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Chapter One 

The History of Mathematics: Alternative Perspectives  

A Justification for This Book 

An interest in history marks us for life. How we see ourselves and others is 
shaped by the history we absorb, not only in the classroom but also from 
the Internet, films, newspapers, television programs, novels, and even strip 
cartoons. From the time we first become aware of the past, it can fire our 
imagination and excite our curiosity: we ask questions and then seek an-
swers from history. As our knowledge develops, differences in historical 
perspectives emerge. And, to the extent that different views of the past affect 
our perception of ourselves and of the outside world, history becomes an 
important point of reference in understanding the clash of cultures and of 
ideas. Not surprisingly, rulers throughout history have recognized that to 
control the past is to master the present and thereby consolidate their power. 

During the last four hundred years, Europe and its cultural dependen-
cies1 have played a dominant role in world affairs. This is all too often 
reflected in the character of some of the historical writing produced by Eu-
ropeans in the past. Where other people appear, they do so in a transitory 
fashion whenever Europe has chanced in their direction. Thus the history 
of the Africans or the indigenous peoples of the Americas often appears to 
begin only after their encounter with Europe. 

An important aspect of this Eurocentric approach to history is the man-
ner in which the history and potentialities of non-European societies were 
represented, particularly with respect to their creation and development of 
science and technology. The progress of Europe during the last four hun-
dred years is often inextricably—or even causally—linked with the rapid 
growth of science and technology during the period. In the minds of some, 
scientific progress becomes a uniquely European phenomenon, which can 
be emulated by other nations only if they follow a specifically European 
path of scientific and social development. 
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Such a representation of societies outside the European cultural milieu 
raises a number of issues that are worth exploring, however briefly. First, 
these societies, many of them still in the grip of an intellectual dependence 
that is the legacy of European political domination, should ask themselves 
some questions. Was their indigenous scientific and technological base in-
novative and self-sufficient during their precolonial period? Case studies 
of India, China, and parts of Africa, contained, for example, in the work of 
Dharampal (1971), Needham (1954), and Van Sertima (1983) and summa-
rized by Teresi (2002), seem to indicate the existence of scientific creativity 
and technological achievements long before the incursions of Europe into 
these areas. If this is so, we need to understand the dynamics of precolo-
nial science and technology in these and other societies and to identify the 
material conditions that gave rise to these developments. This is essential if 
we are to see why modern science did not develop in these societies, only 
in Europe, and to find meaningful ways of adapting to present-day require-
ments the indigenous and technological forms that still remain.2 

Second, there is the wider issue of who “makes” science and technol-
ogy. In a material and nonelitist sense, each society, impelled by the pres-
sures and demands of its environment, has found it necessary to create a 
scientific base to cater to its material requirements. Perceptions of what 
constitute the particular requirements of a society would vary according to 
time and place, but it would be wrong to argue that the capacity to “make” 
science and technology is a prerogative of one culture alone. 

Third, if one attributes all significant historical developments in science 
and technology to Europe, then the rest of the world can impinge only 
marginally, either as an unchanging residual experience to be contrasted 
with the dynamism and creativity of Europe, or as a rationale for the cre-
ation of academic disciplines congealed in subjects such as development 
studies, anthropology, and oriental studies. These subjects in turn served 
as the basis from which more elaborate Eurocentric theories of social de-
velopment and history were developed and tested.3 

One of the more heartening aspects of academic research in the last four 
or five decades is that the shaky foundations of these “adjunct” disciplines 
are being increasingly exposed by scholars, a number of whom originate 
from countries that provide the subject matter of these disciplines. “Sub-
versive” analyses aimed at nothing less than the unpackaging of prevailing 
Eurocentric paradigms became the major preoccupation of many of these 
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scholars. Syed Husain Alatas (1976) studied intellectual dependence and 
imitative thinking among social scientists in developing countries. The 
growing movement toward promoting a form of indigenous anthropol-
ogy that sees its primary task as questioning, redefining, and if necessary 
rejecting particular concepts that grew out of colonial experience in West-
ern anthropology is thoroughly examined by Fahim (1982). Edward Said 
(1978) has brilliantly described the motives and methods of the so-called 
orientalists who set out to construct a fictitious entity called “the Orient” 
and then ascribe to it qualities that are a mixture of the exotic, the mys-
terious, and the otherworldly. The rationale for such constructs is being 
examined in terms of the recent history of Europe’s relations with the rest 
of the world. 

In a similar vein, and in the earlier editions of this book, it was the inten-
tion to show that the standard treatment of the history of non-European 
mathematics exhibited a deep-rooted historiographical bias in the selection 
and interpretation of facts, and that mathematical activity outside Europe 
has as a consequence been ignored, devalued, or distorted. It is interesting 
in this context that since the first edition of this book there has been a grow-
ing recognition of the mathematics outside the European and Greek tradi-
tions, especially in the mainstream teaching of the history of mathematics. 
The Eurocentric argument has shifted its ground and now questions both 
the nature of the European debt to other mathematical traditions and the 
existence and quality of proofs and demonstrations in traditions outside 
Europe. A brief discussion of the shifting ground of Eurocentrism in the 
history of mathematics is found in the preface to this edition.4 

The Development of Mathematical Knowledge 

A concise and meaningful definition of mathematics is difficult. In the 
context of this book, the following aspects of the subject are highlighted. 
Modern mathematics has developed into a worldwide language with a par-
ticular kind of logical structure. It contains a body of knowledge relating 
to number and space, and prescribes a set of methods for reaching con-
clusions about the physical world. And it is an intellectual activity which 
calls for both intuition and imagination in deriving “proofs” and reaching 
conclusions. Often it rewards the creator with a strong sense of aesthetic 
satisfaction. 
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The “Classical” Eurocentric Trajectory 
Most histories of mathematics that have had a great influence on later work 
were written in the late nineteenth or early twentieth century. During that 
period, two contrasting developments were taking place that had an im-
pact on both the content and the balance of these books, especially those 
produced in Britain and the United States. Exciting discoveries of ancient 
mathematics on papyri in Egypt and clay tablets in Mesopotamia pushed 
back the origins of written mathematical records by at least fifteen hundred 
years. But a far stronger and countervailing influence was the culmination 
of European domination in the shape of political control of vast tracts of 
Africa and Asia. Out of this domination arose the ideology of European 
superiority that permeated a wide range of social and economic activities, 
with traces to be found in histories of science that emphasized the unique 
role of Europe in providing the soil and spirit for scientific discovery. The 
contributions of the colonized peoples were ignored or devalued as part 
of the rationale for subjugation and dominance. And the development of 
mathematics before the Greeks—notably in Egypt and Mesopotamia— 
suffered a similar fate, dismissed as of little importance to the later his-
tory of the subject. In his book Black Athena (1987), Martin Bernal has 
shown how respect for ancient Egyptian science and civilization, shared 
by ancient Greece and pre-nineteenth-century Europe alike, was gradu-
ally eroded, leading eventually to a Eurocentric model with Greece as the 
source and Europe as the inheritor and guardian of the Greek heritage. 

