
10 Tests and Probes of Big Bang Cosmology

In this final chapter, we review three experimental predictions of the cosmological model
that we developed in chapter 9, and their observational verification. The tests are cosmo-
logical redshift (in the context of distances to type-Ia supernovae, and baryon acoustic
oscillations), the cosmic microwave background, and nucleosynthesis of the light ele-
ments. Each of these tests also provides information on the particular parameters that
describe our Universe. We conclude with a brief discussion on the use of quasars and
other distant objects as cosmological probes.

10.1 Cosmological Redshift and Hubble's Law

Consider light from a galaxy at a comoving radial coordinate re. Two wavefronts, emitted at
times te and te + �te, arrive at Earth at times t0 and t0 + �t0, respectively. As already noted
in chapter 4.5 in the context of black holes, the metric of spacetime dictates the trajectories
of particles and radiation. Light, in particular, follows a null geodesic with ds = 0. Thus, for
a photon propagating in the FLRW metric (see also chapter 9, Problems 1–3), we can write

0 = c2dt2 − R(t)2 dr2

1 − kr2
. (10.1)

The first wavefront therefore obeys

∫ t0

te

dt

R(t)
= 1

c

∫ re

0

dr√
1 − kr2

, (10.2)

and the second wavefront

∫ t0+�t0

te+�te

dt

R(t)
= 1

c

∫ re

0

dr√
1 − kr2

. (10.3)
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Since re is comoving, the right-hand sides of both equalities are independent of time, and
therefore equal. Equating the two left-hand sides, we find

∫ t0+�t0

te+�te

dt

R(t)
−

∫ t0

te

dt

R(t)
= 0. (10.4)

Expressing the first integral as the sum and difference of three integrals, we can write

∫ t0

te

−
∫ te+�te

te

+
∫ t0+�t0

t0

−
∫ t0

te

= 0, (10.5)

and the first and fourth terms cancel out. Since the time interval between emission of con-
secutive wavefronts, as well as the interval between their reception, is very short compared
to the dynamical timescale of the Universe (∼10−15 s for visual light, vs. ∼1017 s for a Hub-
ble time), we can assume that R(t) is constant between the two emission events and between
the two reception events. We can then safely approximate the integrals with products:

�te

R(te)
= �t0

R(t0)
. (10.6)

Recalling that

�te = 1

νe
= λe

c
(10.7)

and

�t0 = 1

ν0
= λ0

c
, (10.8)

we find that

�t0

�te
= λ0

λe
= νe

ν0
= R(t0)

R(te)
≡ 1 + z, (10.9)

where we have defined the cosmological redshift, z. Thus, the further in the past that the
light we receive was emitted (i.e., the more distant a source), the more the light is red-
shifted, in proportion to the ratio of the scale factors today and then. This, therefore, is the
origin of Hubble’s law.

Just like Doppler shift, the cosmological redshift of a distant object can be found easily
by obtaining its spectrum and measuring the wavelengths of individual spectral features,
either in absorption or in emission, relative to their laboratory wavelengths. Note, however,
that cosmological redshift is distinct from Doppler, transverse-Doppler, and gravitational
redshifts. The cosmological redshift of objects that are comoving with the Hubble flow is
the result of the expansion of the scale of the Universe that takes place between emission
and reception of a signal. In an expanding Universe (such as ours), R(t0) > R(te) always,
and therefore z is always a redshift (rather than a blueshift). Indeed, it is found observa-
tionally that, beyond a distance of about 20 Mpc, all sources of light, without exception,
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Figure 10.1 Optical spectra of four quasars, with cosmological redshifts increasing from
top to bottom, as marked. Note the progression to the red of the main emission lines,
which are indicated. The width of the Balmer lines is the result of Doppler blueshifts and
redshifts about the line centers, due to internal motions of the emitting gas, under the
influence of the central black holes powering the quasars. The [O III] lines are narrower
because they are emitted by gas with smaller internal velocities. Data credit: S. Kaspi et al.
2000, Astrophys. J., 533, 631.

are redshifted.1 In addition to the cosmological redshift, the spectra of distant objects can
be affected by (generally smaller) redshifts or blueshifts due to the other effects. Figure 10.1
shows the spectra of several distant quasars (objects that were discussed in chapter 7.3).
Note the various redshifts by which the emission lines of each quasar (hydrogen Balmer
Hα and Hβ, and the doublet [O III]λλ 4959, 5007 are the most prominent) have been
shifted from their rest wavelengths by the cosmological expansion.

We have seen that the evolution of the scale factor, R(t), depends on the parameters
that describe the Universe: H0, k, �m , and ��. This suggests that, if we could measure
R(t) at different times in the history of the Universe, we could deduce what kind of a
universe we live in. In practice, it is impossible to measure R(t) directly. However, the
cosmological redshift z of an object gives the ratio between the scale factors today and at
the time the light was emitted. We can therefore deduce the cosmological parameters by
measuring properties of distant objects that depend on R(t) through the redshift. Two such

1 Nearby objects, such as Local Group galaxies and the stars in the Milky Way, are not receding with the
Hubble flow (nor will they in the future) because they are bound to each other and to us. Similarly, the stars
themselves, the Solar System, the Earth, and our bodies do not expand as the Universe grows. There is a
long and unresolved debate as to what is the true nature of the observed expansion. One interpretation is that
the cosmological expansion arises from the “stretching of space itself,” and that the static galaxies are swept
along with this stretching “fabric.” An opposing view is that an expanding space is not a physically meaningful
concept. Rather, galaxies are receding from us simply because they were doing so in the past, i.e., they have
initial recession velocities and inertia (although now they are aided by dark energy—see below). In this view, the
observed redshifts are essentially kinematic Doppler shifts. In both views (although for different reasons), a test
particle placed at rest at any distance from us would not join the Hubble flow.
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Figure 10.2 A Hubble diagram extending out to redshift z ≈ 1.7, based on type-Ia super-
novae. Note that redshift now replaces velocity (compare to Fig. 8.6) and the luminosity

distances to these standard candles are now plotted on the vertical axis. The top and bot-
tom curves give the expected relations for cosmologies with �m = 0.3, �� = 0.7, and
�m = 1, �� = 0, respectively. The data favor the top curve, indicating a cosmology cur-
rently dominated by dark energy. The calculation of the curves is outlined in Problems 4–7.
Data credits: A. Riess et al. 2004, Astrophys. J., 607, 665, and P. Astier et al. 2006, Astron.

Astrophys., 447, 31.

properties that have been particularly useful are the flux from an object and its angular
size. Models with different cosmological parameters make different predictions as to how
these observables change as a function of redshift. Measuring the flux from a “standard
candle” to derive a “distance,” and plotting the distance vs. the “velocity,” is, of course,
the whole idea behind the Hubble diagram. Now, however, we realize that cosmological
redshift is distinct from Doppler velocity. Furthermore, in a curved and expanding space,
“distance” can be defined in a number of different ways, and will depend on the properties
and history of that space. Nevertheless, observables (e.g., the flux from an object of a given
luminosity, or the angular size of an object of a given physical size, at some redshift)
can be calculated straightforwardly from the FLRW metric and the Friedmann equations
and compared to the observations. We will work out examples of such calculations in
section 10.3, and in Problems 4–7 at the end of this chapter.

