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1 ...........................................

From Microscopic to Macroscopic Behavior

We explore the fundamental differences between microscopic and macroscopic
systems, note that bouncing balls come to rest and hot objects cool, and discuss how
the behavior of macroscopic systems is related to the behavior of their microscopic
constituents. Computer simulations are introduced to demonstrate the general
qualitative behavior of macroscopic systems.

1.1 Introduction

Our goal is to understand the properties of macroscopic systems, that is, systems
of many electrons, atoms, molecules, photons, or other constituents. Examples
of familiar macroscopic objects include systems such as the air in your room, a
glass of water, a coin, and a rubber band—examples of a gas, liquid, solid, and
polymer, respectively. Less familiar macroscopic systems include superconductors,
cell membranes, the brain, the stock market, and neutron stars.

We will find that the type of questions we ask about macroscopic systems
differ in important ways from the questions we ask about systems that we treat
microscopically. For example, consider the air in your room. Have you ever
wondered about the trajectory of a particular molecule in the air? Would knowing
that trajectory be helpful in understanding the properties of air? Instead of questions
such as these, examples of questions that we do ask about macroscopic systems
include the following:

1. How does the pressure of a gas depend on the temperature and the volume
of its container?

2. How does a refrigerator work? How can we make it more efficient?
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3. How much energy do we need to add to a kettle of water to change it to
steam?

4. Why are the properties of water different from those of steam, even though
water and steam consist of the same type of molecules?

5. How and why does a liquid freeze into a particular crystalline structure?
6. Why does helium have a superfluid phase at very low temperatures? Why do

some materials exhibit zero resistance to electrical current at sufficiently low
temperatures?

7. In general, how do the properties of a system emerge from its constituents?
8. How fast does the current in a river have to be before its flow changes from

laminar to turbulent?
9. What will the weather be tomorrow?

These questions can be roughly classified into three groups. Questions 1–
3 are concerned with macroscopic properties such as pressure, volume, and
temperature and processes related to heating and work. These questions are relevant
to thermodynamics, which provides a framework for relating the macroscopic
properties of a system to one another. Thermodynamics is concerned only with
macroscopic quantities and ignores the microscopic variables that characterize
individual molecules. For example, we will find that understanding the maximum
efficiency of a refrigerator does not require a knowledge of the particular liquid
used as the coolant. Many of the applications of thermodynamics are to engines, for
example, the internal combustion engine and the steam turbine.

Questions 4–7 relate to understanding the behavior of macroscopic systems
starting from the atomic nature of matter. For example, we know that water consists
of molecules of hydrogen and oxygen. We also know that the laws of classical and
quantum mechanics determine the behavior of molecules at the microscopic level.
The goal of statistical mechanics is to begin with the microscopic laws of physics
that govern the behavior of the constituents of the system and deduce the properties
of the system as a whole. Statistical mechanics is a bridge between the microscopic
and macroscopic worlds.

Question 8 also relates to a macroscopic system, but temperature is not relevant
in this case. Moreover, turbulent flow continually changes in time. Question 9
concerns macroscopic phenomena that change with time. Although there has been
progress in our understanding of time-dependent phenomena such as turbulent flow
and hurricanes, our understanding of such phenomena is much less advanced than
our understanding of time-independent systems. For this reason we will focus our
attention on systems whose macroscopic properties are independent of time and
consider questions such as those in Questions 1–7.

1.2 Some Qualitative Observations

We begin our discussion of macroscopic systems by considering a glass of hot water.
We know that, if we place a glass of hot water into a large cold room, the hot
water cools until its temperature equals that of the room. This simple observation
illustrates two important properties associated with macroscopic systems—the
importance of temperature and the “arrow” of time. Temperature is familiar because
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it is associated with the physiological sensations of hot and cold and is important in
our everyday experience.

The direction or arrow of time raises many questions. Have you ever observed a
glass of water at room temperature spontaneously become hotter? Why not? What
other phenomena exhibit a direction of time? The direction of time is expressed by
the nursery rhyme:

Humpty Dumpty sat on a wall
Humpty Dumpty had a great fall
All the king’s horses and all the king’s men
Couldn’t put Humpty Dumpty back together again.

Is there a direction of time for a single particle? Newton’s second law for a single
particle, F = dp/dt, implies that the motion of particles is time-reversal invariant;
that is, Newton’s second law looks the same if the time t is replaced by −t and
the momentum p by −p. There is no direction of time at the microscopic level. Yet
if we drop a basketball onto a floor, we know that it will bounce and eventually
come to rest. Nobody has observed a ball at rest spontaneously begin to bounce,
and then bounce higher and higher. So based on simple everyday observations we
can conclude that the behaviors of macroscopic bodies and single particles are very
different.

Unlike scientists of about a century or so ago, we know that macroscopic systems
such as a glass of water and a basketball consist of many molecules. Although the
intermolecular forces in water produce a complicated trajectory for each molecule,
the observable properties of water are easy to describe. If we prepare two glasses
of water under similar conditions, we know that the observable properties of the
water in each glass are indistinguishable, even though the motion of the individual
particles in the two glasses is very different.

If we take into account that the bouncing ball and the floor consist of molecules,
then we know that the total energy of the ball and the floor is conserved as the
ball bounces and eventually comes to rest. Why does the ball eventually come to
rest? You might be tempted to say the cause is “friction,” but friction is just a
name for an effective or phenomenological force. At the microscopic level we know
that the fundamental forces associated with mass, charge, and the nucleus conserve
total energy. Hence, if we include the energy of the molecules of the ball and the
floor, the total energy is conserved. Conservation of energy does not explain why the
inverse process, where the ball rises higher and higher with each bounce, does not
occur. Such a process also would conserve the total energy. So a more fundamental
explanation is that the ball comes to rest consistent with conservation of the total
energy and with some other principle of physics. We will learn that this principle
is associated with an increase in the entropy of the system. For now, entropy is
just a name, and it is important only to understand that energy conservation is not
sufficient to understand the behavior of macroscopic systems.1

By thinking about the constituent molecules, we can gain some insight into the
nature of entropy. Let us consider the ball bouncing on the floor again. Initially, the
energy of the ball is associated with the motion of its center of mass, and we say

1We will learn that, as for most concepts in physics, the meaning of entropy in the context of
thermodynamics and statistical mechanics is very different from its meaning as used by nonscientists.
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that the energy is associated with one degree of freedom. After some time the energy
becomes associated with the individual molecules near the surface of the ball and the
floor, and we say that the energy is now distributed over many degrees of freedom.
If we were to bounce the ball on the floor many times, the ball and the floor would
each feel warm to our hands. So we can hypothesize that energy has been transferred
from one degree of freedom to many degrees of freedom while the total energy has
been conserved. Hence, we conclude that the entropy is a measure of how the energy
is distributed.

What other quantities are associated with macroscopic systems besides temper-
ature, energy, and entropy? We are already familiar with some of these quantities.
For example, we can measure the air pressure in a basketball and its volume. More
complicated quantities are the thermal conductivity of a solid and the viscosity of
oil. How are these macroscopic quantities related to each other and to the motion
of the individual constituent molecules? The answers to questions such as these and
the meaning of temperature and entropy will take us through many chapters.2

1.3 Doing Work and the Quality of Energy

We already have observed that hot objects cool, and cool objects do not sponta-
neously become hot; bouncing balls come to rest, and a stationary ball does not
spontaneously begin to bounce. And although the total energy is conserved in these
processes, the distribution of energy changes in an irreversible manner. We also
have concluded that a new concept, the entropy, needs to be introduced to explain
the direction of change of the distribution of energy.

Now let us take a purely macroscopic viewpoint and discuss how we can arrive
at a similar qualitative conclusion about the asymmetry of nature. This viewpoint
was especially important historically because of the lack of a microscopic theory
of matter in the nineteenth century when the laws of thermodynamics were being
developed.

Consider the conversion of stored energy into heating a house or a glass of water.
The stored energy could be in the form of wood, coal, or animal and vegetable oils
for example. We know that this conversion is easy to do using simple methods,
for example, an open flame. We also know that if we rub our hands together, they
will become warmer. There is no theoretical limit to the efficiency at which we can
convert stored energy to energy used for heating an object.