Figure 1.1 presents the “classical” Eurocentric view of how mathematics 
developed over the ages. This development is seen as taking place in two 
sections, separated by a period of stagnation lasting for over a thousand 
years: Greece (from about 600 BC to AD 400), and post-Renaissance Eu-
rope from the sixteenth century to the present day. The intervening period 
of inactivity was the “Dark Ages”—a convenient label that expressed both 
post-Renaissance Europe’s prejudices about its immediate past and the in-
tellectual self-confidence of those who saw themselves as the true inheri-
tors of the “Greek miracle” of two thousand years earlier. 

Two passages, one by a well-known historian of mathematics writing at 
the turn of the century and the other by a more recent writer whose books 
are still referred to on both sides of the Atlantic, show the durability of this 
Eurocentric view and its imperviousness to new evidence and sources: 
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Figure 1.1: The “classical” Eurocentric trajectory 

The history of mathematics cannot with certainty be traced back to any 
school or period before that of the Ionian Greeks. (Rouse Ball 1908, p. 1) 

[Mathematics] finally secured a new grip on life in the highly congenial 
soil of Greece and waxed strongly for a short period. . . . With the de-
cline of Greek civilization the plant remained dormant for a thousand 
years . . . when the plant was transported to Europe proper and once 
more imbedded in fertile soil. (Kline 1953, pp. 9–10) 

The first statement is a reasonable summary of what was popularly known 
and accepted as the origins of mathematics at that time, except for the ne-
glect of the early Indian mathematics contained in the Sulbasutras (The 
Rules of the Cord), belonging to the period between 800 and 500 BC, which 
would make it at least as old as the earliest-known Greek mathematics. 
Thibaut’s translations of these works, made around 1875, were known to 
historians of mathematics at the turn of the century. The mathematics con-
tained in the Sulbasutras is discussed in chapter 8. 

The second statement, however, ignores a considerable body of research 
evidence pointing to the development of mathematics in Mesopotamia, 
Egypt, China, pre-Columbian America, India, and the Islamic world that 
had come to light in the intervening period. Subsequent chapters will bear 
testimony to the volume and quality of the mathematics developed in these 
areas. But in both these quotations mathematics is perceived as an exclu-
sive product of European civilization. And that is the central message of 
the Eurocentric trajectory depicted in figure 1.1. 

This comforting rationale for European dominance became increas-
ingly untenable for a number of reasons. First, there is the full acknowl-
edgment given by the ancient Greeks themselves of the intellectual debt 
they owed the Egyptians. There are scattered references from Herodotus 
(c. 450 BC) to Proclus (c. AD 400) of the knowledge acquired from the 
Egyptians in fields such as astronomy, mathematics, and surveying, while 
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other commentators even considered the priests of Memphis to be the true 
founders of science. 

To Aristotle (c. 350 BC), Egypt was the cradle of mathematics. His 
teacher, Eudoxus, one of the notable mathematicians of the time, had stud-
ied in Egypt before teaching in Greece. Even earlier, Thales (d. 546 BC), 
the legendary founder of Greek mathematics, and Pythagoras (c. 500 BC), 
one of the earliest and greatest of Greek mathematicians, were reported 
to have traveled widely in Egypt and Mesopotamia and learned much of 
their mathematics from these areas. Some sources even credit Pythagoras 
with having traveled as far as India in search of knowledge, which could 
explain some of the parallels between Indian and Pythagorean philosophy 
and religion.5 

A second reason why the trajectory depicted in figure 1.1 was found to 
be wanting arose from the combined efforts of archaeologists, translators, 
and interpreters, who between them unearthed evidence of a high level of 
mathematics practiced in Mesopotamia and in Egypt at the beginning of 
the second millennium, providing further confirmation of Greek reports. 
In particular, the Mesopotamians had invented a place-value number sys-
tem, knew different methods of solving what today would be described as 
quadratic equations (methods that would not be improved upon until the 
sixteenth century AD), and understood (but had not proved) the relation-
ship between the sides of a right-angled triangle that came to be known 
as the Pythagorean theorem.6 Indeed, as we shall see in later chapters, this 
theorem was stated and demonstrated in different forms all over the world. 

A four-thousand-year-old clay tablet, kept in a Berlin museum, gives the 
value of n3+ n2 for n = 1, 2,f , 10, 20, 30, 40, 50, from which it has been 
surmised that the Mesopotamians may have used these values in solving 
cubic equations after reducing them to the form x3 + x2 = c . A remark-
able solution in Egyptian geometry found in the Moscow Papyrus from the 
Middle Kingdom (c. 2000−1800 BC) follows from the correct use of the 
formula for the volume of a truncated square pyramid. These examples and 
other milestones will be discussed in the relevant chapters of this book. 

The neglect of the Islamic contribution to the development of European 
intellectual life in general and mathematics in particular is another serious 
drawback of the “classical” view. The course of European cultural history 
and the history of European thought are inseparably tied up with the activ-
ities of Islamic scholars during the Middle Ages and their seminal contri-
butions to mathematics, the natural sciences, medicine, and philosophy.7 
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In particular, we owe to the Islamic world in the field of mathematics the 
bringing together of the technique of measurement, evolved from its Egyp-
tian roots to its final form in the hands of the Alexandrians, and the re-
markable instrument of computation (our number system) that originated 
in India. These strands were supplemented by a systematic and consistent 
language of calculation that came to be known by its Arabic name, algebra. 
An acknowledgment of this debt in more recent books contrasts sharply 
with the neglect of other Islamic contributions to science.8 

Finally, in discussing the Greek contribution, there is a need to recog-
nize the differences between the Classical period of Greek civilization (i.e., 
from about 600 to 300 BC) and the post-Alexandrian period (i.e., from 
about 300 BC to AD 400). In early European scholarship, the Greeks of the 
ancient world were perceived as an ethnically homogeneous group, origi-
nating from areas that were mainly within the geographical boundaries of 
present-day Greece. It was part of the Eurocentric mythology that from 
the mainland of Europe had emerged a group of people who had created, 
virtually out of nothing, the most impressive civilization of ancient times. 
And from that civilization had emerged not only the cherished institutions 
of present-day Western culture but also the mainspring of modern science. 
The reality, however, is different and more complex. The term “Greek,” 
when applied to times before the appearance of Alexander (356−323 BC), 
really refers to a number of independent city-states, often at war with one 
another but exhibiting close ethnic or cultural affinities and, above all, shar-
ing a common language. The conquests of Alexander changed the situation 
dramatically, for at his death his empire was divided among his generals, 
who established separate dynasties. The two notable dynasties from the 
point of view of mathematics were the Ptolemaic dynasty of Egypt and the 
Seleucid dynasty, which ruled over territories that included the earlier sites 
of the Mesopotamian civilization. The most famous center of learning and 
trade became Alexandria in Egypt, established in 332 BC and named after 
the conqueror. From its foundation, one of its most striking features was its 
cosmopolitanism—part Egyptian, part Greek, with a liberal sprinkling of 
Jews, Persians, Phoenicians, and Babylonians, and even attracting scholars 
and traders from as far away as India. A lively contact was maintained with 
the Seleucid dynasty. Alexandria thus became the meeting place for ideas 
and different traditions. The character of Greek mathematics began to 
change slowly, mainly as a result of continuing cross-fertilization between 
different mathematical traditions, notably the algebraic and empirical 
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basis of Mesopotamian and Egyptian mathematics interacting with the 
geometric and antiempirical traditions of Greek mathematics. And from 
this mixture came some of the greatest mathematicians of antiquity, no-
tably Archimedes and Diophantus. It is therefore important to recognize 
the Alexandrian dimension to Greek mathematics while noting that Greek 
intellectual and cultural traditions served as the main inspiration and the 
Greek language as the medium of instruction and writing in Alexandria. In 
a later chapter, based on some innovative work of Friberg (2005, 2007), we 
will examine the close and hitherto unexamined links between Egyptian, 
Mesopotamian, and Greek mathematics. 