In recent years, the Hubble diagram, based on type-Ia supernovae serving as standard
candles, has been measured out to a redshift z = 2, corresponding to a time when the
Universe was about a quarter its present age. Figure 10.2 shows an example. The intrinsic
luminosity of the supernovae at maximum light, compared to their observed flux, permits
us to define a cosmological distance called luminosity distance:

DL ≡
(

L

4π f

)1/2

. (10.10)
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The observed supernova fluxes (or, equivalently, their luminosity distances) vs. redshift
are best reproduced by a model in which the Universe is currently in an accelerating stage,
into which it transited (from the initial deceleration) at a time corresponding to about
z ∼ 1. If one assumes a flat, k = 0 Universe (for which the evidence will be presented in
section 10.3), the data indicate �m ≈ 0.3 and �� ≈ 0.7. If this is true, the dynamics of
the Universe are currently dominated by a “dark energy” of unknown source and nature
that is causing the expansion to accelerate. The cosmological constant case, treated in
chapter 9.5, is one possible form of the dark energy.

In the derivation of cosmological redshift, above, we considered the propagation of
individual wavefronts of light. Instead, we could have discussed the propagation of, say,
individual photons, or brief light flashes, but would have gotten the same result: the time
interval between emission of consecutive photons or light signals appears lengthened to
the observer by a factor 1 + z. Thus, in addition to cosmological redshift, light signals will
undergo cosmological time dilation. For example, if a source at redshift z is emitting pho-
tons at a certain wavelength and at some rate, not only will an observer see the wavelength
of every photon increased by 1 + z, but the photon arrival rate will also be lower by 1 + z.
Both of these effects will reduce the observed energy flux, in addition to the reduction due
to geometrical (4π × distance2) dilution (see Problem 3).

10.2 The Cosmic Microwave Background

Since the mean density of the Universe increases monotonically as one goes back in time,2

there must have been an early time when the density was high enough such that the mean
free path of photons was small, and baryonic matter and radiation were in thermodynamic
equilibrium. The radiation field then had a Planck spectrum. Since the energy density of
radiation changes with the scale factor as (Eq. 9.40)

ρ ∝ R−4, (10.11)

but this energy density also relates to a temperature as

ρ = aT 4, (10.12)

we can consider a temperature of the Universe at this stage, which varied as

T ∝ 1

R
. (10.13)

Therefore, early enough, the Universe was not only dense but also hot. At some stage,
the temperature must have been high enough such that all atoms were constantly being
ionized. The main source of opacity was then electron scattering. Going forward in time

2 In principle, models with a large enough positive cosmological constant permit a currently expanding
Universe that had, in its past, a minimum R that is greater than zero, and thus no initial singularity. At times
before the minimum, the Universe would have been contracting. In such a universe, as one looks to larger and
larger distances, objects at first have increasing redshifts, as usual. However, beyond some distance, objects begin
having progressively smaller redshifts, and eventually blueshifts. Such a behavior is contrary to observations.
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now, the temperature declined, and at T ∼ 3000 K, few of the photons in the radiation field,
even in its high-energy tail, had the energy required to ionize a hydrogen atom. Most of the
electrons and protons then recombined. Once this happened, at a time trec = 380, 000 yr
after the Big Bang, the major source of opacity disappeared, and the Universe became
transparent to radiation of most frequencies.3 As we look to large distances in any direction
in the sky, we look back in time, and therefore at some point our sight line must reach the
surface of last scattering, beyond which the Universe is opaque.

The photons emerging from the last-scattering surface undergo negligible additional
scattering and absorption until they reach us. Their number density therefore decreases, as
the Universe expands, inversely with the volume, as R−3. In addition, the energy of every
photon is reduced by R−1 due to the cosmological redshift. The photon energy density
therefore continues to decline as R−4. Furthermore, the spectrum keeps its Planck shape,
even though the photons are no longer in equilibrium with matter. To see this, consider
that every photon gets redshifted from its emitted frequency ν to an observed frequency
ν ′ according to the transformation

ν ′ = ν

1 + z
, dν ′ = dν

1 + z
. (10.14)

Next, recall the form of the Planck spectrum,

Bν = 2hν3

c2

dν

ehν/kT − 1
. (10.15)

Dividing by the energy of a photon, hν, we obtain the number density of photons per unit
frequency interval,

nν = 2ν2

c2

dν

ehν/kT − 1
. (10.16)

Since the number of photons is conserved, their density decreases by a factor (1 + z)3, and
the new distribution will be

n′
ν ′ = nν

(1 + z)3
= 2ν2

c2

dν

ehν/kT − 1

1

(1 + z)3
= 2ν ′2

c2

dν ′

ehν ′/kT ′ − 1
, (10.17)

where

T ′ ≡ T

1 + z
. (10.18)

In other words, the spectrum keeps the Planck form, but with a temperature that is
reduced, between the time of recombination and the present, according to

Tcmb = Trec

1 + zrec
, (10.19)

where zrec is the redshift at which recombination occurs. A prediction of Big Bang cos-
mology is therefore that space today should be filled with a thermal photon distribution
arriving from all directions in the sky.

3 The ubiquitous presence of hydrogen atoms in their ground state made the Universe, at this point, very
opaque to ultraviolet radiation with wavelengths shortward of Lyman-α.
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Figure 10.3 Observed spectrum of the cosmic microwave background, compared with a
T = 2.725-K blackbody curve. The error bars shown are 500σ , so as to be discernible in the
plot. Data credit: D. J. Fixsen et al. 1996, Astrophys. J., 473, 576.

In the 1940s Gamow predicted, based on considerations of nucleosynthesis (which are
discussed in the next section) that recombination must have occurred at zrec ∼ 1000, and
hence the thermal spectrum should correspond to a temperature of a few to a few tens of
degrees Kelvin (i.e., with a peak at a wavelength of order 1 mm, in the microwave region
of the spectrum). This cosmic microwave background (CMB) radiation was discovered
accidentally in 1965 by Penzias and Wilson, while studying sources of noise in microwave
satellite communications. They translated the intensity they measured at a single frequency
into a temperature, Tcmb ≈ 3 K, by assuming that the radiation has a Planck spectrum and
that the frequency is on the Rayleigh–Jeans side of the distribution4 (Eq. 2.18), according to

Bν ≈ 2ν2

c2
kT . (10.20)

Subsequent measurements, especially with several recent space-based experiments, have
confirmed that the spectrum has a precise blackbody form, and have refined the temper-
ature measurement to Tcmb = 2.725 ± 0.002 K (see Fig. 10.3). Note that the CMB solves
the Olbers paradox in a surprising way: every line of sight does indeed reach an ionized
surface with a temperature similar to that of the photosphere of a star. Despite our being
inside such an oven, we are not grilled because the expansion of the Universe dilutes the
radiation emitted by this surface, and shifts it to harmless microwave energies.

