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Chapter 1 

Density Estimation 

The estimation of probability density functions (PDFs) and cumulative 
distribution functions (CDFs) are cornerstones of applied data analysis 
in the social sciences. Testing for the equality of two distributions (or 
moments thereof) is perhaps the most basic test in all of applied data 
analysis. Economists, for instance, devote a great deal of attention to 
the study of income distributions and how they vary across regions and 
over time. Though the PDF and CDF are often the objects of direct 
interest, their estimation also serves as an important building block 
for other objects being modeled such as a conditional mean (i.e., a 
“regression function”), which may be directly modeled using nonpara­
metric or semiparametric methods (a conditional mean is a function of 
a conditional PDF, which is itself a ratio of unconditional PDFs). Af­
ter mastering the principles underlying the nonparametric estimation 
of a PDF, the nonparametric estimation of the workhorse of applied 
data analysis, the conditional mean function considered in Chapter 2, 
progresses in a fairly straightforward manner. Careful study of the ap­
proaches developed in Chapter 1 will be most helpful for understanding 
material presented in later chapters. 

We begin with the estimation of a univariate PDF in Sections 1.1 
through 1.3, turn to the estimation of a univariate CDF in Sections 1.4 
and 1.5, and then move on to the more general multivariate setting in 
Sections 1.6 through 1.8. Asymptotic normality, uniform rates of con­
vergence, and bias reduction methods appear in Sections 1.9 through 
1.12. Numerous illustrative applications appear in Section 1.13, while 
theoretical and applied exercises can be found in Section 1.14 

We now proceed with a discussion of how to estimate the PDF 
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fX(x) of a random variable X. For notational simplicity we drop the 
subscript X and simply use f(x) to denote the PDF of X. Some of the 
treatments of the kernel estimation of a PDF discussed in this chapter 
are drawn from the two excellent monographs by Silverman (1986) and 
Scott (1992). 

1.1 Univariate Density Estimation 

To best appreciate why one might consider using nonparametric meth­
ods to estimate a PDF, we begin with an illustrative example, the 
parametric estimation of a PDF. 

Example 1.1. Suppose X1, X2,. . . , Xn represent independent and 
identically distributed (i.i.d.) draws from a normal distribution with 
mean µ and variance σ2. We wish to estimate the normal PDF f(x). 

By assumption, f(x) has a known parametric functional form (i.e., 
1univariate normal) given by f(x) = (2πσ2)−1/2 exp 

�− (x − µ)2/σ2
�
,2

where the mean µ = E(X) and variance σ2 = E[(X−E(X))2] = var(X) 
are the only unknown parameters to be estimated. One could estimate 
µ and σ2 by the method of maximum likelihood as follows. Under the 
i.i.d. assumption, the joint PDF of (X1, . . . , Xn) is simply the product 
of the univariate PDFs, which may be written as 

n 1 (Xi−µ)2 1 1 Pn (Xi−µ)2 i=1f(X1, . . . , Xn) = 
� 

√
2πσ2 

e− 
2σ2 = 

(2πσ2)n/2 
e− 

2σ2 . 
i=1 

Conditional upon the observed sample and taking the logarithm, this 
gives us the log-likelihood function 

L(µ, σ2) ≡ ln f(X1, . . . , Xn;µ, σ2) 

n n 1 n

= − 
2

ln(2π)− 
2

lnσ2 − 
2σ2 

�
(Xi − µ)2 . 

i=1 

The method of maximum likelihood proceeds by choosing those param­
eters that make it most likely that we observed the sample at hand 
given our distributional assumption. Thus, the likelihood function (or 
a monotonic transformation thereof, e.g., ln) expresses the plausibility 
of different values of µ and σ2 given the observed sample. We then 
maximize the likelihood function with respect to these two unknown pa­
rameters. 
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The necessary first order conditions for a maximization of the log­
likelihood function are ∂L(µ, σ2)/∂µ = 0 and ∂L(µ, σ2)/∂σ2 = 0. Solv­
ing these first order conditions for the two unknown parameters µ and 
σ2 yields 

µ̂ = 
n n�

( ˆX X −i i 
n n 
i=1 i=1 

2 2ˆ and ˆ above are the maximum likelihood estimators of andσ σµ µ , 
respectively, and the resulting estimator of ( ) isf x

1
 1 
σ̂2 =and
 µ)2 .


f̂(x) =

1
√

2πσ̂2 

� 

exp −

1

2


µ
�
x − ˆ

�2
� 

σ̂
.