A Modified Eurocentric Trajectory 
Figure 1.2 takes on board some of the objections raised about the “classical” 
Eurocentric trajectory. The figure acknowledges that there is growing aware-
ness of the existence of mathematics before the Greeks, and of their debt to 
earlier mathematical traditions, notably those of Mesopotamia and Egypt. 
But this awareness was until recently tempered by a dismissive rejection of 
their importance in relation to Greek mathematics: the “scrawling of chil-
dren just learning to write as opposed to great literature” (Kline 1962, p. 14). 

The differences in character of the Greek contribution before and af-
ter Alexander are also recognized to a limited extent in figure 1.2 by the 
separation of Greece from the Hellenistic world (in which the Ptolemaic 
and Seleucid dynasties became the crucial instruments of mathematical 
creation). There is also some acknowledgment of the “Arabs” but mainly as 
custodians of Greek learning during the Dark Ages in Europe. The role of 
the Islamic world as transmitter and creator of knowledge is often ignored; 
so are the contributions of other civilizations—notably China and India— 
which have been perceived either as borrowers from Greek sources or as 
having made only minor contributions that played an insignificant role in 
mainstream mathematical development (i.e., the development eventually 
culminating in modern mathematics). 

Figure 1.2 is therefore still a flawed representation of how mathematics 
developed: it contains a series of biases and remains quite impervious to 
new evidence and arguments. Until a couple of decades ago, and with minor 
modifications, it was the model to which a number of books on the history of 
mathematics conformed. But this has changed even during the twenty-odd 
years that this book has been in print. “Mainsteam” histories of mathematics 
are casting a wider net by seriously considering the contributions not only 
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Figure 1.2: A modified Eurocentric trajectory 

of ancient Egyptian and Mesopotamian civilizations; they are punctilious 
in incorporating as well the contributions of Chinese, Indian, and Islamic 
civilizations. The recent sourcebook for the histories of mathematics of the 
five civilizations edited by Katz (2007) is a testimony to this change. 

It is interesting that a similar Eurocentric bias had existed in other dis-
ciplines as well: for example, diffusion theories in anthropology and social 
geography implied that “civilization” has spread from the center (“greater” 
Europe) to the periphery (the rest of the world). And the theories of glo-
balization or evolution developed in recent years within some Marxist and 
neo-Marxist frameworks were characterized by a similar type of Eurocen-
trism. In all such conceptual schemes, the development of Europe is seen as 
a precedent for the way in which the rest of the world will follow—a trajec-
tory whose spirit is not dissimilar to the one suggested by figures 1.1 and 1.2. 

An Alternative Trajectory for the Dark Ages 
If we are to construct an unbiased alternative to figures 1.1 and 1.2, our 
guiding principle should be to recognize that different cultures in different 
periods of history have contributed to the world’s stock of mathematical 
knowledge. Figure 1.3 presents such a trajectory of mathematical devel-
opment but confines itself to the period between the fifth and fifteenth 
centuries AD—the period represented by the arrow labeled in figures 1.1 
and 1.2 as the “Dark Ages” in Europe. The choice of this trajectory as an 
illustration is deliberate: it serves to highlight the variety of mathematical 
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Figure 1.3: An alternative trajectory for the “Dark Ages” 

activity and exchange between a number of cultural areas that went on 
while Europe was in deep slumber. A trajectory for the fifteenth century 
onward would show that mathematical cross-fertilization and creativity 
were more or less confined to countries within Europe until the emer-
gence of the truly international character of modern mathematics during 
the twentieth century. 

The role of the Islamic civilization is brought out in figure 1.3. Scien-
tific knowledge that originated in India, China, and the Hellenistic world 
was sought out by Islamic scholars and then translated, refined, synthe-
sized, and augmented at different centers of learning, starting at Jund-i-
Shapur9 in Persia around the sixth century (even before the coming of 
Islam) and then moving to Baghdad, Cairo, and finally to Toledo and 
Córdoba in Spain, from where this knowledge spread into western Eu-
rope. Considerable resources were made available to the scholars through 
the benevolent patronage of the caliphs, the Abbasids (the rulers of the 
eastern Arab empire, with its capital at Baghdad) and the Umayyads (the 
rulers of the western Arab empire, with its capital first at Damascus and 
later at Córdoba). 

The role of the Abbasid caliphate was particularly important for the fu-
ture development of mathematics. The caliphs, notably al-Mansur (754− 
775), Harun al-Rashid (786−809), and al-Mamun (809−833), were in 
the forefront of promoting the study of astronomy and mathematics in 
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Baghdad. Indian scientists were invited to Baghdad. When Plato’s Acad-
emy was closed in 529, some of its scholars found refuge at Jund-i-Shapur, 
which a century later became part of the Islamic world. Greek manuscripts 
from the Byzantine empire, the translations of the Syriac schools of An-
tioch and Damascus, and the remains of the Alexandrian library in the 
hands of the Nestorian Christians at Edessa were all eagerly sought by Is-
lamic scholars, aided by the rulers who had control over or access to men 
and materials from the Byzantine empire, Persia, Egypt, Mesopotamia, and 
places as far east as India and China. 

Caliph al-Mansur built at Baghdad a Bait al-Hikma (House of Wisdom), 
which contained a large library for the manuscripts that had been collected 
from various sources; an observatory that became a meeting place of Indian, 
Babylonian, Hellenistic, and probably Chinese astronomical traditions; and a 
university where scientific research continued apace.10 A notable member of 
the institution, Muhammad ibn Musa al-Khwarizmi (fl. AD 825), wrote two 
books that were of crucial importance to the future development of mathe-
matics. One of them, the Arabic text of which is extant, is titled Hisab al‑jabr 
w’al‑muqabala (which may be loosely translated as Calculation by Reunion 
and Reduction). The title refers to the two main operations in solving equa-
tions: “reunion,” the transfer of negative terms from one side of the equation 
to the other, and “reduction,” the merging of like terms on the same side into 
a single term.11 In the twelfth century the book was translated into Latin un-
der the title Liber algebrae et almucabola, thus giving a name to a central area 
of mathematics. A traditional meaning of the Arabic word jabr is “the setting 
of a broken bone” (and hence “reunion” in the title of al-Khwarizmi’s book). 
Some decades ago it was not an uncommon sight on Spanish streets to come 
across a sign advertising “Algebrista y Sangrador” (i.e., someone dedicated to 
setting dislocated bones) at the entrance of barbers’ shops.12 

Al-Khwarizmi wrote a second book, of which only a Latin translation is 
extant: Algorithmi de numero indorum, which explained the Indian num-
ber system. While al-Khwarizmi was at pains to point out the Indian ori-
gin of this number system, subsequent translations of the book attributed 
not only the book but the numerals to the author. Hence, in Europe any 
scheme using these numerals came to be known as an “algorism” or, later, 
“algorithm” (a corruption of the name al-Khwarizmi) and the numerals 
themselves as Arabic numerals. 

