dreadful response to a major discovery invites

analysis on several levels. It has to be said that the defi-

nition of parallels upon which both men depended was,

as it stood, inadequate, but their work was not crit-
icized on that account. It was dismissed with scorn,
as if it were self-evident that it was wrong: so wrong
that it would be a waste of time finding the error it
surely contained, so wrong that the right response was
to heap ridicule upon its authors or simply to dismiss
them without comment. This is a measure of the hold
that Euclidean geometry still had on the minds of most
people at the time. Even Copernicanism, for example,
and the discoveries of Galileo drew a better reception
from the experts.

8 Acceptance of Non-Euclidean Geometry

When Gauss died in 1855, an immense amount of un-
published mathematics was found among his papers.
Among it was evidence of his support for Bolyai and
Lobachevskii, and his correspondence endorsing the
possible validity of non-Euclidean geometry. As this
was gradually published, the effect was to send peo-
ple off to look for what Bolyai and Lobachevskii had
written and to read it in a more positive light.

Quite by chance, Gauss had also had a student at
Göttingen who was capable of moving the matter deci-
sively forward, even though the actual amount of con-
tact between the two was probably quite slight. This
was riemann [VI.49]. In 1854 he was called to defend
his Habilitation thesis, the postdoctoral qualification
that was a German mathematician’s license to teach
in a university. As was the custom, he offered three
titles and Gauss, who was his examiner, chose the one
Riemann least expected: “On the hypotheses that lie at
the foundation of geometry.” The paper, which was to
be published only posthumously, in 1867, was nothing
less than a complete reformulation of geometry.

Riemann proposed that geometry was the study of
what he called manifolds [I.3 §§6.9, 6.10]. These were
“spaces” of points, together with a notion of distance
that looked like Euclidean distance on small scales but
which could be quite different at larger scales. This kind
of geometry could be done in a variety of ways, he sug-
gested, by means of the calculus. It could be carried
out for manifolds of any dimension, and in fact Rie-
mann was even prepared to contemplate manifolds for
which the dimension was infinite.

A vital aspect of Riemann’s geometry, in which he
followed the lead of Gauss, was that it was concerned
only with those properties of the manifold that were
intrinsic, rather than properties that depended on some
embedding into a larger space. In particular, the dis-
tance between two points x and y was defined to be
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the length of the shortest curve joining x and y that
lay entirely within the surface. Such curves are called
geodesics. (On a sphere, for example, the geodesics are
arcs of great circles.)

Even two-dimensional manifolds could have differ-
ent, intrinsic curvatures—indeed, a single two-dimen-
sional manifold could have different curvatures in dif-
ferent places—so Riemann’s definition led to infinitely
many genuinely distinct geometries in each dimension.
Furthermore, these geometries were best defined with-
out reference to a Euclidean space that contained them,
so the hegemony of Euclidean geometry was broken
once and for all.

As the word “hypotheses” in the title of his thesis
suggests, Riemann was not at all interested in the sorts
of assumptions needed by Euclid. Nor was he much
interested in the opposition between Euclidean and
non-Euclidean geometry. He made a small reference
at the start of his paper to the murkiness that lay at
the heart of geometry, despite the efforts of Legendre,
and toward the end he considered the three different
geometries on two-dimensional manifolds for which
the curvature is constant. He noted that one was spheri-
cal geometry, another was Euclidean geometry, and the
third was different again, and that in each case the angle
sums of all triangles could be calculated as soon as one
knew the sum of the angles of any one triangle. But
he made no reference to Bolyai or Lobachevskii, merely
noting that if the geometry of space was indeed a three-
dimensional geometry of constant curvature, then to
determine which geometry it was would involve tak-
ing measurements in unfeasibly large regions of space.
He did discuss generalizations of Gauss’s curvature to
spaces of arbitrary dimension, and he showed what
metrics [III.56] (that is, definitions of distance) there
could be on spaces of constant curvature. The formula
he wrote down is very general, but as with Bolyai and
Lobachevskii it depended on a certain real parameter—
the curvature. When the curvature is negative, his defi-
nition of distance gives a description of non-Euclidean
geometry.

Riemann died in 1866, and by the time his thesis was
published an Italian mathematician, Eugenio Beltrami,
had independently come to some of the same ideas.
He was interested in what the possibilities were if one
wished to map one surface to another. For example, one
might ask, for some particular surface S, whether it is
possible to find a map from S to the plane such that
the geodesics in S are mapped to straight lines in the
plane. He found that the answer was yes if and only if

the space has constant curvature. There is, for example,
a well-known map from the hemisphere to a plane with
this property. Beltrami found a simple way of modify-
ing the formula so that now it defined a map from a
surface of constant negative curvature onto the inte-
rior of a disk, and he realized the significance of what
he had done: his map defined a metric on the interior
of the disk, and the resulting metric space obeyed the
axioms for non-Euclidean geometry; therefore, those
axioms would not lead to a contradiction.

