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1 Introduction 

1.1 Introduction 

Quantum mechanics is a mathematical description of how elementary particles move 

and interact in nature. It is based on the wave–particle dual description formulated by 

Bohr, Einstein, Heisenberg, Schrödinger, and others. The basic units of nature are indeed 

particles, but the description of their motion involves wave mechanics. 

The important parameter in quantum mechanics is Planck’s constant h ¼ 6.626 · 
10�34 J s. It is common to divide it by 2p, and to put a slash through the symbol: h�¼ 
1.054 · 10�34 J s. Classical physics treated electromagnetic radiation as waves. It is par­

ticles, called photons, whose quantum of energy is h�o where o is the classical angular 

frequency. For particles with a mass, such as an electron, the classical momentum 

m~vv¼~pp¼ h�k, where the wave vector k gives the wavelength k ¼ 2p/l of the particle. Every 

particle is actually a wave, and some waves are actually particles. 

The wave function c(r, t) is the fundamental function for a single particle. The position 

of the particle at any time t is described by the function |c(r, t)|2, which is the probabil­

ity that the particle is at position r at time t. The probability is normalized to one by 

integrating over all positions: 

1 ¼
Z

d3rjw(r, t)j 2 (1:1) 

In classical mechanics, it is assumed that one can know exactly where a particle is located. 

Classical mechanics takes this probability to be 

jw(r, t)j 2 ¼ d3(r � vt) (1:2) 

The three-dimensional delta-function has an argument that includes the particle velocity 

v. In quantum mechanics, we never know precisely where to locate a particle. There is 

always an uncertainty in the position, the momentum, or both. This uncertainty can be 

summarized by the Heisenberg uncertainty principle: 

DxDpx ‡ �h (1:3) 
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Table 1.1 Fundamental Constants and Derived Quantities 

Name Symbol Value 

Electron mass m 9.10938215 · 10�31 kg 

Electron charge e 1.602176487 · 10�19 C 

Planck’s constant h 6.62606896 · 10�34 J s  

h� ¼ h/2p 1.054571628 · 10�34 J s  

Boltzmann’s constant kB 1.3806504 · 10�23 J/K 

Light speed c 299,792,458 m/s 

Atomic mass unit AMU 1.660538782 · 10�27 kg 

Bohr magneton lB 927.400915 · 10�26 J/T 

Neutron magnetic moment ln �0.99623641 · 10�26 J/T 

Bohr radius a0 0.52917720859 · 10�10 m 

Rydberg energy ERy 13.605691 eV 

Fine structure constant a 7.2973525376 · 10�3 

Compton wavelength lc 2.463102175 · 10�12 m 

Flux quantum /0 ¼ h/e 4.13566733 · 10�15 T/m2 

Resistance quantum h/e2 25,812.808 O 

Source: Taken from NIST web site http://physics.nist.gov/ 

where Dx is the uncertainty in position along one axis, Dpx is the uncertainty in 

momentum along the same axis, and h� is Planck’s constant h divided by 2p(h�¼ h/2p), and 

has the value h�¼ 1.05 · 10�34 joules-second. Table 1.1 lists some fundamental constants. 

1.2 Schr�dinger’s Equation 

The exact form of the wave function c(r, t) depends on the kind of particle, and its 

environment. Schrödinger’s equation is the fundamental nonrelativistic equation used in 

quantum mechanics for describing microscopic particle motions. For a system of particles, 

Schrödinger’s equation is written as 

qw 
i�h 

qt 
¼Hw (1:4) 

" # 
2 

H ¼
X

2

p

m
j 

j 
þU(rj, sj) þ

X
V(ri � rj)  (1:5) 

j i>j 

http://physics.nist.gov/
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The particles have positions ri, momentum pj, and spin sj. They interact with a po­

tential U(rj, sj) and with each other through the pair interaction V(ri � rj). The quantity 

H is the Hamiltonian, and the wave function for a system of many particles is 

w(r1, r2, r3, , rN ; s1; s2, . . . , sN ). 

