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Aggregation of Information in Simple 

Market Mechanisms: Large Markets 

The aim of this chapter is to provide an introduction to the most basic models 
of information aggregation: static simple market mechanisms where traders 
do not observe any market statistic before making their decisions. Each agent 
moves only once, simultaneously with other agents, and can condition his action 
only on his private information. The issue is whether market outcomes repli­
cate or are close to the situation where agents have symmetric information 
and share the information in the economy. Examples of such market mecha­
nisms are one-shot auctions and quantity (Cournot) and price (Bertrand) com­
petition markets. In chapters 3–5 we will consider market mechanisms in the 
rational expectations tradition in which agents can use more complex strate­
gies, conditioning their actions on market statistics. For example, a firm may 
use a supply function as a strategy, conditioning its output on the market price 
(chapter 3), or a trader may submit a demand schedule to a centralized stock 
market mechanism (chapters 4 and 5). 

The plan of the chapter is as follows. Section 1.1 introduces the topic of 
information aggregation, some modeling issues, and an overview of results. 
Section 1.2 analyzes a large Cournot market with demand uncertainty and 
asymmetric information. It studies a general model and two examples: linear-
normal and isoelastic-lognormal. Section 1.3 examines the welfare properties of 
price-taking equilibria in Cournot markets with private information. Section 1.4 
presents a general smooth market model to examine information aggregation 
and the value of information. Section 1.5 deals with the case of auctions and 
section 1.6 introduces endogenous information acquisition. 

1.1 Introduction and Overview 

1.1.1 Do Markets Aggregate Information Efficiently? 

As we stated in the Introduction and Lecture Guide, this has been a contentious 
issue at least since the debate between Hayek and Lange about the economic 
viability of socialism. 

Hayek’s basic idea (1945) is that each trader has some information that 
can be transmitted economically to others only through the price mechanism 
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and trading. A planner cannot do as well without all that information. We 
say that the market aggregates information if it replicates the outcome that 
would be obtained if the agents in the economy shared their private informa­
tion. The Hayekian hypothesis to check is whether a large (competitive) market 
aggregates information. 

In this chapter we study, as a benchmark, market mechanisms that do not 
allow traders to condition their actions on prices or other market statistics. In 
this sense we are making things difficult for the market in terms of informa­
tion aggregation. In chapter 3 we will allow more complex market mechanisms 
that allow traders to condition on current prices. Market mechanisms such as 
Cournot or auctions have the property that when a participant submits his or 
her trade it can condition only on his private information. For example, in a 
sealed-bid auction a bidder submits his bid with his private knowledge of the 
auctioned object but without observing the other bids; in a Cournot market 
firms put forward their outputs with some private estimate of demand condi­
tions but without observing the market-clearing price or the outputs submitted 
by other producers. 

A first question to ask is whether those simple market mechanisms aggregate 
information, at least when markets have many participants. We must realize, 
however, that a large market need not be competitive but rather can be monopo­
listically competitive. Indeed, firms may be small relative to the market but still 
retain some market power. If a large market is competitive and it aggregates 
information, then first-best efficiency follows according to the First Welfare 
Theorem. This means, in particular, that the full-information Walrasian model 
may be a good approximation to a large market with dispersed private informa­
tion. In this case informational and economic efficiency go hand in hand. When 
a large market is not competitive, informational efficiency will not imply in 
general economic efficiency. We will discuss in detail the relationship between 
informational and economic efficiency in chapter 3. 

Information aggregation does not obtain, in general, in market mechanisms in 
which outcomes depend continuously (smoothly) on the actions of the players, 
like quantity (Cournot) or price (Bertrand) competition markets with product 
differentiation. In fact, why should a market in which each trader conditions 
only on its private information be able to replicate the shared-information out­
come? We will see that a large Cournot market in a homogeneous product world 
with a common shock to demand in which each producer receives a private 
signal about the uncertain demand does not aggregate information in general 
despite firms being approximately price takers. However, in the same context 
information may be aggregated if there are constant returns or if uncertainty 
is of the independent-values type, when the types of traders are independently 
distributed and, in fact, in the aggregate there is no uncertainty. 

In contrast, winner-takes-all markets like auctions or voting mechanisms, in 
which outcomes do not depend continuously on the actions of players, tend 
to deliver aggregation of information more easily. Winner-takes-all markets 
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force traders to condition effectively on more information when taking their 
decisions. 

1.1.2 Methodological Issues and Welfare 

In the following sections we use the continuum model of a large market. We will 
examine games with a continuum of agents in which no single one of them can 
affect the market outcomes. This methodology is in line with the literature on 
large Cournot markets with complete information (Novshek 1980), and with the 
view that the continuum model is the appropriate formalization of a compet­
itive economy (Aumann 1964). The advantage of working with the continuum 
model is that it is very easy to understand the statistical reasons why a com­
petitive market with incomplete information does not aggregate information 
efficiently in general, and to characterize the equilibrium and its second-best 
properties. One must check that the equilibria in the continuum economy are 
the limit of equilibria of finite economies and not artifacts of the continuum 
specification. This will be done in chapter 2. 

The analysis of competitive equilibria in asymmetric-information economies 
is somewhat underdeveloped. To start with, the very notion of competitive equi­
librium needs to be defined in an asymmetric-information environment.1 If the 
market aggregates information, then the competitive equilibrium corresponds 
to the standard concept with full information. Otherwise, we may define the 
concept of Bayesian (price-taking) equilibrium. This is the situation, e.g., in a 
Cournot market, where firms’ strategies depend on their private information 
but a firm does not perceive to affect the market price. This will be justified if 
the firm is very small in relation to the market, that is, in a large market. 

Whenever the outcome of a large market, in which agents are price takers, is 
not first-best efficient, the question arises about what welfare property, if any, it 
has. The answer is that a price-taking Bayesian equilibrium maximizes expected 
total surplus subject to the restriction that agents use decentralized strategies 
(that is, strategies which depend only on the private information of the agents). 
This welfare benchmark for economies with incomplete information is termed 
team efficiency since the allocation would be the outcome of the decision of 
a team with a common objective (total surplus) but decentralized strategies 
(Radner 1962). This means that the large market performs as well as possible, 
subject to the constraint of using decentralized mechanisms. We will see this 
result in section 1.3. 

1.2 Large Cournot Markets 

In this section we will consider a large homogeneous product market in which 
demand is affected by a random shock and each firm has a private estimate of 

1 See Hellwig (1987) for a discussion of the issue. Progress in the study of competitive markets 
with asymmetric information has been made, among others, by Harris and Townsend (1981), 
Prescott and Townsend (1984), and Gale (1996). 
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the shock and sets an output. This is a very simple and standard framework in 
which to analyze information aggregation. Quantity setting corresponds to the 
Cournot model of an oligopolistic market. Here we will have many firms and 
each will be negligible in relation to the size of the market. 

There is a continuum of firms indexed by i ∈ [0,1].2 Each firm has a 
convex, twice continuously differentiable, variable cost function C( ) and no ·
fixed costs. Inverse demand is smooth and downward sloping, and given by 
p P(x,θ), where x is average (per capita) output (and also aggregate out­= 
put since we have normalized the measure of firms to 1) and θ is a random 
parameter. Firms are quantity setters. 

Firm i receives a private signal si, a noisy estimate of θ. The signals received 
by firms are independently and identically distributed (i.i.d.) given θ and, 
without loss of generality, are unbiased, i.e., E[si | θ] θ.=

We make the convention that the strong law of large numbers (SLLN) holds 
for a continuum of independent random variables with uniformly bounded 
variances. Suppose that (qi)i∈[0,1] is a process of independent random vari­
ables with means E[qi] and uniformly bounded variances var[qi]. Then we let ∫ 1 ∫ 1 
0 qi di 0 E[qi]di almost surely (a.s.). This convention will be used, taking = 

as given the usual linearity property of the integral.3 In particular, here we have 
that, given θ, the average signal equals E[si | θ] θ (a.s.).=

Section 1.2.1 characterizes the equilibrium with strictly convex costs, sec­
tion 1.2.2 its welfare properties, section 1.2.3 deals with the constant marginal 
cost case, and section 1.2.4 provides some examples. 

1.2.1 Bayesian Equilibrium 

Suppose that C( ) is strictly convex. A production strategy for firm i is a func­·
tion Xi( ) which associates an output to the signal received. A market equilib­·
rium is a Bayes–Nash (or Bayesian) equilibrium of the game with a continuum 
of players where the payoff to player i is given by ∫ 1 

πi P(x; θ)xi − C(xi), where x Xi(si)di,= = 
0 

and the information structure is as described above.4 At equilibrium, Xi(si) 
maximizes 

E[πi | si] = xiE[P(x; θ) | si]− C(xi) 
and the firm cannot influence the market price P(x; θ) because it has no influ­
ence on average output x. This is, therefore, a price-taking Bayesian equilib­
rium. Restricting our attention to strategies with bounded means and uniformly 
bounded variances across players (this would obviously hold, for example, with 

2 The interval is endowed with the Lebesgue measure. 
3 See section 10.3.1 for a justification of the convention. Equality of random variables has to 

be understood to hold almost surely. We will not always insist on this in the text. 
4 See section 10.4.2 for an introduction to Bayesian equilibrium. 
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a bounded output space), the equilibrium must be symmetric. In particular, 
with E[Xi(si) | θ] < ∞ and var[Xi(si) | θ] uniformly bounded across players, 
the random variables Xi(si) are independent (given θ) and, according to our 
convention on a continuum of independent random variables, we have that ∫ 1 ∫ 1 

Xi(si)di E[Xi(si) | θ]di ≡ ̃X(θ). 
0 

= 
0 

It follows that the equilibrium must be symmetric, Xi(si) X(si) for all i, since =
the payoff is symmetric, the cost function is strictly convex and identical for all 
firms, and signals are i.i.d. (given θ). Indeed, for a given average output X̃(θ), the 
best response of a player is unique and identical for all players: Xi(si) X(si).=
Consequently, in equilibrium the random variables X(si) will be i.i.d. (given θ) 
and their average will equal ˜ E[X(si) | θ].X(θ) =

An interior (symmetric) equilibrium X( ), that is, one with positive produc­·
tion for almost all signals, is characterized by the equalization of the expected 
market price, conditional on receiving signal si, and marginal production costs: 

E[P(x; θ) | si] C�(X(si)).=
This characterizes the price-taking Bayesian equilibrium. Firms condition their 
output on their estimates of demand but they do not perceive, correctly in our 
continuum economy, any effect of their action on the (expected) market price. 
Thus the price-taking Bayesian equilibrium coincides with the Bayesian Cournot 
equilibrium of our large market. 

1.2.2 Welfare and Information Aggregation 

If firms were to know θ, then a Walrasian (competitive) equilibrium would be 
attained and the outcome would be first-best efficient. How does the Bayesian 
market outcome compare with the full-information first-best outcome, where 
total surplus (per capita) is maximized contingent on the true value of θ? 

Given θ and individual production for firm i at xi, total surplus (per capita) 
is ∫ x ∫ 1 ∫ 1 

TS = 
0 
P(z; θ)dz − 

0 
C(xi)di, where x = 

0 
xi di. 

If all the firms produce the same quantity, xi x for all i, we have ∫ x 
=

TS(x; θ) P(z; θ)dz − C(x). = 
0 

Given strict convexity of costs, first-best production Xo(θ) is given by the 
unique x which solves P(x; θ) C�(x). If firms were able to pool their pri­= 
vate signals, they could condition their production to the average signal, which 
equals θ a.s., and attain the first-best by producing Xo(θ). Will a price-taking 
Bayesian equilibrium, where each firm can condition its production only on its 
private information, replicate the first-best outcome? 