4 As opposed to the thermal flux from a star of unknown surface area, for which a temperature cannot be
deduced from one or more measurements solely on the Rayleigh–Jeans side, the CMB is an intensity, i.e., an
energy flux per unit solid angle on the sky, and it is completely specified for a blackbody of a given temperature.
A temperature derived in this way is called by radio astronomers a brightness temperature.
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The photon number density due to the CMB is

nγ ,cmb ∼ aT 4

2.8kT
= 7.6 × 10−15 cgs × (2.7 K)3

2.8 × 1.4 × 10−16 erg K−1
= 400 cm−3. (10.21)

Let us see that this is much larger than the cosmic mean number density of photons
originating from stars. If ngal is the mean number density of L∗ galaxies, then at a typical
point in the Universe the flux of starlight from galaxies within a spherical shell of thickness
dr at a distance r from this point is

df = L∗ngal4πr2dr

4πr2
= L∗ngal dr . (10.22)

For a rough, order-of-magnitude estimate of the total flux from galaxies at all distances, let
us ignore the Universal expansion, possible curvature of space, and evolution with time of
L∗ and ngal, and integrate from r = 0 to r = ct0, where t0 is the age of the Universe. Then
the total flux is f = L∗ngalct0. Stars produce radiation mostly in the optical/IR range, with
photon energies of order hνopt ∼ 1 eV. The stellar photon density is about 1/c times the
photon flux. Thus,

nγ ,∗ ∼ L∗ngalt0

hνopt
≈ 1010L� × 10−2 Mpc−3 × 14 Gyr

1 eV

= 1010 × 3.8 × 1033 erg s−1 × 10−2 × (3.1 × 1024 cm)−3 × 4.4 × 1017 s

1.6 × 10−12 erg

≈ 4 × 10−3 cm−3. (10.23)

Thus, there are of order 105 CMB photons for every stellar photon.5

The present-day baryon mass density is about 4% of the critical closure density, ρc. The
mean baryon number density is therefore

nB ≈ 0.04ρc

mp
≈ 0.04 × 9.2 × 10−30 g cm−3

1.7 × 10−24 g
= 2 × 10−7 cm−3. (10.24)

(Less than one-tenth of these baryons are in stars, and the rest are in a very tenuous
intergalactic gas.) The baryon-to-photon ratio is therefore

η ≡ nB

nγ

≈ 5 × 10−10. (10.25)

Thus, although the energy density due to matter is much larger than that due to radiation
(Eqs. 9.65 and 9.66), the number density of photons is much larger than the mean number
density of baryons.

5 The mean stellar photon density above is, of course, not representative of the stellar photon density on Earth,
which is located inside an L∗ galaxy, very close to an L� star. The daylight solar photon density on Earth (see
Eq. 3.8) is 1010 times greater than the mean stellar value for the Universe, found above, and is thus also much
greater than the CMB photon density.
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10.3 Anisotropy of the Microwave Background

The temperature of the CMB, T = 2.725 K, is extremely uniform across the sky. There is a
small dipole in the CMB sky, arising from the Doppler effect due mostly to the motion of
the Local Group (at a velocity of ≈600 km s−1) relative to the comoving cosmological frame.
Apart from the dipole, the only deviations from uniformity in the CMB sky are temperature
anisotropies, i.e., regions of various angular sizes with temperatures different from the
mean, with fluctuations having root-mean-squared δT = 29 μK, or

δT

T
∼ 10−5. (10.26)

Figure 10.4 shows a map of these temperature fluctuations. The extreme isotropy of the
appearance of the Universe at z ∼ 1000 is an overwhelming justification of the assumption
of homogeneity and isotropy inherent to the cosmological principle. However, this extreme
isotropy raises the questions of why and how the Universe can appear so isotropic. At
the time of recombination, the horizon size—the size of a region in space across which
light can propagate since the Big Bang (see chapter 9, Problems 1–3)—corresponded to
a physical region that subtends only about 2◦ on the sky today. Thus, different regions
separated by more than ∼2◦ could not have been in causal contact by trec, and therefore
it is surprising that they would have the same temperature to within 10−5. CMB photons
from opposite directions on the sky have presumably never been in causal contact until
now, yet they have almost exactly the same temperature.

The currently favored explanation for this “horizon problem” is that, very early during
the evolution of the Universe, in the first small fraction of a second, there was an epoch of
inflation. During that epoch, a vacuum energy density with negative pressure caused an
exponential expansion of the scale factor, much like the second acceleration epoch that,
apparently, we are in today. The inflationary expansion led causally connected regions to
expand beyond the size of the horizon at that time. All the different parts of the microwave
sky we see today were, in fact, part of a small, causally connected region before inflation.
The cause and details of inflation are still a matter of debate, but most versions of the
theory predict that, today, space is almost exactly flat (i.e., �m + �� is very close to 1). We
will see now that this prediction is strongly confirmed by the observed characteristics of
the anisotropies.

The temperature anisotropies in the CMB arise through a number of processes, but
at their root are small-amplitude inhomogeneities in the nearly uniform cosmic mass
distribution. These inhomogeneities are set up at the end of the inflationary era, and their
characteristics are yet another prediction of inflation theories. Most of the mass density
at that time, as now, is in a nonbaryonic, pressureless, dark matter. Mixed with the dark
matter, and sharing the same inhomegeneity pattern, is a relativistic gas of baryons and
radiation. The photon–baryon gas therefore has an equation of state that is well described by

P = 1
3ρc2. (10.27)
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Figure 10.4 A half-sky (2π steradians) map of the temperature of the CMB sky. The typical relative fluctuations in
the temperature, as coded by the gray scale (white is hot, black is cold), are of order 10−5. Note the characteristic
sizes of the hot and cold spots, ≈0.4◦. As described in the text, this size provides a “standard ruler” with which the
geometry of space can be measured. Foreground microwave emission from the Milky Way has been subtracted
from the image, as well as the CMB “dipole” anisotropy due to the motion of the Local Group relative to the
comoving cosmological frame. Photo credit: NASA and the WMAP Science Team.

The speed of sound is then

cs =
√

dP

dρ
= c√

3
. (10.28)

The mass density inhomogeneities have a spatial spectrum with power spread continu-
ously among all Fourier components, i.e., they have no single physical scale. (The particular
shape of the Fourier spectrum is, as noted above, a prediction of inflationary theories.) The
gravitational potential of the inhomogeneities attracts the baryon–photon fluid, which is
compressed in the denser regions and more tenuous in the underdense regions. However,
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the pressure of the fluid opposes the compression, and causes an expansion that stops only
after the density has “overshot” the equilibrium density and the gas in the originally over-
dense region has become underdense. Thus, periodic expansion and contraction of the
various fluid regions ensues. This means that “standing” sound waves of all wavelengths
represented in the spatial Fourier spectrum of the density inhomogeneities are formed in
the photon–baryon gas.6 Their periods τ and wavelengths λ are related by

τ = λ

cs
. (10.29)

When the Universe emerges from the inflationary era, at an age of a small fraction of a
second, these acoustic oscillations are stationary and therefore they begin everywhere in
phase. Consider now an overdense or underdense region. One of the Fourier modes that
composes the region, and the fluid oscillations that it produces, has a wavelength that
corresponds to a half-period of trec,

λ = 2cstrec = 2ctrec√
3

, (10.30)

where trec is the cosmic time when recombination occurs. At trec, the baryon–photon fluid
in this particular mode will have executed one-half of a full density oscillation, and will
have just reached its maximal rarefaction or compression, where it will be colder or hotter,
respectively, than the mean. At that time, however, the baryons and photons decouple,
and the imprint of the cool (rarified) and hot (compressed) regions of the mode is frozen
onto the CMB radiation field, and appears in the form of spots on the CMB sky with
temperatures that are lower or higher than the mean. Similarly, higher modes that have
had just enough time, between t = 0 and t = trec, to undergo one full compression and
one full rarefaction, or two compressions and a rarefaction, etc., will also be at their hottest
or coldest at time trec. The CMB sky is therefore expected to display spots having particular
sizes. Stated differently, the fluctuation power spectrum of the CMB sky should have
discrete peaks at these favored spatial scales.