The specific forms for H depends on the particular problem. The relativistic form of 

the Hamiltonian is different than the nonrelativistic one. The relativistic Hamiltonian 

is discussed in chapter 11. The Hamiltonian can be used to treat a single particle, a 

collection of identical particles, or different kinds of elementary particles. Many-particle 

systems are solved in chapter 9. 

No effort is made here to justify the correctness of Schrödinger’s equation. It is as­

sumed that the student has had an earlier course in the introduction to modern physics 

and quantum mechanics. A fundamental equation such as eqn. (1.4) cannot be derived 

from any postulate-free starting point. The only justification for its correctness is that its 

predictions agree with experiment. The object of this textbook is to teach the student how 

to solve Schrödinger’s equation and to make these predictions. The students will be able 

to provide their own comparisons to experiment. 

Schrödinger’s equation for a single nonrelativistic particle of mass m, in the absence of 

a magnetic field, is 

i�h 
qw 
qt 
¼Hw (1:6) 

H ¼ p
2 

2m 
þV(r) (1:7) 

The potential energy of the particle is V(r). This potential is usually independent of 

the spin variable for nonrelativistic motions in the absence of a magnetic field. Prob­

lems involving spin are treated in later chapters. When spin is unimportant in solving 

Schrödinger’s equation, its presense is usually ignored in the notation: the wave function 

is written as c(r). 

In quantum mechanics, the particle momentum is replaced by the derivative operator: 

h~ (1:8)p ! �i�rr

� 2h2 r þV(r) (1:9)H ¼�  
2m 

Schrödinger’s equation (1.4) is a partial differential equation in the variables (r, t). Solving 

Schrödinger’s equation for a single particle is an exercise in ordinary differential equa­

tions. The solutions are not just mathematical exercises, since the initial and boundary 

conditions are always related to a physical problem. 

Schrödinger’s equation for a single particle is always an artificial problem. An equation 

with V (r) does not ever describe an actual physical situation. The potential V(r) must be 

provided by some other particles or by a collection of particles. According to Newton’s 

third law, there is an equal and opposite force acting on these other particles, which are 

also reacting to this mutual force. The only situation in which one particle is by itself has 

V ¼ 0, which is a dull example. Any potential must be provided by another particle, so 
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Schrödinger’s equation is always a many-particle problem. Nevertheless, there are two 

reasons why it is useful to solve the one-particle problem using classical potentials. The 

first is that one has to learn using simple problems as a stepping stone to solving the 

more realistic examples. Secondly, there are cases where the one-particle Schrödinger’s 

equation is an accurate solution to a many-particle problem: i.e., it describes the relative 

motion of a two-particle system. 

1.3 Eigenfunctions 

In solving the time-dependent behavior, for the one-particle Schrödinger’s equation (1.8), 

an important subsidiary problem is to find the eigenvalues en and eigenfunctions fn(r) 

of the time-independent Hamiltonian: 

H/n(r) ¼ en/n(r)  (1:10) 

There is a silly convention of treating ‘‘eigenfunction’’ and ‘‘eigenvalue’’ as single words, 

while ‘‘wave function’’ is two words. The name wave function is usually reserved for the 

time-dependent solution, while eigenfunction are the solutions of the time-independent 

equation. The wave function may be a single eigenfunction or a linear combination of 

eigenfunctions. 

The eigenfunctions have important properties that are a direct result of their being 

solutions to an operator equation. Here we list some important results from linear al­

gebra: The Hamiltonian operator is always Hermitian: H{ ¼H. 

� Eigenvalues of Hermitian operators are always real. 