A necessary condition for any (symmetric) production strategy X( ) to be ·
first-best optimal is that, conditional on θ, identical firms produce at the same 
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marginal cost, namely, C�(X(si)) C�(Xo(θ)) (a.s.). However, with increasing = 
marginal costs this can happen only if X(si) Xo(θ) (a.s.), which boils down = 
to the perfect-information case. Therefore, we should expect a welfare loss at 
the price-taking Bayesian equilibrium with noisy signals. Proposition 1.1 states 
the result and a proof follows. 

Proposition 1.1 (Vives 1988). In a large Cournot market where firms have (sym­
metric) strictly convex costs and receive private noisy signals about an uncertain 
demand parameter, there is a welfare loss with respect to the full-information 
first-best outcome. 

Proof. We show that no symmetric production strategy X( ), and therefore no ·
competitive production strategy, can attain the first-best outcome. Let X̃(θ)∫ 1 

= 
0 X(si)di, then expected total surplus (per capita) contingent on θ is given by 

∫ X̃(θ) 
E[TS | θ] = 

0 
P(z; θ)dz − E[C(X(si)) | θ]. 

We have that 
TS(Xo(θ); θ) � TS(X̃(θ); θ) > E[TS | θ]. 

The first inequality is true since Xo(θ) is the first-best, and the second is true 
since TS(X(θ)˜ ; θ)

˜
P(z; θ)dz − C( ˜X(θ) X(θ)), the cost function is strictly con­= 0 

vex, ˜ E[X(si) | θ], and the signals are noisy (which means that, given θ,X(θ) =
X(si) is still random). Consequently, C(X̃(θ)) < E[C(X(si)) | θ] according to a 
strict version of Jensen’s inequality (see, for example, Royden 1968, p. 110). 

1.2.3 Constant Marginal Costs 

A necessary condition for the market outcome to be first-best optimal is that 
marginal costs be constant. Firms will then necessarily produce at the same 
marginal cost. If the information structure is “regular enough,” first-best effi­
ciency is achieved in the price-taking limit (Palfrey 1985; Li 1985). The intuition 
of the result is as follows. Suppose that marginal costs are zero (without loss 
of generality) and that inverse demand intersects the quantity axis. Firm i will 
maximize E[πi | si] xiE[P(x; θ) | si], where, as before, x is average output. =
In this constant-returns-to-scale context a necessary condition for an interior 
equilibrium to exist is that E[P(x; θ) | si] 0 for almost all si. Looking at = 
symmetric equilibria, Xi(si) X(si) for all i, we know that average production =
X(θ)˜ given θ is nonrandom, and therefore E[P(x; θ) | θ] P( ˜= X(θ); θ). We will 
obtain first-best efficiency if the equilibrium condition, E[P(X(θ), θ)˜ | si] 0=
for almost all si, implies that price equals marginal cost, P( ˜ 0 for X(θ), θ) =
almost all θ. 

Palfrey (1985) shows that if the signal and parameter spaces are finite and 
the likelihood matrix is of full rank (and demand satisfies some mild regularity 
conditions), then symmetric interior price-taking equilibria are first-best opti­
mal. The result is easily understood with a two-point support example: θ can be 
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either θL or θH, 0  < θL � θH, with equal prior probability. Firm i may receive a 
low (sL) or a high (sH) signal about θ with likelihood P(sH | θH) P(sL | θL) q, 

1 
= =

where 1
2 � q � 1. If q 2 , the signal is uninformative; if q 1, it is perfectly = =

informative (see section 10.1.6). Let p̄ and p be, respectively, the equilibrium 
prices when demand is high (θH) and low (θL). Then 

E[p | sH] q 1 − q p̄ 0 

E[p | sL] = 1 − q q p 
= 

0 
. 

If the likelihood matrix is of full rank, i.e., if q 1 , then p̄ p 0 and the = 2 = =
symmetric interior equilibrium is efficient. 

Remark 1.1. For the result to hold, equilibria have to be interior. For example, 
suppose that p = θ − x and that θL = 0 and θH = 1, then at the price-taking 
Bayesian equilibrium X(sL) 0 and X(sH) q/(q2 + (1 −q)2). This means that = =
X̃(θH) X(sH)q < X0(θH) 1.= =

1.2.4 Examples 

1.2.4.1 Linear-Gaussian Model 

Let p θ − βx and C(xi) mxi + 1 λxi
2, where m is possibly random and = = 2 

λ � 0. In this model only the level of θ−m matters and therefore without loss 
of generality let m 0.=

The joint distribution of random variables is assumed to yield affine condi­
tional expectations. This, when coupled with the linear-quadratic structure of 
payoffs, yields a unique (and affine in information) Bayesian equilibrium. A lead­
ing example of such an information structure is the assumption of joint normal­
ity of all random variables. However, there are other pairs of prior distribution 
and likelihood which do not require unbounded support for the uncertainty 
and have the affine conditional expectation property.5 

The random demand intercept θ is distributed according to a prior density 
with finite variance σθ 

2 and mean θ̄. Firm i receives a signal si such that si = 
θ+εi, where εi is a noise term with zero mean, variance σ 2 , and with cov[θ, εi]εi = 
0. Signals can range from perfect (σε2 

i 
= 0 or infinite precision) to pure noise 

(σε2 
i 
= ∞ or zero precision). The precision of signal si is given by τεi = (σ 2 )−1.εi

We assume that E[θ | si] is affine in si. All this implies that (see section 10.1) 

E[θ | si] (1 − ξi)θ̄ + ξisi, where ξi ≡ τεi/(τθ + τεi),=
and 

E[sj | si] E[θ | si], cov[si, sj] cov[si, θ] σ 2 for all j ≠ i and all i.= = = θ 

5 The assumption of normality is very convenient analytically but has the drawback that prices 
and quantities may take negative values. However, the probability of this phenomenon can be con­
trolled by controlling the parameters of the random variables. Alternatively, we could work with 
pairs of prior and likelihood functions which admit a bounded support and maintain the crucial 
property of linear conditional expectations which yields a tractable model. See section 10.2.2. 
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As τεi ranges from ∞ to 0, ξi ranges from 1 to 0. We also assume that the 
signals received by the firms are identically distributed conditional on θ. Then 
σε2 

i 
= σε 2 and ξi ξ for all i.=

In equilibrium Xi(si) solves 

max E[πi | si] E[p | si]xi − 1 λxi
2 ,= 2xi 

where p θ − βx and x
∫ 
0
1 Xj(sj)dj and where Xj(sj) is the strategy used = = 

by firm j. Under the assumptions on strategies of section 1.2.1, we have that ∫ 1 
0 Xj(sj)dj ˜ is identical for all firms = X(θ). The optimal response of firm i 

provided that λ > 0, X(si) E[p | si]/λ, and equilibria will be symmetric. We =
are looking for a linear (affine) solution of the type X(si) asi + c, where a 
and c are coefficients to be determined. It follows that X(θ) ˜

= 
0
1 X(sj)dj= = 

a 
∫ 
0
1 sj dj c aθ c using our convention on the SLLN in our continuum +

1 
= +

1 1
economy: 0 sj dj θ 0 εj dj θ since 0 εj dj 0 (a.s.). The first-order = + = = 
condition (FOC) of the program of firm i yields 

λX(si) E[θ | X(θ) |si]− βE[ ˜ si].=
Therefore, we have that 

λasi + λc E[θ | si]− βaE[θ | si]− βc. =
Since E[θ | si] (1 − ξ)θ̄ + ξsi, we obtain =

λasi + λc (1 − βa)(ξsi + (1 − ξ)¯= θ)− βc. 
This must hold for (almost) all signals and therefore, solving 

λa (1 − βa)ξ and λc (1 − βa)(1 − ξ)θ̄ − βc, = =
we obtain 

ξ (1 − βa)(1 − ξ) 1 
a

λ+ βξ and c
λ+ β θ̄

λ+ βθ̄ − aθ̄= = = 

(where in order to obtain the last equality we use the value for a). 
In conclusion, we have shown that the unique linear (affine to be precise) 

function X( ) which satisfies the FOC is given by ·
¯X(si) a(si − θ) θ, where a ξ/(λ+ βξ) and b 1/(λ+ β).+ b¯= = =

The linear equilibrium identified can be shown to be in fact the unique equi­
librium in the class of strategies with bounded means and uniformly bounded 
variances (across players). (See remark 1.2 and proposition 7.7 and exercise 7.3 
for a proof in a closely related model.) 

Average output conditional on θ is given by ∫ 1 ∫ 1 
¯ ¯

0 
X(si)di = 

0 
(a(si − θ) θ)di = a(θ − θ) θ+ b¯ + b¯

since the average signal conditional on θ equals θ. Note that average output is 
in fact the same function as the equilibrium strategy X( ) and we may denote it ·



23 1.2. Large Cournot Markets 

θ 

b 

− 

θ− 

si 

xi 

= 0 

= 1 

ξ 

ξ 

Figure 1.1. Equilibrium strategy of firm i for different 
values of ξ. The middle line corresponds to ξ ∈ (0,1). 

by X(θ). When firms receive no information (ξ 0), then a 0 and production = =
is constant at the level bθ̄; when firms receive perfect information (ξ 1), then =
Xi(si) asi. As  ξ varies from 0 to 1 the slope of the equilibrium strategy, a,= 
increases from 0 to b (see figure 1.1). 

When λ 0 the equilibrium condition requires that E[p | si] 0. Restricting = =
our attention to symmetric equilibria, we get that X(si) si/β provided that = 
ξ > 0. Indeed, note that 

E[p | si] E[θ − βx | si] E[θ | si]− βE[X(θ) | si] 0,= = =
and therefore 

si]− ̄ 	 + β¯E[θ | si]− βa(E[θ | θ)− βbθ̄ (1 − βa)E[θ | si] θ(a− b) 0,= =
which implies that a b 1/β. That is, the above formula is valid on letting = =
λ 0, since then a b 1/β. Note that, when the signals are informative (ξ >=	 = =
0), the equilibrium strategies X(si) si/β do not depend on ξ, the precision of =

¯the information. If ξ 0, signals are uninformative and X(si) θ/β.=	 = 
In summary, given λ � 0 and ξ ∈	[0,1] the equilibrium of the continuum 

¯economy is given by X(si) a(si − θ) + bθ̄ with a ξ/(λ + βξ) (a 0 if  = = = 
λ ξ 0) and b 1/(λ+ β).= = =

It is worth noting that this equilibrium is the outcome of iterated elimination 
of strictly dominated strategies if and only if the ratio of the slopes of supply 
and demand is less than 1 (λβ < 1). This is the familiar cobweb stability condi­
tion (see Guesnerie 1992; Heinemann 2004). In this case the equilibrium is the 
outcome only of the rationality of the players and common knowledge about 
payoffs and distributions.6 

Welfare. Assuming that all the firms produce the same quantity xi x, we  
have TS(x; θ)

∫ x P(z; θ)dz − C(x). Since P(z; θ) θ−βz and C(x)
= 

1 λx2,= 0 = = 2 

6 See section 10.4.1.1 for the concept of dominated strategy and dominance solvability in games. 
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we obtain that per capita total surplus with all firms producing output x is 
given by 

TS 
∫ x
(θ − βz)dz − 1 λx2 θx − β+ λ x2 .= 

0
2 =

2 

It is immediate then that full-information first-best production is 

θ
Xo(θ) bθ, = 

λ+ β =

and it equals X(θ) only if ξ 1 (perfect information) or if λ 0 and ξ >  0= = 
(constant returns to scale). As ξ goes from 0 to 1, a increases from 0 to b. For 
ξ <  1 and λ >  0 if  θ is high (low) the market underproduces (overproduces) 
with respect to the full-information first-best. In the constant-returns-to-scale 
case, average production X(θ) is independent of the precision of information 
τε (and of ξ) and the market produces the right amount. Expected total surplus 
(ETS) at the first-best is 

ETSo 
2
1 bE[θ2] 2

1 b(σ 2 θ̄2).= = θ + 
The market ETS can be computed as the sum of per capita consumer surplus 
1 βE[(X(θ))2] and per capita (or firm) profits: 2 

E[πi] 1 λE[(X(si))2] 1 λ(a2 var[si]+ b2θ̄2).= 2 = 2 

We find that ETS 1
2 (aσθ

2 +bθ̄2) and therefore the welfare loss WL ≡ ETSo −ETS= 
equals 1 (b − a)σθ2. (See exercise 1.1 for an alternative derivation.) 2 

How does ETS change with variations in the precision of information τε and 
in the basic uncertainty of demand σθ

2? 
One would hope that improvements in the precision of information (τε) 

would increase ETS (reducing the welfare loss). This is indeed the case since 
ETS increases with a, and a is in turn increasing with τε. Per capita expected 
consumer surplus (ECS) increases with τε since consumer surplus is a convex 
function of average output (CS 2

1 βx2) and increases in ξ increase the slope = 
of X( ) and make it more variable. It can be checked that expected profits may ·
increase or decrease with τε. Increasing τε increases the sensitivity of output 
to the signal received by the firm, and this tends to increase expected prof­
its, but it also decreases the variance of the signal, and this tends to depress 
expected profits. (A fuller explanation of the drivers of the comparative statics 
of expected profits is given in section 1.4.3.) However, the effect on the wel­
fare of the consumers always dominates the profit effect in the total surplus 
computation. 