In reality, the picture is complicated by the fact that several processes, other than adia-
batic compression, affect the gas temperature observed from each point. However, all these
effects can be calculated accurately, and a prediction of the power spectrum can be made
for a particular cosmological model. It turns out that measurement of the angular scales
at the positions of the acoustic peaks in the power spectrum, and their relative heights,
can determine most of the parameters describing a cosmological model. Let us see how
this works for one example—the angular scale of the first acoustic peak as a measure of
the global curvature of space.

As seen in Eq. 10.30, the physical scale of the first acoustic peak is the sound-crossing

horizon at the time of recombination. It therefore provides an excellent “standard ruler” at

6 The waves that are formed are not, strictly speaking, standing waves, since they do not obey boundary
conditions. They do resemble standing waves in the sense that a given Fourier component varies in phase at all
locations. However, the superposition of all these waves is not a standing wave pattern, and does not have fixed
nodes.
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Figure 10.5 The angular diameter of the sound-crossing horizon (measurable from
the size of the hot and cold spots in temperature anisotropy maps of the microwave
sky), as it appears to observers in different space geometries. In a k = 0 universe
(“flat” space), the spots subtend on the sky an angle θ given by Euclidean geometry.
In a k = +1 Universe, the angles of a triangle with sides along geodesics sum to
>180◦. Since light follows a geodesic path, the converging light rays from the two
sides of a CMB “spot” will bend, as shown, along their path, and θ will appear larger
than in the k = 0 case. For negative space curvature, the angles in the triangle sum
to <180◦, and θ is smaller than in the flat case.

a known distance. The angle subtended on the sky by this standard ruler (i.e., the angle of
the first peak) can be predicted for every geometry (i.e., curvature) of space. Comparison
to the observed angle thus reveals directly what that geometry is (see Fig. 10.5).

Consider, for example, a flat (k = 0) cosmology with no cosmological constant. We wish
to calculate the angular size on the sky, as it appears today, of a region of physical size
(Eq. 10.30)

Ds = 2ctrec√
3

= 2 × 380, 000 ly√
3

= 130 kpc, (10.31)

from which light was emitted at time trec. Between recombination and the present time,
the Universal expansion is matter dominated, with R ∝ t2/3 for this model, i.e.,

R

R0
=

(
t

t0

)2/3

= 1

1 + z
, (10.32)

and hence we can also write Ds as

Ds = 2ct0√
3

(1 + zrec)−3/2. (10.33)

The angle subtended by the region equals its size, divided by its distance to us at the time of

emission (since that is when the angle between rays emanating from two sides of the region
was set). As we are concerned with observed angles, the type of distance we are interested
in is the distance that, when squared and multiplied by 4π , will give the area of the sphere
centered on us and passing through the said region. If the comoving radial coordinate
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of the surface of last scattering is r , the required distance is currently just r × R0, and is
called the proper-motion distance. (For k = 0, the proper distance and the proper-motion
distance are the same, as can be seen from Eq. 9.10.) The proper-motion distance can
again be found by solving for the null geodesic in the FLRW metric (see Eq. 10.2),

∫ t0

t rec

c dt

R(t)
=

∫ r

0

dr√
1 − kr2

. (10.34)

Setting k = 0, and substituting

R(t) = R0

(
t

t0

)2/3

, (10.35)

we integrate and find

rR0 = 3ct0

[
1 −

(
trec

t0

)1/3
]

= 3ct0[1 − (1 + zrec)−1/2]. (10.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times smaller.
The so-called angular-diameter distance to the last scattering surface is therefore

DA = rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (10.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ = Ds

DA
= 2ct0(1 + zrec)−3/2

3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
= 2

3
√

3[(1 + zrec)1/2 − 1] . (10.38)

Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature is 2.7 K,
zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (10.39)

For this particular cosmological model (k = 0, �� = 0), this will be the angular scale of
the first acoustic peak in the Fourier spectrum of the CMB fluctuations. The hot and cold
“spots” in CMB sky maps will correspond to half a wavelength, i.e., will have half this
angular size, or somewhat smaller than the diameter of the full Moon (half a degree).
In a negatively curved geometry, where the angles of a triangle add up to less than 180◦,
the angle subtended by the standard ruler of length 2cstrec will be smaller than in a flat
geometry. In a positively curved Universe, this angle will appear larger than in the flat case.

Measurements of the CMB fluctuation power spectrum provide spectacular confirma-
tion of the expected acoustic peaks (see Fig. 10.6). When compared to more sophisticated
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Figure 10.6 Observed angular power spectrum of temperature fluctuations in the CMB.
The top axis shows the angular scales corresponding to the spherical harmonic multipoles
on the bottom axis. The curve is based on a detailed calculation of the fluctuation spectrum
using values for the various cosmological parameters that give the best fit to the data. Note
the clear detection of acoustic peaks, with the first peak on a scale θ ≈ 0.8◦, indicating a
flat space geometry. Data credits: WMAP and Planck collaborations.

calculations that account for all the known effects that can influence the temperature
anisotropies, the location of the first peak indicates a nearly flat space geometry, with

�m + �� = 1.01 ± 0.01. (10.40)

Note that a region with the diameter of the sound-crossing horizon has, between recombi-
nation and the present, expanded by 1 + zrec = 1100, and hence encompasses today (i.e.,
has a comoving diameter) 130 kpc × 1100 = 150 Mpc. Thus, the CMB hot and cold spots
correspond to regions that, today, are quite large.

Among a number of other cosmological parameters that are determined by analysis of
the observed CMB anisotropy power spectrum is

�m ≈ 0.3, (10.41)

which together with Eq. 10.40 confirms the result found from the Hubble diagram of
type-Ia supernovae, that the dynamics of the Universe are currently dominated by a
cosmological constant with

�� ≈ 0.7. (10.42)

If one assumes that the Universe is exactly flat, then the CMB results also give a precise
age of the Universe,

t0 = 13.7 ± 0.2 Gyr, (10.43)
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and a density in baryons,

�B = 0.044 ± 0.004. (10.44)

The mere existence of acoustic peaks in the power spectrum means that density pertur-
bations existed long before the time of recombination, i.e., they were primordial, and that
they had wavelengths much longer than the horizon size at the time they were set up.
Inflation is the only theory that currently predicts, based on causal physics, the existence
of primordial, superhorizon-size perturbations. The observation of the acoustic peaks can
therefore be considered as another successful prediction of inflation.