What about the process of converting stored energy into work? Work, like many
of the other concepts that we have mentioned, is difficult to define. For now let us say
that doing work is equivalent to the raising of a weight. To be useful, we need to do
this conversion in a controlled manner and indefinitely. A single conversion of stored
energy into work such as the explosion of dynamite might demolish an unwanted
building, but this process cannot be done repeatedly with the same materials. It is
much more difficult to convert stored energy into work, and the discovery of ways
to do this conversion led to the industrial revolution. In contrast to the primitiveness
of an open flame, we have to build an engine to do this conversion.

2Properties such as the thermal conductivity and viscosity are treated in the online supplement (see
<www.compadre.org/stp> or <http://press.princeton.edu/titles/9375.html>).
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Can we convert stored energy into useful work with 100% efficiency? To answer
this question we have to appeal to observation. We know that some forms of stored
energy are more useful than others. For example, why do we burn coal and oil
in power plants even though the atmosphere and the oceans are vast reservoirs
of energy? Can we mitigate global climate change by extracting energy from the
atmosphere to run a power plant? From the work of Kelvin, Clausius, Carnot,
and others, we know that we cannot convert stored energy into work with 100%
efficiency, and we must necessarily “waste” some of the energy. At this point, it
is easier to understand the reason for this necessary inefficiency by microscopic
arguments. For example, the energy in the gasoline of the fuel tank of an automobile
is associated with many molecules. The job of the automobile engine is to transform
this (potential) energy so that it is associated with only a few degrees of freedom,
that is, the rolling tires and gears. It is plausible that it is inefficient to transfer energy
from many degrees of freedom to only a few. In contrast, the transfer of energy from
a few degrees of freedom (the firewood) to many degrees of freedom (the air in your
room) is relatively easy.

The importance of entropy, the direction of time, and the inefficiency of
converting stored energy into work are summarized in the various statements
of the second law of thermodynamics. It is interesting that the second law of
thermodynamics was conceived before the first law of thermodynamics. As we will
learn, the first law is a statement of conservation of energy.

Suppose that we take some firewood and use it to “heat” a sealed room. Because
of energy conservation, the energy in the room plus the firewood is the same before
and after the firewood has been converted to ash. Which form of the energy is
more capable of doing work? You probably realize that the firewood is a more
useful form of energy than the “hot air” and ash that exists after the firewood is
burned. Originally the energy was stored in the form of chemical (potential) energy.
Afterward the energy is mostly associated with the motion of the molecules in the
air. What has changed is not the total energy, but its ability to do work. We will
learn that an increase in entropy is associated with a loss of ability to do work. We
have an entropy problem, not an energy problem.

1.4 Some Simple Simulations

So far we have discussed the behavior of macroscopic systems by appealing to
everyday experience and simple observations. We now discuss some simple ways
of simulating the behavior of macroscopic systems. Although we cannot simulate
a macroscopic system of 1023 particles on a computer, we will find that even
small systems of the order of 100 particles are sufficient to illustrate the qualitative
behavior of macroscopic systems.

We first discuss how we can simulate a simple model of a gas consisting of
molecules whose internal structure can be ignored. In particular, imagine a system
of N particles in a closed container of volume V and suppose that the container is
far from the influence of external forces such as gravity. We will usually consider
two-dimensional systems so that we can easily visualize the motion of the particles.

For simplicity, we assume that the motion of the particles is given by classical
mechanics, and hence we need to solve Newton’s second law for each particle.
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Figure 1.1. Plot of the Lennard-Jones potential uLJ(r ), where r is the distance between the
particles. Note that the potential is characterized by a length σ and an energy ε.

To compute the total force on each particle we have to specify the nature of the
interaction between the particles. We will assume that the force between any pair of
particles depends only on the distance between them. This simplifying assumption
is applicable to simple liquids such as liquid argon, but not to water. We will also
assume that the particles are not charged. The force between any two particles is
repulsive when their separation is small and weakly attractive when they are far
apart. For convenience we will usually assume that the interaction is given by the
Lennard-Jones potential given by3

uLJ(r ) = 4ε

[(σ

r

)12
−
(σ

r

)6]
, (1.1)

where r is the distance between two particles. A plot of the Lennard-Jones potential
is shown in Figure 1.1. The r−12 form of the repulsive part of the interaction was
chosen for convenience only and has no fundamental significance. The attractive
1/r6 behavior at large r is the van der Waals interaction.4 The force between any
two particles is given by f (r ) = −du/dr .

In macroscopic systems the fraction of particles near the walls of the container
is negligibly small. However, the number of particles that can be studied in a
simulation is typically 103–106. For these small systems the fraction of particles
near the walls of the container would be significant, and hence the behavior of such a

3This potential is named after John Lennard-Jones, 1894–1954, a theoretical chemist and physicist at
Cambridge University. The Lennard-Jones potential is appropriate for closed-shell systems, that is, rare
gases such as Ar or Kr.
4The van der Waals interaction arises from an induced dipole-dipole effect. It is present in all molecules,
but is important only for the heavier noble gas atoms. See, for example, Brehm and Mullin (1989).
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system would be dominated by surface effects. The most common way of minimizing
surface effects and to simulate more closely the properties of a macroscopic system is
to use what are known as toroidal boundary conditions. These boundary conditions
are familiar to computer game players. For example, a particle that exits the right
edge of the “box” reenters the box from the left side. In one dimension this boundary
condition is equivalent to taking a piece of string and making it into a loop. In this
way a particle moving on the wire never reaches the end (the surface).

Given the form of the interparticle potential, we can determine the total force on
each particle due to all the other particles in the system. We then use Newton’s
second law of motion to find the acceleration of each particle. Because the
acceleration is the second derivative of the position, we need to solve a second-order
differential equation for each particle (in each direction) given the initial position and
velocity of each particle. (For a two-dimensional system of N particles, we would
have to solve 2N differential equations.) These differential equations are coupled
because the acceleration of a particular particle depends on the positions of all the
other particles. Although we cannot solve the resultant set of coupled differential
equations analytically, we can use straightforward numerical methods to solve these
equations to a good approximation. This way of simulating dense gases, liquids,
solids, and biomolecules is called molecular dynamics.5

In the following two problems we will explore some of the qualitative properties
of macroscopic systems by doing some simple simulations. Before you actually do
the simulations, think about what you believe the results will be. In many cases
the most valuable part of the simulation is not the simulation itself, but the act of
thinking about a concrete model and its behavior.

The simulations are written in Java and can be run on any operating system that
supports Java 1.5+. You may download all the programs used in this text from
<http://press.princeton.edu/titles/9375.html> or <www.compadre.org/stp> as a single file
(the STP Launcher) or as individual programs. Alternatively, you can run each simulation
as an applet using a browser.

Problem 1.1. Approach to equilibrium
Suppose that we divide a box into three equal parts and place N particles in the
middle third of the box.6 The particles are placed at random with the constraint that
no two particles can be closer than the length parameter σ . This constraint prevents
the initial force between any two particles from being too big, which would lead
to the breakdown of the numerical method used to solve the differential equations.
The velocity of each particle is assigned at random and then the velocity of the center
of mass is set to zero. At t = 0, we remove the “barriers” between the three parts
and watch the particles move according to Newton’s equations of motion. We say
that the removal of the barrier corresponds to the removal of an internal constraint.
What do you think will happen?

5The nature of molecular dynamics is discussed in Gould, Tobochnik, and Christian (2006), Chap. 8.
6We have divided the box into three parts so that the effects of the toroidal boundary conditions will not
be as apparent as if we had initially confined the particles to one half of the box.
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Program ApproachToEquilibriumThreePartitions implements this simula-
tion.7 Double click on the jar file to open the program, and click the Start button
to begin the simulation. The program shows the motion of the particles in the box
and plots the number of particles in the left (n1), center (n2), and right (n3) part of
the box as a function of time. The input parameter is N, the number of particles
initially in the center cell, so that n1 = 0, n2 = N, and n3 = 0 at t = 0.

Give your answers to the following questions before you do the simulation.

(a) Does the system appear to show a direction of time for N = 6?
(b) What is the nature of the time dependence of n1, n2, and n3 as a function of

the time t for N = 27? Does the system appear to show a direction of time? Choose
various values of N that are multiples of 3 up to N = 270. Is the direction of time
better defined for larger N?