� Eigenfunctions with different eigenvalues are orthogonal: 

[en�em] 

Z
d3r/ * 

n(r)/m(r) ¼ 0  (1:11) 

which is usually written as 

Z
d3r/ * 

n(r)/m(r) ¼ dnm (1:12) 

These two statements are not actually identical. The confusing case is where there are several 

different states with the same eigenvalue. They do not have to obey eqn. (1.12), but they can 

be constructed to obey this relation. We assume that is the case. 

� The eigenfunctions form a complete set: 

X
/ * 

n(r)/n(r¢) ¼ d3(r � r¢)  (1:13) 
n 

These properties are used often. Orthogonality is important since it implies that each 

eigenfunction fn(r) is linearly independent of the others. Completeness is important, since 

any function f (r) can be uniquely and exactly expanded in terms of these eigenfunctions: 
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f (r) ¼
X

bn/n(r)  (1:14) 
n 

bn ¼
Z

d3rf (r)/n(r)  (1:15) 

The function of most interest is the wave function c(r, t). It can be expanded exactly as 

w(r; t) ¼
X

an/n(r)e�ient=�h (1:16) 
n 

i�h 
qw X

anen/n(r)e�ient=h� ¼Hw (1:17) 
qt 
¼

n 

The coefficients an depend on the initial conditions. They depend on neither r nor t. One  

example is when the system is in thermal equilibrium. If the particles obey Maxwell-

Boltzmann statistics, the coefficients are 

1 janj 2 ¼ exp[�b(en �V)], b ¼ (1:18)
kBT 

and O is the grand canonical potential. Another example occurs during an experiment, 

where the system is prepared in a particular state, such as an atomic beam. Then the 

coefficients an are determined by the apparatus, and not by thermodynamics. 

The wave function has a simple physical interpretation. The probability P(r, t) that the 

particle is at the position r at the time t is given by the square of the absolute magnitude of 

the wave function: 

(1:19)P(r, t) ¼ jw(r, t)j 2 

In quantum mechanics, there is no certainty regarding the position of the particle. In­

stead, the particle has a nonzero probability of being many different places in space. The 

likelihood of any of these possibilities is given by P(r, t). The particle is at only one place 

at a time. 

The normalization of the wave function is determined by the interpretation of P(r, t) as  

a probability function. The particle must be someplace, so the total probability should be 

unity when integrated over all space: 

21 ¼
Z

d3rP(r, t) ¼
Z

d3rjw(r, t)j (1:20) 

The normalization also applies to the wave function. The eigenfunctions are also ortho­

gonal, so that 

Z X Z
1 ¼ d3rjw(r, t)j 2 ¼

n,m 

an
�ameit(en�em )=�h d3r/n

�/m (1:21) 

2 (1:22)¼
X
janj

n 

The summation of the expansion coefficients |an|2 must be unity. These coefficients 

X
Pn ¼ janj 2, 

n 

Pn ¼ 1  (1:23) 
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are interpreted as the probability that the particle is in the eigenstate fn(r). 

The average value of any function f (r) is obtained by taking the integral of this func­

tion over all of space, weighted by the probability P(r, t). The bracket notation denotes the 

average of a quantity: 

h f i(t) ¼
Z

d3r f  (r)P(r; t) (1:24) 

For example, the average potential energy hV i and the average position hr i are 

d3rV(r)P(r, t) (1:25)hVi¼
Z

hri¼
Z

d3rrP(r, t) (1:26) 

A similar average can be taken for any other function of position. 