Some years earlier, Minding, in Germany, had found a
surface, sometimes called the pseudosphere, that had
constant negative curvature. It was obtained by rotat-
ing a curve called the tractrix about its axis. This sur-
face has the shape of a bugle, so it seemed rather less
natural than the space of Euclidean plane geometry
and unsuitable as a rival to it. The pseudosphere was
independently rediscovered by liouville [VI.39] some
years later, and Codazzi learned of it from that source
and showed that triangles on this surface are described
by the formulas of hyperbolic trigonometry. But none
of these men saw the connection to non-Euclidean
geometry—that was left to Beltrami.

Beltrami realized that his disk depicted an infinite
space of constant negative curvature, in which the
geometry of Lobachevskii (he did not know at that time
of Bolyai’s work) held true. He saw that it related to the
pseudosphere in a way similar to the way that a plane
relates to an infinite cylinder. After a period of some
doubt, he learned of Riemann’s ideas and realized that
his disk was in fact as good a depiction of the space
of non-Euclidean geometry as any could be; there was
no need to realize his geometry as that of a surface in
Euclidean three-dimensional space. He thereupon pub-
lished his essay, in 1868. This was the first time that
sound foundations had been publicly given for the area
of mathematics that could now be called non-Euclidean
geometry.

In 1871 the young klein [VI.57] took up the sub-
ject. He already knew that the English mathematician
cayley [VI.46] had contrived a way of introducing
Euclidean metrical concepts into projective geom-

etry [I.3 §6.7]. While studying at Berlin, Klein saw a way
of generalizing Cayley’s idea and exhibiting Beltrami’s
non-Euclidean geometry as a special case of projective
geometry. His idea met with the disapproval of weier-

strass [VI.44], the leading mathematician in Berlin,
who objected that projective geometry was not a metri-
cal geometry: therefore, he claimed, it could not gener-
ate metrical concepts. However, Klein persisted and in a
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series of three papers, in 1871, 1872, and 1873, showed
that all the known geometries could be regarded as
subgeometries of projective geometry. His idea was to
recast geometry as the study of a group acting on a
space. Properties of figures (subsets of the space) that
remain invariant under the action of the group are the
geometric properties. So, for example, in a projective
space of some dimension, the appropriate group for
projective geometry is the group of all transformations
that map lines to lines, and the subgroup that maps the
interior of a given conic to itself may be regarded as the
group of transformations of non-Euclidean geometry:
see the box on p. 94. (For a fuller discussion of Klein’s
approach to geometry, see [I.3 §6].)

In the 1870s Klein’s message was spread by the first
and third of these papers, which were published in
the recently founded journal Mathematische Annalen.
As Klein’s prestige grew, matters changed, and by the
1890s, when he had the second of the papers repub-
lished and translated into several languages, it was this,
the Erlanger Programm, that became well-known. It is
named after the university where Klein became a pro-
fessor, at the remarkably young age of twenty-three,
but it was not his inaugural address. (That was about
mathematics education.) For many years it was a singu-
larly obscure publication, and it is unlikely that it had
the effect on mathematics that some historians have
come to suggest.

9 Convincing Others

Klein’s work directed attention away from the figures
in geometry and toward the transformations that do
not alter the figures in crucial respects. For example, in
Euclidean geometry the important transformations are
the familiar rotations and translations (and reflections,
if one chooses to allow them). These correspond to the
motions of rigid bodies that contemporary psycholo-
gists saw as part of the way in which individuals learn
the geometry of the space around them. But this theory
was philosophically contentious, especially when it
could be extended to another metrical geometry, non-
Euclidean geometry. Klein prudently entitled his main
papers “On the so-called non-Euclidean geometry,” to
keep hostile philosophers at bay (in particular Lotze,
who was the well-established Kantian philosopher at
Göttingen). But with these papers and the previous
work of Beltrami the case for non-Euclidean geometry
was made, and almost all mathematicians were per-
suaded. They believed, that is, that alongside Euclidean

geometry there now stood an equally valid mathemati-
cal system called non-Euclidean geometry. As for which
one of these was true of space, it seemed so clear that
Euclidean geometry was the sensible choice that there
appears to have been little or no discussion. Lipschitz
showed that it was possible to do all of mechanics in
the new setting, and there the matter rested, a hypo-
thetical case of some charm but no more. Helmholtz,
the leading physicist of his day, became interested—he
had known Riemann personally—and gave an account
of what space would have to be if it was learned about
through the free mobility of bodies. His first account
was deeply flawed, because he was unaware of non-
Euclidean geometry, but when Beltrami pointed this out
to him he reworked it (in 1870). The reworked version
also suffered from mathematical deficiencies, which
were pointed out somewhat later by lie [VI.53], but he
had more immediate trouble from philosophers.