(c) The time shown in the plots is in terms of σ (m/ε)1/2, where σ and ε are
the length and energy parameters of the Lennard-Jones potential in (1.1) and m is
the mass of a particle. Verify that this combination has units of time. For argon
σ = 3.4 × 10−10 m, ε = 1.65 × 10−21 J, and m = 6.69 × 10−26 kg. What is the value
of σ (m/ε)1/2 for argon? How much real time has elapsed if the program shows that
t = 100?

(d) To better understand the direction of time make a video8 of the motion of the
positions of 270 particles starting from t = 0. Run the simulation until the particles
are approximately equally divided between the three regions. Run the video both
forward and backward. Can you tell by just looking at the video which direction
is forward? Repeat for increasing values of N. Does your conclusion about the
direction of time become more certain for larger N?

(e) Repeat part (d) but start the video after the particles are distributed equally
among the three regions, say at t = 20 as in Figure 1.2. Is the direction of time
obvious now? Repeat for various values of N.

(f) *After n1, n2, and n3 first become approximately equal for N = 270, reverse
the time and continue the simulation. Reversing the time is equivalent to letting
t → −t and changing the signs of all the velocities. Do the particles return to
the middle third of the box? Do the simulation again, but let the system evolve
longer before the time is reversed. What happens now? Are your results consistent
with the fact that Newton’s equations of motion are deterministic and time reversal
invariant so that reversing the velocities should exactly retrace the original particle
trajectories? (See Problem 1.9 for a discussion of the extreme sensitivity of the
trajectories to very small errors.)

(g) Program ApproachToEquilibriumTwoPartitions initially divides the box
into two partitions rather than three. Run the program and verify that the
simulation shows similar qualitative behavior. Explain the use of toroidal boundary
conditions. �

The results of the simulations in Problem 1.1 might not seem surprising until you
think about them. Why does the system exhibit a direction of time when the motion

7We will omit the prefix stp_ whenever it will not cause confusion.
8Choose Video Capture under the Tools menu. Save the video in QuickTime. The video can be run
using the QuickTime Player and played forward or backward by using the command key and the right
or left arrow key.
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Figure 1.2. Evolution of the number of particles in each third of the box for N = 270. The
particles were initially restricted to the middle third of the box. Toroidal boundary conditions
are used in both directions. The initial velocities are assigned at random such that the center
of mass velocity is zero.

of each particle is time reversible? Do the particles fill up the available space simply
because the system becomes less dense?

To gain some more insight into why there is a direction of time, we consider a
simpler model which shows similar behavior. Imagine a closed box that is divided
into two parts of equal areas. The left half initially contains N identical particles
and the right half is empty. We then make a small hole in the partition between the
two halves. What happens? Instead of simulating this system by solving Newton’s
equations for each particle, we adopt a simpler approach based on a probabilistic
model. We assume that the system is so dilute that the particles do not interact with
one another. Hence, the probability per unit time that a particle goes through the
hole in the partition is the same for all particles regardless of the number of particles
in either half. We also assume that the size of the hole is such that only one particle
can pass through in one unit of time.

One way to implement this model is to choose a particle at random and move
it to the other half. This procedure is cumbersome, because our only interest is the
number of particles on each side. That is, we need to know only n, the number of
particles on the left side; the number on the right side is N−n. Because each particle
has the same chance to go through the hole in the partition, the probability per unit
time that a particle moves from left to right equals the number of particles on the
left side divided by the total number of particles; that is, the probability of a move
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from left to right is n/N. The algorithm for simulating the evolution of the model is
given by the following steps:

1. Generate a random number r from a uniformly distributed set of random
numbers in the unit interval 0 ≤ r < 1.

2. If r ≤ n/N, a particle is moved from left to right, that is, let n → n − 1;
otherwise, n → n + 1.

3. Increase the “time” by 1.

Program ApproachToEquilibriumParticlesInBox implements this algorithm and
plots the evolution of n.

Problem 1.2. Particles in a box

(a) Before you run the program describe what you think will be the qualitative
behavior of n(t), the time dependence of the number of particles on the left
side of the box.

(b) Run the program and describe the behavior of n(t) for various values of
N. Does the system approach equilibrium? How would you characterize
equilibrium? In what sense is equilibrium better defined as N becomes
larger? Does your definition of equilibrium depend on how the particles were
initially distributed between the two halves of the box?

(c) When the system is in equilibrium, does the number of particles on the left-
hand side remain a constant? If not, how would you describe the nature of
equilibrium?

(d) If N� 32, does the system return to its initial state during the time you have
patience to watch the system?

(e) How does n, the mean number of particles on the left-hand side, depend on
N after the system has reached equilibrium? For simplicity, the program
computes various averages from the time t = 0. Why would such a
calculation not yield the correct equilibrium average values? Use the Zero
Averages button to reset the averages.

(f) Define the quantity σ by the relation9

σ 2 = (n − n)2. (1.2)

What does σ measure? What would be its value if n were constant? How
does σ depend on N? How does the ratio σ/n depend on N? We say that σ

is a measure of the fluctuations of n about its mean, and σ/n is a measure of
the relative fluctuations of n. �

From Problems 1.1 and 1.2 we conclude that the mean values of the macroscopic
quantities of interest will eventually become independent of time. We say that the
system has reached equilibrium, and the macroscopic quantities exhibit fluctuations
about their average values. We also learned that the relative fluctuations become
smaller as the number of particles is increased, and the details of the dynamics are
irrelevant to the general tendency of macroscopic systems to approach equilibrium.

9This use of σ should not be confused with the length σ in the Lennard-Jones potential.
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TABLE 1.1
The four possible ways in which N = 2 particles can be distributed between the two halves
of a box. The quantity W(n) is the number of microstates corresponding to the macroscopic
state characterized by n, the number of particles on the left-hand side. The probability P(n)
of macrostate n is calculated assuming that each microstate is equally likely.

Microstate n W(n) P(n)

L L 2 1 1/4

L R 1 2 1/2R L

R R 0 1 1/4

These properties of macroscopic systems are independent of the dynamics, the nature
of the particles, and many other details.

How can we understand why the systems considered in Problems 1.1 and 1.2
exhibit a direction of time? There are two general methods. One way is to study
the dynamics of the system as it approaches equilibrium.10 A much simpler way
is to change the question and take advantage of the fact that the equilibrium
state of a macroscopic system is independent of time on the average, and hence
time is irrelevant in equilibrium. For the model considered in Problem 1.2 we
will see that a count of the number of ways that the particles can be distributed
between the two halves of the box will give us much insight into the nature of
equilibrium. This information tells us nothing about how long it takes the system to
reach equilibrium. However, it will give us insight into why there is a direction of
time.

A given particle can be in either the left or right half of the box. Let us call each
distinct arrangement of the particles between the two halves of the box a microstate.
For N = 2 the four possible microstates are shown in Table 1.1. Because the halves
are equivalent, a given particle is equally likely to be in either half when the system
is in equilibrium. Hence, for N = 2 the probability of each microstate equals 1/4
when the system is in equilibrium.

From a macroscopic point of view, we do not care which particle is in which half
of the box, but only the number of particles on the left. Hence, the macroscopic state
or macrostate is specified by n. Are the three possible macrostates listed in Table 1.1
equally probable?

Now let us consider N = 4 for which there are 2 × 2 × 2 × 2 = 24 = 16
microstates (see Table 1.2). Let us assume as before that all microstates are equally
probable in equilibrium. We see from Table 1.2 that there is only one microstate
with all particles on the left and the most probable macrostate is n = 2.

For larger N the probability of the most probable macrostate with n = N/2 is
much greater than the macrostate with n = N, which has a probability of only 1/2N

corresponding to a single microstate. The latter microstate is “special” and is said
to be nonrandom, while the microstates with n ≈ N/2, for which the distribution
of the particles is approximately uniform, are said to be “random.” So we conclude
that the equilibrium macrostate corresponds to the most probable state.

10The time dependence of the number of particles on the left half of the box in Problem 1.2 is discussed
in Section 1.13.1.
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TABLE 1.2
The 24 possible microstates for N = 4 particles which are distributed in the two halves of a
box. The quantity W(n) is the number of microstates corresponding to the macroscopic state
characterized by n. The probability P(n) of macrostate n is calculated assuming that each
microstate is equally likely.