Figure 1.3 shows the importance of two areas of southern Europe in 
the transmission of mathematical knowledge to western Europe. Spain and 
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Sicily were the nearest points of contact with Islamic science and had been 
under Arab hegemony, Córdoba succeeding Cairo as the center of learn-
ing during the ninth and tenth centuries. Scholars from different parts of 
western Europe congregated in Córdoba and Toledo in search of ancient 
and contemporary knowledge. It is reported that Gherardo of Cremona (c. 
1114–1187) went to Toledo, after its recapture by the Christians, in search 
of Ptolemy’s Almagest, an astronomical work of great importance produced 
in Alexandria during the second century AD. He was so taken by the in-
tellectual activity there that he stayed for twenty years, during which time 
he was reported to have copied or translated eighty-seven manuscripts of 
Islamic science or Greek classics, which were later disseminated across 
western Europe. Gherardo was just one of a number of European schol-
ars, including Plato of Tivoli, Adelard of Bath, and Robert of Chester, who 
flocked to Spain in search of knowledge.13 

The main message of figure 1.3 is that it is dangerous to characterize 
the history of mathematics solely in terms of European developments. The 
darkness that was supposed to have descended over Europe for a thousand 
years before the illumination that came with the Renaissance did not inter-
rupt mathematical activity elsewhere. Indeed, as we shall see in later chap-
ters, the period saw not only a mathematical renaissance in the Islamic 
world but also high points of Indian and Chinese mathematics. 

Mathematical Signposts and Transmissions across the Ages 

Alternative trajectories to the ones shown in figures 1.1 and 1.2 should 
highlight the following three features of the plurality of mathematical 
development: 

1.  The global nature of mathematical pursuits of one kind or another 

2.  The possibility of independent mathematical development within 
each cultural tradition followed or not followed by cross-fertilization 

3.  The crucial importance of diverse transmissions of mathematics 
across cultures, culminating in the creation of the unified discipline 
of modern mathematics 

However, to construct a feasible diagram we must limit the number of 
geographical areas of mathematical activity we wish to include. Selection 

http:knowledge.13
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inevitably introduces an element of arbitrariness, for some areas that may 
merit inclusion are excluded, while certain inclusions may be controversial. 
Two considerations have influenced the choice of the cultural areas repre-
sented in figure 1.4. First, a judgment was made, on the basis of existing 
evidence, as to which places saw significant developments in mathematics. 
Second, an assessment of the nature and direction of the transmission of 
mathematical knowledge also helped to identify the areas of interest. 

On the basis of these two criteria, ancient Egypt and Mesopotamia, 
Greece (and the Hellenistic world), India, China, the Islamic (or “Arab”) 
world, and Europe were selected as being important in the historical devel-
opment of mathematics. For one cultural area, the application of the two 
selection criteria produced conflicting results: from existing evidence, the 
Maya of Central America were isolated from other centers of mathematical 
activity, yet their achievements in numeration and calendar construction 
were quite remarkable by any standards. I therefore decided to include the 
Maya in figure 1.4, and to examine their contributions briefly in chapter 2. 

The limited scope of this book and the application of the above crite-
ria make it impossible to examine the mathematical experience of Africa, 
Korea, and Japan in greater detail. However, chapter 2 contains a discussion 
of the Ishango bone and the Yoruba numerals, and chapter 3 a detailed ex-
amination of Egyptian mathematics, all of which were products of Africa. 
Further information on the mathematical traditions of Korea and Japan is 
available in the second of the two chapters on Chinese mathematics (chap-
ter 7), since these traditions were both heavily influenced by China. 

Figure 1.4, together with its detailed legend, emphasizes the following 
features of mathematical activity through the ages: 

1.  The continuity of mathematical traditions until the last few centuries 
in most of the selected cultural areas 

2.  The extent of transmissions between different cultural areas that 
were geographically or otherwise separated from one another 

3.  The relative ineffectiveness of cultural barriers (or “filters”) in inhib-
iting the transmission of mathematical knowledge (In a number of 
other areas of human knowledge, notably in philosophy and the arts, 
the barriers are often insurmountable unless filters can be devised to 
make foreign “products” more palatable.) 
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In both Egypt and Mesopotamia there existed well-developed written 
number systems as early as the third millennium BC. The peculiar char-
acter of the Egyptian hieroglyphic numerals led to the creation of special 
types of algorithms for basic arithmetic operations. Both these develop-
ments and subsequent work in the area of algebra and geometry, especially 
during the period between 1800 and 1600 BC, will form the subject matter 
of chapter 3. Figure 1.4 brings out another impressive aspect of Egyptian 
mathematics—the continuity of a tradition for over three thousand years, 
culminating in the great period of Alexandrian mathematics around the 
beginning of the Christian era. We shall not examine the content and per-
sonalities of this mature phase of Egyptian mathematics in any detail, since 
its coverage in standard histories of mathematics is more than adequate. 
There is, however, a widespread tendency in many of these texts to view 
Alexandrian mathematics as a mere extension of Greek mathematics, in 
spite of the distinctive character of the mathematics of Archimedes, Heron, 
Diophantus, and Pappus, to mention a few notable names of the Alexan-
drian period. 

The other early contributor to mathematics was the civilization that 
grew around the twin rivers, the Tigris and the Euphrates, in Mesopota-
mia. There mathematical activity flourished, given impetus by the estab-
lishment of a place-value sexagesimal (i.e., base 60) system of numerals, 
which must surely rank as one of the most significant developments in 
the history of mathematics. However, the golden period of mathematics 
in this area (or at least the period for which considerable written evidence 
exists) came during the First Babylonian period (c. 1800–1600 BC), which 
saw not only the introduction of further refinements to the existing nu-
meral system but also the development of an algebra more advanced than 
that in use in Egypt. The period is so important that the mathematics that 
developed in Mesopotamia is often simply referred to as Babylonian math-
ematics. As with Egypt, the next period of significant advance followed 
Alexander’s conquest and the establishment of the Seleucid dynasty. Bab-
ylonian mathematics (a term that will be used interchangeably with Meso-
potamian hereafter to describe the mathematics of this cultural area) is 
discussed in chapter 4. 

There is growing evidence of mathematical links between Egypt and 
Mesopotamia before the Hellenistic period, which we would expect, given 
their proximity and the records we have of their economic and political 
contacts. Earlier, Parker (1972) had examined the evidence for a spread of 
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Mesopotamian algebra and geometry to Egypt. He pointed out that certain 
parallel developments in both geometry and algebra provided at least some 
support for links between the two cultural areas. This has now been re-
inforced by Friberg (2005), who examined “Egyptian mathematics against 
an up-to-date background in the history of Mesopotamian mathematics.” 
We will discuss Friberg’s work in greater detail in chapter 5. However, given 
that there is more evidence than hitherto believed, we represent the con-
tacts between Egypt and Mesopotamia by a two-headed arrow in figure 1.4. 

