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Modeling and Mathematical 

Concepts 

A system is a big black box
Of which we can’t unlock the locks,  
And all we can find out about  
Is what goes in and what comes out.  

—Kenneth Boulding 

Kenneth Boulding—presumably somewhat tongue-in-
cheek—expresses the cynic’s view of systems. But this de-
scription will only be true if we fail as modelers, because 
the whole point of models is to provide illumination; that 
is, to give insight into the connections and processes of a 
system that otherwise seems like a big black box. So we 
turn this view around and say that Earth’s systems may 
each be a black box, but a well-formulated model is the 
key that lets you unlock the locks and peer inside. 

There are many different types of models. Some are 
purely conceptual, some are physical models such as in 
flumes and chemical experiments in the lab, some are sto-
chastic or structure-imitating, and some are determinis-
tic or process-imitating. The distinction also can be made 
between forward models, which project the final state of 
a system, and inverse models, which take a solution and 
attempt to determine the initial and boundary condi-
tions that gave rise to it. All of the models described in 
this book are deterministic, forward models using vari-
ables that are continuous in time and space. One should 
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think of the models as physical–mathematical descriptions 
of temporal and/or spatial changes in important geologi-
cal variables, as derived from accepted laws, theories, and 
empirical relationships. They are “devices that mirror 
nature by embodying empirical knowledge in forms that 
permit (quantitative) inferences to be derived from them” 
(Dutton, 1987). The model descriptors are the conserva-
tion laws, laws of hydraulics, and first-order rate laws for 
material fluxes that predict future states of a system from 
initial conditions (ICs), boundary conditions (BCs), and 
a set of rules. For a given set of BCs and ICs, the model 
will always “determine” the same final state. Furthermore, 
these models are mathematical (numerical). We emphasize 
this type of model over other types because it represents 
a large proportion of extant models in the earth sciences. 
Dynamical models also provide a good vehicle for teach-
ing the art of modeling. We call modeling an art because 
one must know what one wants out of a model and how 
to get it. Properly constructed, a model will rationalize the 
information coming to our senses, tell us what the most 
important data are, and tell us what data will best test our 
notion of how nature works as it is embodied in the model. 
Bad models are too complex and too uneconomical or, in 
other cases, too simple. 

Pros and Cons of Dynamical Models 

The advantage of a deterministic dynamical model is that 
it states formal assertions in logical terms and uses the 
logic of mathematics to get beyond intuition. The logic is 
as follows: If my premises are true, and the math is true, 
then the solutions must be true. Suddenly, you have got-
ten to a position that your intuition doesn’t believe, and 
if upon further inspection, your intuition is taught some-
thing, then science has happened. Models also permit for-
mulation of hypotheses for testing and help make evident 
complex outcomes, nonlinear couplings, and distant feed-
backs. This has been one of the more significant outcomes 
of climate modeling, for example. If there are leads and 
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lags in the system, it’s tough for empiricists because they 
look for correlation in time to determine causation. But if 
it takes a couple of hundred years for the effect to be real-
ized, then the empiricist is often thwarted. 

Particularly relevant for geoscientists and astrophysi-
cists, dynamical models also permit controlled experi-
mentation by compressing geologic time. Consider the 
problem of understanding the collision of galaxies—how 
does one study that process? Astrophysicists substitute 
space for time by taking photographs of different galax-
ies at different stages of collision and then assume they 
can assemble these into a single sequence representing one 
collision. That sequence acts as a data set against which a 
model of collision processes can be tested where the many 
millions of years are compressed. The idea of a snowball 
Earth provides an example even closer to home, or one 
could ask the question: What did rivers in the earthscape 
look like prior to vegetation? Questions of this sort natu-
rally lend themselves to idea-testing through dynamical 
models. 