Microstate n W(n) P(n)

L L L L 4 1 1/16

R L L L 3
L R L L 3
L L R L 3
L L L R 3

4 4/16

R R L L 2
R L R L 2
R L L R 2
L R R L 2
L R L R 2
L L R R 2

6 6/16

R R R L 1
R R L R 1
R L R R 1
L R R R 1

4 4/16

R R R R 0 1 1/16

Problem 1.3. Counting microstates

(a) Calculate the number of possible microstates for each macrostate n for
N = 8 particles. What is the probability that n = 8? What is the probability
that n = 4? It is possible to count the number of microstates for each
n by hand if you have enough patience, but because there are a total of
28 = 256 microstates, this counting would be very tedious. An alternative
is to obtain an expression for the number of ways that n particles out
of N can be in the left half of the box. Motivate such an expression by
enumerating the possible microstates for smaller values of N until you see a
pattern.

(b) The macrostate with n = N/2 is much more probable than the macrostate
with n = N. Why? �

Approach to equilibrium. The macrostates that give us the least amount of
information about the associated microstates are the most probable. For example,
suppose that we wish to know where particle 1 is, given that N = 4. If n = 4,
we know with certainty that particle 1 is on the left. If n = 3, the probability that
particle 1 is on the left is 3/4. And if n = 2 we know only that particle 1 is on the
left with probability 1/2. In this sense the macrostate n = 2 is more random than
macrostates n = 4 and n = 3.

We also found from the simulations in Problems 1.1 and 1.2 that if an isolated
macroscopic system changes in time due to the removal of an internal constraint, it
tends to evolve from a less random to a more random state. Once the system reaches
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its most random state, fluctuations corresponding to an appreciably nonuniform
state are very rare. These observations and our reasoning based on counting the
number of microstates corresponding to a particular macrostate leads us to conclude
that:

A system in a nonuniform macrostate will change in time on the average so as to approach
its most random macrostate where it is in equilibrium.

This conclusion is independent of the nature of the dynamics. Note that the
simulations in Problems 1.1 and 1.2 involved the dynamics, but our discussion of
the number of microstates corresponding to each macrostate did not involve the
dynamics in any way. Instead we counted (enumerated) the microstates and assigned
them equal probabilities assuming that the system is isolated and in equilibrium.
It is much easier to understand equilibrium systems by ignoring the dynamics
altogether.

In the simulation of Problem 1.1 the total energy was conserved, and hence the
macroscopic quantity of interest that changed from the specially prepared initial
state with n2 = N to the most random macrostate with n2 ≈ N/3 was not the total
energy. So what macroscopic quantities changed besides the number of particles in
each third of the box? Based on our previous discussions, we can tentatively say
that the quantity that changed is the entropy. We conjecture that the entropy is
associated with the number of microstates associated with a given macrostate. If we
make this association, we see that the entropy is greater after the system has reached
equilibrium than in the system’s initial state. Moreover, if the system were initially
prepared such that n1 = n2 = n3 = N/3, the mean value of n1 = n2 = n3 = N/3
and hence the entropy would not change. Hence, we can conclude the following:

The entropy of an isolated system increases or remains the same when an internal
constraint is removed.

This statement is equivalent to the second law of thermodynamics. You might
want to look at Chapter 4, where this identification of the entropy is made
explicit.

As a result of the two simulations that we have considered and our discussions,
we can make some additional preliminary observations about the behavior of
macroscopic systems.

Fluctuations in equilibrium. Once a system reaches equilibrium, the macroscopic
quantities of interest do not become independent of the time, but exhibit fluctuations
about their average values. In equilibrium only the average values of the macroscopic
variables are independent of time.11 For example, in Problem 1.2 the number of

11In this introductory chapter some of our general statements need to be qualified. Just because a system
has time-independent macroscopic properties does not necessarily mean that it is in equilibrium. If a
system is driven by external forces or currents that are time independent, the observable macroscopic
properties of the system can be time independent, and the system is said to be in a steady state. For
example, consider a metal bar with one end in contact with a much larger system at temperature Thot and
the other end in contact with a large system at temperature Tcold. If Thot > Tcold, energy will be continually
transported from the “hot” end to the “cold” end and the temperature gradient will not change on the
average.
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particles n(t) changes with t, but its average value n does not.12 If N is large,
fluctuations corresponding to a very nonuniform distribution of the particles almost
never occur, and the relative fluctuations σ/n [see (1.2)] become smaller as N is
increased.

History independence. The properties of equilibrium systems are independent of
their history. For example, n in Problem 1.2 would be the same whether we had
started with n(t = 0) = N or n(t = 0) = 0. In contrast, as members of the human
race, we are all products of our history. One consequence of history independence is
that we can ignore how a system reached equilibrium. We will find that equilibrium
statistical mechanics is equivalent to counting microstates. The problem is that this
counting is usually difficult to do.

Need for statistical approach. A macroscopic system can be described in detail
by specifying its microstate. Such a description corresponds to giving all the
possible information. For a system of classical particles, a microstate corresponds
to specifying the position and velocity of each particle.

From our simulations we see that the microscopic state of the system changes in a
complicated way that is difficult to describe. However, from a macroscopic point of
view the description is much simpler. Suppose that we simulated a system of many
particles and saved the trajectories of each particle as a function of time. What
could we do with this information? If the number of particles is 106 or more or
if we ran long enough, we would have a problem storing the data. Do we want
to have a detailed description of the motion of each particle? Would this data
give us much insight into the macroscopic behavior of the system? We conclude
that the presence of a large number of particles motivates us to adopt a statistical
approach. In Section 1.7 we will discuss another reason why a statistical approach is
necessary.

We will find that the laws of thermodynamics depend on the fact that the number
of particles in macroscopic systems is enormous. A typical measure of this number
is Avogadro’s number, which is approximately 6 × 1023, the number of atoms in a
mole. When there are so many particles, predictions of the average properties of the
system become meaningful, and deviations from the average behavior become less
important as the number of atoms is increased.

Equal a priori probabilities. In our analysis of the probability of each macrostate in
Problem 1.2, we assumed that each microstate was equally probable. That is, each
microstate of an isolated system occurs with equal probability if the system is in
equilibrium. We will make this assumption explicit in Chapter 4.

Existence of different phases. So far our simulations of interacting systems have
been restricted to dilute gases. What do you think would happen if we made the
density higher? Would a system of interacting particles form a liquid or a solid if
the temperature or the density were chosen appropriately? The existence of different
phases is explored in Problem 1.4.

12We have not carefully defined how to calculate the average value n. One way to do so is to average n(t)
over some interval of time. Another way is to do an ensemble average. That is, run the same simulation
many times with different sets of random number sequences and then average the results at a given time
(see Section 1.8).
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Problem 1.4. Different phases

(a) Program LJ2DMD simulates an isolated system of N particles interacting via
the Lennard-Jones potential. Choose N = 144 and L = 18 so that the
density ρ = N/L2 ≈ 0.44. The initial positions are chosen at random except
that no two particles are allowed to be closer than the length σ . Run the
simulation and satisfy yourself that this choice of density and resultant total
energy corresponds to a gas. What are your criteria?

(b) Slowly lower the total energy of the system. (The total energy is lowered by
rescaling the velocities of the particles.) If you are patient, you will be able to
observe “liquidlike” regions. How are they different from “gaslike” regions?

(c) If you decrease the total energy further, you will observe the system in a state
roughly corresponding to a solid. What are your criteria for a solid? Explain
why the solid that we obtain in this way will not be a perfect crystalline
solid.

(d) Describe the motion of the individual particles in the gas, liquid, and solid
phases.

(e) Conjecture why a system of particles interacting via the Lennard-Jones
potential in (1.1) can exist in different phases. Is it necessary for the potential
to have an attractive part for the system to have a liquid phase? Is the
attractive part necessary for there to be a solid phase? Describe a simulation
that would help you answer this question. �

It is remarkable that a system with the same interparticle interaction can be in
different phases. At the microscopic level, the dynamics of the particles is governed
by the same equations of motion. What changes? How does a phase change occur
at the microscopic level? Why doesn’t a liquid crystallize immediately after its
temperature is lowered quickly? What happens when it does begin to crystallize?
We will find in later chapters that phase changes are examples of cooperative effects.
Familiar examples of phase transitions are the freezing and boiling of water. Another
example with which you might be familiar is the loss of magnetism of nickel or
iron above a certain temperature (358◦C for nickel). Other examples of cooperative
effects are the occurrence of gridlock on a highway when the density of vehicles
exceeds a certain value, and the occurrence of an epidemic as a function of immune
response and population density.