With λ >  0, increasing the basic uncertainty of demand increases ETS (by 
increasing both ECS and expected profits) but ETSo increases by more and 
the welfare loss increases with7 σθ

2; increasing the precision of information 

7 To show the result notice that 

∂WL 1 

∂σθ 
2 = 2b (b

2 − a2). 
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increases ETS and ETSo stays constant and, therefore the welfare loss decreases 
with τε. With λ 0, WL 0 provided that τε > 0 (but with τε 0, WL increases = = =
with σθ

2). 
Similar results hold when we replace quadratic costs by capacity limits. In­

deed, a capacity limit can be interpreted as a very steep marginal cost schedule. 
This can be formally checked in a model with constant marginal costs and 
capacity limits with a finite support information structure (see exercise 1.2). 
The qualitative properties of the capacity model are identical to those of the 
model analyzed in this section. 

1.2.4.2 Isoelastic-Lognormal Model 

Let p eθx−β , β >  0, and the information structure be exactly as in sec­=
tion 1.2.4.1, where θ and the error terms of the signals are jointly normally 
distributed. Firms have constant elasticity cost functions given by 

C(xi) (1 + λ)−1x1+λ, λ � 0.= i 

We find an equilibrium in log-linear strategies. This specification avoids the 
unpalatable feature of the linear-normal model where outputs and prices may 
become negative. 

The FOC for profit maximization yields E[p | si] xi
λ and, as in the general =

model, the equilibrium must be symmetric when the cost function is strictly 
convex (i.e., for λ > 0). It can be easily checked that there is a unique symmetric 
equilibrium in which the price is a log-linear function of θ. For this we use the 
fact that, if z is normally distributed N(µ,σ 2) and r is a constant, then E[erz]
erµ+r

2σ2/2 (see section 10.2.4). Postulate an equilibrium of the form X(si) 
= 
= 

easi+b. Using our convention about the average of a continuum of independent 
random variables (which implies that 0

1 
eεi di 0

1 E[eεi]di) and the properties 
of lognormal distributions, namely that if εi ∼

= 
N(0, σε2), then E[eεi] eσε

2/2, we  =
obtain ∫ 1 ∫ 1 ∫ 1 

esi di eθ+εi eθ eεi di eθeσε
2/2 (a.s.). 

0 
= 

0 
=

0 
=

This implies that ∫ 1 ∫ 1 
˜ = 

0 
X(si)di = 

0
easi+b di = eaθ +a2σε2/2 ,X(θ) +b

p e(1−βa)θ−β(b+a
2σε2/2).=

From the FOC E[p | si] xλ we obtain =
E[exp{(1 − βa)θ − β(b + 2

1 a2σε2)} | si] = eλasi+λb. 

Given that θ | si ∼ N(¯ + ξsi, σ 2θ(1 − ξ) θ (1 − ξ)), we have that the left-hand side 

Therefore, ∂WL /∂σθ 
2 > 0 if and only if b > a. This is the case if λ > 0 and ξ < 1 or if  λ 0 and =

ξ 0 (no information). =



26 1. Aggregation of Information in Simple Market Mechanisms 

equals 

exp{(1 − βa)(¯ + ξsi)+ 2
1 

θ − β(b + 2
1 a2σε2)}.θ(1 − ξ) (1 − βa)2(1 − ξ)σ 2 

By identifying coefficients on si we obtain a ξ/(λ + βξ). Doing the same = 
with the constant term, substituting for the value of a, and using the fact 
that ξ τε/(τε + τθ) σθ

2/(σθ 
2 + σε2) and therefore σ 2 ((1 − ξ)/ξ)σθ2, and = = ε =

simplifying, we obtain 

1 − ξ [( 
λ 

) ( σθ 
2 ) ] 

b = 
λ+ β λ+ βξ θ̄ + 2(λ+ βξ)2 

[λ2 − βξ] . 

In conclusion, the equilibrium is given by 

X(si) easi+b,=

where 
ξ 1 − ξ ( 

λ λ2 − βξ σθ 2 ) 
a and b θ̄ .= 

λ+ βξ = 
λ+ β λ+ βξ + (λ+ βξ)2 2 

Note that the full-information output (corresponding to the case ξ 1 and = 
σε 2 = 0) is Xo(θ) eθ/(λ+β).=

The output of a firm is more sensitive to its signal the better the information 
is (a increases and b decreases with ξ) and E[πi] increase or decrease with ξ 
depending on whether demand is elastic or inelastic (β smaller or larger than 
1). The same forces as in the linear-normal model are present here. Profits are 
a convex function of output; increasing ξ increases the responsiveness of out­
put to the signal, this induces more output variation and is good for expected 
profits. However, as in section 1.2.3, the decreased variance of the signal works 
in the opposite direction, decreasing expected profits. With constant returns to 
scale the (full-information) competitive outcome is obtained and then E[πi] are 
independent of ξ. 

1.2.5 Summary 

The main learning points of the section are the following. 

• A large market, even inducing price-taking behavior, may fail to be first-
best efficient because of a lack of information aggregation. 

• This is the case for a large Cournot market with common-value uncertainty 
and decreasing returns because firms with different demand assessments 
will not produce at the same marginal cost. 

• With constant returns to scale a large Cournot market will aggregate 
information under regularity conditions. In this case the market attains 
the first-best aggregate output and this is all that matters for welfare 
purposes. 
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1.3 Welfare in Large Cournot Markets with Asymmetric Information 

The first-best full-information outcome is too stringent a benchmark of com­
parison for the market outcome. The reason goes back to the idea of Hayek 
that the private information of agents may not be easily communicable and 
therefore that there is no omniscient center that knows the realization of the 
uncertainty θ. The welfare benchmark must therefore be a decentralized one 
where agents use strategies which are measurable in their information. This is 
the approach pioneered in Vives (1988). In our market we will say that an alloca­
tion is team-efficient if it maximizes expected total surplus with decentralized 
strategies. A team is a group of people with a common objective. Team alloca­
tions with private information have been studied by Radner (1962). This will be 
equivalent to the solution to the problem of a planner who wants to maximize 
expected total surplus and can control the action (strategy) of an agent but can 
make it contingent only on the private information of the agent and not on the 
information of other agents. 

We show below that the allocation of a price-taking equilibrium in a Cournot 
market is team-efficient, where each firm follows a production rule, contingent 
on its private information, with the common objective of maximizing expected 
total surplus. That is, the price-taking market solves the team problem with 
expected total surplus as an objective function. This provides a general wel­
fare characterization of price-taking equilibrium in a Cournot market with pri­
vate information allowing for a general information structure. A price-taking 
equilibrium obtains in the case of a continuum of firms as in section 1.2. 

Consider an n-firm Cournot market. Firm i, i 1, . . . , n, has smooth convex =
costs, C(xi; θi), where xi is its output. Inverse demand is given by P(x; θ0), a  ∑nsmooth and downward-sloping function of total output x j 1 xj . Suppose = =
that firm i receives a private signal vector si about the (potentially) random 
parameters (θ0, θi). At a price-taking Bayesian equilibrium, firm i maximizes 
its expected profits (conditional on receiving signal si): 

E[πi | si] = E[P(x; θ0) | si]xi − E[C(xi; θi) | si], 

without taking into account the influence of its output on the market price 
P(x; θ0). That is, for an interior equilibrium we find that (for almost all si) the 
expected price equals the expected marginal cost: 

E[P(x; θ0) | si] E[MC(xi; θi) | si].=

The following result provides an analogue to the First Welfare Theorem for 
price-taking Bayesian equilibria. We say that firms use decentralized strategies 
if each firm can choose its output as a function only of its own signal. 

Proposition 1.2 (Vives 1988). In a smooth Cournot private-information envi­
ronment, price-taking Bayesian equilibria maximize expected total surplus (ETS) 
subject to the use of decentralized production strategies. 
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Proof. The maximization of ETS subject to decentralized production strategies 
is the problem of a team whose members have as common objective 

[∫ n ]x ∑ 
ETS = E 

0 
P(z; θ0)dz − C(Xj(sj); θj) , 

j 1= ∑nwith strategies Xj(sj), j 1, . . . , n, where x j 1 Xj(sj). Under our assump­= = =
tions the optimal decision rules are determined (for interior solutions) by the set 
of FOCs E[∂TS/∂xi | si] 0 or, equivalently, E[P(x; θ0) | si] E[MC(xi; θi) |= =
si]. Indeed, a set of decision rules are optimal if and only if they are person-by­
person optimal given that the team function is concave and differentiable (Rad­
ner 1962, theorem 1). The conditions are fulfilled in our case. Now, price-taking 
firm i will maximize 

E[πi | si] E[P(x; θ0) | si]xi − E[C(xi; θi) | si],=

yielding an FOC, 

E[P(x; θ0) | si] E[MC(xi; θi) | si].=
These conditions are sufficient given our assumptions and therefore the solu­
tions to both problems coincide. 

The result also applies to our continuum economy. Consider the payoff 
for player i ∈ [0,1], πi P(x; θ)xi − Ci(xi), where P( ; θ) is smooth and = ·
downward sloping and Ci( ) is smooth and strictly convex. We have that ∫ x ∫ 1 

· ∫ 1
TS 0 P(z; θ)dz 0 Ci(xi)di, where x 0 xi di. The team problem is to = − = 
find strategies (Xi( ))i∈[0,1], with bounded means E[Xi(si) | θ] <∞ and uni­·
formly bounded variances var[Xi(si) | θ] across players, that maximize ETS. 
We have that ∫ 1 ∫ 1 

Xi(si)di E[Xi(si) | θ]di ≡ ̃X(θ) 
0 

= 
0 

and [∫ ˜ ∫ ]X(θ) 1 

ETS = E 
0 

P(z; θ)dz − 
0 
Ci(Xi(si))di . 

The Bayesian equilibrium implements the team-efficient solution. 