The large density inhomogeneities we see today—stars, galaxies, and clusters—formed
from the growth of the initial small fluctuations, the traces of which are observed in the
CMB. The gravitational pull of small density enhancements attracted additional mass, at
the expense of neighboring underdense regions. The growing clumps of dense matter
merged with other clumps to form larger clumps. This growth of structure by means of
gravitational instability operated at first only on the nonbaryonic dark-matter fluctuations,
but not the baryons, which were supported against gravitational collapse by radiation
pressure. Once the expansion of the Universe became matter dominated, the dark-matter
density perturbations could begin to grow at a significant rate. Finally, after recombination,
the baryons became decoupled from the photons and their supporting radiation pressure,
and the perturbations in the baryon density field could also begin to grow. The details
and specific path according to which structure formation proceeds is still the subject of
active research. Nevertheless, it is clear that, once the first massive stars formed (ending
the period sometimes called the Dark Ages), they reionized most of the gas in the Uni-
verse. Based again on analysis of the CMB, current evidence is that this occurred during
some redshift in the range between ∼8 and 14, when the Universe was 300–600 Myr
old.

By this time, the mean matter density was low enough that the newly liberated electrons
were a negligible source of opacity, and hence the Universe remained transparent (see
Problem 2). Direct evidence that most of the gas in the Universe is, at z ∼ 6 and below,
almost completely ionized, comes from the fact that objects at those redshifts are visible
at UV wavelengths shorter than Lyman-α; even a tiny number of neutral hydrogen atoms
along the line of sight would suffice to completely absorb such UV radiation, due to the
very large cross section for absorption from the ground state of hydrogen (often called
resonant absorption). Most of the gas in the intergalactic medium (which is the main current
repository of baryons) remains in a low-density, hot, ionized phase. The density of this
gas is low enough that the recombination time is longer than the age of the Universe, and
hence the atoms will never recombine.

10.4 Baryon Acoustic Oscillations

In section 10.3, we saw that the sound waves in the baryon–photon fluid, at the time of
recombination, imprint anisotropies on the CMB sky on specific scales, producing the
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acoustic peaks in the temperature fluctuation power spectrum. As we saw in Eq. 10.31, the
first acoustic peak corresponds to a wavelength with a physical size equal to the diameter
of the sound-crossing horizon,

Ds = 2ctrec√
3

= 130 kpc,

providing a standard ruler at zrec = 1100, with which the curvature of the Universe has
been measured. This scale can serve as a standard ruler also at lower redshifts and later
times, through the detection of baryon acoustic oscillations, as follows.

The overdensities in the matter-density field are preferred locations for the growth of
perturbations, via gravitational instability (see above), into the structures that eventu-
ally become stars, galaxies, and galaxy clusters. Because there is often one wavelength
Ds between two density enhancements in the CMB (that oftenness is the meaning of
the peak in the power spectrum), at any redshift z there will be a favored separation,
Ds(1 + zrec)/(1 + z), imprinted on the distribution of distances between any two galaxies,
or between any structures that trace the density field. As already noted in section 10.3, the
sound-horizon diameter has a comoving (i.e., now, at z = 0) size of 150 Mpc.

At a given redshift range z, the observed separation between galaxies, in terms of angular
separation on the sky and line-of-sight separation in redshift, will depend on the angular-
diameter distance and on the proper distance, respectively. As with the case of type-Ia
supernovae and their luminosity distances (section 10.1), the distance–redshift relations
depend on the cosmological parameters, and thus the observed separations can provide a
measurement of the cosmology. One way to quantify the distribution of distances between
galaxies (or other objects), and to detect and measure the baryon acoustic oscillation scale,
is by means of the two-point correlation function,

ξ (s) ≡ Nobs(s)

Nran(s)
− 1,

where Nobs(s) is the observed number of pairs of galaxies with separation s, and Nran(s) is
the number of such pairs expected at random from a uniformly distributed population,
i.e., a population without any clustering. (In practice, one counts the numbers of galaxies
with separations that are within a bin �s around s.) If there is no clustering at a separa-
tion s, so Nobs(s) = Nran(s), then ξ (s) = 0. If galaxies completely avoid a certain separation s,
ξ (s) can be as low as −1 (the galaxies are anticorrelated at that separation). The correlation
ξ (s) can be arbitrarily high for strong clustering at some scale. Figure 10.7 shows the two-
point correlation function measured for a sample of one million galaxies in the redshift
range 0.2 < z < 0.7. The baryon acoustic oscillation scale, i.e., an enhanced tendency of
galaxies to have a comoving separation of s ≈ 150 Mpc, is apparent. The distance–redshift
relation that gives this standard-ruler scale indicates the same values for the cosmolog-
ical parameters as found using type-Ia supernovae and CMB anisotropies, i.e., k = 0,
�m ≈ 0.3, and �� ≈ 0.7.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Tests and Probes of Big Bang Cosmology | 263

Figure 10.7 Two-point correlation function, ξ (s), as a function of separation, for a million
galaxies at 0.2 < z < 0.7. The acoustic peak at a comoving separation s ≈ 150 Mpc is
marked, and corresponds to the present-day size of the recombination-era sound-horizon
diameter. As with the Hubble diagram of type-Ia supernovae (Fig. 10.2), the observed
dependences on redshift of the angular diameter and proper distances to this standard
ruler, for galaxy samples at various redshifts, constrain the cosmological parameters. Data
credit: L. Anderson et al. 2014, Mon. Not. Royal Astron. Soc., 441, 24.

10.5 Nucleosynthesis of the Light Elements

Looking back in time to even earlier epochs than those discussed so far, the temperature of
the Universe must have been high enough that electrons, protons, positrons, and neutrons
were in thermodynamical equilibrium. Since the rest-mass energy difference between a
neutron and a proton is

(mn − mp)c2 = 1.3 MeV, (10.45)

at a time t � 1 s, when the temperature was T 
 1 MeV (1010 K), the reactions

e− + p + 0.8 MeV � νe + n (10.46)

and

ν̄e + p + 1.8 MeV � e+ + n (10.47)

could easily proceed in both directions. The ratio between neutrons and protons as a
function of temperature can be obtained from statistical mechanics considerations via the
Saha equation. For the case at hand, it takes the form
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Nn

Np
=

(
mn

mp

)3/2

exp
[
− (mn − mp)c2

kT

]
. (10.48)

When T 
 1 MeV, the ratio is obviously very close to 1. As the temperature decreases, the
ratio also decreases, and protons outnumber the heavier neutrons. This decrease in the
ratio could continue indefinitely, but when T < 0.8 MeV, the mean time for the reaction
10.46 becomes longer than the age of the Universe at that epoch, t = 2 s. The reaction time
can be calculated from knowledge of the densities of the different particles, the temper-
ature, and the cross section, as outlined for stellar nuclear reactions in Eqs. 3.123–3.127.
The long reaction timescale means that the neutrons and protons, which are converted
from one to the other via this reaction are no longer in thermodynamic equilibrium.7 This
time is called neutron freezeout, since neutrons can no longer be created. The neutron-to-
proton ratio therefore “freezes” at a value of exp (−1.3/0.8) = 0.20. In the following few
minutes, most of the neutrons become integrated into helium nuclei. This occurs through
the reactions

n + p → d + γ , (10.49)

p + d →3 He + γ , (10.50)

d + d →3 He + n, (10.51)

n +3He →4 He + γ , (10.52)

d +3He →4 He + p. (10.53)

Some of the neutrons undergo beta decay into a proton and an electron before making it
into a helium nucleus (the mean lifetime of a free neutron is about 15 min), and a small
fraction is integrated into other elements. Numerical computation of the results of all the
parallel nuclear reactions that occur as the Universe expands, and as the density and the
temperature decrease, shows that, in the end, the ratio between neutrons inside 4He and
protons is about 1/7. Thus, for every 2 neutrons there are 14 protons. Since every 4He
nucleus has 2 neutrons and 2 protons, there are 12 free protons for every 4He nucleus, or
the ratio of helium to hydrogen atoms is 1/12. The mass fraction of 4He will then be

Y4 = 4N(4He)

N(H) + 4N(4He)
= 4 × 1

12

1 + 4 × 1
12

= 1

4
. (10.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass in
baryons was synthesized into helium in the first few minutes.