1.5 Measuring the Pressure and Temperature

The obvious macroscopic quantities that we can measure in our simulations of many
interacting particles include the average kinetic and potential energies, the number
of particles, and the volume. We know from our everyday experience that there are
at least two other macroscopic variables that are relevant for a system of particles,
namely, the pressure and the temperature.

You are probably familiar with force and pressure from courses in mechanics.
The idea is to determine the force needed to keep a freely moving wall stationary.
This force is divided by the area A of the wall to give the pressure P:

P = F
A

, (1.3)
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where the force F acts normal to the surface. The pressure is a scalar because it is
the same in all directions on the average. From Newton’s second law, we can rewrite
(1.3) as

P = 1
A

d(px)
dt

, (1.4)

where px is the component of the momentum perpendicular to the wall. From (1.4)
we see that the pressure is related to the rate of change of the momentum of all the
particles that strike a wall.13

The number of particles that strike a wall of the box per second is huge. A
pressure gauge cannot distinguish between the individual frequent impacts and
measures the average force due to many impacts. We will discuss many examples
of the relation of the macroscopic properties of a system to an average of some
microscopic quantity.

Before we discuss the nature of temperature consider the following questions.

Problem 1.5. Nature of temperature

(a) Summarize what you know about temperature. What reasons do you have
for thinking that it has something to do with energy?

(b) If you add energy to a pot of boiling water, does the temperature of the
water change?

(c) Discuss what happens to the temperature of a hot cup of coffee. What
happens, if anything, to the temperature of its surroundings? �

Although temperature and energy are related, they are not the same quantity.
For example, one way to increase the energy of a glass of water would be to lift
it. However, this action would not affect the temperature of the water. So the
temperature has nothing to do with the motion of the center of mass of the system. If
we placed a glass of water on a moving conveyor belt, the temperature of the water
would not change. We also know that temperature is a property associated with
many particles. It would be absurd to refer to the temperature of a single molecule.

The most fundamental property of temperature is not that it has something to
do with energy. More importantly, temperature is the quantity that becomes equal
when two systems are allowed to exchange energy with one another. In Problem 1.6
we interpret the temperature from this point of view.

Problem 1.6. Identification of the temperature

(a) Consider two systems of particles A and B which interact via the Lennard-
Jones potential in (1.1). Use Program LJThermalEquilibrium. Both systems
are in a square box with linear dimension L = 12. In this case toroidal
boundary conditions are not used and the particles also interact with fixed
particles (with infinite mass) that make up the walls and the partition
between them. Initially, the two systems are isolated from each other

13Because most of our simulations are done using toroidal boundary conditions, we will use the relation
of the force to the virial, a mechanical quantity that involves all the particles in the system, not just those
colliding with a wall. See Gould, Tobochnik, and Christian (2006), Chap. 8. The relation of the force to
the virial is usually considered in graduate courses in mechanics.
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and from their surroundings. We take NA = 81, εAA = 1.0, σAA =
1.0, NB = 64, εBB = 1.5, and σBB = 1.2. Run the simulation and
monitor the kinetic energy and potential energy until each system appears
to reach equilibrium. What is the mean potential and kinetic energy of
each system? Is the total energy of each system fixed (to within numerical
error)?

(b) Remove the barrier and let the particles in the two systems interact with
one another.14 We choose εAB = 1.25 and σAB = 1.1. What quantity is
exchanged between the two systems? (The volume of each system is fixed.)

(c) After equilibrium has been established compare the average kinetic and
potential energies of each system to their values before the two systems came
into contact.

(d) We seek a quantity that is the same in both systems after equilibrium has
been established. Are the average kinetic and potential energies the same? If
not, think about what would happen if you doubled the number of particles
and the area of each system. Would the temperature change? Does it make
more sense to compare the average kinetic and potential energies or the
average kinetic and potential energies per particle? What quantity becomes
the same once the two systems are in equilibrium? Do any other quantities
become approximately equal? What can you conclude about the possible
identification of the temperature in this system? �

From the simulations in Problem 1.6 you are likely to conclude that the
temperature is proportional to the average kinetic energy per particle. You probably
knew about this relation already. We will learn in Chapter 4 that the proportionality
of the temperature to the average kinetic energy per particle holds only for a system
of particles whose kinetic energy is proportional to the square of its momentum or
velocity.

How can we measure the temperature of a system? After all, in an experiment
we cannot directly measure the mean kinetic energy per particle. Nevertheless, there
are many kinds of thermometers. These thermometers exchange energy with the
system of interest and have some physical property that changes in a way that
can be calibrated to yield the temperature. In Problem 1.7 we ask you to think
about the general characteristics of thermometers. We then consider a simple model
thermometer that is useful in simulations. We will discuss thermometers in more
detail in Chapter 2.

Problem 1.7. Thermometers

(a) Describe some of the simple thermometers with which you are familiar.
(b) On what physical principles do these thermometers operate?
(c) What requirements must a thermometer have to be useful? �

To gain more insight into the meaning of temperature we consider a model
thermometer known as a “demon.” This demon is a special particle that carries a
sack of energy and exchanges energy with the system of interest. If the change lowers

14To ensure that we can continue to identify which particle belongs to system A and which to system B,
we have added a spring to each particle so that it cannot wander too far from its original lattice site.
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the energy of the system, the demon puts the extra energy in its sack. If the change
costs energy, the demon gives the system the needed energy with the constraint that
Ed, the energy of the demon, must be nonnegative. The behavior of the demon is
given by the following algorithm:

1. Choose a particle in the system at random and make a trial change in one of
its coordinates.

2. Compute �E, the change in the energy of the system due to the trial change.
3. If �E ≤ 0, the system gives the surplus energy |�E| to the demon, Ed →

Ed + |�E|, and the trial change is accepted.
4. If �E > 0 and the demon has sufficient energy for this change (remember

that Ed is nonnegative), then the demon gives the necessary energy to the
system, Ed → Ed − �E, and the trial change is accepted. Otherwise, the trial
change is rejected and the microstate is not changed.

5. Repeat steps 1–4 many times.
6. Compute the averages of the quantities of interest once the system and the

demon have reached equilibrium.

Note that the total energy of the system and the demon is fixed.
We consider the consequences of these simple rules in Problem 1.8. The nature of

the demon is discussed further in Section 4.9.

Problem 1.8. The demon and the ideal gas
Program IdealThermometerIdealGas simulates a demon that exchanges energy
with an ideal gas of N particles in d spatial dimensions. Because the particles do
not interact, the only coordinate of interest is the velocity of the particles. In this
case the demon chooses a particle at random and changes each component of its
velocity by an amount chosen at random between −� and +�. For simplicity, we
set the initial demon energy Ed = 0 and the initial velocity of each particle equal
to +v0x̂, where v0 = (2E0/m)1/2/N. E0 is the desired total energy of the system,
and m is the mass of the particles. We choose units such that m = 1; the energy and
momentum are measured in dimensionless units (see Section 1.11).

(a) Run the simulation using the default parameters N = 40, E = 40, and d = 3.
Does the mean energy of the demon approach a well-defined value after a sufficient
number of energy exchanges with the system? One Monte Carlo step per particle
(mcs) is equivalent to N trial changes.

(b) What is Ed, the mean energy of the demon, and E, the mean energy of the
system? Compare the values of Ed and E/N.

(c) Fix N = 40 and double the total energy of the system. (Remember that
Ed = 0 initially.) Compare the values of Ed and E/N. How does their ratio change?
Consider other values of N ≥ 40 and E and determine the relation between Ed and
E/N.15

(d) You probably learned in high school physics or chemistry that the mean
energy of an ideal gas in three dimensions is equal to 3

2 NkT, where T is the
temperature of the gas, N is the number of particles, and k is a constant. Use this

15Because there are finite-size effects that are order 1/N, it is desirable to consider N � 1. The trade-off
is that the simulation will take longer to run.
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relation to determine the temperature of the ideal gas in parts (b) and (c). Our choice
of dimensionless variables implies that we have chosen units such that k = 1. Is Ed

proportional to the temperature of the gas?
(e) Suppose that the energy momentum relation of the particles is not ε = p2/2m,

but is ε = cp, where c is a constant (which we take to be 1). Consider various values
of N and E as you did in part (c). Is the dependence of Ed on E/N the same as you
found in part (d)? We will find (see Problem 4.30) that Ed is still proportional to the
temperature.