Their question was, “What sort of knowledge is this
theory of non-Euclidean geometry?” Kantian philoso-
phy was coming back into fashion, and in Kant’s view
knowledge of space was a fundamental pure a priori
intuition, rather than a matter to be determined by
experiment: without this intuition it would be impos-
sible to have any knowledge of space at all. Faced with
a rival theory, non-Euclidean geometry, neo-Kantian
philosophers had a problem. They could agree that the
mathematicians had produced a new and prolonged
logical exercise, but could it be knowledge of the world?
Surely the world could not have two kinds of geom-
etry? Helmholtz hit back, arguing that knowledge of
Euclidean geometry and non-Euclidean geometry would
be acquired in the same way—through experience—but
these empiricist overtones were unacceptable to the
philosophers, and non-Euclidean geometry remained a
problem for them until the early years of the twentieth
century.

Mathematicians could not in fact have given a com-
pletely rigorous defense of what was becoming the
accepted position, but as the news spread that there
were two possible descriptions of space, and that one
could therefore no longer be certain that Euclidean
geometry was correct, the educated public took up the
question: what was the geometry of space? Among the
first to grasp the problem in this new formulation was
poincaré [VI.61]. He came to mathematical fame in the
early 1880s with a remarkable series of essays in which
he reformulated Beltrami’s disk model so as to make
it conformal : that is, so that angles in non-Euclidean
geometry were represented by the same angles in the
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Cross-ratios and distances in conics. A projec-
tive transformation of the plane sends four distinct
points on a line, A, B, C, D, to four distinct collinear
points, A′, B′, C′, D′, in such a way that the quantity

AB
AD

CD
CB

is preserved: that is,

AB
AD

CD
CB

= A′B′

A′D′
C′D′

C′B′ .

This quantity is called the cross-ratio of the four
points A, B, C, D, and is written CR(A,B,C,D).

In 1871, Klein described non-Euclidean geometry
as the geometry of points inside a fixed conic, K,
where the transformations allowed are the projec-

tive transformations that map K to itself and its
interior to its interior (see figure 7). To define the
distance between two points P and Q inside K, Klein
noted that if the line PQ is extended to meet K at A
and D, then the cross-ratio CR(A,P,D,Q) does not
change if one applies a projective transformation:
that is, it is a projective invariant. Moreover, if R is
a third point on the line PQ and the points lie in the
order P, Q, R, then CR(A,P,D,Q)CR(A,Q ,D,R) =
CR(A,P,D,R). Accordingly, he defined the distance
between P and Q as d(PQ) = − 1

2 log CR(A,P,D,Q)
(the factor of − 1

2 is introduced to facilitate the later
introduction of trigonometry). With this definition,
distance is additive along a line: d(PQ) + d(QR) =
d(PR).

A P
Q R

D

K

Figure 7 Three points, P, Q, and R, on a non-Euclidean
straight line in Klein’s projective model of non-Euclidean
geometry.

model. He then used his new disk model to connect
complex function theory, the theory of linear differ-
ential equations, riemann surface [III.79] theory, and
non-Euclidean geometry to produce a rich new body
of ideas. Then, in 1891, he pointed out that the disk
model permitted one to show that any contradiction
in non-Euclidean geometry would yield a contradiction
in Euclidean geometry as well, and vice versa. There-
fore, Euclidean geometry was consistent if and only if
non-Euclidean geometry was consistent. A curious con-
sequence of this was that if anybody had managed to
derive the parallel postulate from the core of Euclidean
geometry, then they would have inadvertently proved
that Euclidean geometry was inconsistent!