Remark 1.2. The fact that equilibria can also be obtained as the outcome of 
the optimization of a strictly concave welfare function can be used to show 
uniqueness of the equilibrium. For example, if the welfare function is quadratic 
and strictly concave, as is TS in the linear-normal model of section 1.2.4.1, the 
team solution is unique and therefore the Bayesian equilibrium is also unique (in 
the class of strategies with bounded means and uniformly bounded variances 
across players). The insight is more general and applies whenever the outcome 
of a game can be replicated optimizing an appropriate potential function. We 
will use it to show uniqueness of a Bayesian equilibrium in a game with a finite 
number of players in chapter 2 (see proposition 2.1 and its proof). 
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Remark 1.3. Price-taking Bayesian equilibria will differ from Bayesian Cournot 
equilibria in a market with a finite number of firms. This is so because at a Bayes­
ian Cournot equilibrium a firms takes into account the impact of its output on 
the market price. However, as the economy increases in size (increasing at the 
same time the number of firms and consumers, perhaps because of lowering 
of entry costs) Bayesian Cournot equilibria converge to price-taking Bayesian 
equilibria, as we will see in section 2.2. At the limit economy with a continuum 
of firms they coincide. Proposition 1.2 applies similarly to the Bayesian equilib­
rium of the limit continuum economy. A price-taking Bayesian equilibrium is 
efficient as long as only decentralized strategies can be used. 

Remark 1.4. According to proposition 1.2, in a Cournot environment there is 
no room for a planner to improve on market performance taking as given decen­
tralized decision making. This contrasts with environments where agents can 
condition on prices and therefore there are potential informational externali­
ties with prices as a public signal. Chapter 3 will deal with the welfare analysis 
of such models in the rational expectations tradition. 

In summary, we have claimed that an appropriate welfare benchmark for 
our incomplete-information economy is team efficiency, where expected total 
surplus is maximized subject to the use of decentralized strategies, and we have 
shown that a price-taking equilibrium is team-efficient. This means in particular 
that a large Cournot market, where firms are effectively price takers, is team-
efficient. 

1.4 Information Aggregation in Smooth Large Markets 

A large market need not aggregate information, that is, it need not replicate the 
shared-information outcome, as we have seen in the Cournot case in section 1.2. 
In fact, we will see in this section that a large market aggregates information 
only in very particular circumstances other than the independent-values case. 
Furthermore, large markets may be competitive (price-taking) or monopolisti­
cally competitive. In the latter case, each firm produces a differentiated com­
modity, is negligible in the sense that its actions alone do not influence the prof­
its of any other firm, and has some monopoly power (this is the Chamberlinian 
large group case).8 The monopolistically competitive market is not efficient 
even with complete information. That is, even if the market were to aggregate 
information, there would be a welfare loss in relation to the full-information 
first-best allocation. A question arises about the value of information in this 
situation. 

In this section we present a quadratic payoff game for which monopolis­
tic competition is a leading example. The monopolistically competitive market 

8 See Vives (1990 and chapter 6 in 1999). 



∫ 

30 1. Aggregation of Information in Simple Market Mechanisms 

will be a large market linear-quadratic model with normally distributed ran­
dom variables that encompasses Cournot or Bertrand competition with product 
differentiation and uncertainty of common- or private-value type. 

More generally, consider a game among a continuum of players where each 
player has a (symmetric) smooth payoff function π(yi, ỹ ; θi) with yi the action 
of player i, ỹ a vector of statistics (e.g., mean and variance) that characterizes 
the distribution of the actions of players, and θi a possibly idiosyncratic payoff-
relevant random parameter. Suppose that player i receives a signal si about the 
parameter θi. As before a strategy for player i is a measurable function Yi( )·
from the signal space to the action space of the player. A set of strategies 
(Yi( ))i∈[0,1] forms a Bayesian equilibrium if for any player (almost surely) ·


Yi(si) ∈ arg max E[π(zi, ỹ ; θi) | si],
zi 

where ỹ is the vector of statistics that characterizes the equilibrium distribu­
tion of the actions of players. As in section 1.2 player i when optimizing takes 
as given the equilibrium statistics since his action cannot influence them. A 
linear-quadratic-Gaussian specification of the game is presented in the follow­
ing section. We in turn analyze information aggregation and perform a welfare 
analysis. 

1.4.1 A Linear-Quadratic-Gaussian Model 

Consider a quadratic profit function model with a continuum of players. The 
payoff to player i is 

π(yi,y ; θi) θiyi − 1 ω1yi 
2 −ω2yyi,= 2 

where (−∂2π/(∂yi)2) ω1 > 0 ensures strict concavity of π with respect 
to the firm’s action yi 

=
(in the real line), and where y 0

1 yj dj denotes the = 
average action. Actions are strategic complements (substitutes) if ∂2π/∂yi∂y = 
−ω2 > (<) 0.9 Under complete information the best response of a player to the 
aggregate action y is 

θi −ω2yyi .= 
ω1 

Since the slope of the best response is 

κ ≡ ∂
2π/∂yi∂y ω2 , −∂2π/(∂yi)2 

= −
ω1 

this quotient provides a natural measure of the degree of strategic complemen­
tarity or substitutability. A game is of strategic complementarities if the best 
response for each player increases with the actions of rivals. We assume that the 
slope κ < 1 and therefore ω1+ω2 > 0 always. This allows for games of strategic 
substitutability and of strategic complementarities with a bounded degree of 
complementarity. An example of a strategic complementarity (ω2 < 0) game is 

9 Section 10.4.1.2 provides a brief introduction to games of strategic complementarities. 
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provided by an adoption externalities or investment complementarities game in 
which yi is the adoption or investment effort with return (θi−ω2y)yi and cost 
1 2ω1y .10 The return to adoption or investment increases with the aggregate 2 i 
effort y . 

We can obtain Bertrand and Cournot competition, with linear demands and 
constant unit costs (equal to zero without loss of generality), by choosing pa­
rameters appropriately. The case of Cournot competition with quadratic pro­
duction costs can also be accommodated. The payoffs are in line with the follow­
ing demand system with random intercepts (x and p are, respectively, average 
quantity and price): 

pi αi − (1 − δ)xi − δx with δ ∈ [0,1],=
xi βi − (1 + γ)pi + γp with γ � 0,=

where (pi, xi) is the price–output pair of firm i. We can obtain the second equa­
tion by inverting the first and letting βi (αi − δ˜ δ/(1 − δ) ∫ 1 

= α)/(1 − δ) and γ =
with α̃ 0 αi di. When δ 0, the firms are isolated monopolies, and when = =
δ 1, they are perfect competitors because then the product is homogeneous =
and firms are price takers. The parameter δ represents the degree of product 
differentiation and when 0 < δ <  1 the market is monopolistically competi­
tive. In the quantity competition (Cournot) case, let θi αi, 1 ω1 1 − δ, and 
ω2 δ. In the price competition (Bertrand) case, let 

=
θi 

2 
βi, 1

2 

=
ω1 1 + γ,= = =

and ω2 = −γ. In the Cournot case with homogeneous product and increasing 
marginal costs (as in section 1.2) we set ω1 λ, ω2 β, and θi θ to obtain 

1 
= = =

πi = (θ − βx)xi − 2 λxi
2. Note that in the Cournot (Bertrand) ω2 > 0 (ω2 < 0) 

case actions are strategic substitutes (complements). 
Assume that the information structure is symmetric and given as follows.11 

Each pair of parameters (θi, θj) is jointly normally distributed with E[θi] θ̄,= 
var[θi] σθ

2, and cov[θi, θj] ςσθ 
2 for j ≠ i, 0  � ς � 1. Agent i receives a = =

signal si θi+εi, where θi ∼ N(¯
θ ), εi ∼ N(0, σ 2 0 for j ≠θ,σ 2 

ε ), and cov[εi, εj]= =
i. The error terms of the signals are also independent of the θ parameter. The 
precision of signal si is given by τεi = (σε2)−1. As before we let ξ τε/(τθ+τε).=

Our information structure encompasses the cases of “common value” and of 
“private values.” For ς 1 the θ parameters are perfectly correlated and we are =
in a common-values model. When signals are perfect, σε2 

i 
= 0 for all i, and 0 < 

ς < 1, we will say we are in a private-values model. Agents receive idiosyncratic 
shocks, which are imperfectly correlated, and each agent observes his shock 
with no measurement error. When ς 0, the parameters are independent, and =
we are in an independent-values model. 

It is not difficult to see (see section 10.2.3) that 

E[θi | si] ξsi + (1 − ξ)θ̄ and E[sj | si] E[θj | si] ξςsi + (1 − ξς)θ̄.= = =

10 Models in this vein have been presented by, among many others, Diamond (1982), Bryant 
(1983), Dybvig and Spatt (1983), and Matsuyama (1995). 

11 See section 10.2.3 for results on the family of information structures to which the one pre­
sented here belongs. 
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When signals are perfect, ξ 1, E[θi | si] si, and E[θj | si] ςsi + (1 − ς)θ̄.= = =
When they are not informative, ξ 0 and E[θi | si] E[θj | si] θ̄.= = = 

We can also derive the relationship between θi, si, and the average param­
eter θ̃ 0

1 θj dj. The average parameter θ̃ is normally distributed with mean = 
θ̄ and variance equal to ςσθ

2. This is in accordance with the finite-dimensional 
analogue for the average of a collection of symmetrically correlated random 
variables (see section 10.2.3). We have that E[θi | θ] θ, E[˜ E[θj |
θi] ςθi + (1 − ς)θ̄, E[θ̃ | si] E[θj | si], and 

˜ = ̃ θ | θi] = 
= =

˜E[θi | θ, si] (1 − d)θ̃ + dsi,=
where d (σθ

2(1 − ς))/(σθ2(1 − ς) + σε2) (τε(1 − ς))/(τε(1 − ς) + τθ)= = = 
˜(1−ς)/(ξ−1−ς). If signals are perfect, then d 1 and E[θi | θ, si] si. If signals = =

˜ ˜are useless or correlation is perfect (ς 1), then d 0 and E[θi | θ, si] θ. If  = = = 
˜ ˜both signals and correlation are perfect, then E[θi | θ, si] θ si (a.s.).= =

There is a unique symmetric Bayesian equilibrium in linear strategies in the 
incomplete-information game. This is also the case if agents share information. 
Observe that s̃ = 

∫ 
0
1 θi di+ 

∫ 
0
1 εi di = θ̃, since 

∫ 
0
1 εi di = 0 according to our con­

vention on the average of i.i.d. random variables as the error terms εi are uncor­
related and have mean zero. Agents who share information need only know the 
average signal s̃ (on top of their signal). Indeed, given the information structure 
and linear equilibrium, (si, s̃) is a sufficient statistic12 in the estimation of θi 
by agent i, that is, to estimate θi with the pooled information available, firm 
i need only look at (si, ˜ s θ̃) the firm can predict with s). Furthermore, with ˜ (= 
certainty the aggregate action y since y depends only on θ̃ in a linear equilib­
rium. The following proposition characterizes the equilibrium. The proof is in 
the appendix. 

Proposition 1.3 (Vives 1990). There is a unique symmetric linear Bayesian 
equilibrium in the case of both private and shared information. The equilib­
rium strategy of agent i in the private-information case is given by Y(si) = 
a(si− ̄ +b¯ ξ/(ω1+ω2ςξ), ξ τε/(τε+τθ), and b 1/(ω1 +ω2).θ) θ, where a = = =

˜ ˆ ˜In the shared-information case, it is given by Z(si, θ) a(si − θ) + bθ̃, where = 
â d/ω1 and d (1 − ς)/(ξ−1 − ς).= =

Note that ω1 + ω2ςξ > 0 since ω1 > 0, ω1 + ω2 > 0, and 0 < ςξ  <  1. 
Therefore, a and â are nonnegative and b is positive. 

Remark 1.5. As in sections 1.2.1 and 1.3 there cannot be asymmetric equilib­
ria as long as we restrict our attention to equilibria with bounded means and 
uniformly bounded variances (across players). It can be checked that the equi­
librium can be obtained by optimizing a strictly concave potential (or team) 
function which delivers a unique solution. 