There is also evidence of the great debt that Greece owed to Egypt and 
Mesopotamia for its earlier mathematics and astronomy. We have men-
tioned the acknowledgment of this debt by the Greeks themselves, who be-
lieved that mathematics originated in Egypt. The travels of the early Greek 
mathematicians such as Thales, Pythagoras, and Eudoxus to Egypt and 
Mesopotamia in search of knowledge have been attested to both by their 
contemporaries and by later historians writing on the period. The period 
of greatest Egyptian influence on the Greeks may have been the first half 
of the first millennium BC. The Greek colonies scattered across the Medi-
terranean provided a wide channel of interchange. It is at the time of their 
heyday that we hear of Anaximander of Miletus (610–546 BC) introduc-
ing the gnomon (a geometric shape of both mathematical and astronomi-
cal significance)14 from Babylon. During the same period, contacts with 
the Greeks were maintained through the campaigns of the Assyrian king 
Sargon II (722–705 BC), and later through Ashurbanipal’s occupation of 
Egypt and his meeting with Gyges of Lydia toward the middle of the sev-
enth century BC. Even when Assyria ceased to exist, the Jewish captivity 
played a significant part in disseminating Babylonian learning. This was 
followed by the Persian invasion of Greece at the beginning of the fifth 
century and the final defeat of the Persians at the end of the fifth century. 
Thus continuous contacts were maintained throughout a period in which 
Greek mathematics was still in its infancy, as the foundations were being 
laid for the flowering of Greek creativity in a couple of centuries. In the 
next five hundred years, the pupil would learn and develop sufficiently to 
teach the teachers. 

Adding to these historical conjectures, there is now stronger evidence 
of links between the mathematical traditions of Egypt, Mesopotamia, and 
Greece. In a recent book Friberg (2007b) has argued as a sequel to his ear-
lier thesis (Friberg 2005) of “unexpected links between Egyptian and Bab-
ylonian mathematics” that there are “amazing traces of a Babylonian origin 
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in Greek mathematics.”15 These “traces” (discussed in chapter 5) are found 
in the fact that several of the famous Greek mathematicians showed an 
easy familiarity with what Friberg describes as Babylonian “metric alge-
bra,” that is, a characteristic approach that combines geometry, metrology, 
and the solution of quadratic equations. 

The transmissions to Greece from the two areas are shown in figure 
1.4 by the arrows from 2 in Egypt and 2b in Mesopotamia to 1 in Greece. 
All three areas then became part of the Hellenistic world, and during the 
period between the third century BC and the third century AD, and partly 
due to the interaction between the three mathematical traditions, there 
emerged one of the most creative periods in mathematics. We usually as-
sociate this period with names such as Euclid, Archimedes, Apollonius and 
Diophantus. But if Friberg’s thesis is sustained, there was a ‘non-Euclidean 
lower level’ of mathematics present in these traditions. These links are 
represented by the double lines between 3 in Egypt, 2 in Greece and 3 in 
Mesopotamia. 

The geographical location of India made it throughout history an im-
portant meeting place of nations and cultures. This enabled India from the 
very beginning to play an important role in the transmission and diffusion 
of ideas. The traffic was often two-way, with Indian ideas and achievements 
traveling abroad as easily as those from outside entered. Archaeological evi-
dence shows both cultural and commercial contacts between Mesopotamia 
and the Indus Valley. While there is no direct evidence of mathematical 
exchange between the two cultural areas, certain astronomical calculations 
of the longest and shortest day included in the Vedanga Jyotisa, the oldest 
extant Indian astronomical/astrological text, as well as the list of twenty-
eight nakshatras found in the early Vedic texts, have close parallels with 
those used in Mesopotamia. And hence the tentative link, shown by broken 
lines in figure 1.4, between 1 in Mesopotamia and 1 in India.16 

The relative seclusion that India had enjoyed for centuries was broken 
by the invasion of the Persians under Darius around 513 BC. In the ensu-
ing six centuries, except for a century and a half of security under the Mau-
ryan dynasty, India was subjected to incursions by the Greeks, the Sakas, 
the Pahlavas, and the Kusanas. Despite the turbulence, the period offered 
an opportunity for a close and productive contact between India and the 
West. Beginning with the appearance of the vast Persian empire, which 
touched Greece at one extremity and India at the other, tributes from 
Greece and from the frontier hills of India found their way to the same 

http:India.16
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imperial treasure houses at Ecbatana or Susa. Soldiers from Mesopotamia, 
the Greek cities of Asia Minor, and India served in the same armies. The 
word indoi for Indians began to appear in Greek literature. Certain inter-
esting parallels between Indian and Pythagorean philosophy have already 
been pointed out. Indeed, according to some Greek sources, Pythagoras 
had ventured as far afield as India in his search for knowledge. 

By the time Ptolemaic Egypt and Rome’s Eastern empire had established 
themselves just before the beginning of the Christian era, Indian civiliza-
tion was already well developed, having founded three great religions— 
Hinduism, Buddhism, and Jainism—and expressed in writing some subtle 
currents of religious thought and speculation as well as fundamental theo-
ries in science and medicine. There are scattered references to Indian sci-
ence in literary sources from countries to the west of India after the time of 
Alexander. The Greeks had a high regard for Indian “gymnosophists” (i.e., 
philosophers) and Indian medicine. Indeed, there are various expressions 
of nervousness about the Indian use of poison in warfare. In a letter to his 
pupil Alexander in India, Aristotle warns of the danger posed by intimacy 
with a “poison-maiden,” who had been fed on poison from her infancy so 
that she could kill merely by her embrace! 

There is little doubt that the Mesopotamian influence on Indian as-
tronomy continued into the Hellenistic period, when the astronomy and 
mathematics of the Ptolemaic and Seleucid dynasties became important 
forces in Indian science, readily detectable in the corpus of astronomical 
works known as Siddhantas, written around the beginning of the Chris-
tian era. Evidence of such contacts (especially in the field of medicine) has 
been found in places such as Jund-i-Shapur in Persia dating from between 
AD 300 and 600. As mentioned earlier, Jund-i-Shapur was an important 
meeting place of scholars from a number of different areas, including In-
dians and, later, Greeks who sought refuge there with the demise of Alex-
andria as a center of learning and the closure of Plato’s Academy. All such 
contacts are shown in figure 1.4 by lines linking 2 in India to 1 in Greece 
and 3 in India to the Hellenistic cultural areas. 

By the second half of the first millennium AD, the most important con-
tacts for the future development of mathematics were those between India 
and the Islamic world. This is shown by the arrow from 3 in India to 1 in 
the “Arab” world. As we saw in figure 1.3, the other major influence on the 
Islamic world was from the Greek cultural areas, and the nature of these 
influences has been discussed in some detail. As far as Indian influence via 
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the Islamic world on the future development of mathematics is concerned, 
it is possible to identify three main areas: 

1.  The spread of Indian numerals and their associated algorithms, first 
to the Islamic world and later to Europe 

2.  The spread of Indian trigonometry,17 especially the use of the sine 
function 

3.  The solutions of equations in general, and of indeterminate equa-
tions in particular18 

These contributions will be discussed in chapters 8–10, which deal with 
Indian mathematics. 