One obvious way to try to decide which geometry
described the actual universe was to appeal to physics.
But Poincaré was not convinced by this. He argued in
another paper (1902) that experience was open to many

interpretations and there was no logical way of decid-
ing what belonged to mathematics and what to physics.
Imagine, for example, an elaborate set of measure-
ments of angle sums of figures, perhaps on an astro-
nomical scale. Something would have to be taken to be
straight, perhaps the paths of rays of light. Suppose,
finally, that the conclusion is that the angle sum of a tri-
angle is indeed less than two right angles by an amount
proportional to the area of the triangle. Poincaré said
that there were two possible conclusions: light rays are
straight and the geometry of space is non-Euclidean;
or light rays are somehow curved, and space is Euclid-
ean. Moreover, he continued, there was no logical way
to choose between these possibilities. All one could do
was to make a convention and abide by it, and the sen-
sible convention was to choose the simpler geometry:
Euclidean geometry.

This philosophical position was to have a long life in
the twentieth century under the name of convention-
alism, but it was far from accepted in Poincaré’s life-
time. A prominent critic of conventionalism was the
Italian Federigo Enriques, who, like Poincaré, was both a
powerful mathematician and a writer of popular essays
on issues in science and philosophy. He argued that
one could decide whether a property was geometri-
cal or physical by seeing whether we had any control
over it. We cannot vary the law of gravity, but we can
change the force of gravity at a point by moving mat-
ter around. Poincaré had compared his disk model to
a metal disk that was hot in the center and got cooler
as one moved outwards. He had shown that a simple
law of cooling produced figures identical to those of
non-Euclidean geometry. Enriques replied that heat was
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likewise something we can vary. A property such as
Poincaré invoked, which was truly beyond our control,
was not physical but geometric.

10 Looking Ahead

In the end, the question was resolved, but not in
its own terms. Two developments moved mathemati-
cians beyond the simple dichotomy posed by Poincaré.
Starting in 1899, hilbert [VI.63] began an extensive
rewriting of geometry along axiomatic lines, which
eclipsed earlier ideas of some Italian mathematicians
and opened the way to axiomatic studies of many
kinds. Hilbert’s work captured very well the idea that
if mathematics is sound, it is sound because of the
nature of its reasoning, and led to profound investi-
gations in mathematical logic. And in 1915 Einstein
proposed his general theory of relativity, which is in
large part a geometric theory of gravity. Confidence
in mathematics was restored; our sense of geometry
was much enlarged, and our insights into the rela-
tionships between geometry and space became consid-
erably more sophisticated. Einstein made full use of
contemporary ideas about geometry, and his achieve-
ment would have been unthinkable without Riemann’s
work. He described gravity as a kind of curvature in the
four-dimensional manifold of spacetime (see general

relativity and the einstein equations [IV.13]). His
work led to new ways of thinking about the large-scale
structure of the universe and its ultimate fate, and to
questions that remain unanswered to this day.
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II.3 The Development of
Abstract Algebra
Karen Hunger Parshall

1 Introduction

What is algebra? To the high school student encoun-
tering it for the first time, algebra is an unfamiliar
abstract language of x’s and y ’s, a’s and b’s, together
with rules for manipulating them. These letters, some
of them variables and some constants, can be used
for many purposes. For example, one can use them to
express straight lines as equations of the form y =
ax+b, which can be graphed and thereby visualized in
the Cartesian plane. Furthermore, by manipulating and
interpreting these equations, it is possible to determine
such things as what a given line’s root is (if it has one)—
that is, where it crosses the x-axis—and what its slope
is—that is, how steep or flat it appears in the plane
relative to the axis system. There are also techniques
for solving simultaneous equations, or equivalently for
determining when and where two lines intersect (or
demonstrating that they are parallel).

Just when there already seem to be a lot of tech-
niques and abstract manipulations involved in deal-
ing with lines, the ante is upped. More complicated
curves like quadratics, y = ax2 + bx + c, and even
cubics, y = ax3 + bx2 + cx + d, and quartics, y =
ax4 + bx3 + cx2 + dx + e, enter the picture, but the
same sort of notation and rules apply, and similar sorts
of questions are asked. Where are the roots of a given
curve? Given two curves, where do they intersect?

Suppose now that the same high school student, hav-
ing mastered this sort of algebra, goes on to university
and attends an algebra course there. Essentially gone
are the by now familiar x’s, y ’s, a’s, and b’s; essen-
tially gone are the nice graphs that provide a way to
picture what is going on. The university course reflects
some brave new world in which the algebra has some-
how become “modern.” This modern algebra involves
abstract structures—groups [I.3 §2.1], rings [III.81 §1],
fields [I.3 §2.2], and other so-called objects—each one
defined in terms of a relatively small number of axioms
and built up of substructures like subgroups, ideals,
and subfields. There is a lot of moving around between
these objects, too, via maps like group homomor-
phisms and ring automorphisms [I.3 §4.1]. One objec-
tive of this new type of algebra is to understand the
underlying structure of the objects and, in doing so, to