There is no way to take an average of the particle velocity v ¼ rr_. Since P(r, t) does not 

depend on rr_, there is no way to average this quantity. So hrr_i does not exist. Instead, the 

average velocity is found by taking the time derivative of the average of r, such as 

q
q 
t 
hri¼

Z
d3rr 

q 
P(r; t) (1:27) 

qt 

qw ¼
Z

d3rr 

� 
w�

qt 
þw 

q
q
w
t 

�� 
(1:28) 

Now use Schrödinger’s equation and its complex conjugate, to find 

qw ¼ �i �h2 r 2 

w (1:29) 
qt h�

�
2m 

þV 

qw * i �h2 2 r 
w * (1:30) 

qt 
¼

�h 
�

2m 
þV 

which is used in qh r i/ qt: 

q
q 
t 
hri¼  i�h 

Z
d3rr[w�r 2 w�wr 2 w�] (1:31)

2m 

d3rr ~
¼
2m 

r � [w�~ r
ri�h 
Z

r rrw�w ~ w�] (1:32) 

The terms containing the potential energy V canceled. The equivalence of the last two 

expressions is found by just taking the derivative in the last expression. Each term in 
* brackets generates a factor of (~ w ) (~ w), which cancels.rr � rr

An integration by parts gives 

* *q i�h 
Z 

d3r[w ~ w�w ~ w ] ~ r (1:33) 
qt 
hri¼�

2m 
rr rr � rr

If A is the quantity in brackets, then (A ~ )r ¼A, so the final expression is� rr

q �h 
Z 

d3r[w�~ w�w ~ w�] (1:34) 
qt 
hri¼

2mi 
rr rr
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The integrand is just the definition of the particle current: 

h� * * j(r, t) ¼ [w ~ w�w ~ w ] (1:35)
2mi 

rr rr

d3rj(r, t) (1:36) 
q
q 
t 
hri¼

Z 

The function j(r, t) is the particle current, which has the units of number of particles per 

second per unit area. If it is multiplied by the charge on the particle, it becomes the 

electrical current density J ¼ ej, with units of amperes per area. 

In the integral (1.34), integrate by parts on the second term in brackets. It then equals 

the first term: 

~ 
q
q 
t 
hri¼

m 

1 
Z 

d3rw* 

� 
h�

i 
rr
� 

w ¼ h
m

pi 
(1:37) 

The momentum operator is p ¼ �h~=i, and the integral is the expectation value of therr
momentum. In quantum mechanics, the average value of the velocity is the average value 

of the momentum divided by the particle mass. 

The expectation value of any derivative operator should be evaluated as is done for the 

momentum: the operator is sandwiched between c* and c under the integral: 

d3 hOi¼
Z 

rw*(r, t)O(r)w(r, t) (1:38) 

Other examples are the Hamiltonian and the z-component of angular momentum: 

Z 
d3rw*(r, t) 

� 
� �h

2 r 2 

þV (r) 

� 
w(r, t) (1:39)hHi¼

2m 

d3rw*(r, t) x w(r, t) (1:40)hLzi¼  
�h

i 

Z � 
q
q 
y 
� y 

q
q 
x 

� 

Once the wave function is known, it can be used to calculate the average value of many 

quantities that can be measured. 

The last relationship to be proved in this section is the equation of continuity: 

q
0 ¼ q(r, t) þ ~ (1:41) 

qt 
rr � j(r, t) 

where r(r, t) : P(r, t) is the particle density and j(r, t) is the particle current. The continuity 

equation is proved by taking the same steps to evaluate the velocity: 

qq q qw qw* 

qt 
¼

qt 
w*w ¼w*

qt 
þw

qt 
(1:42) 

Use the above expressions (1.29, 1.30) for the time derivative of the wave functions. Again 

the potential energy terms cancel: 

h iqq i�h ~ ~ r rrw �w ~ w* ¼�r � j(r, t) (1:43) 
qt 
¼

2m 
r �  w*~ rr r
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which proves the equation of continuity. Schrödinger’s equation has been shown to be 

consistent with the equation of continuity as long as the density of particles is interpreted 

to be r(r, t) ¼ |c(r, t)|2, and the current is eqn. (1.35). 