We have already looked briefly at the contributions of Islamic scholars 
as producers, transmitters, and custodians of mathematical learning. Their 
role as teachers of mathematics to Europe is not sufficiently acknowledged. 
The arrow from 1 in the “Arab” world to 1 in Europe represents the crucial 
role of the Islamic world in the creation and spread of mathematics, which 
culminated in the birth of modern mathematics. These contributions will 
be discussed in the final chapter of this book. 

Figure 1.4 shows another important cross-cultural contact, between 
India and China. There is very fragmentary evidence (as shown by the 
broken line between 2 in India and 2 in China) of contacts between the 
two countries before the spread of Buddhism into China. After this, from 
around the first century AD, India became the center for pilgrimage of 
Chinese Buddhists, opening the way for a scientific and cultural exchange 
that lasted for several centuries. In a catalogue of publications during the 
Sui dynasty (c. 600), there appear Chinese translations of Indian works on 
astronomy, mathematics, and medicine. Records of the Tang dynasty in-
dicate that from 600 onward Indian astronomers were hired by the Astro-
nomical Board of Changan to teach the principles of Indian astronomy. The 
solution of indeterminate equations, using the method of kuttaka in India 
and of qiuyishu in China, was an abiding passion in both countries. The na-
ture and direction of transmission of mathematical ideas between the two 
areas is a complex but interesting problem, one to which we shall return in 
later chapters. The two-headed arrow linking 3 in India with 3 in China is 
a recognition of the existence of such transmission. Also, there is some evi-
dence of a direct transmission of mathematical (and astronomical) ideas 
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between China and the Islamic world, around the beginning of the second 
millennium AD.19 Numerical methods of solving equations of higher order 
such as quadratics and cubics, which attracted the interest of later Islamic 
mathematicians, notably al-Kashi (c. 1400), may have been influenced 
by Chinese work in this area. There is every likelihood that some of the 
important trigonometric concepts introduced into Chinese mathematics 
around this period may have an Islamic origin. 

There are broken lines of transmission in figure 1.4 that need some ex-
planation. One of the conjectures posed and elaborated in chapter 10 is the 
possibility that mathematics from medieval India, particularly from the 
southern state of Kerala, may have had an impact on European mathemat-
ics of the sixteenth and seventeenth centuries. While this cannot be sub-
stantiated at present by existing direct evidence, the circumstantial evidence 
has become much stronger as a result of some recent archival research. The 
fact remains that around the beginning of the fifteenth century Madhava of 
Kerala derived infinite series for p and for certain trigonometric functions, 
thereby contributing to the beginnings of mathematical analysis about 250 
years before European mathematicians such as Leibniz, Newton, and Greg-
ory were to arrive at the same results from their work on infinitesimal cal-
culus. The possibility of medieval Indian mathematics influencing Europe is 
indicated by the arrow linking 4 in India with 1 in Europe. 

During the medieval period in India, especially after the establishment 
of Mughal rule in North India, the Arab and Persian mathematical sources 
became better known there. From about the fifteenth century onward 
there were two independent mathematical developments taking place, 
one Sanskrit-derived and constituting the mainstream tradition of Indian 
mathematics, then best exemplified in the work of Kerala mathematicians 
in the South, and the other based in a number of Muslim schools (or ma‑
drassahs) located mainly in the North. We recognize this transmission by 
constructing an arrow linking 1 in the Arab world to 4 in India. A discus-
sion of the flourishing mathematical tradition introduced into India dur-
ing the medieval times, where the sources were Persian and Arabic texts, 
will be found in chapter 9. 

The medieval period also saw a considerable transfer of technology and 
products from China to Europe, which has been thoroughly investigated 
by Lach (1965) and Needham (1954). The fifteenth and sixteenth centuries 
witnessed the culmination of a westward flow of technology from China 
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that had started as early as the first century AD. It included, from the list 
given by Needham (1954, pp. 240–41), the square-pallet chain pump, 
metallurgical blowing engines operated by water power, the wheelbarrow, 
the sailing carriage, the wagon mill, the crossbow, the technique of deep 
drilling, the so-called Cardan suspension for a compass, the segmental 
arch-bridge, canal lock-gates, numerous inventions in ship construction 
(including watertight compartments and aerodynamically efficient sails), 
gunpowder, the magnetic compass for navigation, paper and printing, and 
porcelain. The conjecture here is that with the transfer of technology went 
certain mathematical ideas, including different algorithms for extracting 
square and cube roots, the “Chinese remainder theorem,” solutions of cu-
bic and higher-order equations by what is known as Horner’s method, and 
indeterminate analysis. Such a transmission from China need not have 
been a direct one but may have taken place through India and the Islamic 
world. We shall return to the question of influences and transmission from 
China to the rest of the world in chapter 7. 

During the first half of the first millennium of the Christian era, the 
Central American Mayan civilization attained great heights in a number 
of different fields including art, sculpture, architecture, mathematics, and 
astronomy. In the field of numeration, the Maya shared in two fundamen-
tal discoveries: the principle of place value and the use of zero. Present 
evidence indicates that the principle of place value was discovered in-
dependently four times in the history of mathematics. At the beginning 
of the second millennium BC, the Mesopotamians were working with a 
place-value notational system to base 60. Around the beginning of the 
Christian era, the Chinese were using positional principles in their rod 
numeral computations. Between the third and fifth centuries AD, Indian 
mathematicians and astronomers were using a place-value decimal system 
of numeration that would eventually be adopted by the whole world. And 
finally, the Maya—apparently cut off from the rest of the world—had de-
veloped a positional number system to base 20. As regards zero, there are 
only two original instances of its modern use in a number system: by the 
Maya and by the Indians around the beginning of the Christian era. 

But mathematics is not the only area in which the Maya surprise us. 
With the most rudimentary instruments at their disposal they undertook 
astronomical observations and calendar construction with a precision that 
went beyond anything available in Europe at that time. They had accurate 
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estimates of the duration of solar, lunar, and planetary movements. They 
estimated the synodic period of Venus (i.e., the time between one appear-
ance at a given point in the sky and its next appearance at that point) to 
be 584 days, which is an underestimate of 0.08 days. They achieved these 
discoveries with no knowledge of glass or, consequently, of any sort of opti-
cal device. Neither did they apparently have any device for measuring the 
passage of time, such as clocks or sandglasses, without which it would now 
seem impossible to produce astronomical data. 