(f) *After the demon and the system have reached equilibrium, we can compute
the histogram H(Ed)�Ed, the number of times that the demon has energy between
Ed and Ed + �Ed. The bin width �Ed is chosen by the program. This histogram
is proportional to the probability p(Ed)�E that the demon has energy between Ed

and Ed + �E. What do you think is the nature of the dependence of p(Ed) on Ed?
Is the demon more likely to have zero or nonzero energy?

(g) *Verify the exponential form of p(Ed) = Ae−βEd , where A and β are
parameters.16 How does the value of 1/β compare to the value of Ed? We will
find that the exponential form of p(Ed) is universal, that is, independent of the
system with which the demon exchanges energy, and that 1/β is proportional to the
temperature of the system.

(h) Discuss why the demon is an ideal thermometer. �

1.6 Work, Heating, and the First Law of Thermodynamics

As you watch the motion of the individual particles in a molecular dynamics
simulation, you will probably describe the motion as “random” in the sense of how
we use random in everyday speech. The motion of the individual molecules in a
glass of water exhibits similar motion. Suppose that we were to expose the water
to a low flame. In a simulation this process would roughly correspond to increasing
the speed of the particles when they hit the wall. We say that we have transferred
energy to the system incoherently because each particle continues to move more or
less at random.

In contrast, if we squeeze a plastic container of water, we do work on the system,
and the particles near the wall move coherently. So we can distinguish two different
ways of transferring energy to the system. Heating transfers energy incoherently and
doing work transfers energy coherently.

Let us consider a molecular dynamics simulation again and suppose that we have
increased the energy of the system by either compressing the system and doing work
on it or by randomly increasing the speed of the particles that reach the walls of
the container. Roughly speaking, the first way would initially increase the potential
energy of interaction and the second way would initially increase the kinetic energy
of the particles. If we increase the total energy by the same amount, can you tell by
looking at the particle trajectories after equilibrium has been reestablished how the

16Choose Data Tool under the Tools menu and click OK.
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energy was increased? The answer is no, because for a given total energy, volume,
and number of particles, the kinetic energy and the potential energy each have
unique equilibrium values. We conclude that the total energy of the gas can be
changed by doing work on it or by heating it or by both processes. This statement
is equivalent to the first law of thermodynamics and from the microscopic point of
view is simply a statement of conservation of energy.

Our discussion implies that the phrase “adding heat” to a system makes no sense,
because we cannot distinguish “heat energy” from potential energy and kinetic
energy. Nevertheless, we frequently use the word “heat” in everyday speech. For
example, we might say “Please turn on the heat” and “I need to heat my coffee.”
We will avoid such uses, and whenever possible avoid the use of “heat” as a noun.
Why do we care? Because there is no such thing as heat and the words we use affect
how we think. Once upon a time, scientists thought that there was a fluid in all
substances called caloric or heat that could flow from one substance to another. This
idea was abandoned many years ago, but we still use it in our everyday language.

1.7 *The Fundamental Need for a Statistical Approach

In Section 1.4 we discussed the need for a statistical approach when treating
macroscopic systems from a microscopic point of view. Although we can compute
the trajectory (the position and velocity) of each particle, our disinterest in the
trajectory of any particular particle and the overwhelming amount of information
that is generated in a simulation motivates us to develop a statistical approach.

We now discuss the more fundamental reason why we must use probabilistic
methods to describe systems with more than a few particles. The reason is that under
a wide variety of conditions, even the most powerful supercomputer yields positions
and velocities that are meaningless! In the following, we will find that the trajectories
in a system of many particles depend sensitively on the initial conditions. Such a
system is said to be chaotic. This behavior forces us to take a statistical approach
even for systems with as few as three particles.

As an example, consider a system of N = 11 particles moving in a box of
linear dimension L (see Program SensitivityToInitialConditions). The initial
conditions are such that all particles have the same velocity vx(i) = 1, vy(i) = 0,
and the particles are equally spaced vertically, with x(i) = L/2 for i = 1, . . . , 11
[see Figure 1.3(a)]. Convince yourself that for these special initial conditions,
the particles will continue moving indefinitely in the x direction (using toroidal
boundary conditions).

Now let us stop the simulation and change the velocity of particle 6, such that
vx(6) = 1.000001. What do you think will happen? In Figure 1.3(b) we show the
positions of the particles at t = 8.0 after the change in velocity of particle 6. Note
that the positions of the particles are no longer equally spaced. So in this case a small
change in the velocity of one particle led to a big change in the trajectories of all the
particles.

*Problem 1.9. Irreversibility
Program SensitivityToInitialConditions simulates a system of N = 11
particles with the special initial condition described in the text. Confirm the results
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(a) (b)

Figure 1.3. (a) A special initial condition for N = 11 particles such that their motion remains
parallel indefinitely. (b) The positions of the particles shortly after a small change in vx(6).
The only change in the initial condition from part (a) is that vx(6) was changed from 1 to
1.000001.

that we have discussed. Perturb the velocity of particle 6 and stop the simulation at
time t after the change and reverse all the velocities. Confirm that if t is sufficiently
short, the particles will return approximately to their initial state. What is the
maximum value of t that will allow the particles in the system to return to their
initial positions if t is replaced by −t (all velocities reversed)? �

An important property of chaotic systems is their extreme sensitivity to initial
conditions, that is, the trajectories of two identical systems starting with slightly
different initial conditions will diverge exponentially. For such systems we cannot
predict the positions and velocities of the particles very far into the future because
even the slightest error in our measurement of the initial conditions would make our
prediction entirely wrong if the elapsed time is sufficiently long. That is, we cannot
answer the question “Where is a particular particle at time t?” if t is sufficiently
long. It might be disturbing to realize that our answers are meaningless if we ask the
wrong questions.

Although Newton’s equations of motion are time reversible, this reversibility
cannot be realized in practice for chaotic systems. Suppose that a chaotic system
evolves for a time t and all the velocities are reversed. If the system is allowed to
evolve for an additional time t, the system will not return to its original state unless
the velocities are specified with infinite precision. This lack of practical reversibility
is related to what we observe in macroscopic systems. If you pour milk into a cup of
coffee, the milk becomes uniformly distributed throughout the cup. You will never
see a cup of coffee spontaneously return to the state where all the milk is at the
surface because the positions and velocities of the milk and coffee molecules would
need to have exactly the right values to allow the milk to return to this very special
state. Even the slightest error in the choice of the positions and velocities will ruin
any chance of the milk returning to the surface. This sensitivity to initial conditions
provides the foundation for the arrow of time.
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1.8 *Time and Ensemble Averages

Although a computed trajectory might not be the one that we thought we were
computing, the positions and velocities that we compute are consistent with the
constraints we have imposed, in this case, the total energy E, the volume V, and
the number of particles N. Because of the assumption of equal probabilities for
the microstates of an isolated system, all trajectories consistent with the constraints
will contribute equally to the average values of macroscopic quantities. Thus, the
trajectories computed in a simulation are useful even though they are very different
from the exact trajectories that would be calculated with an infinite precision
computer.

Solving Newton’s equations numerically as we have done in our molecular
dynamics simulations allows us to calculate a time average. If we do a laboratory
experiment to measure the temperature and pressure, our measurements also
would be equivalent to a time average. Because time is irrelevant for a system in
equilibrium, we will find that it is easier to do calculations by using an ensemble
average. In brief, an ensemble average is taken over many mental copies of the
system that satisfy the same known conditions. A simple example might clarify
the nature of these two types of averages. Suppose that we want to determine the
probability that the toss of a coin results in “heads.” We can do a time average
by taking one coin, tossing it in the air many times, and counting the fraction of
heads. In contrast, an ensemble average can be found by obtaining many similar
coins and tossing them into the air at one time. We will discuss ensemble averages
in Chapter 3.

It is reasonable to assume that the two ways of averaging are equivalent. This
equivalence is called the ergodic hypothesis. The term “hypothesis” might suggest
that the equivalence is not well accepted, but it reminds us that the equivalence
has been shown to be rigorously true in only a few cases. The sensitivity of the
trajectories of chaotic systems to initial conditions suggests that a classical system
of particles moving according to Newton’s equations of motion passes through
many different microstates corresponding to different sets of positions and velocities.
This property is called mixing, and it is essential for the validity of the ergodic
hypothesis.