12 See section 10.1.4 for the statistical concept of sufficiency. Intuitively, an aggregate signal 
about a parameter is a sufficient statistic for the information available if the posterior distribution 
given the aggregate signal is the same as the one given all the individual signals. 
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1.4.2 When Does a Large Market Aggregate Information? 

The linear-quadratic model has a certainty-equivalence property. The expected 
value of an individual (as well as average) action, with either pooling or not 
pooling of information, equals bθ̄, which is the action agents would choose if 
they did not have any information. However, equilibria are not independent of 
pooling arrangements except in particular circumstances. The exceptions are 
if a â and θ̃ θ̄ (a.s.) or if b a â. The first case obtains if there is no = = = = 
correlation between parameters, ς 0 (independent values) and the second = 
obtains if ω1(1 − ξ) ω2ξ(1 − ς). This latter equality obviously holds in the =
perfect-information case, ς ξ 1. It cannot hold if ω2 < 0 (strategic comple­= =
ments), or for ω1 and ω2 different from zero, in the common-value case (ς 1,=
ξ ∈ (0,1)), or in the private values case (ξ 1, ς ∈ (0,1)).=

In summary, the large market aggregates information if and only if ς(ω1(1−
ξ)−ω2ξ(1 − ς)) 0.=

In line with our previous analysis in the common-value case (section 1.2.1), the 
equality holds with constant marginal costs, ω1 λ 0 (Palfrey 1985), but it = =
does not hold with strictly convex costs, λ > 0, provided signals are not perfect, 
ξ < 1 (Vives 1988). With independent values the information aggregation result 
should not be surprising because in the limit there is no aggregate uncertainty. 
In equilibrium a firm can predict with certainty the average action in the mar­
ket. In fact, what seems surprising is that there are any circumstances under 
which information aggregation obtains when aggregate uncertainty (coupled 
with imperfect signals) remains in the limit. 

The knife-edge information aggregation result of the common-value case with 
constant marginal costs extends to other parameter configurations along the 
curve ω1(1 − ξ) −ω2ξ(1 − ς) 0. In general, in our linear-normal model the =
equilibrium strategy of firm i in the shared-information regime depends both 
on its private signal si and on the average signal, which in the limit equals the 
average parameter: s̃ θ̃. Parameter configurations along the line ω1(1 − ξ)−= 
ω2ξ(1−ς) 0 have the property that the equilibrium strategy does not depend =
on θ̃ in the limit. This may seem surprising, since when ς >  0 the average 
market output ỹ is random and firms can predict it exactly knowing the average 
parameter θ̃. How can an agent not respond to the information contained in θ̃? 
Notice first that θ̃ gives information about the average action Y(θ̃) and about 
θi, since the θi parameters are correlated. In the Cournot model (with actions 
being strategic substitutes) a high θ̃ is good news for agent i since this means 
that θi is likely to be high but it is bad news for agent i at the same time since 
it means that Y(θ̃) is also likely to be high, which tends to lower the payoff of 
the agent. For the specific parameter configurations ω1(1−ξ)−ω2ξ(1−ς) 0=
it so happens that the two forces exactly balance out and it is optimal not to 
respond to changes in θ̃. It is worth noting, however, that this could not happen 
if the actions of the firms were strategic complements ω2 < 0 (say, prices in 
a differentiated product market with constant marginal costs) since then a low 
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θ̃ is bad news on two counts: it means that the demand intercept βi and the 
average price are likely to be low and then the agent wants to set a low price. 
In this situation it is never optimal not to respond to θ̃. 

In summary, a large smooth market aggregates information only in particular 
circumstances. An important example is when types are independent because 
then there is no aggregate uncertainty. Another relevant case is when there 
is Cournot competition, common-value uncertainty, and constant returns. In 
general, however, we should not expect to have information aggregation when 
there is aggregate uncertainty in a smooth market. 

1.4.3 Welfare Analysis and the Value of Information 

Suppose that we are in the (usual) case that the market does not aggregate 
information. Will more precise private information for all players always be to 
the benefit of each one of them? The answer turns out to depend on whether 
competition is of the strategic substitutes or complements type. Let us consider 
the common-value case. 

In the common-value case expected profits increase with a uniform increase 
in the precision of the signal τε with strategic complements (Bertrand case) 
and may increase or decrease with τε with strategic substitutes (Cournot 
case). In any case expected profits increase with prior uncertainty σθ 

2 (Vives 
(1990) and exercise 1.4). However, expected profits always increase with a uni­
form increase in the precision of the signals for a given signal correlation 
(cov[si, sj]/ var[si]), and for given signal precisions, expected profits increase 
(decrease) with increased correlation of signals with strategic complements 
(substitutes) (see section 8.3.1 in Vives 1999). With strategic complements (sub­
stitutes) an increased (decreased) signal correlation is good for expected profits. 
The reason is that with strategic complements (substitutes) best responses are 
upward (downward) sloping. Once the correlation of the signals received by 
players is controlled for, increasing the precision of signals is always good. 

The consequences for welfare in the monopolistic competition model are 
as follows. Expected consumer and total surplus increase (decrease) with the 
precision of private information in the Cournot (Bertrand) case. The intuition 
for these results is derived from the form of the consumer surplus function. 
Expected consumer surplus as a function of quantities is a convex combination 
of the variance of individual and average output, and expected consumer sur­
plus as a function of prices increases with the variance of individual prices and 
decreases with the variance of the average price and with the covariance of the 
demand shock and the individual price. (See exercise 1.4.) 

It is worth noting again that, in contrast to the competitive economy in 
section 1.2, even if firms were to have complete information there would 
be a welfare loss in the market due to monopolistic behavior. Furthermore, 
under incomplete information, the monopolistically competitive market is not 
team-efficient. That is, the market allocation does not maximize expected total 
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surplus subject to decentralized strategies since the team-efficient allocation 
would imply that expected prices are equal to marginal costs. 

Angeletos and Pavan (2007a) provide a characterization of the equilibrium 
and efficient use of information as well as the social value of information in 
a closely related model that generalizes the quadratic payoff structure in the 
common-value case including the dispersion (standard deviation) of the actions 
of the players. This allows encompassing other applications such as beauty con­
test games where the payoff to a player depends also on the distance between 
the action of the player and the actions of other players (Morris and Shin 2002). 
Angeletos and Pavan find that stronger complementarity increases the sensi­
tivity of equilibrium actions to public information, raising aggregate volatility 
while stronger substitutability increases the sensitivity to private information, 
raising the cross-sectional dispersion of actions. 

Consider a symmetric game with a continuum of players in which the payoff 
to player i is π(yi,y,σy ; θ) with yi his action, y 0

1 yi di the average action, ∫ 1 
= 

σy ( 0 (yi −y)2 di)1/2 the standard deviation of the action distribution, and =
θ a common payoff-relevant random parameter. Assume that π(yi,y,σy ; θ)
u(yi,y ; θ)+ 12 νσy 

2 with u quadratic and 
= 

∂2u ∂2u ∂2u ∂2u ∂2u 
(∂yi)2 

< 0, 
(∂yi)2 

+ 2
∂yi∂y 

+
(∂y)2 

< 0, 
(∂yi)2 

+ ν < 0 

to ensure global concavity (note that ν ∂2π/(∂σy)2). It is also assumed that =
the slope of the best response of a player is less than 1: 

∂2π/∂yi∂yκ ≡ −∂2π/(∂yi)2 
< 1. 

Each player receives a private and a public signal about θ and all variables are 
jointly normally distributed. 

Angeletos and Pavan characterize the linear equilibrium of the game. The 
equilibrium can be shown to be unique as in proposition 1.3 and remark 1.5.13 

They show that the equilibrium strategy is a convex combination of the expecta­
tion of the full-information equilibrium allocation and the expectation of aggre­
gate activity (both conditional on the information set of a player) where the 
weight given to the latter is precisely κ. This is called the “equilibrium degree 
of coordination” by Angeletos and Pavan but we will call it the degree of comple­
mentarity. When κ 0 the equilibrium strategy is just the best predictor of the =
full-information equilibrium allocation. This means that the weights, respec­
tively, to public and private information, in the equilibrium strategy are just 
the Bayesian weights. When κ > 0 there is strategic complementarity and play­
ers then weigh more public information, and when κ <  0 there is strategic 
substitutability and players then weigh less public information. The reason is 
that, with strategic complementarity, when a player wants to align his action 
with the average action, to predict the average action it is better to weigh more 

13 In the paper it is claimed to be the unique one, at least if κ ∈ (−1,1). 
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public information, while, with strategic substitutability, when a player wants 
to differentiate his action from the average action, it is better to weigh more 
private information. An increase in κ decreases the dispersion of equilibrium 
activity (d var[yi − y]/dκ < 0) and increases the nonfundamental volatility as 
measured by d var[y−y f]/dκ > 0, where y f is the full-information equilibrium 
allocation. 

Angeletos and Pavan also perform a welfare analysis using team efficiency as 
a benchmark. This is defined in relation to the aggregate welfare of the players 
in the game. An allocation is then team-efficient if it maximizes the expected 
utility of a representative player using a (symmetric) decentralized strategy. We 
introduced this benchmark in section 1.3 using as team function total surplus 
in a partial equilibrium market. Both definitions are closely connected. Indeed, 
with the present definition this would imply, in the context of the competitive 
linear-normal economy of section 1.2.4.1, for example, to take consumers with 
quasilinear quadratic preferences as players who at the same time own the 
firms. We would then see that the price-taking Bayesian allocation is also team-
efficient under the present definition. At the team-efficient solution both payoff 
externalities and the efficient use of information, with no communication, are 
taken into account. A team-efficient allocation is then uniquely characterized 
by a convex combination of the expectation of the (full-information) first-best 
allocation and the expectation of aggregate activity (both conditional on the 
information set of a player) where the weight given to the latter is 

∂2π/(∂yi)2 + 2(∂2π/∂yi∂y)+ ∂2π/(∂y)2 

κe .≡ 1 − 
∂2π/(∂yi)2 + ∂2π/(∂σy)2 

In the quadratic environment it then follows that the efficient allocation for 
the original game can be replicated by the equilibrium of a fictitious game 
with the same information structure, in which the full-information equilibrium 
equals the first-best allocation of the original economy and where the degree 
of complementarity is precisely κe. This is the fictitious degree of complemen­
tarity that guarantees efficiency under incomplete information once we have 
efficiency under complete information. Some interesting results follow. 

In an efficient economy (that is, one which is efficient under complete infor­
mation and for which κ κe), the social value of public versus private informa­=
tion increases with κ (we have that (∂E[π]/∂τη)/(∂E[π]/∂τε) τε/(1 − κ)τη,=
where τε (τη) is the precision of the private (public) information). 

If we take an economy which is efficient under complete information, then 
when κ > κe (κ < κe) there is overreaction (underreaction) to public information 
and excessive nonfundamental volatility (cross-sectional dispersion). 

An example is provided by the beauty contest model of Morris and Shin 
(2002). The idea of the beauty contest goes back to Keynes and views the finan­
cial market as a contest where investors try to guess what other investors will do 
instead of trying to assess the fundamentals (see the Introduction and Lecture 
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Guide and section 8.3). In this example, ( ∫ 1 ) 
π(yi,y,σy ; θ) = −(1 − r)(yi − θ)2 − r Li − Li di 

0 

with r ∈ (0,1) and Li 0
1(yi −yj)2 dj (yi −y)2 + σ 2. Note that 0

1 Li di= = y = 
2σy2. 

Players try to get close to θ but derive a private value from taking an action 
close to others. However, socially the latter attempt is a waste since 

∫ 
0
1 πi di∫ 1 

= 
−(1 − r) 0 (yi − θ)2 di. This economy is efficient under complete information, 

∂2π/∂yi∂y 2r
κ r and κe 0= −∂2π/(∂yi)2 

= 
2 
= =

(since ∂2π/(∂y)2 = −2r and ∂2π/(∂σy)2 2r ). Therefore, there is overre­=
action to public information and excessive nonfundamental volatility. In fact, 
Morris and Shin (2002) show that welfare may decrease with the precision of 
public information. This fact has prompted a debate on the desirability of trans­
parency of central bank policy. The point is that the disclosures of a central bank 
may reduce welfare whenever the beauty contest analogy applies to financial 
markets (see Morris and Shin 2005; Hellwig 2005; Svensson 2006; Woodford 
2005). We will come back to this issue in chapter 3 and in the models of pure 
informational externalities in chapter 6.14 

Another example is provided by new Keynesian business cycle models (e.g., 
Woodford 2002; Hellwig 2005), where the economy is efficient under complete 
information. However, in this case welfare increases with public information 
(Hellwig 2005). The reason is that in those models the externality with the dis­
persion in relative prices is negative (∂2π/(∂σy)2 < 0), due to imperfect sub­
stitutability across goods in a monopolistic competition model, and this leads 
to a higher κe with κ < κe. 