Measurements of helium abundance in many different astronomical settings (stars,
H II regions, planetary nebulae) indeed reveal a helium mass abundance that is consistent
with this prediction. This large amount of helium could not plausibly have been produced
in stars. On the other hand, the fact that the helium abundance is nowhere observed to
be lower than ≈0.25 is evidence for the unavoidability of primordial helium synthesis, at
this level, among all baryons during the first few minutes.

7 At about the same time, neutrinos also decouple (i.e., cease to be in thermal equilibrium with the rest of the
matter and the radiation), and the cosmic neutrino background is formed; see Problem 9.
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Table 10.1 History and Parameters of the Universe

Curvature: �m + �� = 1.01 ± 0.01

Mass density: �m,0 ≈ 0.3, consisting of

�B,0 = 0.044 ± 0.004 in baryons, and

�DM,0 ≈ 0.25 in dark matter

Dark energy: �� ≈ 0.7

Redshift Temperature

Time z T (K) Event

∼10−34 s ∼1027 ∼1027 Inflation ends, �m + �� → 1, causally connected

regions have expanded exponentially, initial fluctuation

spectrum determined.

2 s 4 × 109 1010 Neutron freezeout, no more neutrons formed.

3 min 4 × 108 109 Primordial nucleosynthesis over—light element

abundances set.

65,000 yr 3500 104 Radiation domination → mass domination,

R ∼ t1/2 → R ∼ t2/3, dark-matter structures start

growing at a significant rate.

380,000 yr 1100 3000 Hydrogen atoms recombine, matter and radiation

decouple, Universe becomes transparent to radiation

of wavelengths longer than Lyα, CMB fluctuation

pattern frozen in space, baryon perturbations start

growing.

∼108–109 yr ∼6–20 ∼20–60 First stars form and reionize the Universe, ending

the Dark Ages. The Universe becomes transparent also

to radiation with wavelengths shorter than Lyα.

∼6 Gyr ∼1 ∼5 Transition from deceleration to acceleration under

the influence of dark energy.

14 Gyr 0 2.725 ± 0.002 Today.

Apart from 4He, trace amounts of the following elements are produced during the first
minutes: deuterium (10−5), 3He (10−5), 7Li (10−9), 7Be (10−9), and almost nothing else.
The precise abundances of these elements depend on the baryon density, nB, at the time of
nucleosynthesis. As we have seen (Eqs. 9.40, 10.13), the radiation energy density declines
as R−4, but the temperature appearing in the Planck spectrum also declines as T ∝ 1/R,
both before and after recombination. Since the energy of the photons scales with kT , the
photon number density declines as R−3. Because baryons are conserved, their density
also declines as R−3 when the Universe expands, and therefore the baryon-to-photon ratio
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(Eq. 10.25), η ≈ 5 × 10−10, does not change with time. Since we know the CMB photon
density today, nγ , measurements of the abundances of the light elements in astronomical
systems that are believed to be pristine, i.e., that have undergone minimal additional
processing in stars (which can also produce or destroy these elements) lead to an estimate
of the baryon density today. In units of the critical closure density, ρc,

�B = nBmp

ρc
= η nγ mp

ρc
. (10.55)

The baryon density based on these measurements is

0.01 < �B < 0.05. (10.56)

As already mentioned, a completely independent estimate of �B comes from analyzing
the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the acoustic
peaks in the spectrum depend on the baryon density and hence constrain it to

�B = 0.044 ± 0.004, (10.57)

in excellent agreement with the value based on element abundances. Note that both of these
measurements tell us that, even though the mass density of the Universe is a good fraction
of the closure value (�m ≈ 0.3), only about a tenth of this mass is in baryons, while the rest
must be in a dark matter component of unknown nature. Furthermore, less than 1/10 of
the baryons are in stars inside galaxies. The bulk of the baryons are apparently in a tenuous,
hot, and ionized intergalactic gas—the large reservoir of raw material out of which galaxies
formed. A small fraction of this gas is neutral, and can be observed by the absorption it
produces in the spectra of distant quasars. This is discussed briefly in section 10.6.

Table 10.1 summarizes the current view of the cosmological parameters and the history
of the Universe.

10.6 Quasars and Other Distant Sources as Cosmological Probes

Quasars, which we discussed in chapter 7.3, are supermassive black holes accreting at rates
that produce near-Eddington luminosities of 101–104L∗. Their large luminosities make
quasars easily visible to large cosmological distances, and allow probing the assembly and
accretion history of the central black holes of galaxies. As noted in chapter 7, luminous
quasars are rare objects at present, and apparently most central black holes in nearby
galaxies are accreting at low or moderate rates, compared to the rates that would produce
a luminosity of LE. However, quasars were much more common in the past, and their
comoving space density reached a peak at an epoch corresponding to redshift z ∼ 2 (i.e.,
about 10 Gyr ago). There is likely a connection between the growth and development of
galaxies and of their central black holes, and quasar evolution may hold clues to deciphering
this connection (see Problem 11). The most distant quasars currently known are at red-
shifts up to z = 7, and are therefore observed less than 1 Gyr after the Big Bang. Models
of structure formation suggest that the first galaxies began to assemble at about that time.

Since quasars are so luminous, they are also useful cosmological tools, in that they
can serve as bright and distant sources of light for studying the contents of the Universe
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Figure 10.8 A high-resolution spectrum of a quasar at redshift z = 3.18, with the Lyman-α
emission line redshifted to 5080 Å. Note the Lyman-α forest of absorption lines starting from
the peak of the emission line, and continuing in the blue (left) direction. These lines are due
to Lyman-α absorption by neutral hydrogen atoms in gas clouds that are along the line of
sight to the quasar, and hence at lower redshifts than the quasar. The few absorption lines
to the red of the Lyman-α emission-line peak are due to heavier elements and are associated
with the system that produces the strong damped Lyman-α absorption observed at ≈4650 Å.
Data credit: W. Sargent and L. Lu, based on observations with the HIRES spectrograph at the
W. M. Keck Observatory.

between the quasars and us. One such application is the study of quasar absorption lines.
The light from all distant quasars is seen to be partially absorbed by numerous clouds of
gas along the line of sight. A small fraction (∼ 10−4) of the hydrogen in these clouds is
neutral, and is manifest as a “forest” of redshifted absorption lines (mostly Lyman-α) in the
spectrum of each quasar (see Fig. 10.8). Each absorption line is at the wavelength of Lyman-
α redshifted according to the distance of the particular absorbing cloud. The absorption
lines are therefore distributed in wavelength between the rest wavelength of Lyα at 1216 Å
and the observed, redshifted Lyα wavelength of the quasar (say, (1 + z)1216 Å = 3648 Å,
for a z = 2 quasar).