We conclude that macroscopic properties are averages over the microscopic
variables and give predictable values if the system is sufficiently large. One goal of
statistical mechanics is to determine these averages and give a microscopic basis for
the laws of thermodynamics. In this context it is remarkable that these laws depend
on the fact that the macroscopic systems we encounter in our everyday experience
are chaotic.

1.9 Models of Matter

There are many models of interest in statistical mechanics, corresponding to the
wide range of macroscopic systems found in nature and made in the laboratory. So
far we have discussed a simple model of a classical gas and used the same model to
simulate a classical liquid and a solid.
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One approach to understanding nature is to develop models that can be
understood theoretically, but that are rich enough to show the same qualitative
features that are observed in nature. Some of the more common models that we
will consider include the following.

1.9.1 The ideal gas
The simplest models of macroscopic systems are those for which there are no
interactions between the individual constituents of the system. For example, if a
system of particles is very dilute, collisions between the particles will be rare and can
be neglected under most circumstances. In the limit that the interactions between
the particles can be neglected completely, the system can be modeled as an ideal gas.
The ideal classical gas allows us to understand much about the behavior of dilute
gases, such as those in the Earth’s atmosphere. The quantum versions will be useful
in understanding blackbody radiation, electrons in metals, the low temperature
behavior of crystalline solids, and a simple model of superfluidity.

The historical reason for the use of the term “ideal” is that the neglect of
interparticle interactions allows us to do some calculations analytically. However,
the neglect of interparticle interactions raises other issues. For example, how does
an ideal gas reach equilibrium if there are no collisions between the particles?

1.9.2 Interparticle potentials
As we have mentioned, the most common form of the potential between two neutral
atoms is the Lennard-Jones potential given in (1.1) and Figure 1.1. This potential is
a very important model system and is the standard potential for studies where the
focus is on fundamental issues, rather than on the properties of a specific material.

An even simpler interaction is purely repulsive and is given by

V(r ) =
{

∞ (r ≤ σ )
0 (r > σ ).

(1.5)

A system of particles interacting via (1.5) is called a system of hard spheres, hard
disks, or hard rods depending on whether the spatial dimension is three, two, or one,
respectively. The properties of dense gases and liquids will be discussed in Chapter 8.

1.9.3 Lattice models
In another class of models, the positions of the particles are restricted to a lattice
or grid and the momenta of the particles are irrelevant. In the most popular model
of this type the “particles” correspond to magnetic moments. At high temperatures
the magnetic moments are affected by external magnetic fields, but the interaction
between the moments can be neglected.

The simplest, nontrivial lattice model that includes interactions is the Ising model,
the most important model in statistical mechanics. The model consists of magnetic
moments or spins which are located on the sites of a lattice such that each spin can
take on one of two values designated as up and down or ±1. The interaction energy
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between two neighboring spins is −J if the two spins point in the same direction
and +J if they point in opposite directions. One reason for the importance of this
model is that it is one of the simplest to have a phase transition, in this case, a phase
transition between a ferromagnetic state and a paramagnetic state. The Ising model
will be discussed in Chapter 5.

We will focus on three classes of models—the ideal classical and quantum gas,
classical systems of interacting particles, and the Ising model and its extensions.
These models will be used in many contexts to illustrate the ideas and techniques of
statistical mechanics.

1.10 Importance of Simulations

Only simple models such as the ideal gas or special cases such as the one- and two-
dimensional Ising models can be analyzed by analytical methods. Much of what is
currently done in statistical mechanics is to establish the general behavior of a model
and then relate it to the behavior of another model. This way of understanding is not
as strange as it might appear. How many examples of systems in classical mechanics
can be solved exactly?

Statistical mechanics has grown in importance over the past several decades
because powerful computers and new algorithms have made it possible to explore
the behavior of more complex systems. As our models become more realistic, it is
likely that they will require the computer for understanding many of their properties.
Frequently the goal of a simulation is to explore the qualitative behavior of a
model so that we have a better idea of what type of theoretical analysis might be
possible and what type of laboratory experiments should be done. Simulations also
allow us to compute many different kinds of quantities, some of which cannot be
measured in a laboratory experiment. Simulations, theory, and experiment each play
an important and complementary role in understanding nature.

Not only can we simulate reasonably realistic models, we also can study models
that are impossible to realize in the laboratory, but are useful for providing a
deeper theoretical understanding of real systems. For example, a comparison of the
behavior of a model in three and four spatial dimensions can yield insight into why
the three-dimensional system behaves the way it does.

Simulations cannot replace laboratory experiments and are limited by the finite
size of the systems and by the short duration of our runs. For example, at present
the longest simulations of simple liquids are for no more than 10−6 s.

1.11 Dimensionless Quantities

The different units used in science can frequently be confusing. One reason is
that sometimes the original measurements were done before a good theoretical
understanding was achieved. For example, the calorie was created as a unit before
it was understood that heat transfer was a form of energy transfer. So even today
we frequently become confused using small calories and big calories and converting
each to joules.

Copyrighted Material



April 20, 2010 Time: 12:23pm chapter01.tex

1.12 S U M M A R Y • 25

It is frequently convenient to use dimensionless quantities. These quantities can
be defined by taking the ratio of two quantities with the same units. For example,
the measure of the angle θ in radians is the ratio of the arc length s on a circle
subtended by the angle to the radius r of the circle: θ = s/r . Similarly, the solid
angle in statradians is the ratio of the surface area on a sphere subtended by a cone
to the square of the radius of the sphere.

It is also useful to have another quantity with the same dimensions to set the
scale. For example, for particles moving with speed v near the speed of light c, it is
convenient to measure v relative to c. (You might recognize the notation β ≡ v/c.)
The use of dimensionless variables makes the relevant equations simpler and make it
easier to perform algebraic manipulations, thus reducing the possibility of errors. A
more important reason to use dimensionless variables is to make it easier to evaluate
the importance of quantities in making approximations. For example, if β 	 1, we
know that relativistic corrections are not needed in most contexts.

We will frequently consider the high and low temperature behavior of a thermal
system. What characterizes high temperature? To answer this question we need to
find a typical energy ε in the system and consider the dimensionless ratio T̃ ≡ kT/ε.
For example, ε might be a measure of the potential energy per particle in the system.
If T̃ 	 1, the temperature of the system is low; if T̃ � 1 the system is in the high
temperature regime. An important example is the behavior of electrons in metals at
room temperature. We will find in Chapter 6 that the temperature of this system
is low. Here ε is chosen to be the maximum kinetic energy of an electron at zero
(absolute) temperature. In quantum mechanics no two electrons can be in the same
state, and hence ε is nonzero.

Although T̃ is dimensionless, it is frequently convenient to call T̃ a temperature
and sometimes even to denote it by T, with the understanding that T is measured in
terms of ε. We already did so in the context of Problems 1.6 and 1.8.

Another important reason to use dimensionless quantities is that computers
do not easily manipulate very small or very large numbers. Thus, it is best that
all quantities be within a few orders of magnitude of 1. In addition, the use of
dimensionless quantities allows us to do a simulation or an analytical calculation
that is valid for many systems. To find the value of a quantity for a specific system,
we just multiply the dimensionless quantity by the relevant quantity that sets the
scale for the system of interest.

Every measurement is a ratio and is based on a comparison to some standard.
For example, if you want a certain time interval in seconds, it is given by the ratio of
that interval to 9,192,631,770 periods of the radiation from a certain transition
in a cesium atom. This number of periods comes from using a very accurately
characterized frequency of this transition and keeping the definition of the second
close to its historical definition.

1.12 Summary

The purpose of this introductory chapter is to whet your appetite. At this point it is
not likely that you will fully appreciate the significance of such concepts as entropy
and the direction of time. We are reminded of the book, All I Really Need to Know
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I Learned in Kindergarten.17 In principle, we have discussed most of the important
ideas in thermodynamics and statistical physics, but it will take you a while before
you understand these ideas in any depth.

We also have not discussed the tools necessary to solve any problems. Your
understanding of these concepts and the methods of statistical and thermal physics
will increase as you work with these ideas in different contexts. However, there is no
unifying equation such as Newton’s second law of motion in mechanics, Maxwell’s
equations in electrodynamics, and Schrödinger’s equation in nonrelativistic quantum
mechanics. The concepts are universal, but their application to particular systems is
not.