Figure 1.5 shows the geographical areas whose mathematics form the 
subject matter of this book. I am conscious of not having examined in suf-
ficient detail the mathematical pursuits of other groups, notably the Af-
ricans south of the Sahara, the Amerindians of North America, and the 
indigenous Australasians, although the topics treated in chapter 2 should 
go some way in making up for this neglect.20 Much research still needs to 
be done on mathematical activities in these areas, despite some promising 
work on ethnomathematics in recent years, notably by Gerdes (1995, 1999, 
2002) and Zaslavsky (1973a) on African mathematics.21 

Since the publication of the first edition of this book in 1991, there has 
been an increase in interest in ethnomathematics, or the study of math-
ematical concepts in their cultural context, often within socially cohesive 
and small-scale indigenous groups. Within the definition of mathematics 
given earlier, the emphasis is on how structures and systems of ideas in-
volving number, pattern, logic, and spatial configuration arose in different 
cultures. This view has had to contend with the strongly entrenched notion 
that mathematics, having originated in some primitive unformed state, ad-
vanced in a linear direction to the current state of modern mathematics 
and will continue to grow in that direction. A mathematical system that 
emerges in a culture removed from this “mainstream” would then be per-
ceived as a mere distraction of little relevance to the ideas and activities 
supported by modern mathematics. 

A telling criticism of the first edition of The Crest of the Peacock is that it 
implicitly subscribed to this “linear” view, being “epistemologically based 
on the idea of direct literal translations of non-western mathematics to the 
western tradition” (Eglash 1997, p. 79). In response to this criticism and 
in subsequent editions, the coverage has been extended to include areas 
in the Pacific and elaborate further on the mathematical activities in the 
African and American continents. 

http:mathematics.21
http:neglect.20
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Notes 

1. The term “cultural dependencies” is used here to describe those countries—notably 
the United States, Canada, Australia, and New Zealand—which are inhabited mainly 
by populations of European origin or which have historical and cultural roots similar to 
those of European peoples. For the sake of brevity, the term “Europe” is used hereafter 
to include these cultural dependencies as well. 

2. This is a variation on the famous Needham question (named after Joseph Needham, 
the well-known twentieth-century British scientist and sinologist): Why did modern 
science develop in Europe when China with its momentous inventions like printing 
and gunpowder seemed so much better placed to achieve it? A similar question may be 
asked substituting instead of China the names of India or the Islamic world. For further 
discussion, see Bala (2006) and Bala and Joseph (2007). 

3. See Brohman (1995a, 1995b) for further details. 

4. The shift has occurred not only in the history of mathematics. The traditional Euro-
centric world history presupposed the existence of an imaginary line of “civilizational 
apartheid” between the European and the non-European world whereby the former 
had single-handedly propelled the whole world from tradition into modernity while 
the latter remained stagnant. In recent years, spurred by a non-Eurocentric global his-
tory focusing on the historical resource portfolios (i.e., ideas, institutions, and tech-
nologies) diffused from the East across to the West, one discerns the emergence of what 
may be described as a neo-Eurocentric approach: one that acknowledges the borrowing 
of non-Western resources in the rise of the West but recasts Europe as “cosmopoli-
tan, tolerant, open to others ideas, and highly adaptive insofar as it put all these non-
Western sources together in a unique way to produce modernity.” I am grateful to John 
Hobson for making this point in a private communication. It follows logically from his 
book The Eastern Origins of Western Civilisation (2004). 

5. These parallels include (a) a belief in the transmigration of souls; (b) the theory of 
four elements constituting matter; (c) the reasons for not eating beans; (d) the structure 
of the religio-philosophical character of the Pythagorean fraternity, which resembled 
Buddhist monastic orders; and (e) the contents of the mystical speculations of the Py-
thagorean schools, which bear a striking resemblance to the Hindu Upanishads. Ac-
cording to Greek tradition, Pythagoras, Thales, Empedocles, Anaxagoras, Democritus, 
and others undertook journeys to the East to study philosophy and science. While it 
is far-fetched to assume that all these individuals reached India, there is a strong pos-
sibility that some of them became aware of Indian thought and science through Persia. 

6. It is interesting to note that the terminology used in modern mathematics has a 
mixed origin consisting mainly of Greek, Latin, and modern European languages. The 
terms used in both Egyptian and Mesopotamian texts date back to the period before 
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the Greeks. Given the nature and scope of this book, we will continue to use modern 
terminology and avoid literal translations of the technical terms given in the ancient 
texts. Thus, for example, we use the modern term “triangle” (three angles) rather than 
the Babylonian term translated as “wedge” (three sides). The concept of an “angle” came 
only with the Greeks. A right-angled triangle in Old Babylonian mathematics had no 
angle connotation and was literally transliterated as one of two triangles into which 
a rectangle was divided by the longer diagonal. Similarly, although we use a modern 
term such as a “square” in the presentation of the ancient mathematics of Egypt and 
Mesopotamia, it should be noted that the corresponding term in these texts is “equal 
side” (or “same side”). 

7. In terms of historical, geographical, as well as intellectual proximity, Islamic sci-
ence could be regarded as the most immediate predecessor of modern Western sci-
ence. Some of the more recent studies (Bala 2006; Saliba 2007) show the existence 
of epistemological links between the two sciences. The “mathematicization” of nature, 
the centrality of the empirical method in scientific methodology, and the rationality of 
scientific discourses are features of Islamic science inherited by founders of modern 
Western science. 

8. They include (a) an early description of pulmonary circulation of the blood, by ibn 
al-Nafis, usually attributed to Harvey, though there are records of an even earlier ex-
planation in China; (b) the first known statement about the refraction of light, by ibn 
al-Hayatham, usually attributed to Newton; (c) the first known scientific discussion of 
gravity, by al-Khazin, again attributed to Newton; (d) the first clear statement of the idea 
of evolution, by ibn Miskawayh, usually attributed to Darwin; and (e) the first exposition 
of the rationale underlying the “scientific method,” found in the works of ibn Sina, ibn 
al-Hayatham, and al-Biruni but usually credited to Roger Bacon. A general discussion of 
the Western debt to the Middle East is given by Savory (1976), while detailed references 
to specific contributions of Islamic science are given by Gillespie (1969– ). 

9. Jund-i-Shapur (or Guneshahpuhr) was founded around AD 260 by Shahpuhr I 
(241–272) to settle Roman prisoners captured in the war against Valerian and was lo-
cated in Khuzistan in southwestern Iran. Early settlers included Roman engineers and 
physicians, and doubtless others who may have been acquainted with Greek, Egyptian, 
and Mesopotamian mathematics. The Christian bishop Demetrianus from Antioch 
founded a bishopric there, and during the fifth and sixth centuries Nestorianism was 
the only form of Christianity permitted in Iran. This intolerance contrasted with the 
openness and tolerance exhibited toward other religious immigrants, for when Zeno 
closed the School of the Persians in Edessa (AD 489), its intellectual and spiritual cen-
ter moved to Persian Nisibis, where the exiles re-created their famous seat of learning. 
The Medical School of Jund-i-Shapur was founded on Greek medical knowledge (itself 
from Egyptian and Babylonian) by these Nestorian physicians. In the realms of phi-
losophy, it is often forgotten that the Sasanian king Khusro I welcomed the major seven 
Neoplatonist Greek philosophers who fled Athens in 529 when the Academy there was 
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closed on the orders of the Byzantine Justinian. Some of these scholars worked for some 
time at Jund-i-Shapur but became homesick; Khusro negotiated their safe conduct and 
pardon for their return to Athens. Indeed, it was said of the enlightened Khusro that 
he was “a disciple of Plato seated on the Persian throne.” The Jund-i-Shapur Medical 
School remained a center of excellence right through to Islamic times and indeed well 
past the mid-ninth century. While there are no extant records relating to mathemati-
cal activities in Jund-i-Shapur, we have evidence to indicate that during the reign of 
Shahpuhr I and later Khusro I, translations into Middle Persian (Pahlavi) were made 
in Iran from Greek and Sanskrit texts. It is more than likely that these included texts in 
astronomy, mathematics, and other sciences. After the downfall of the Sasanians, the 
Islamic regimes of the caliphs were by turns favorable or otherwise to the ancient learn-
ing enshrined at Jund-i-Shapur. Either way, Islamic knowledge was vastly increased 
through such deep and enduring exchanges. 