But dynamical models not properly constructed or 
interpreted can cause great trouble. Recently, Pilkey and 
Pilkey-Jarvis (2007) passionately argued that many envi-
ronmental models are not only useless but also danger-
ous because they have made bad predictions that have led 
to bad decisions. They argue that there are many causes, 
including inadequate transport laws, poorly constrained 
coefficients (“fudge factors”), and feedbacks so complex 
that not even the model developers understand their be-
havior. Although we think the authors have painted with 
too broad a brush, we agree with them on one point. A 
simple falsifiable model that has been properly validated 
[even if in a more limited sense than that of Oreskes et al. 
(1994)] is better than an ill-conceived complex model with 
scores of poorly constrained proportionality constants 
[also see Murray (2007) for a discussion of this point]. Fi-
nally, we should never lose sight of the fact that in a model 
“it is not possible simultaneously to maximize generality, 
realism, and precision” (atmospheric scientist John Dut-
ton, personal communication, 1982). 
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An Important Modeling Assumption 

We assume in this book that a fruitful way to describe 
the earth is a series of mathematical equations. But is this 
mathematical abstraction an adequate description of real-
ity? Does reality exist in our minds as mathematical for-
mulas or is it outside of us somewhere? For example, the 
current understanding of the fundamental physical laws 
that govern the universe—string theory—is entirely a 
mathematical theory without experimental confirmation. 
To some it unites the general theory of relativity and quan-
tum mechanics into a final unified theory. To others it is 
unfalsifiable and infertile (see, e.g., Smolin, 2006). 

We avoid these philosophical problems by simply as-
serting that mathematical descriptions of the earth both 
past and present have proved to be a useful way of know-
ing. As the Nobel Laureate Eugene Wigner noted, “The 
miracle of the appropriateness of the language of math-
ematics for the formulation of the laws of physics is a 
wonderful gift which we neither understand nor deserve” 
(Wigner, 1960). An alternative view is that they are inher-
ently quite limited in their predictive power. This view is 
summarized cogently by Chris Paola in a review of sedi-
mentary models: “[A]ttempting to extract the dynamics at 
higher levels from comprehensive modelling of everything 
going on at lower levels is . . . like analyzing the creation of 
La Boheme as a neurochemistry problem” (Paola, 2000). 
Whereas we accept this point of view in the limit, we reject 
it for a wide range of complex systems that are amenable 
to reduction. 

Some Examples 

To set the stage for the chapters that follow, we present 
two problems for which modeling can provide insight. 
Other examples abound in the literature. Of special note 
for those studying Earth surface processes is the Web site 
of the Community Earth Surface Dynamics Modeling Ini-
tiative (CSDMS; pronounced “systems”). CSDMS (http:// 
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csdms.colorado.edu) is a National Science Foundation 
(NSF)-sponsored community effort providing cyberin-
frastructure aiding the development and dissemination of 
models that predict the flux of water, sediment, and solutes 
across the earth’s surface. There one can find hundreds of 
models that incorporate the conservation and geomorphic 
transport laws and that can be used to solve particular 
problems. A companion organization, Computational In-
frastructure for Geodynamics (http://www.geodynamics 
.org/), provides similar support for computational geo-
physics and related fields. 

example i: simulation of chicxulub impact  
and its consequences 

Probably the most famous event in historical geology, at 
least from the public’s perspective, is the extraterrestrial 
impact event at the end of the Mesozoic Era that killed 
off the dinosaurs. Most schoolchildren know the standard 
story: A large asteroid that struck the surface of the earth 
in Mexico’s Yucatán Peninsula created the Chicxulub 
Crater along with a rain of molten rock, toxic chemicals, 
and sun-obscuring debris that eliminated roughly three-
quarters of the species living at the time. To work through 
the specific details of what happened and to predict the 
consequences of such an uncommon event is not easy be-
cause the physical and chemical processes are operating in 
a pressure–temperature state all but impossible to obtain 
experimentally. It is precisely these cases that benefit most 
from numerical simulation. 