Apart from the hydrogen Lyman-α lines, additional absorption lines are detected.
Absorption lines produced by heavier elements in the same clouds allow estimating the
“metallicities” of these clouds, and reveal very low element abundances, i.e., the gas in the
clouds has undergone little enrichment by stellar processes. It is in such clouds that the
abundance of primordial deuterium can be measured and compared to Big Bang nucle-
osynthesis predictions (see section 10.5). The Lyman-α clouds are one component (a rela-
tively cool one, with T ∼ 104 K) of the intergalactic medium. Most of the intergalactic gas,
however, is apparently in a hotter T ∼ 105–106 K, more tenuous component. Estimates of
the total mass density of intergalactic gas find that the bulk of the baryons in the Universe
is contained in this hot component, while less than about 10% of the baryons are in galaxies
in the form of stars and cold gas.

Another application in which quasars serve as distant light sources for probing the
intervening matter distribution is in cases where galaxies or galaxy clusters gravitationally
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Figure 10.9 Top two rows: Examples of quasars that are gravitationally lensed into multiple images by intervening
galaxies. In each case, the lens galaxy, at a redshift of z ≈ 0.04–0.7, is the extended central object, and the two
or four sources straddling it are the multiply lensed images of a background quasar, at z ≈ 1.7–3.6. Panels
are 5 arcseconds on a side. Some image processing has been applied, to permit seeing clearly both the bright,
point-like, quasar images and the faint, extended lens galaxies. Bottom row: Examples of foreground galaxies that
lens background galaxies into partial or full Einstein rings. In the cases shown, the foreground galaxies are at z ≈
0.2–0.4 and the background galaxies are at z ≈ 0.5–1. Photo credits: The CASTLES gravitational lens database,
C. Kochanek et al.; NASA, ESA, J. Blakeslee and H. Ford,; and NASA, ESA, A. Bolton, S. Burles, L. Koopmans,
T. Treu, and L. Moustakas.

lens quasars that are projected behind them, splitting them into multiple images.8 Since
the lensing objects in such cases are at cosmological distances (∼1 Gpc), and the lensing
masses are of order 1011M�, the Einstein angle (Eq. 6.16), which gives the characteristic
angular scale of the split images, is of order 1 arcsecond, i.e., resolved by telescopes at
most wavelength bands, from radio through X-rays (see Fig. 10.9). Modeling of individual
systems can reveal the shapes and forms of the mass distributions, both the dark and the

8 Since galaxy mass distributions are generally not spherically symmetric, when they act as gravitational lenses
they can split background sources into multiple images, rather than just deforming the sources into rings or
splitting them into double images, as is the case for point masses and spherically symmetric masses.
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luminous. The statistics of lensed quasars (e.g., measurement of the fraction of quasars
that are multiply imaged by intervening galaxies) can provide information on the properties
of the galaxy population and its evolution with cosmic time (see chapter 7, Problem 5). Not
only quasars serve as background light sources for galaxy lenses—there are many known
cases of galaxies that lens other galaxies that lie behind them (also shown in Fig. 10.9),
and such systems can be used for the same applications.

In known systems in which a galaxy or a galaxy cluster operates as a powerful gravita-
tional lens, one can turn the problem around and use the lens as a “natural telescope.”
Once the properties of the lens have been derived, based on the positions and relative
magnifications of the lensed images of the bright background quasar or galaxy, one can
search other regions of the lens that are then expected to produce high magnification for
lensed images of additional background objects. This method of “searching under the
magnifying glass” has been used to find and study galaxies with luminosities as low as
0.01L∗ out to redshifts z ∼ 10, aided by the natural magnification of galaxy clusters.

With these and other techniques, it is hoped that a detailed and consistent picture of
cosmic history will eventually emerge. Such an understanding would include the nature
of dark matter and dark energy, their interplay with baryons and with supermassive black
holes in the formation of the first stars and galaxies, the element enrichment of the inter-
stellar and the intergalactic medium by generations of evolved stars and supernovae, and
the evolution of galaxies and their constituents, all the way to the world as we see it today.

Problems

1. In an accelerating or decelerating Universe, the redshift z of a particular source will
slowly change over time t0, as measured by an observer.
a. Show that the rate of change is

dz

dt0
= H0(1 + z) − H(z),

where H(z) ≡ Ṙe/Re is the Hubble parameter at the time of emission.
Hint: Differentiate the definition of redshift, 1 + z ≡ R0/Re, with respect to t0. Use
the chain rule to deal with expressions such as dRe/dt0.

b. Show that, for a k = 0 universe with no cosmological constant, H(z) = H0(1 + z)3/2.
For this model, and assuming H0 = 70 km s−1 Mpc−1, evaluate the change in redshift
over 10 years, for a source at z = 1, and the corresponding change in “recession
velocity.”
Answers: �z = −5.9 × 10−10, � = −18 cm s−1.

2. At a redshift z = 1100, atoms were formed, the opacity of the Universe to radiation via
electron scattering disappeared, and the cosmic microwave background was formed.
Imagine a world in which atoms cannot form. Even though such a universe, by definition,
will remain ionized forever, after enough time the density will decline sufficiently to
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make the universe transparent nonetheless. Find the redshift at which this would have
happened, for a k = 0 universe with no cosmological constant. Assume an all-hydrogen
composition, �B = 0.04, and H0 = 70 km s−1 Mpc−1. Note that this calculation is not
so far-fetched. Following recombination to atoms at z = 1100, most of the gas in the
Universe was reionized between z = 8 and z = 14 (probably by the first massive stars
that formed), and has remained ionized to this day. Despite this fact, the opacity due to
electron scattering is very low, and our view is virtually unhindered out to high redshifts.
Hint: A “Universe transparent to electron scattering” can be defined in several ways.
One definition is to require that the rate at which a photon is scattered by electrons,
neσTc, is lower than the expansion rate of the Universe at that time, H (or, in other
words, the time between two scatters is longer than the age of the Universe at that
time). To follow this path (which is called decoupling between the photons and the
hypothetical free electrons), express the electron density ne at redshift z, by starting
with the current baryon number density, �Bρcr,0/mp, expressing ρcr,0 by means of H0,
and increasing the density in the past as (1 + z)3. Similarly, write H in terms of H0 and
(1 + z) (recall that 1 + z = R0/R, and in this cosmology, R ∝ t2/3 and H ∝ t−1). Show
that decoupling would have occurred at

1 + z =
(

8πGmp

3�BH0σTc

)2/3

,

and calculate the value of this redshift. Alternatively, we can find the redshift of the “last
scattering surface” from which a typical photon would have reached us without further
scatters. The number of scatters on electrons that a photon undergoes as it travels from
redshift z to redshift zero is

∫ l(z)

0
ne(z)σTdl.

Express ne, as above, in terms of �B, H0, and 1 + z, replace dl with c(dt/dz)dz, using
again R ∝ t2/3 to write dt/dz in terms of H0 and 1 + z. Equate the integral to 1, perform
the integration, show that the last scattering redshift would be

1 + z =
(

4πGmp

�BH0σTc

)2/3

,

and evaluate it.
Answers: z = 65; z = 85.