The “Achilles heel” of any parametric approach is of course the 
requirement that, prior to estimation, the analyst must specify the ex­
act parametric functional form for the object being estimated. Upon 
reflection, the parametric approach is somewhat circular since we ini­
tially set out to estimate an unknown density but must first assume 
that the density is in fact known (up to a handful of unknown param­
eters, of course). Having based our estimate on the assumption that 
the density is a member of a known parametric family, we must then 
naturally confront the possibility that the parametric model is “mis-
specified,” i.e., not consistent with the population from which the data 
was drawn. For instance, by assuming that X is drawn from a nor­
mally distributed population in the above example, we in fact impose 
a number of potentially quite restrictive assumptions: symmetry, uni­
modality, monotonically decreasing away from the mode and so on. If 
the true density were in fact asymmetric or possessed multiple modes, 
or was nonmonotonic away from the mode, then the presumption of 
distributional normality may provide a misleading characterization of 
the true density and could thereby produce erroneous estimates and 
lead to unsound inference. 

At this juncture many readers will no doubt be pointing out that, 
having estimated a parametric PDF, one can always test whether the 
underlying distributional assumption is valid. We are, of course, com­
pletely sympathetic toward such arguments. Often, however, the rejec­
tion of a distributional assumption fails to provide any clear alternative. 
That is, we can reject the assumption of normality, but this rejection 
leaves us where we started, perhaps having ruled out but one of a large 
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number of candidate distributions. Against this backdrop, researchers 
might instead consider nonparametric approaches. 

Nonparametric methods circumvent problems arising from the need 
to specify parametric functional forms prior to estimation. Rather than 
presume one knows the exact functional form of the object being es­
timated, one instead presumes that it satisfies some regularity condi­
tions such as smoothness and differentiability. This does not, however, 
come without cost. By imposing less structure on the functional form 
of the PDF than do parametric methods, nonparametric methods re­
quire more data to achieve the same degree of precision as a correctly 
specified parametric model. Our primary focus in this text is on a class 
of estimators known as “nonparametric kernel estimators” (a “kernel 
function” is simply a weighting function), though in Chapters 14 and 
15 we provide a treatment of alternative nonparametric methodologies 
including nearest neighbor and series methods. 

Before proceeding to a formal theoretical analysis of nonparametric 
density estimation methods, we first consider a popular example of 
estimating the probability of a head on a toss of a coin which is closely 
related to the nonparametric estimation of a CDF. This in turn will 
lead us to the nonparametric estimation of a PDF. 

Example 1.2. Suppose we have a coin (perhaps an unfair one) and we 
want to estimate the probability of flipping the coin and having it land 
heads up. Let p = P(H) denote the (unknown) population probability of 
obtaining a head. Taking a relative frequency approach, we would flip 
the coin n times, count the frequency of heads in n trials, and compute 
the relative frequency given by 

1 
p̂ = 

n 
{# of heads } , (1.1) 

which provides an estimate of p. The p̂ defined in (1.1) is often referred 
to as a “frequency estimator” of p, and it is also the maximum likelihood 
estimator of p (see Exercise 1.2). The estimator p̂ is, of course, fully 
nonparametric. Intuitively, one would expect that, if n is large, then 
p̂ should be “close” to p. Indeed, one can easily show that the mean 
squared error (MSE) of p̂ is given by (see Exercise 1.3) 

def p(1− p)
MSE (p̂) = E

�
(p̂− p)2

� 
= , 

n 

so MSE (p̂) 0 as n → ∞, which is termed as p̂ converges to p in→
mean square error; see Appendix A for the definitions of various modes 
of convergence. 
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We now discuss how to obtain an estimator of the CDF of X, which 
we denote by F (x). The CDF is defined as 

F (x) = P[X ≤ x]. 

With i.i.d. data X1,. . . ,Xn (i.e., random draws from the distribution 
F ( )), one can estimate F (x) by ·

1 
Fn(x) = 

n 
{ # of Xi’s ≤ x } . (1.2) 

Equation (1.2) has a nice intuitive interpretation. Going back to our 
coin-flip example, if a coin is such that the probability of obtaining a 
head when we flip it equals F (x) (F (x) is unknown), and if we treat the 
collection of data X1, . . . , Xn as flipping a coin n times and we say that a 
head occurs on the ith trial if Xi ≤ x, then P(H) = P(Xi ≤ x) = F (x). 
The familiar frequency estimator of P(H) is equal to the number of 
heads divided by the number of trials: 

ˆ # of heads 1
P(H) = 

n 
= 
n
{ # of Xi’s ≤ x } ≡ Fn(x). (1.3) 