But is an asteroid impact computable? That is, given 
as many conservation equations and rate laws as there are 
state variables, and given initial and boundary conditions, 
can future states of the system be predicted with an accept-
able degree of accuracy? Gisler et al. (2004) thought so. 
They derived a model simulating a 10-km-diameter iron 
asteroid plunging into 5 km of water that overlays 3 km 
of calcite, 7 km of basalt crust, and 6 km of mantle mate-
rial. The set of equations was solved using the SAGE code 
from Los Alamos National Laboratory and the Science 

http://www.geodynamics
http:csdms.colorado.edu
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Figure 1.1. Montage of images from a three-dimensional (3-D) 
simulation of the impact of a 1-km-diameter iron bolide at an 
angle of 45 degrees into a 5-km-deep ocean. Maximum tran-
sient crater diameter of 25 km is achieved at about 35 seconds. 
[From Gisler, G. R., et al. (2004). Two- and three-dimensional 
asteroid impact simulations. Computing in Science & Engi-
neering 6(3):46–55. Copyright © 2004 IEEE. Reproduced with 
permission.] 

Applications International Corporation, which was devel-
oped under the U.S. Department of Energy’s program in 
Accelerated Strategic Computing. Their model contained 
333 million computational cells and used 1,024 processors 
for a total computational time of 1,000,000 CPU hours on 
a cluster of HP/Compaq PCs. 

The results (fig. 1.1) document the dissipation of the 
asteroid’s kinetic energy (which amounts to about 300 
teratons TNT equivalent, or ~41021 J). The impact pro-
duces a tremendous explosion that melts, vaporizes, and 
ejects a substantial volume of calcite, granite, and water. 
Predictions from the model aid in understanding how, why, 
and where the resulting environmental changes caused the 
extinction. 
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Figure 1.2. Map of Pensacola Bay and surrounding area. Hur-
ricane Ivan passed on a trajectory due north just 20 mi to the 
west. The rectangle drawn in Blackwater Bay encompasses the 
region of interest. (Map adapted from a U.S. Geological Survey 
1:250,000 topographic map.) 

example ii: storm surge of hurricane ivan  
in escambia Bay 

On September 16, 2004, Hurricane Ivan made landfall 
about 35 mi (56 km) west of Pensacola, Florida (fig. 1.2). 
At the time of landfall, peak winds exceeded 125 mi h–1 

(200 km h–1), severely damaging many buildings in the 
Pensacola area. Probably equally damaging, however, 
was the surge of water along the coast and up Pensacola 
Bay. Homeowners along the bay experienced significant 
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Figure 1.3. The scene 3 hours after the eye passes. (Photo cour-
tesy of Ray Slingerland.) 

flooding (fig. 1.3) even though some were more than 25 mi 
by water from the open ocean. 

Was this event an unpredictable act of God or could 
we have predicted the flooding? As you might suspect, the 
answer is that not only could it have been predicted, it was 
(fig. 1.4). 

In chapter 10, we describe how surge models of the 
sort used by the U.S. Army Corps of Engineers are derived. 

Steps in Model Building 

So how does one construct a model of a geological phe-
nomenon? Throughout this book, we will try to follow 
some logical steps in model development. First, get the 
physical picture clearly in mind. As an example, say one 
wanted to model the number of flies in a room as a func-
tion of time. The physical picture includes defining the 
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Figure 1.4. Observed surge high-water line (solid gray) versus 
those predicted (solid white) for Hurricane Ivan. Zone VE: 
Area subject to inundation by the 1%-annual-chance flood 
event with additional hazards due to storm-induced veloc-
ity wave action. Zone AE: Area subject to inundation by the 
1%-annual-chance flood event determined by detailed methods. 
Zone X: Area of minimal flood hazard higher than the eleva-
tion of the 0.2%-annual-chance flood. See figure 1.2 for loca-
tion. (From http://www.fema.gov/pdf/hazard/flood/recovery 
data/ivan/maps/K33.pdf.) 