Angeletos and Pavan (2007a) also look at the monopolistic competition model 
developed in this section, which is not efficient under complete information, 
and derive some comparative statics results with respect to information param­
eters. For example, expected profits increase with the precision of public infor­
mation when competition is of the strategic complements variety. In this case 
(as in the quadratic model of section 1.4.1) we have that κe 2κ.15 =

Angeletos and Pavan (2007b) look at Pigouvian corrective tax policy in a sim­
ilar environment and show that if the government can set marginal tax rates 
contingent on aggregate activity the (decentralized) efficient allocation can be 

14 Calvó-Armengol and de Martí (2007) consider a game with n players with payoffs similar to 
the beauty contest example and model the signals received as the outcome of communication in 
a network. 

15 There is in fact an apparent contradiction of their corollary 10 (Cournot competition), in 
which they claim that expected profits increase with the precision of private information, with 
the comparative statics result presented above that expected profits may increase or decrease 
with this precision (see exercise 1.4). This is due to the fact that corollary 10 only holds under 
the parameter restriction κ > −1 and this fact is not stated in the corollary. 
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implemented. The basic idea is to introduce taxes that control payoff externali­
ties, so that the complete information equilibrium coincides with the first best 
allocation, and make agents perceive the fictitious degree of complementarity 
κe instead of the true κ, so that there is a socially efficient use of information. 
Tax progressivity is a crucial instrument for the first objective and the sensitiv­
ity of marginal taxes to aggregate activity to the second. It is found, for example, 
that in economies which are inefficient only under incomplete information and 
for which κ > κe, marginal optimal taxes are increasing in aggregate activity. 
In this way the perceived degree of complementarity is reduced. 

1.5 Auctions and Voting 

In this section we examine information aggregation properties of auction and 
voting mechanisms. We will see how auctions aggregate information under less 
restrictive conditions than smooth market mechanisms, such as a Cournot mar­
ket. The better information aggregation properties of auction and voting mecha­
nisms are explained by their winner-takes-all feature. This property implies that 
a bidder, while submitting his bid, or a voter, while casting his vote, has to think, 
respectively, of the implications that winning or being pivotal for the election 
outcome have in terms of the signals that other players may have received. That 
is, the bidder, effectively, has to condition on the information that winning con­
veys. In section 1.5.1 we examine common-value auctions and in section 1.5.2 
we draw some connections with voting mechanisms. 

1.5.1 Information Aggregation in Common-Value Auctions 

Do auction markets aggregate information efficiently? This question got an affir­
mative answer in the studies of Wilson (1977) and Milgrom (1979, 1981). Wilson 
(1977) considers a first-price auction (the bidder with the highest bid wins the 
object and pays his bid) where buyers have some private information about the 
common value θ of the good to be sold and shows that, under certain regularity 
conditions, as the number of bidders tends to ∞ the maximum bid is almost 
surely equal to the true value. Milgrom (1979) obtains a necessary and suffi­
cient condition on the information structure so that convergence to the true 
value is in probability.16 The (second price) Vickrey auction has the same type 
of limiting properties (Milgrom 1981). 

The conditions required for obtaining aggregation of information are rela­
tively strong. In equilibrium, winning the object means that the other n − 1 
bidders have received worse signals about the value of the object (the “winner’s 
curse” since this means that the winner may have overestimated the value of the 
object). Consider the following illustration of the winner’s curse in a common-
value auction. An oil tract is auctioned and bidders have private estimates (sig­
nals) of its value. If bidders were to bid naively, each one just on the basis of 

16 See section 10.3.1 for an account of the different convergence concepts for random variables. 
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his private estimate, the winner would have overbid. The reason is that winning 
means that you have bid above the other bidders. To avoid the winner’s curse, 
each bidder has to condition his bid not only on his private signal but also on 
the information that winning the auction conveys (Milgrom and Weber 1982). 
Now, for a high bid to be optimal, when n− 1 is large, the signal of the bidder 
must be quite strong. In particular, it must be the case that for any value θ 
there is a signal for which, conditional on winning, the bidder puts very small 
probability on a value lower than θ.17 

Pesendorfer and Swinkels (1997) show that information aggregation is ob­
tained under less stringent information conditions provided that supply also 
becomes large as the number of bidders grows (see also Kremer 2002). Pesen­
dorfer and Swinkels consider an auction of k identical objects of unknown 
value. The k highest bidders obtain an object and pay the (k + 1)th bid. Each 
bidder receives a signal of bounded precision (more precisely, the posterior of a 
bidder after receiving a signal has full support, with density bounded away from 
zero and infinity) before submitting his bid. This contrasts with the setup in Wil­
son and Milgrom. Pesendorfer and Swinkels characterize the unique symmetric 
Bayesian equilibrium. They show that a necessary and sufficient condition for 
the equilibrium price to converge in probability to the true value is that both 
the number of objects sold k and the number of bidders who do not receive an 
object n− k go to ∞. The driving force behind the convergence result is that a 
loser’s curse is added (losing means that at most n− k of the other buyers bid 
below your own bid) to the usual winner’s curse (winning means that at most 
k of the other buyers bid above your own bid). When both k and n− k tend to 
∞, then signals need not be very strong for the equilibrium price to converge 
to the value. The reason is that a bid on the brink of winning or losing conveys 
precise information on the true value. Furthermore, for the result to hold sup­
ply need not grow in proportion to demand (it may grow less quickly) and only 
a vanishing fraction of bidders may be informed. 

1.5.2 Voting 

Voting aggregates information in ways similar to auctions. Consider a two-can­
didate election in which voters have private information about a common-value 
characteristic θ of the alternatives. For example, the common unknown value 
may be the quality of a public good about which voters have different assess­
ments. The connection between auctions and elections is that a voter must 
condition his beliefs about θ on the event that his vote is pivotal (that is, that 
his vote can change the outcome of the election) in the same way that a bidder 
must condition his bid on the event that he wins the auction (with the highest 
bid). 

17 Milgrom’s (1981) necessary and sufficient condition for information aggregation with a finite 
set of values is that for any θ < θ� and any constant K there is a signal s� which yields a likelihood 
ratio on θ� versus θ of at least K. (See section 10.1.5 for an explanation of the likelihood ratio.) 
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Feddersen and Pesendorfer (1997) analyze an election with two alternatives A 
and Q in which the payoff to a voter depends on his type, the (one-dimensional) 
state of nature, and the winning alternative. Voting is costless. Each voter knows 
his type (types are i.i.d.) and receives a private signal about the uncertain state of 
nature. The alternative Q wins the election if it gets at least a fraction of votes 
q. Feddersen and Pesendorfer characterize symmetric Bayes–Nash equilibria 
of the voting game in which no voter uses a weakly dominated strategy. In 
equilibrium there are types who always vote for A, types who always vote for 
Q, and the rest cast their vote depending on the signal received (i.e., they take 
an “informative action”). 

Feddersen and Pesendorfer show that elections aggregate information. That 
is, the alternative chosen under shared information obtains with probability 
close to 1 in a large election with private information. We say that an elec­
tion is close if in equilibrium the winning candidate obtains a fraction of votes 
very close to the winning percentage. Feddersen and Pesendorfer show that 
although the fraction of voters who take an informative action tends to 0 as the 
number of voters grows unboundedly, large elections are almost always very 
close. As a consequence, elections are decided by those who take an informa­
tive action. However, information aggregation is not obtained in general if the 
distribution from which preference types are drawn is uncertain. An interest­
ing related insight is that uninformed voters may prefer to abstain rather than 
vote because of the analogue to the winner’s curse in the context of the election 
(Feddersen and Pesendorfer 1996). This is so because uninformed voters may 
abstain to maximize the probability that informed voters are pivotal and decide 
the outcome of the election. 

In summary, when the market mechanism has the winner-takes-all feature, as 
in auctions or voting mechanisms, information aggregation seems to be facili­
tated. The reason is that these mechanisms force agents to take into considera­
tion the informational implications of their winning the auction or being pivotal 
in the election. 

1.6 Endogenous Information Acquisition 

In this section we examine the implications of costly information acquisition for 
information aggregation in the context of the Cournot market of section 1.2.18 

We confirm that with endogenous information acquisition a large Cournot mar­
ket with decreasing returns does not aggregate information and does not attain 
first-best efficiency. Furthermore, the welfare loss increases with the cost of 
information acquisition. The market, however, is still second-best optimal when 
firms can only use decentralized production strategies. The case of constant 
returns to scale is more subtle. 

18 Milgrom (1981) and Milgrom and Weber (1982) consider information acquisition in auctions. 
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After setting up the model we deal first with the decreasing-returns-to-scale 
case (section 1.6.1) and then with the constant-returns-to-scale case (section 
1.6.2). 

Consider the model with a continuum of firms, uncertain demand, and 
linear-normal specification of the example in section 1.2.4.1: p θ − βx and 

1 
= 

C(xi) λxi
2. The timing of events is as follows. In the first stage firms contract = 2 

information (a sample) of a certain precision about the unknown parameter θ. 
At the second stage firms receive their private signals and compete in quanti­
ties. The precision of information of firm i, τεi , is proportional to the sample 
size the firm obtains.19 The cost of obtaining information with precision τεi is 
cτεi , where c > 0. It will be more convenient to work with ξi (ξi ≡ τεi/(τθ + τεi)) 
and, with some abuse of language, we will speak of ξi as the precision of infor­
mation of firm i. The cost of obtaining information ξi will then be given by 
ϕ(ξi) (c/σθ

2)(ξi/(1 − ξi)). Purchase of zero precision (ξi 0) is costless and = =
to purchase perfect information (ξi 1) is infinitely costly. The parameters ξi=
are common knowledge at the second stage (in a competitive market, though, 
a firm needs to know only the average precision). 

An alternative would be to consider the case where firms purchase preci­
sion simultaneously with their output choice or, equivalently, that the precision 
acquisition by a firm is not observable by the rivals. In this case a strategy for 
firm i is a pair (ξi,Xi( )) determining the precision purchased and the output ·
strategy. In our continuum economy it does not matter whether the precisions 
purchased are observable or not. Note first that if (ξi,Xi( ))i∈[0,1] is a Nash ·
equilibrium of the one-shot game, then necessarily (Xi( ))i∈[0,1] is a (Bayes) ·
Nash equilibrium of the market game for given (ξi)i∈[0,1]. Let ξ denote the 
average information precision in the market. Then equilibrium strategies and 
expected profits of firm i at the market stage are easily seen to depend only on 
ξi and ξ. This means that there is no strategic effect derived from the informa­
tion purchases at the first stage. The reason is that a single firm must take the 
average ξ as given. It follows that equilibrium precisions, both at the one-shot 
and two-stage games, will solve 

Max Πi(ξi, ξ) E[πi]−ϕ(ξi).
ξi 

=

1.6.1 Decreasing Returns to Scale 

Assuming that λ >  0 (increasing marginal costs), we can find a price-taking 
Bayesian equilibrium of this (continuum) economy as in section 1.2 for given 

¯(ξi)i∈[0,1]. Let us postulate Xi(si) ai(si − θ)+ bθ̄ as a candidate linear equi­=
librium strategy for firm i. 