1.4 Measurement 

Making a measurement on a particle in a quantum system is a major disruption of the 

probability distribution. Suppose we have N identical particles, for example, atoms, in a 

large box. They will be in a variety of energy states. It is not possible to say which atom is 

in which state. If /n(r) is an exact eigenstate for an atom in this box, the wave function of 

an atom is 

w(x, t) ¼
X

an/ (r) exp[�itEn =�h]  (1:44)n
n 

The amplitudes an, when squared (Pn ¼ |an|2), determine the probability of an atom being 

in the state with energy En. 

Suppose we do a measurement on a single atom, to determine its energy. One might 

drill a small hole in the side of the box, which allows one atom to escape at a time. If one 

measures the energy of that particular atom, one will find a definite value Ej. The result of 

the measurement process is that one state, out of the many possible states, is selected. 

Suppose that one measures the energy of the same atom at a later time. If its flight path 

has been undisturbed, one will again find the same energy Ej. After the first measurement 

of energy, the particle continues its motion starting from the eigenstate /j(r), and not 

from the distribution of eigenstates in c(r, t). Of course, the first measurement of energy 

may disrupt the flight path a bit, according to the uncertainly relation, so the second 

measurement may give a slightly different energy. The important point is that measure­

ment disrupts the statistical distribution, and imposes a new initial condition for the 

particle motion. 

1.5 Representations 

In the early days of quantum mechanics, Schrödinger and Heisenberg each presented 

versions that appeared to be different. There was a lively debate on the virtues of each 

version, until it was shown by Dirac and Jordan that the two are mathematically identical. 

This history is well described by von Neumann. The two theories do not look identical, 

at least superficially. The two versions are described here briefly, and an equally brief 

explanation is given as to why they are identical. 

Schrödinger’s version is the one discussed so far in this chapter, and which is mainly 

treated in the early parts of this book. The Heisenberg version, which stresses opera­

tors rather than wave functions, is introduced in later chapters. Both versions are used 

extensively in modern physics, and both are important. 
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The measurable quantities in physics are always expectation values: they are the 

average quantities. If F(r, p) is some function of position r and momentum p, then its 

expectation value is 

* hFi(t) ¼
Z

d3 rw (r, t)F(r, �ih�r)w(r, t) 	(1:45) 

The bracket on the left is a shorthand notation for taking the average over r, as indicated 

on the right-hand side of the equation. The Schrödinger and Heisenberg versions of 

quantum mechanics are equivalent because they always give the same expectation values. 

The same result is obtained even as a function of time, so the two versions give the same 

result for the time derivatives of hFi(t). 

1.5.1 Schr�dinger Representation 

This representation has two important features. 

1. Wave	 functions c(r, t) depend on time, and the time development is governed by 

Schrödinger’s equation: 

i�h 
qw ¼Hw(r, t) 	(1:46) 
qt 

w(r, t) ¼ e�iHt=�hw(r, t ¼ 0) (1:47) 

The second equation is a formal solution to eqn. (1.46). 

2. Operators do not depend on time. Operators such as r, p, H, Lz are time independent. 

In the Schrödinger representation, only the wave functions depend on time. The time 

derivative of an expectation value, such as (1.45), is 

* 

q
q 
t 
hFi(t) ¼

Z �� 
qw 

q
(

t 

r, t) 
� 

F(r, �i�rd3r	 h )w(r, t) 

þ w *(r, t)F(r, �ih�r) 

� 
qw

q
ðr
t 

, tÞ
�� 	

(1:48) 

The derivatives are evaluated using eqn. (1.46), giving 

q
q 
t 
hFi(t) ¼ i 

Z
d3r[(Hw *)Fw�w *F(Hw)]	 (1:49)

h 

In the first term on the right, the positions of H and c* can be interchanged. Recall that 

H ¼ p 2/2m þV. The scalar V can be interchanged. The kinetic energy term is ��h2 2=2m,r 
which can be interchanged after a double integration by parts on the r variable. Then the 

time derivative is written as a commutator: 

[H, F] ¼HF�FH	 (1:50) 

q
q 
t 
hFi(t) ¼ i 

Z 
d3rw *[H, F]w	 (1:51)

h 
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The above equation can be summarized as 

q
q 
t 
hFi(t) ¼ i 

[H, F]	 (1:52)
h 

The identical equation is found in the Heisenberg representation, as described below. 