dependent variable(s) (in this case the number of flies), the 
independent variables (time), and the size of the room. 
Second, one must define the physical processes to be 
treated and the boundaries of the model. The processes in 
the case of flies are flying, crawling, hatching, and dying. 
The boundaries of the model are those that do not pass 
flies such as walls, floor, and ceiling, and open boundar-
ies such as doors and windows. Third, write down the 
physical laws to be used. Generally, these will be laws 

http://www.fema.gov/pdf/hazard/flood/recovery
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such as conservation of mass, Fick’s law, and so on. In 
the case of flies, the laws are rate laws governing the flux 
of flies into and out of the room and laws defining the 
rates at which flies are created and die within the room. 
Fourth, put down very clearly the restrictive assumptions 
made. If one assumes that the flies will enter the room in 
proportion to the gradient in their number between inside 
and outside, write that assumption down. Fifth, perform 
a balance, first in words and then in symbols. Usually, one 
balances properties such as force, mass, or number. In the 
case of flies, we would say 

The time rate of change of flies in the room 
= the rate at which they enter through doors and 

windows 
– the rate at which they leave 
+ the rate at which they are born 

– the rate at which they die. 

We would then substitute symbols for number of flies, 
time, and so forth. Sixth, check units. All the terms in the 
balance equation must be of the same units; if they are not, 
we have made a mistake in our definitions, and now is the 
time to catch it. Seventh, write down initial and bound-
ary conditions. By initial conditions are meant the values 
of the dependent variables at the start of the calculations. 
For example, we would specify the number of flies in the 
room at t = 0 as zero or some finite number. Boundary 
conditions are the values of the dependent variables at the 
edges of the spatial domain of interest. For example, we 
must specify the number of flies outside as a function of 
time and specific door or window. Lastly, solve the math-
ematical model. If you are lucky you can find an equation 
of similar form that has already been analytically solved. 
There is value in pursuing an analytic solution even if you 
need to reduce variable coefficients to constants or even 
drop terms, because the simplified equation will provide 
insight into your system’s behavior. But often no analytic 
solutions will be available, and this step will require con-
verting the equation set into a numerical form amenable 
for solution on a computer. Finally, you should verify and 
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table 1.1. steps in Problem solving 

1. Get the physical picture clearly in mind. 
2.  Define the physical processes to be treated and the 

boundaries of the model. 
3. Write down the laws and transport functions to be used. 
4. Put down very clearly the restrictive assumptions made. 
5. Perform the balance, first in words and then in symbols. 
6. Check units. 
7.  Write down initial and boundary conditions. 
8.  Verify, validate, and solve the mathematical model. 

validate your model. According to Oberkampf and Tru-
cano (2002), verification is the process of determining that 
a model implementation accurately represents your con-
ceptual description of the model and the solution to the 
model. Thus, verification checks that the coding correctly 
implements the equations and models, whereas validation 
determines the degree to which a model is an accurate rep-
resentation of the real world from the perspective of its 
intended uses. In other words, does the model agree with 
reality as observed in experiments and in the field. To for-
malize your thinking as you approach a problem, follow 
all of these steps in table 1.1. 

Basic definitions and concepts 

Why Models Are often sets of differential equations 
We naturally find it easier to think about how an entity 

changes than about the entity itself. For example, my car 
speedometer measures my velocity, not the distance I’ve 
traveled from my garage since I started my trip. It is easier 
to state that the time rate of change of water in my boat 
equals the rate at which water enters through the open 
seams minus the rate at which I am bailing it out than it 
is to state how the volume of water actually varies with 
time. Changing entities of this sort are called variables, of 
which there are two kinds: independent (space and time) 
and dependent, by which we mean the state variables in 
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question (velocity, mass of water, and so forth). The rate of 
change of one variable with respect to another is called a 
derivative, written, for example, as the ordinary derivative 
dV/dt if the dependent variable V is only a function of the 
independent variable t, or the partial derivative ∂V/∂t if V 
also depends upon other independent variables. Equations 
that express a relationship among these variables and their 
derivatives are differential equations. 