19 The model is taken from Vives (1988). Li et al. (1987) model information acquisition similarly. 
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We then have that ∫ 1 ∫ 1 

Xi(si)di (ai(si − ̄ θ)diθ)+ b¯
0 

= 
0 ∫ 1 

= θ)+ 
0 

+ bθ̄ = θ)+ b¯a(θ − ̄ aiεi di a(θ − ̄ θ, 

where a
∫ 
0
1 aj dj, and, assuming that var[aiεi] is uniformly bounded across = 

1
firms and given that E[aiεi] 0, we have 0 aiεi di 0 according to our = =
convention on the integral. 

We can use the FOC E[p | si] λXi(si), where E[p | si] E[θ | si] −= =
βE[X(θ)˜ | si] and E[X(θ)˜ | si] θ)+ b¯a(E[θ | si]− ̄ θ to solve for the param­=
eters ai and obtain ai ξi/(λ+ βξ) and b 1/(λ+ β). Note that var[aiεi]= = = 
ξi(λ+ βξ)−2(τεi + τθ)−1, which is bounded between 0 and 1. Using the FOC it 
is immediate that 

E[πi] 2
1 λE[(Xi(si))2]

λ
b2θ̄2 ξiσθ 

2 

.= =
2 

+
(λ+ βξ)2 

Expected profits for firm i increase with ξi and decrease with ξ. The total payoff 
for firm i is 

Πi(ξi, ξ)
λ ξi σ 2 1 

θ̄2 c ξi .=
2 (λ+ βξ)2 θ + (λ+ β)2 

−
σ 2 1 − ξiθ 

The marginal benefit to a firm to acquire information decreases with the average 
amount of information purchased by the other firms ξ. This means that ξi and ξ 
are strategic substitutes in the payoff of firm i. More information in the market 
reduces the incentive for any firm to do research. A firm wants information to 
estimate the market price p θ − βx. When firms have better information (ξ=
is high) the market price varies less since producers match better production 
decisions with the changing demand. Consequently, for high ξ an individual 
firm has less incentive to acquire information. 

The FOC (which is sufficient) is given by 

∂Πi λσθ 
2 c 1 

∂ξi 
=
(λ+ βξ)2 

−
σ 2 (1 − ξi)2 

� 0. 
θ 

It will hold with equality if ξi > 0. Since the equilibrium will be symmetric, we 
let ξi ξ and solve for ξ. We obtain = { σ 2 } 

θ −
√

2cλ
ξ∗ = max 0,

β 
√ 

2c/λ+ σ 2 , 
θ 

which can be written in terms of the precision of the signal as 

1 − τθ
√

2cλ λ
τε∗ = max 0,

λ+ β 2c
. 

It is immediate that the precision purchased is monotone in cost c. If  c 0,=
firms obtain perfect information (τε∗ = ∞); as c increases, τε∗ decreases mono­
tonically until c is so high that no information is purchased. Furthermore, τε∗
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increases with σθ
2. More uncertainty (or less prior public knowledge τθ) induces 

the firms to acquire more information. The relationship between the slope of 
marginal costs (λ) and τε∗ is not monotonic: for both small and large λ, expected 
profits at the market stage are low and consequently there is low expenditure 
on research, and τε∗ peaks at intermediate values of λ. It increases with λ for 
low values of λ and decreases for high values. 

Differentiated products. The results generalize to differentiated products. This 
is easily seen by noting that the model examined is formally equivalent to a lin­
ear demand differentiated product market with constant marginal costs (equal 
to zero for simplicity) as studied in section 1.4. The results obtained apply, 
therefore, to the case of Cournot competition with payoff for firm i given by 
πi (θ − 1 λxi − βx)xi, and to the case of Bertrand competition with payoff 
πi 
= 
(θ− 1

2 
λpi−βp)pi. An interesting difference is that with price competition = 2 

and differentiated products, ξi and ξ are strategic complements in the payoff of 
firm i. The reason is that, as other firms are now better informed, the intercept 
of the residual demand of firm i, θ − βp̃(θ), is more variable because β < 0 and 
the average price ˜ 20p(θ) is more responsive to θ. 

Welfare. The first-best outcome with costly acquisition of information is just 
the full-information first-best. This can best be understood by considering 
finite-economy approximations to the large market. It is verified in section 2.3 
that, as finite economies grow large, in the sense that the numbers of consumers 
and firms grow as the market is replicated, the optimal expenditure on infor­
mation converges to zero in per capita terms and the precision of the aggregate 
signal tends to ∞. That is, when a centralized planner determines the purchase 
of an aggregate signal and sets output to maximize expected total surplus, then 
as the market grows large less and less information is purchased per firm but 
at the same time the aggregate precision grows unboundedly. 

From section 1.2.4.1 we know that in the continuum economy the first-best 
per capita expected total surplus with no cost of information acquisition is 
given by ETS0 (1 b)E[θ2], where b 1/(λ + β). With decreasing returns = 2 = 
to scale, a competitive market always falls short of this first-best level unless 
the cost of information is zero. If the competitive market spends a positive 
per capita amount on information, it cannot attain first-best efficiency, which 
involves zero average expenditure on information acquisition. If the market 
does not buy any information, then the precision of signals is zero and again 
an inefficient outcome obtains. The welfare loss is given by 1 (b − a)σθ 2 + cτ∗,2 ε 
where a ξ∗/(λ+βξ∗). This is immediate from section 1.2.4.1 adding the cost =
of information. It is always positive unless c 0, in which case b a.= =

Nevertheless, with decreasing returns the market is team-efficient: expected 
total surplus is maximized given that firms can base their decisions only on 
their private information. We know from proposition 1.2 that, contingent on ξ, 
the market works like a team which maximizes expected gross surplus (gross of 

20 See exercise 8.15 in Vives (1999) for the duopoly case. 
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the cost of information) and attains EGS(ξ) = 2
1 (aσθ 

2 + bθ̄2), where a = ξ/(λ+
βξ). The team maximizes EGS(ξ)−ϕ(ξ). The FOC of the optimization problem, 
which is also sufficient for a maximum to obtain, is exactly as in the market 
solution. The reason is that at the first stage there is no private information and 
with negligible single players each firm has the right (second-best) incentives 
to purchase information. 

Proposition 1.4. With endogenous information acquisition a competitive mar­
ket with increasing marginal costs works like a team which chooses expen­
ditures on information acquisition and decentralized production rules to 
maximize total expected surplus. 

As a corollary to the proposition we obtain that the welfare loss with respect 
to the first-best increases with the cost of information. This is easily seen since 
with increasing marginal costs, the competitive market acts as if it were solving 
the team program 

Max φ(τε, c) EGS(τε)− cτε. τε 
=

Therefore, using the envelope condition, 

dφ(τε∗, c) ∂φ
(τε∗, c) = −τε∗,dc 

=
∂c

and the net expected total surplus of the market decreases with the cost of infor­
mation (as long as τε∗ > 0). The following proposition summarizes the market 
performance with respect to the first-best with increasing marginal costs. 

Proposition 1.5. With endogenous and costly information acquisition a com­
petitive market with decreasing returns always falls short of first-best efficiency. 
Furthermore, the welfare loss increases with the cost of information as long as 
the market expenditure on information acquisition is positive. 

1.6.2 Constant Returns to Scale 

In the constant-returns-to-scale case (λ 0), no equilibrium exists if informa­=
tion acquisition is costly. The argument is as follows. Notice first that in equilib­
rium it must be the case that no firm makes any profit at the market stage when 
prices and quantities are set. With constant returns to scale, equilibrium at the 
second stage implies that the expected value of the market price conditional 
on the signal received by any firm is nonpositive. Otherwise the firm would 
expand indefinitely. Therefore, firms cannot purchase any information in equi­
librium since this would imply negative profits. Furthermore, zero expenditures 
on information acquisition are not consistent with equilibrium either. If no firm 
purchases information, there are enormous incentives for any firm to get some 
information and make unbounded profits under constant returns to scale. With 
no firm acquiring information the average output in the market is nonrandom 
and any firm with some information could make unbounded profits by shutting 
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down operations if the expected value of the market price conditional on the 
received signal is nonpositive and producing an unbounded amount otherwise. 

The nonexistence of equilibrium argument does not depend on the linear-
normal specification and we will encounter it later when we deal with the Gross­
man–Stiglitz paradox in section 4.2.2. The nonexistence result is also reminis­
cent of Wilson’s analysis of informational economies of scale (Wilson 1974). He 
finds that the compounding of constant returns in physical production with 
information acquisition yields unbounded returns in models where the choice 
of the decision variable applies in the same way to the production of all units of 
output. Obviously, this implies nonexistence of a competitive equilibrium. The 
fact that no equilibrium exists with endogenous information acquisition under 
constant returns is particular to the continuum model. With a finite number of 
firms an equilibrium exists in the two-stage model and it approaches the first-
best efficient outcome when the market grows large. The analysis is deferred 
to section 2.3. 

1.6.3 Summary 

In a large Cournot market with uncertain demand where firms acquire informa­
tion, we can draw the following conclusions. 

• With decreasing returns there is a welfare loss with respect to the first-
best outcome and it increases with the cost of information. Yet the market 
is team-efficient and maximizes expected total surplus subject to the use 
of decentralized production strategies. 

• With constant returns there is no welfare loss and the market acquires the 
right amount of information. 

• Information acquisition decisions by firms are strategic substitutes (if 
competition were to be à la Bertrand in a differentiated product environ­
ment, then they would be strategic complements). 

1.7 Summary 

In this chapter we have examined how simple market mechanisms—such as 
Cournot or auctions, in which agents do not have the opportunity to condi­
tion on market statistics—aggregate information. The market aggregates infor­
mation if it replicates the outcome of competition when all agents pool their 
information in the economy. The chapter has introduced information aggrega­
tion in standard partial equilibrium models and some of the basic tools for the 
analysis: 

• The idealization of a large market as a continuum of players. 

• Price-taking (Bayesian) equilibria in markets with incomplete information. 
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• The linear-normal model and the computation and characterization of 
linear equilibria. 

• The concept of team efficiency as a welfare benchmark for an incomplete-
information economy. 

The main results are as follows. 

• Except in the independent-values case or in particular circumstances, 
smooth market mechanisms, such as Cournot with homogeneous product 
or Bertrand with differentiated products, do not aggregate information as 
the market grows large. 

• Auctions, like voting mechanisms, tend to aggregate information under 
less restrictive conditions. This is because of their winner-takes-all fea­
ture which forces bidders to condition effectively on the information that 
winning conveys. 

• A large homogeneous product Cournot market under private information 
will not be first-best efficient, except possibly under constant returns to 
scale. However, it is team-efficient, that is, it maximizes total expected 
surplus under the constraint of using of decentralized strategies. The 
property also holds with costly information acquisition. 

• The strategies of agents in incomplete-information economies, and the 
relative weights to private and public information in particular, depend 
on the degree of strategic complementarity or substitutability of payoffs. 
This may explain, for example, patterns of under- or overreaction to public 
information with respect to the team-efficient benchmark. 

1.8 Appendix 

Proof of proposition 1.3 (see p. 32). We first derive the linear equilibrium in the 
case of private information, where each player conditions on his signal only. 
Player i maximizes over yi: 

E[π(yi,y ; θi) | si] = E[θi | si]yi − 1 ω1yi 
2 −ω2E[y | si]yi,2 

where y is the random equilibrium average action y . We obtain the following 
FOC, 

E[θi | si]−ω1yi −ω2E[y | si] 0,=
and, since ω1 > 0, the best response of player i is 

E[θi si]−ω2E[y |
yi = |
ω1 

si] .