1.5.2 Heisenberg Representation 

This representation has several important features: 

1. Wave functions are independent of time c(r). 

2. Operators are time-dependent according to the prescription 

F(r, p, t) ¼ eiHt=�hF(r, p)e�iHt=�h	 (1:53) 

3. The expectation values are given by 

hFi(t) ¼
Z

d3rw�(r)F(r; p, t)w(r) 	(1:54) 

d3rw�(r)eiHt=�hF(r; p)e�iHt=�h w(r) 	(1:55)¼
Z

The latter definition is formally identical to (1.45). The time derivative is also identical: 

q 
F(r, p, t) ¼ i eiHt=h�[HF�FH]e�iHt=�h (1:56) 

qt	 �h


i
¼
�h 

[H, F(r, p, t)]	 (1:57) 

This equation is the fundamental equation of motion in the Heisenberg version of 

quantum mechanics. The focus of attention is on the operators and their development 

in time. Once the time development is determined, by either exact or approximate 

techniques, the expectation value of the operator may be evaluated using the integral in 

eqn. (1.55). The solution to the time development in (1.57) involves the solution of op­

erator expressions. The Heisenberg version of quantum mechanics, with its emphasis 

on the manipulation of operators, appears to be very different than the Schrödinger’s 

equation (1.29), which is a differential equation in r-space. 

Yet the two representations do make identical predictions. For the average of the time 

derivative of F, the Heisenberg representaton gives, from (1.57), 

� � Z
q
q
F

t
¼

h�

i
d3rw�(r)eitH=�h[H;F(r; p)]e�itH=h�w(r) 	(1:58) 

This result is identical to the Schrödinger result in (1.51), just as the average value of F is 

the same as (1.45) and (1.55). The simularities of the two approaches is more apparent 

when using eqn. (1.47). The Hermitian conjugate of this expression is 

wy(r, t) ¼w *(r, t)eitH=�h	 (1:59) 
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and the expectation value of F in the Schrödinger representation is 

F d3rwy(r; t)F(r; p)w(r; t)  (1:60)h i¼
Z

This Schrödinger result is identical to the Heisenberg result in (1.55). The two repre­

sentations make identical predictions for the average values of operators and for all values 

of time. The two versions of quantum mechanics are equivalent in predicting mea­

sureable quantitites. 

1.6 Noncommuting Operators 

The important variables of classical mechanics usually exist as operators in quantum 

mechanics. A partial list of such operators is momentum p, energy H, and angular mo­

mentum Lz. An important consideration between pairs of operators is whether they 

commute or do not commute. 

An example of a pair of noncommuting operators in one dimension is the position x 

and momentum p ¼�ih�d/dx. Take some arbitrary function f (x), and operate on it by the 

two combinations 

df 
xpf ¼�i� (1:61)hx 

dx 

d df 
pxf ¼�i�h (xf ) ¼�ih f� þ x (1:62)

dx dx 

Subtract these two results: 

(xp�px) f ¼ i� (1:63)h f  ¼ [x; p] f 

The bracket notation for the commutator is used in the second equality: [A, B] : (AB �BA). 

This notation was introduced in the prior section. The commutatior [x, p], when operating 

on any function of x, gives  ih� times the same function of x.  This result is usually  written  

by omitting the function f (x): 

[x, p] ¼ i�h (1:64) 

The presence of such a function is usually implied, even though it is customarily omitted. 

The position x and momentum p do not commute. They would be said to commute if 

[x, p] ¼ 0. 