However, often we want to know how the variables 
are related among themselves, not how they are related to 
their derivatives. So the general procedure is to derive the 
differential equations from first principles and then solve 
them for the values of the dependent variables as functions 
of the independent variables and other parameters. 

To solve the differential equations requires more than 
the differential equation itself, however. The problem must 
be well posed. A well-posed problem contains as many 
governing equations as there are dependent variables. 
Also, the time and space interval over which the solution 
is to be obtained should be specified, and additional infor-
mation concerning the dependent variables must be sup-
plied at the start time (called initial conditions, or ICs) 
and the boundaries of the intervals (called boundary con-
ditions, or BCs). This information is necessary because in-
tegration of the differential equations creates constants of 
integration in the case of ordinary differential equations 
(ODEs) and functions of integration in the case of partial 
differential equations (PDEs). The number of constants or 
functions needed is equal to the order of the differential 
equation. Thus, for a partial differential equation that is 
second order in both time and space, one must supply two 
functions derived from the ICs specifying the dependent 
variable as a function of time and two functions derived 
from the BCs specifying the dependent variable as a func-
tion of space. There are three possible types of BC infor-
mation that can be supplied. 

dirichlet conditions 
In this type of BC, the solution itself is prescribed 

along the boundary, as, for example, if we were to set 
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dependent variable C(0,t) = P, where P is some temporally 
constant value of the dependent variable. 

neumann conditions 
Alternatively, the derivatives of the solution in the 

normal direction to the boundary are prescribed. For any 
variable that obeys a first-order rate law, this is equivalent 
to specifying the flux across the boundary. Thus, we might 
know that a chemical species of concentration C(x,t) dif-
fuses across a plane in an aquifer at x = 0 at a flux q = q0, 
and therefore the BC at x = 0 becomes 

2CD = −qo. (1.1) 
2x x=0

Mixed conditions 
This BC, sometimes called a “Robin” boundary con-

dition, combines both of the above types. For example, if 
the flux through the face at x = 0 was not constant, but 
was proportional to the difference between a fixed concen-
tration A at x = –1 and C(0,t), the actual concentration at 
x = 0, then the appropriate BC would be 

2CD k A[ − C ( , )], (1.2) = − 0 t
2x x=0

where k is a proportionality constant with units of m s–1 . 
Finally, for a well-posed problem, a solution must 

exist, be unique, and depend continuously on the auxil-
iary data. Most geoscience problems have solutions, and 
most can be made unique with proper BCs, although one 
should be aware that underprescription of BCs leads to 
nonuniqueness. The third requirement is met when small 
changes in BCs lead to small changes in the solution. 

nondimensionalization 

Before attempting a solution, it is always useful to rewrite 
the well-posed problem using nondimensional variables 
(see table 1.2). When we nondimensionalize equations, we 
remove units by a suitable substitution of variables. This 
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table 1.2. steps in nondimensionalization 

1. Identify all the independent and dependent variables. 
2.  Define a nondimensional term for each variable by scaling 

each variable with a coefficient in the problem with the 
same units. 

3.  Substitute each definition into the governing equation 
and divide through by the coefficient of the highest-order 
polynomial or derivative. 

4.  If you have chosen well, the coefficients of many terms will 
become 1. 

process groups together various coefficients into ensembles 
called parameters, thereby allowing us to predict natural 
system behavior more easily. We also can describe the so-
lution in terms of a few parameters composed of the vari-
ous dimensional geometric and material properties in the 
problem. Sometimes characteristic properties of a system 
emerge from these, such as a resonance frequency. Plus, 
one solution fits all; we don’t need to define a new solu-
tion if we want to change a parameter. Finally, if we have 
chosen well, the solutions scale between 0 and 1, thereby 
allowing us to better control accuracy if the solution must 
be obtained by numerical techniques. The nondimension-
alization process, also known as scaling, will be illustrated 
in detail after we have created some models. 