We are looking for a linear symmetric equilibrium of the form Y(si) asi + b̂,=
where the parameters a and b̂ need to be determined. It follows that ∫ 1 ∫ 1 ∫ 1 

y = 
0 
Y(sj)dj = a 

0 
θj dj + a 

0 
εj dj + b̂ = aθ̃ + b̂



( ) 

( ) 

∫ 
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since according to our convention 
∫ 
0
1 εj dj 0 (a.s.). We know that E[θi | si]= = 

ξsi + (1 − ξ)θ̄ and E[θ̃ | si] E[θj | si] ξςsi + (1 − ξς)θ̄.= =
It must therefore hold that 

ξsi + (1 − ξ)θ̄ −ω2(a(ξςsi + (1 − ξς)¯ b)
asi + b̂ = ω1 

θ)+ ˆ
. 

Identifying coefficients we obtain 

ω1a ξ −ω2ξςa and ω1b̂ θ −ω2(1 − ξς)¯ b̂(1 − ξ)¯ θa−ω2= =

and, since ω1 +ω2 > 0, 

ξ ˆ 1 ¯a and b θ.= 
ω1 +ω2ξς 

= 
ω1 +ω2 

− a 

It follows that linear symmetric Bayesian equilibrium strategies in the private-
information case are given by 

1 ¯ ¯Y(si) = asi + ω1 +ω2 
− a θ = a(si − θ) θ,+ b¯

where a and b are given as in the proposition. We have that E[y(si)] bθ̄ since=
¯E[si − θ] 0.=

Next we derive the symmetric linear Bayesian equilibrium strategies in the 
shared-information case, where each firm conditions both on its signal and the 
average parameter θ̃ (since s̃ θ̃). The FOC is given by = 

˜ ˜E[θi | si, θ]−ω1yi −ω2E[y | si, θ] 0,=

which, since ω1 > 0, implies that 

˜ ˜E[θi | si, θ]−ω2E[y | si, θ]yi .= 
ω1 

˜ ˆWe are looking for a linear symmetric equilibrium of the form Z(si, θ) asi += 
b̂θ̃+ ĉ, where the parameters â, b̂, and ĉ need to be determined. With hindsight 

˜ ˆ ˆwe let ĉ 0. We therefore have that z
∫ 
0
1 Z(si, θ)di âθ̃ bθ̃ (â b)θ̃

since s̃
=

0
1 si di θ̃. 

= = + = +
= = 

It must therefore hold that 

˜
ˆ b̂˜ E[θi | si, θ]−ω2z .asi + θ = 

ω1 

From the properties of conditional expectations with normal distributions we 
have that 

˜E[θi | si, θ] (1 − d)θ̃ + dsi,=

where d (1 − ς)/(ξ−1 − ς). Then =
ˆ

b̂˜ (1 − d)θ̃ + dsi −ω2(â b)θ̃
asˆ i + θ = 

ω1 

+
, 
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ˆ ˆfrom which â = d/ω1 and ω1b = (1 − d) −ω2(â + b), and therefore, since 
ω1 +ω2 > 0, 

b̂
(1 − d)−ω2â 1 

a a.= 
ω1 +ω2 

= 
ω1 +ω2 

− ˆ = b − ˆ

In conclusion, linear symmetric Bayesian equilibrium strategies in the shared-
information case are given by 

Z(si, θ) a(si − ˜ θ,˜ ˆ θ)+ b˜= 
˜where â and b are as in the proposition. We also have that E[Z(si, θ)] bθ̄=

since E[si − ˜ 0.θ] =

1.9 Exercises 

1.1 (expected surplus in the linear-normal model). Consider the linear model 
of section 1.2.4.1. Show that expected gross surplus (per capita) at the mar-

X(θ) 
ket solution is given by E[ 

∫ ˜
P(z; θ)dz] aσθ 

2 + bθ̄2 1 β(a2σθ 
2 + b2θ̄2)0 2 

1 
= −

and expected cost by E[C(Xi(si))] λ[a2σθ
2/ξ + b2θ̄2]. Conclude that ETS 

1 
θ + b¯

= 2 = 
(aσ 2 θ2). Show also that per capita expected consumer surplus 2
 [∫ ˜ ]
X(θ) 

E P(z; θ)dz X(θ), θ) ˜− P( ˜ X(θ) 
0 

is given by 1
2 βE[(X̃(θ))

2]. 

Hint. The first part is a straight computation using the equilibrium expressions. 
For the second you do not need to know the form of X̃(θ). 

∗∗ 1.2 (information aggregation in a Cournot market with capacity constraints and 
a finite support information structure). Consider a market with inverse demand 
p θ − βx, with firms receiving private signals about the uncertain θ and= 
competing in quantities. Firm i has a capacity of production ki. This enables 
the firm to produce at zero cost up to the capacity limit. We will assume here 
a finite support information structure where θ can take two values, θH and θL, 
θH � θL > 0 with equal prior probability. Let µ 1 (θH+θL). Firm imay receive a = 2 
low (sL) or high (sH) signal about θ with a likelihood P(sH | θH) P(sL | sL) �, 

1 
= =

where 1
2 � � � 1. If � 2 , the signal is uninformative; if � 1, it is perfectly = =

informative. Signals received by firms are i.i.d. conditional on θ. With these 
assumptions: 

(i) Check that E[θ | sH] �θH + (1 − �)θL, E[θ | sL] (1 − �)θH + �θL,= = 
P(sH,j | sH,i) �2 + (1 − �)2, and P(sH,j | sL,i) 2�2(1 − �) with j ≠ i.= =

(ii) Let ς ≡ �2 + (1 − �)2, ∆ θH − θL, � ∈ [2
1 ,1], and assume that �θL > (1 −=

�)θH. Show that when all firms have a common capacity k there is a unique 
symmetric Bayesian equilibrium in which each firm produces according to 
X(sH) ȳ ≡ωθH − (ω−1)θL and X(sL) y ≡ωθL − (ω−1)θH if k � ȳ ,= =



(	 ) 
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where ω �/(2�− 1) if � >  1 and ω 1 if � 1 ; X(sH) k and X(sL)= 2 = 2 = 2 = = 
z ≡ (E[θ | s] − (1 − ς)k)/ς ¯	 X(sL) kif y  > k > E[θ  | s] and X(sH) = = 
otherwise. 

(iii) Show that in equilibrium the average output ˜	 y , q(θ) X(θ) equals θ if k � ¯
if ¯ (k(ς +�−1) sL](1 −�))/ς andy > k > E[θ | s] (where q(θH) +E[θ |=
q(θL) = (�E[θ | sL]−

1 
(� − ς)k)/ς), and k otherwise, provided the signals 

are informative (� >  2 ). When does the market aggregate information? 

Solution. Follow similar steps as in section 1.2.4.1. See Vives (1986). 
∗∗ 1.3 (investment in flexibility under uncertainty and private information). Con­

sider the same market as in exercise 1.2 but now each firm has an opportunity 
in a first stage to invest in capacity. Firm i may purchase a capacity ki at the 
cost cki (c > 0). Assume that �θL > (1 − �)θH. 

(i) Show that there is a unique symmetric subgame-perfect equilibrium of the 
two-stage investment-quantity setting game.21 The equilibrium capacity 
k∗ is given by 

k∗ max 
{ 

0, θ̄ − c, θ̄ − c ∆(� − 12 )− c 
} 
.= + 

2ς − 1 

(ii) Show that if c < c̄ ≡ ∆(� − 1 ) the equilibrium investment in k∗ increases2 
with a mean-preserving spread of demand (i.e., with ∆) and increases 
or decreases with the precision of the information (i.e., �) according to 
whether c is larger or smaller than c̃ ≡ (1 − 4�(1 − �))∆/(4(2� − 1)). If  
c > c̄, then k∗ is independent of ∆ and �. Interpret the results in terms of 
the effect of uncertainty in investment in flexibility. Distinguish between 
increases in prior uncertainty ∆ and increases in the variability of beliefs �. 

(iii)	 Welfare. Show that k∗ = arg max{EGS(k) − ck}, where EGS(k) is the ex­
pected gross total surplus with capacity k. 

(iv) Show that there is a welfare loss with respect to the full-information first-
best unless the cost of capacity c is zero or high enough (c � 1

2 ∆). The 
welfare loss is decreasing with the precision of information if ∆(�− 1 ) >2 
c > 0 and independent of the latter if 1 ∆ > c >  ∆(� − 1 ). Interpret the 2	 2 
results. 

Solution. See Vives (1986). 

1.4 (welfare in the monopolistic competition model with a common value). 
The linear demand system for differentiated products of section 1.4.1 can 
be obtained from the optimizing behavior of a representative consumer who 
maximizes the quadratic utility 

U 
∫ 1 

αixi di− 1 
δx2 + (1 − δ) 

∫ 1 

xi 
2 di= 

0 2 0 

21 A subgame-perfect equilibrium requires that for any investment decision at the first stage, a 
Nash equilibrium in outputs obtains at the second stage. This rules out incredible threats. Nash 
equilibria only require optimizing behavior along the equilibrium path. 
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minus expenditure 
∫ 
0
1 pixi di, where x

∫ 
0
1 xi di. Consumer surplus (CS) in = 

1 2terms of quantities is given by 1 (δx2 + (1 − δ) i di) and in terms of prices 2 0 x
by 

1 1 1 1 

(1 − δ) βi 
2 di+ δβ̃2 + (1 + γ) pi 

2 di− γp2 − 2 βipi di ,
2 0 0 0 

where β̃ 0
1 βi di and, as before, βi (αi − δ˜ and γ= = α)/(1 − δ) = δ/(1 − δ). 

Note that β̃ α̃.=
Since costs are assumed to be zero, U represents total surplus (TS). Consider 

the common-value case (ς 1) and show that =
(i) expected consumer surplus in the Cournot case ECSC increases and in the 

Bertrand case ECSB decreases with the precision of information τε; 

(ii) expected profits increase with τε in the Bertrand case (E[πB]) and may 
increase or decrease with τε in the Cournot case (E[πC]); expected profits 
in both cases increase with prior uncertainty σθ

2; 

(iii) expected total surplus in the Cournot case ETSC increases and in the 
Bertrand case ETSB decreases with the precision of information τε. 

Interpret the results in terms of the impact on the variability of individual 
and aggregate strategies and potential covariance of the uncertain parameters 
with strategies. What would be the impact on welfare if firms were to share 
information? 

Solution. Let ξ τε/(τθ+τε). From the equilibrium strategies in proposition 1.3 =
and the expressions for CS obtain that 

∂ ECSC 2 − 4δ+ 2δ2 + 3δ(1 − δ)ξ σθ 2 

> 0
∂ξ 

= 
(2 − 2δ+ δξ)3 2 

and 

∂ ECSB (12 − ξ)γ + (6 + ξ)γ2 + 6 σθ 
2 

< 0.
∂ξ 

= −
(2 + 2γ − γξ)3 2 

Note that in equilibrium E[πC] (1 − δ)E[xi2] and E[πB] (1 + γ)E[pi2] and= =
derive the results for profits from the equilibrium strategies in proposition 1.3. 
Furthermore, obtain that 

∂ ETSC 6 − 12δ+ 6δ2 + δ(1 − δ)ξ σ 2 
θ > 0

∂ξ 
= 

(2 − 2δ+ δξ)3 2 

and 

∂ ETSB (4 − 3ξ)γ + (2 − ξ)γ2 + 2 σ 2 

< 0. θ 
∂ξ 

= 
(2 − 2γ − γξ)3 2 

For the effect of information sharing note that it is equivalent to letting ξ 1.=
(See Vives (1990) for more details.) 
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