Thermodynamics and statistical mechanics have traditionally been applied to
gases, liquids, and solids. This application has been very fruitful and is one
reason why condensed matter physics, materials science, and chemical physics are
rapidly evolving and growing areas. Examples of new systems of interest include
high temperature superconductors, low dimensional magnets and conductors,
composites, and biomaterials. Scientists are also taking a new look at more
traditional condensed systems such as water and other liquids, liquid crystals,
polymers, granular matter (for example, sand), and porous media such as rocks.
In addition to our interest in macroscopic systems, there is growing interest is
mesoscopic systems, systems that are neither microscopic nor macroscopic, but are
in between, that is, between ∼102 and ∼106 particles.

Thermodynamics might not seem to be as interesting to you when you first
encounter it. However, an understanding of thermodynamics is important in many
contexts, including societal issues such as global climate change and the development
of alternative energy sources.

The techniques and ideas of statistical mechanics are now being used outside
of traditional condensed matter physics. The field theories of high energy physics,
especially lattice gauge theories, use the methods of statistical mechanics. New
methods of doing quantum mechanics convert calculations to path integrals that
are computed numerically using methods of statistical mechanics. Theories of the
early universe use ideas from thermal physics. For example, we speak about the
universe being quenched to a certain state in analogy to materials being quenched
from high to low temperatures. We already have seen that chaos provides an
underpinning for the need for probability in statistical mechanics. Conversely, many
of the techniques used in describing the properties of dynamical systems have been
borrowed from the theory of phase transitions, an important area of statistical
mechanics.

In recent years statistical mechanics has evolved into the more general field
of statistical physics. Examples of systems of interest in the latter area include
earthquake faults, granular matter, neural networks, models of computing, and
the analysis of the distribution of response times to email. Statistical physics is
characterized more by its techniques than by the problems that are of interest. This
universal applicability makes the techniques more difficult to understand, but also
makes the journey more exciting.

17Robert Fulghum, All I Really Need to Know I Learned in Kindergarten, Ballantine Books (2004).
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1.13 Supplementary Notes
1.13.1 Approach to equilibrium
In Problem 1.2 we learned that n(t), the number of particles on the left side of the
box, decreases in time from its initial value to its equilibrium value in an almost
deterministic manner if N � 1. It is instructive to derive the time dependence of n(t)
to show explicitly how chance can generate deterministic behavior.

We know that, if we run the simulation once, n(t) will exhibit fluctuations and not
decay monotonically to equilibrium. Suppose that we do the simulation many times
and average the results of each run at a given time t. As discussed in Section 1.8,
this average is an ensemble average, which we will denote as n(t). If there are n(t)
particles on the left side after t moves, the change in n in the time interval �t is
given by

�n =
[−n(t)

N
+ N − n(t)

N

]
�t, (1.6)

where �t is the time between moves of a single particle from one side to the other.
Equation (1.6) is equivalent to assuming that the change in n in one time step is equal
to the probability that a particle is removed from the left plus the probability that it
is added to the right. (In the simulation we defined the time so that the time interval
�t between changes in n(t) was set equal to 1.) If we treat n and t as continuous
variables and take the limit �t → 0, we have

�n
�t

→ dn
dt

= 1 − 2n(t)
N

. (1.7)

The solution of the differential equation (1.7) is

n(t) = N
2

[
1 + e−2t/N

]
, (1.8)

where we have used the initial condition n(t = 0) = N. We see that n(t) decays
exponentially to its equilibrium value N/2. How does this form (1.8) compare to
your simulation results for various values of N?

From (1.8) we can define a relaxation time τ as the time it takes the difference
[n(t) − N/2] to decrease to 1/e of its initial value. Because τ = N/2, n(t) for large
N varies slowly, and we are justified in rewriting the difference equation (1.6) as a
differential equation.

Problem 1.10. Independence of initial conditions
Show that if the number of particles on the left-hand side of the box at t = 0 is equal
to n(0) rather than N/2, the solution of (1.7) is

n(t) = N
2

− N
2

[
1 − 2n(0)

N

]
e−2t/N. (1.9)

Note that n(t) → N/2 as t → ∞ independent of the value of n(0). �
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1.13.2 Mathematics refresher
As discussed in Section 1.12, there is no unifying equation in statistical mechanics
such as Newton’s second law of motion to be solved in a variety of contexts. For
this reason we will use many mathematical tools. Section 2.24.1 summarizes the
mathematics of thermodynamics which makes much use of partial derivatives. The
appendix summarizes some of the mathematical formulas and relations that we will
use. If you can do the following problems, you have a good background for much
of the mathematics that we will use in the following chapters.

Problem 1.11. Common derivatives
Calculate the derivative with respect to x of the following functions: ex, e3x, eax,
ln x, ln x2, ln 3x, ln 1/x, sin x, cos x, sin 3x, and cos 2x. �

Problem 1.12. Common integrals
Calculate the following integrals:

∫ 2

1

dx
2x2

, (1.10a)

∫ 2

1

dx
4x

, (1.10b)

∫ 2

1
e3x dx, (1.10c)

∫
x−γ dx. (1.10d)

�

Problem 1.13. Partial derivatives
Calculate the partial derivatives of x2 + xy + 3y2 with respect to x and y. �

Problem 1.14. Taylor series approximations
Calculate the first three nonzero terms of the Taylor series approximations about
x = 0 for the following functions:

eax, (1.11a)

ln(1 + x), (1.11b)

(1 + x)n, (1.11c)

where a and n are constants. �

Vocabulary

thermodynamics, statistical mechanics
macroscopic system, microstate, macrostate
specially prepared state, most probable macrostate
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equilibrium, fluctuations, relative fluctuations
thermal contact, temperature
sensitivity to initial conditions, chaos
models, computer simulations, molecular dynamics

Additional Problems
Problem 1.15. The dye is cast

(a) What would you observe when a small amount of black dye is placed in a
glass of water?

(b) Suppose that a video were taken of this process and the video run backward
without your knowledge. Would you be able to observe whether the video
was being run forward or backward?

(c) Suppose that you could watch a video of the motion of an individual ink
molecule. Would you be able to know that the video was being shown
forward or backward? �

Problem 1.16. Fluid as metaphor
Why is “heat” treated as a fluid in everyday speech? After all, most people are not
familiar with the caloric theory of heat. �

Problem 1.17. Do molecules really move?
Cite evidence from your everyday experience that the molecules in a glass of water
or in the surrounding air are in seemingly endless random motion. �

Problem 1.18. Temperature
How do you know that two objects are at the same temperature? How do you know
that two bodies are at different temperatures? �

Problem 1.19. Time-reversal invariance
Show that Newton’s equations are time-reversal invariant. �

Problem 1.20. Properties of macroscopic systems
Summarize your present understanding of the properties of macroscopic systems. �

Problem 1.21. What’s in a name?
Ask some of your friends why a ball falls when released above the Earth’s surface.
Then ask them what makes rolling balls come to rest. Are the answers of “gravity”
and “friction” satisfactory explanations? What would be a more fundamental
explanation for each phenomena? �

Problem 1.22. Randomness
What is your present understanding of the concept of “randomness”? Does “random
motion” imply that the motion occurs according to unknown rules? �

Problem 1.23. Meaning of abstract concepts
Write a paragraph on the meanings of the abstract concepts “energy” and “justice.”
[See Feynman, Leighton, and Sands (1964), Vol. 1, Chap. 4, for a discussion of why
it is difficult to define such abstract concepts.] �

Copyrighted Material



April 20, 2010 Time: 12:23pm chapter01.tex

30 • M I C R O S C O P I C T O M A C R O S C O P I C B E H AV I O R

Problem 1.24. Bicycle pump
Suppose that the handle of a plastic bicycle pump is rapidly pushed inward. Predict
what happens to the temperature of the air inside the pump and explain your
reasoning. (This problem is given here to determine how you think about this type
of problem at this time. Similar problems will appear in later chapters to see if and
how your reasoning has changed.) �

Problem 1.25. Granular matter
A box of glass beads is an example of a macroscopic system if the number of beads
is sufficiently large. In what ways is such a system different from the macroscopic
systems such as a glass of water that we have discussed in this chapter? �
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