A Brief Mathematical review 

Here we review some mathematical concepts used in the 
creation and solution of well-posed dynamical models. We 
usually seek a solution over a portion or interval of time 
and space. An interval is formally defined as the set of all 
real numbers between any two points on the number line 
of space or time and will be denoted as: a < x < b. 

definition of a function 
If to each value of an independent variable x in a speci-

fied interval there is one and only one real value of the 
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dependent variable y, then y is a function of x in the inter-
val. The concept can be extended to functions of n inde-
pendent variables. For example, 

( , ) = x+ y. (1.3) z = f x y

There are two types of functions: explicit and implicit. 
The relationship f(x,y) = 0 defines y as an implicit function 
of x. Implicit solutions of equations often are pointless, as, 
for example, 

( , ) = x3+ y3− 3xyf x y = 0, (1.4) 

which still does not tell us explicitly the value of y for a 
given x. 

ordinary differential equation 
Let f(x) define a function of x on an interval. By ordi-

nary differential equation (ODE) we mean an equation in-
volving x, the function f(x), and its derivatives. The order 
is the order of the highest derivative. For any function 
y = f(x), the geometrical meaning of the first derivative is 
the slope of the line tangent to a point on the function, 
and the second derivative is the curvature of the function 
at that point. 

solution of an ordinary differential equation 
Let y = f(x) define y on an interval. f(x) is an explicit 

solution if it satisfies the equation for every x on the inter-
val, or if upon substitution, the ODE reduces to an identity. 

fundamental theorem of calculus 
Integration is antidifferentiation. Thus, if: 

2y = x

and

dy
= 2x

dx

then

# dy = # 2xdx = x2+ c, (1.5) 
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where c is a constant of integration. 

General solution 
For a very large class of ODEs, the solution of an ODE 

of order n contains n arbitrary constants. Example: 
2d y
= x

dx2

3 (1.6) 
xy = + c x+ c .
6 1 2

The n-parameter family of solutions, y = f(x, c1 ... cn), to 
an nth order ODE is called a general solution. Constants 
are called constants of integration. To find a particular so-
lution requires additional information to uniquely specify 
the constant(s). This additional information comes from 
the initial or boundary conditions. 

systems of ordinary differential equations 
The pair of equations 

dx
= f1 ( ,x y t, )

dt
dy
= f2 ( ,x y t, ) (1.7) 

dt

is called a system of two first-order ODEs. A solution is 
then a pair of functions x(t), y(t) on a common interval 
of t. 

the Partial derivative 
If z = f(x,y), then the partial derivative of z with re-

spect to x at (x,y) is 

2 ( + h y, )− ( , )z f x f x y
= lim , (1.8) 

2x h"0 h

and so forth. Note that a partial with respect to x is dif-
ferentiated with y being regarded as a constant. The geo-
metrical interpretation of the partial derivative is given in 
figure 1.5. Geologists will recognize that the solution sur-
face at a point may be characterized by two apparent dips, 
one in the x direction and one in the y direction. These 
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Figure 1.5. Geometrical 
meaning of a partial 
derivative. The curved 
surface is the value of z as a 
function of x and y. A line 
drawn tangent to the surface 
in the x,z plane at position 
y1 has slope m equivalent 
to the value of the partial 
derivative at (x1,y1). 

slopes are given by the partial derivatives, and therefore 
the apparent dip angles are given by the arctangents of the 
partial derivatives. 

differential of a function of two independent variables 
If z = f(x,y), then the differential of z is 

2 ( , ) 2 ( , )f x y dx f x y dy
dz = + . (1.9) 

2x 2y

Partial differential equations 
An equation involving two or more independent vari-

ables, xi, the function, f(xi), and its partial derivatives is 
called a partial differential equation (PDE). The order is 
the order of the highest partial derivative. 