A theorem in linear algebra states that if two operators commute, then it is possible to 

construct simultaneous eigenfunctions of both operators. For example, if two operators 

F and G commute, then it is possible to find eigenstates /n such that 

F/n ¼ fn/n G/n ¼ gn/n (1:65) 

where ( fn, gn) are eigenvalues. The converse is also true, in that if two operators do not 

commute, then it is impossible to find simultaneous eigenvalues from the same eigen­

function. 
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It is impossible to find simultaneous eigenfunctions of x and p. There is no function /n 

that has the dual property that x/n ¼ xn/n, p/n ¼ pn/n. One can find an eigenfunction of 

x but it is not an eigenfunction of p, and vice versa. The statement that one cannot define 

simultaneous eigenvalues of x and p causes the uncertainly principle that DxDp ‡ h�. 

A similar uncertainly principle exists between any pair of noncommuting operators. 

The most important operator in quantum mechanics is the Hamiltonian H. The 

eigenfunctions of H are used extensively in wave functions and elsewhere. It is useful to 

ask whether these eigenfunctions are also exact eigenfunctions of other operators, such as 

momentum and angular momentum ~LL. The answer depends on whether these other 

operators commute with H. Angular momentum often commutes with H, and then one 

can construct simultaneous eigenstates of H and ~LL. The momentum p only occasionally 

commutes with H. Since p and ~LL never commute, one can never find simultaneous 

eigenstates of all three operators. 

An example is useful. Consider the Hamiltonian in three dimensions. The potential 

V(r) ¼ 0. 

H ¼ p
2 �h2 r 2 

(1:66)
2m 
¼�

2m 

One choice of eigenfunction is the plane wave state f(k, r) ¼Aeik�r, where A is a nor­

malization constant. The eigenvalue of H is 

h2 2 h2k2 r 
(Aeik�r) ¼ ek/(k, r), ek ¼ (1:67)H/(k, r) ¼�  

2m 2m 

The plane wave solution is also an eigenfunction of the momentum operator, but not of 

the angular momentum: 

p/(k; r) ¼�i�hr/(k, r) ¼ h�k/(k, r) (1:68) 

Lz/(k, r) ¼�ih x�
q
q 
y 
� y 

q
q 
x 

/ ¼ h�(xky � ykx )/(k, r) (1:69) 

The plane wave is an example of a simultaneous eigenfunction of H and p. 

Another choice of eigenfunction for H is the product of a spherical Bessel function 

j‘(kr) and spherical harmonic angular function Ymðh, /Þ in spherical coordinates:‘ 

w‘m(kr) ¼ j‘(kr)Y‘ 
m (h;/) (1:70) 

Readers unfamiliar with these functions should not worry: they are explained in chapter 

5. This function is an exact eigenfunction of H and Lz, but not of momentum: 

Hw‘m (kr) ¼ ekw‘m(kr) (1:71) 

Lzw‘m(kr) ¼ �hmw‘m(kr) (1:72) 

Here is an example of simultaneous eigenfunctions of H and Lz. 

The Hamiltonian of a ‘‘free particle,’’ which is one with no potential (V ¼ 0), has a 

number of eigenfunctions with the same eigenvalue ek. The eigenfunctions in (1.70), for 



�
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different values of (‘, m), where (0 ‡ ‘<?, �‘ £ m £ ‘), all have the same eigenvalue ek. 

Any linear combination of eigenstates with the same eigenvalues are still eigenfunctions 

of H. The plane wave state exp(ik r) is a particular linear combination of these states. 

Some linear combinations are eigenfunctions of p, while others are eigenfunctions 

of Lz. Since p and Lz do not commute, there are no eigenfunctions for both operators 

simultaneously. 
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Homework 

1.	 Prove that 

1 1 
eLae�L = a + [L; a] + [L; [L; a]] + [L; [L; [L; a]]] + � � �

2! 3!

where (a, L) are any operators. 

2.	 If F is any operator that does not explicitly depend on time, show that qhFi/qt ¼ 0 in an  

eigenstate of H with discrete eigenvalues. 