3. Show that the angular-diameter distance for a flat space (k = 0; Eq. 10.37) out to
redshift z,

DA = 3ct0[(1 + z)−1 − (1 + z)−3/2],

has a maximum with respect to redshift z, and find that redshift. The angular size on
the sky of an object with physical size d is θ = d/DA. What is the implication of the
maximum of DA for the appearance of objects at redshifts beyond the one you found?
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Note that this peculiar behavior is simply the result of light travel time out to different
distances in an expanding universe; an object at high redshift may have been closer to
us at the time of emission than an object of the same size at a lower redshift, despite
the fact that the high-redshift object is currently more distant.

4. a. Consider the energy flux of photons from a source with bolometric luminosity L and
with proper-motion distance rR0. The photons will be spread over an area 4π (rR0)2.
Explain why the observed energy flux will be

f = L

4π (rR0)2(1 + z)2
.

Hint: Consider the effects of redshift on the photon energy and cosmological time
dilation on the photon arrival rate. This relation is used to define the luminosity
distance, DL = rR0(1 + z).

b. Find DL(z) for a k = 0 universe without a cosmological constant. Plot, for this world
model, the Hubble diagram, i.e., the flux vs. z, from an object of constant luminosity.

5. Show that in a Euclidean, nonexpanding, universe, the surface brightness of an object,
i.e., its observed flux per unit solid angle (e.g., per arcsecond squared), does not change
with distance. Then, show that in an expanding FLRW universe, the ratio between the
luminosity distance (see Problem 4) and the angular-diameter distance to an object
is always (1 + z)2. Use this to prove that, in the latter universe, surface brightness
dims with increasing redshift as (1 + z)−4. This effect makes extended objects, such as
galaxies, increasingly difficult to detect at high z.

6. An object at proper-motion distance rR0 splits into two halves. Each piece moves relative
to the other, perpendicular to our line of sight, at a constant, nonrelativistic, velocity .
What is the angular rate of separation, or “proper motion” between the two objects
(i.e., the change of angle per unit time)?
Hint: Recall that we are measuring an angle, and so require the angular-diameter dis-
tance, but we are also measuring a rate, which is affected by cosmological time dilation.
You can now see why rR0 is called the proper-motion distance.

7. Use the first Friedmann equation with a nonzero cosmological constant (Eq. 9.95) to
show that, in a flat, matter-dominated Universe, the proper-motion distance is

rR0 =
∫

c dz

H0

√
�m,0(1 + z)3 + ��,0

.

Use a computer to evaluate this integral numerically with �m,0 = 0.3 and ��,0 = 0.7,
for values of z between 0 and 2. Plot the Hubble diagram, i.e., flux vs. z, from an
object of constant luminosity, in this case, and compare to the curve describing k = 0,
�m = 1 (Problem 4). You can now see how the Hubble diagram of type-Ia supernovae
can distinguish among cosmological models.
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Hint: Set k = 0 in Eq. 9.95, replace ρ by ρ0R3
0/R3 (matter domination), divide both

sides by H2
0, and substitute the dimensionless parameters �m,0 and ��,0. Change

variables from R to z with the transformation 1 + z = R0/R, and separate the variables
z and t. Finally, use the FLRW metric for k = 0: c dt = R dr = R0/(1 + z)dr, and hence
rR0 = ∫

(1 + z)c dt, to obtain the desired result.

8. Emission lines of hydrogen Hβ (n = 4 → 2, λrest = 4861 Å) are observed in the spec-
trum of a spiral galaxy at redshift z = 0.9. The galaxy disk is inclined by 45◦ to the line of
sight.
a. The Hβ wavelength of lines from one side of the galaxy is shifted to the blue by 5 Å

relative to the emission line from the center of the galaxy, and to the red by 5 Å on
the other side. What is the galaxy’s rotation speed?

b. Analysis of the emission from the active nucleus of the galaxy reveals a total redshift
of z = 1. If the additional redshift is gravitational, the result of the proximity of the
emitting material to a black hole, find this proximity, in Schwarzschild radii.
Hint: Note that all redshift and blueshift effects are multiplicative, e.g., (1 + ztotal) =
(1 + zcosmological)(1 + sin i/c), or (1 + ztotal) = (1 + zcosmological)(1 + zgravitational).

c. Find the age of the Universe at z = 0.9, assuming an expansion factor R ∝ t2/3, and
a current age t0 = 14 Gyr. What is the “lookback time” to the galaxy?
Answers: 230 km s−1; 11rs; lookback time 8.5 Gyr.

9. At some point back in cosmic time, the Universe was dense enough to be opaque
to neutrinos. Then, as the Universe expanded, the density decreased until neutrinos
could stream freely. A cosmic neutrino background (which is undetected to date) must
have formed when this decoupling between neutrinos and normal matter occurred, in
analogy to the CMB that results from the electron–photon decoupling at the time of
hydrogen recombination. Find the temperature at which neutrino decoupling occurred.
Assume in your calculation that decoupling occurs during the radiation-dominated
era, photons pose the main targets for the neutrinos, neutrino interactions have an
energy-dependent cross section

σνγ = 10−43 cm2

(
Eν

1 MeV

)2

,

and the neutrinos are relativistic. Use a k = 0, �� = 0 cosmology.
Hint: Proceed by the first method of Problem 2, i.e., by requiring nσ = H. Represent
the “target” density, n, by aT 4/kT, where a is the Stefan–Boltzmann (or “radiation”)
constant. Use σνγ for the cross section σ , but approximating Eν as kT. The velocity
equals c, because the neutrinos and the target particles are relativistic. To represent H,
use the first Friedmann equation,

H2 = 8πGρrad

3c2
,

with ρrad = aT 4.
Answer: kT = 1 MeV.
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10. It has been found recently that every galactic bulge harbors a central black hole with a
mass ∼0.001 of the bulge mass. The mean space density of bulges having 1010M� is
about 10−2 Mpc−3.
a. Find the mean density of mass in black holes, in units of M� Mpc−3.
b. If all these black holes were shining at their Eddington luminosities, what would

be the luminosity density, in units of L� Mpc−3? How does this compare to the
luminosity density from stars?

c. The observed luminosity density of quasars and active galaxies, averaged over cosmic
time, is actually 100 times less than calculated in (b). If all central black holes have
gone through an active phase, what does this imply for the total length of time that
a black hole is “active"?

11. The most distant quasars currently known are at redshift z ∼ 6, and have luminosities
L ∼ 1047 erg s−1.
a. Find a lower limit to the mass of the black hole powering such a quasar, by assuming

it is radiating at the Eddington limit.
b. Find the age of the Universe at z = 6, assuming an expansion R ∝ t2/3 and a current

age t0 = 14 Gyr.
c. Equate the Eddington luminosity LE(M) as a function of mass M to the luminosity of

an accretion disk around a black hole with a mass-to-energy conversion efficiency of
0.06. This will give you a simple differential equation for M(t), describing the growth
of a black hole. Solve the equation (be careful with units).

d. Suppose a black hole begins with a “seed” mass of 10M� and shines at the Eddington
luminosity continuously. How long will it take the black hole to reach the mass found
in (a)? By comparing to the result of (b), what is the minimum redshift at which
accretion must begin?
Answers: ∼109M�; t(z = 6) = 740 Myr; M = Mseedexp(t/τ ), with τ = 26 Myr;
480 Myr, z(t = 260 Myr) = 13.
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