It is always helpful to classify the PDEs of your prob-
lem, because much can be learned about the behavior of 
the solution even without obtaining the actual solution. 
In fact, the method of solution often is class-dependent. A 
PDE can be linear or nonlinear, with the nonlinear equa-
tions being more difficult to solve. A PDE is linear if the 
dependent variable and all its derivatives appear in a linear 
fashion; that is, are not multiplied by each other, squared, 
and so forth. It is homogeneous if it lacks a term that is 
independent of the dependent variable. 
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Kinds of coefficients 
Coefficients may be constants, functions of the inde-

pendent variables, or functions of the dependent variables. 
In the latter case, the equation is said to be nonlinear. 

three Basic types of Linear Partial differential equations 
A second-order linear equation in two variables is of 

the form 

2 2 22 u 2 u 2 u 2u 2uA +B +C +D +E +F = 0, (1.10) 
2x2 x y 2y2 2x y2 2 2

where A through F are constants or functions of x and y. 
All linear equations like equation 1.10 can be classified ac-
cording to the following scheme. If: 

B2− 4AC < 0 & The PDE is elliptic: 
B2− 4AC = 0 & The PDE is parabolic: 
B2− 4AC > 0 & The PDE is hyperbolic: (1.11)  

The usefulness of this classification will be shown later. 

solution of a Partial differential equation 
A function z = f[x,y,gi(x,y)], is a solution if it satis-

fies the PDE upon substitution. Note that PDEs of the nth 
order require n functions of integration, gi(x,y). 

chain rule 
Suppose z = f(x,y), and x = F(t), and y = G(t) where 

F and G are functions of t. What is dz/dt? Because z is a 
function of x and y, and x and y are functions of t: 

dz 2z dx 2z dy
= + . (1.12) 

dt 2x dt 2y dt

Product rule 
If f(x) = u(x) v(x), then 

2f 2v 2u
= u + v . (1.13) 

2x 2x 2x
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taylor series expansion 
Taylor’s theorem was first derived by Brook Taylor, 

who was born August 18, 1685, in Edmonton, Middle-
sex, England. Its importance remained unrecognized until 
1772 when Lagrange proclaimed it the basic principle of 
the differential calculus. Taylor showed that if one knows 
the value of a function at (x,y), then the value of the func-
tion at (x+ dx, y) can be approximated as 

1 2 ( ,f x y)
( + , ) = f x y( , )f x dx y + dx

1! 2x
(1.14) 

1 22 ( ,f x y) 2+ 2 (dx) +ff,
2! 2x

where the ellipses denote all higher-order terms in the series. 

substantial time derivative 
Let us say we are interested in the rate at which the 

temperature, T, changes as we drive south in the winter 
from Pennsylvania to Florida. We recognize that there will 
be two sources of temperature change: one arising due to 
the change of temperature independent of any change in 
location (say the normal heating that occurs as night turns 
to day), and one arising because we are moving south 
through the latitudinal temperature gradient at our car 
speed u. Equation 1.12 captures this idea. Let z = T, x =
distance = F(t), and y =G(t) = t. Therefore, the total time 
derivative of T is 

dT 2T dx 2T dy
= + . (1.15) 

dt 2x dt 2t dt

However, dx/dt = u, the car velocity, and dy/dt = 1; 
therefore, 

dT 2T 2T
= u + . (1.16) 

dt 2x 2t

The righthand side (RHS) of equation 1.16 is called the 
substantial time derivative (in this case in only one di-
mension) and often written in shorthand form as DF/Dt, 
where F is the dependent variable in question. 
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concept of a control volume 
A control volume is the region of space we define to 

perform a balance of mass, energy, and so forth. It can 
be either macroscopic, such as a finite volume of a river 
channel, or microscopic with dimensions dx, dy, dz, for ex-
ample. Choosing the control volume for a problem is some-
what an art. Ideally, the boundaries should be meaningful 
physical surfaces through which fluxes can be easily speci-
fied without recourse to complicated geometric formulas. 

the Basic scientific Laws, Axioms, and definitions 
All of the physics and chemistry used in this book can 

be reduced to only 17 basic concepts. These are listed in 
table 1.3 for later reference. 

table 1.3. Basic Laws, Axioms, and definitions 

I. Conservation of Mass 
The time rate of change of mass in a control volume equals the 
mass rate into the volume minus the mass rate out. 