10. This familiar story (or even some believe a caricature) about the role played by the 
House of Wisdom is now being reassessed. For further details see Gutas (1998) and 
Saliba (2007). See also endnote 2 of chapter 11. 

11. But see the comment and reference given in endnote 24 of chapter 11 for further 
clarification. 

12. A Spanish dictionary gives the following meanings: álgebra. 1. f. Parte de las ma-
temáticas en la cual las operaciones aritméticas son generalizadas empleando números, 
letras y signos. 2. f. desus. Arte de restituir a su lugar los huesos dislocados (translation: 
the art of restoring broken bones to their correct positions). 

13. For further details of these transmissions, see Zaimeche (2003, p. 10). 

14. Gnomon is an ancient Greek word meaning “indicator” or “that which reveals.” 
There are references to the gnomon in other traditions, for example, the seminal Chi-
nese text Nine Chapters on the Mathematical Art, and it was referred to earlier by the 
Duke of Zhou (eleventh century BC). “Gnomon” also refers to the triangular part of a 
sundial that casts the shadow. 

15. In the concluding paragraph Friberg (2005, p. 270) writes: “The observation that 
Greek ostraca [i.e., limestone chippings and pottery used as writing material] and pa-
pyri with Euclidean mathematics existed side by side with demotic and Greek papyri 
with Babylonian style mathematics is important for the reason that this surprising cir-
cumstance is an indication that when the Greeks themselves claimed that they got their 
mathematics from Egypt, they can really have meant that they got their mathematical 
inspiration from Egyptian texts with the mathematics of the Babylonian type. To make 
this thought more explicit would be a natural continuation of the present investigation.” 
Friberg (2007) is the continuation of the investigation alluded to and provides the ma-
terial for the Greek links with the two earlier civilizations. 
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16. In the case of Indian astronomy and the mathematics associated with it, the early 
influences from Mesopotamia came through the mediation of the Greeks. Probably 
in the fifth century BC, India acquired Babylonian astronomical period relations and 
arithmetic (e.g., representing continuously changing quantities with “zigzag” func-
tions). Around the early centuries AD, the Babylonian arithmetical procedures were 
combined with Greek geometrical methods to determine solar and lunar positions, as 
reported in the Indian astronomical treatises Romaka‑siddhanta and Paulisa‑ siddhanta. 
For further details, see Pingree (1981). 

17. Since this is the first time we use the term “trigonometry,” a word of caution is nec-
essary. Trigonometry (meaning “triangle measurement”) is a relatively modern term 
dating back to the sixteenth century. While today we have difficulty disentangling the 
concept of trigonometry from the ratio of sides in a right-angled triangle, for a long 
period of history the concept related only to circles and their arcs. And this was par-
ticularly so for the Greeks and the Indians. It was a search for a measure of the angle (or 
the inclination) of one line to another, an interest (and ability) to estimate the lengths 
of line segments, and a “systematic ability to convert back and forth between measures 
of angles and of lengths” that gave rise to modern trigonometry. I am grateful to Van 
Brummelen (2008) for this insight. 

18. An example of an indeterminate equation in two unknowns (x and y) is 3x + 4y =
50, which has a number of positive whole-number (or integer) solutions for (x, y). For 
example, x = 14, y = 2 satisfies the equation, as do the solution sets (10, 5), (6, 8) and 
(2, 11). 

19. An exchange of astronomical knowledge took place between the Islamic world and 
the Yuan dynasty in China in the latter part of the thirteenth century, when both ter-
ritories were part of the Mongol empire. A few Chinese astronomers were employed at 
the observatory in Maragha (set up by Hulegu Khan in 1258) and probably helped in 
the construction of the Chinese-Uighur calendar (a type of a lunisolar calendar or a cal-
endar whose date indicates both the phase of the moon and the time of the solar year). 
This calendar was widely used in Iran from the late thirteenth century onward. There 
were at least ten Islamic astronomers working in the Islamic Astronomical Bureau in 
Beijing founded by the first Mongol emperor of China, Kublai Khan, in 1271. At this 
bureau, continuous observations were made and a zij (or astronomical handbook with 
tables) was compiled in Persian. This work was then translated into Chinese during 
the early Ming dynasty (1383) and, together with Kushayar’s influential Islamic text, 
Introduction to Astrology, served for a number of years as important sources for further 
research and study by Chinese scholars. For further details, see van Dalen (2002). 

20. It could be argued that in the examples discussed in chapter 2 there is undue em-
phasis on the role of number systems and insufficient attention paid to what Gerdes 
(1995) describes as “frozen geometry.” These would include geometric or logical re-
lationships embedded in diverse activities such as basket weaving, knitting, and sand 
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drawings highlighted by scholars such as Gerdes (1999) and Harris (1997). The prob-
lem in including such ethnomathematical activities is partly one of determining their 
historical origins and partly one of deciding what are to be included/excluded given the 
scope of this book. 

21. The burgeoning study of African mathematics in recent years has highlighted a 
variety of mathematics that goes under the blanket term “ethnomathematics.” Ram-
bane and Mashige (2007, 184–85) have constructed the following list, with references 
to those who have worked in these areas. 

1. Oral mathematics. The mathematical knowledge that is transmitted orally 
from one generation to another. 

2. Oppressed mathematics. The mathematical elements in daily life that remain 
unrecognized by the dominant (colonial and neocolonial) ideologies (Gerdes 
1985b). 

3. Indigenous mathematics. A mathematical curriculum that uses everyday in-
digenous mathematics as the starting point. The origin of this concept is found 
in Gay and Cole (1967), who criticized the teaching of Kpelle children in Liberia 
in Western-oriented schools “things that have no point or meaning within their 
culture.” 

4. Sociomathematics of Africa. “The applications of mathematics in the lives of 
African people, and, conversely, the influence that African institutions had upon the 
evolution of their mathematics” (Zaslavsky 1973b, 1991). 

5. Informal mathematics. Mathematics that is transmitted and learned outside 
the formal system of education, sometimes referred to as “street mathematics” (Pos-
ner 1982; Nunes et al. 1993). 

6. Nonstandard mathematics. A distinctive mathematics beyond the standard 
form, found outside the school and university (Gerdes 1985b). 

7. Hidden or frozen mathematics. Mathematics that has to be unfrozen from 
“hidden” or frozen objects or techniques, such as basket making, weaving, or tradi-
tional architecture (Gerdes 1985b). 