II. Newton’s First Law
Any body is in a state of rest or in uniform rectilinear motion 
until some forces applied to it produce a change in the state of 
the body (motion or deformation). (NB: body = discrete entity 
with mass.)

III. Newton’s Second Law 
The rate of change of momentum of a body is proportional to 
the impressed force and is made in the direction of the straight 
line in which the force is impressed. 

IV. Newton’s Third Law 
To every action there is always opposed and equal reaction, or 
the mutual actions of two bodies upon each other are always 
equal in magnitude and opposite in direction. 

V. Corollary I 
A body acted on by two forces simultaneously will move along 
the diagonal of a parallelogram in the same time as it would 
move along the sides by those forces acting separately. 

VI. Conservation of Momentum 
Using Newton’s third law to extend Newton’s second law to the 
total momentum of systems of particles: 

The time rate of change of momentum in a control volume 
equals the time rate in of momentum minus the time rate out 
plus the sum of forces. 

(continued) 
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table 1.3. (continued) 

VII. The Coriolis Force 
Arises out of a choice to apply the laws of motion developed for 
an inertial reference frame to a rotating reference frame that is 
attached to Earth. It is quantified as twice the product of the 
angular velocity and the sine of the latitude. 

VIII. Quadratic Drag Law 
The force experienced by a large object moving through a fluid 
at relatively large velocity (i.e., with a Reynolds number greater 
than ~1,000) is proportional to the square of the velocity. 

IX. Universal Law of Gravitation 
Between any two particles of mass m1 and m2 at separation R, 
there exist attractive forces F12 and F21 directed from one body 
to the other and equal in magnitude to the product of masses 
and inversely proportional to square of distance between them. 

X. Equivalence of Work and Energy 
Work is measured by the product of an acting force and the dis-
tance traveled by a body. It is a measure of the transfer of energy 
from one body to another. 

XI. Conservation of Energy 
Energy retains a constant value in all the changes of the form of 
motion. 

XII. Stefan–Boltzmann Law 
Energy radiated from a black body is proportional to the fourth 
power of its temperature (Kelvin units). 

XIII. First-Order Rate Laws 
A substance flows down a potential or concentration gradient 
at a rate proportional to the magnitude of the gradient. Includes 
Fourier’s law, Darcy’s law, Newton’s law of viscosity, Ohm’s 
law, Hooke’s law, and Fick’s first law. 

XIV. Law of Mass Action 
The rate of a forward chemical reaction is proportional to the 
product of the reactants’ concentrations (raised to the power of 
their stoichiometric coefficients). 

XV. Law of Radioactive Decay 
The rate of decay of a radioactive substance is proportional to 
its mass. 

XVI. Relationship Between Stress and Strain 
The shear stress acting on a Newtonian fluid is proportional to 
the rate of shear strain, with the proportionality constant being 
the coefficient of viscosity. 

XVII. Archimedes’ Principle 
A body partly or wholly immersed in a fluid is buoyed up by a 
force acting vertically upwards through the center of mass of 
displaced fluid and equal to the weight of the fluid displaced. 
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Summary 

This chapter was designed to instill in the reader a sense 
of the role of mathematical models in the geosciences, es-
pecially those that we focus on here—dynamical systems 
models. Following on some examples, we have provided 
a template for constructing mathematical models that we 
will follow religiously in this book. Many of the terms and 
concepts that we use in later chapters were introduced, 
and some necessary basic mathematics was reviewed for 
those needing a reminder. Now that the toolbox has been 
filled, we move on to the process of converting differen-
tial equations into algebraic expressions that can be solved 
using matrix algebra: the process of obtaining numerical 
solutions by finite difference. 