Therefore, we call (1.2) a frequency estimator of F (x). Just as be­
fore when estimating P(H), we expect intuitively that as n gets large, 
P̂(H) should yield a more accurate estimate of P(H). By the same rea­
soning, one would expect that as n →∞, Fn(x) yields a more accurate 
estimate of F (x). Indeed, one can easily show that Fn(x) F (x) in→
MSE, which implies that Fn(x) converges to F (x) in probability and 
also in distribution as n → ∞. In Appendix A we introduce the con­
cepts of convergence in mean square error, convergence in probability, 
convergence in distribution, and almost sure convergence. It is well es­
tablished that Fn(x) indeed converges to F (x) in each of these various 
senses. These concepts of convergence are necessary as it is easy to show 
that the ordinary limit of Fn(x) does not exist, i.e., limn→∞ Fn(x) does 
not exist (see Exercise 1.3, where the definition of an ordinary limit 
is provided). This example highlights the necessity of introducing new 
concepts of convergence modes such as convergence in mean square 
error and convergence in probability. 

Now we take up the question of how to estimate a PDF f(x) without 
making parametric presumptions about it’s functional form. From the 
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definition of f(x) we have1 

d 
f(x) = F (x). (1.4)

dx 

From (1.2) and (1.4), an obvious estimator of f(x) is2 

f̂(x) = 
Fn(x + h)− Fn(x − h) 

, (1.5)
2h 

where h is a small positive increment. 
By substituting (1.2) into (1.5), we obtain 

1 
f̂(x) =

2nh
{ # of X1, . . . , Xn falling in the interval [x − h, x + h] }. 

(1.6) 
If we define a uniform kernel function given by 

k(z) = 
� 

1/2 if |z| ≤ 1 
(1.7)

0 otherwise, 

then it is easy to see that f̂(x) given by (1.5) can also be expressed as 

n

f̂(x) =
1 � 

k

�
Xi − x

� 

. (1.8)
nh h 

i=1 

Equation (1.8) is called a uniform kernel estimator because the ker­
nel function k( ) defined in (1.7) corresponds to a uniform PDF. In ·
general, we refer to k( ) as a kernel function and to h as a smoothing ·
parameter (or, alternatively, a bandwidth or window width). Equation 
(1.8) is sometimes referred to as a “näıve” kernel estimator. 

In fact one might use many other possible choices for the kernel 
function k( ) in this context. For example, one could use a standard ·
normal kernel given by 

1 1 2 
k(v) = √

2π
e− 

2
v , −∞ < v < ∞. (1.9) 

This class of estimators can be found in the first published paper on 
kernel density estimation by Rosenblatt (1956), while Parzen (1962) es­
tablished a number of properties associated with this class of estimators 

1We only consider the continuous X case in this chapter. We deal with the discrete 
X case in Chapters 3 and 4. 

2Recall that the definition of the derivative of a function g(x) is given by 

d g(x)/dx = limh→0 
g(x+h

h 
)−g(x) , or, equivalently, d g(x)/dx = limh→0 

g(x+h)
2
−
h
g(x−h) . 



� 

� 

� 

9 1.1. UNIVARIATE DENSITY ESTIMATION 

and relaxed the nonnegativity assumption in order to obtain estimators 
which are more efficient. For this reason, this approach is sometimes 
referred to as “Rosenblatt-Parzen kernel density estimation.” 

We will prove shortly that the kernel estimator f̂(x) defined in (1.8) 
constructed from any general nonnegative bounded kernel function k( )·
that satisfies 

(i) k(v) dv = 1 

(ii) k(v) = k(−v) (1.10) 

(iii) v 2k(v) dv = κ2 > 0 

is a consistent estimator of f(x). Note that the symmetry condition (ii) 
implies that 

� 
vk(v) dv = 0. By consistency, we mean that f̂(x) f(x)→

in probability (convergence in probability is defined in Appendix A). 
Note that k( ) defined in (1.10) is a (symmetric) PDF. For recent work ·
on kernel methods with asymmetric kernels, see Abadir and Lawford 
(2004). 

To define various modes of convergence, we first introduce the con­
cept of the “Euclidean norm” (“Euclidean length”) of a vector. Given 
a q × 1 vector x = (x1, x2, . . . , xq)� ∈ Rq, we use ||x|| to denote the 
Euclidean length of x, which is defined by 

||x|| = [x�x]1/2 ≡ 
�
x1

2 + x2
2 + · · · + xq

2 . 

When q = 1 (a scalar), ||x|| is simply the absolute value of x. 
In the appendix we discuss the notation O( ) (“big Oh”) and o( )· ·

(“small Oh”). Let an be a nonstochastic sequence. We say that an = 
O(nα) if |an| ≤ Cnα for all n sufficiently large, where α and C (> 0) are 
constants. Similarly, we say that an = o(nα) if an/nα 0 
We are now ready to prove the MSE consistency of f̂(x

→
). 

as n → ∞. 

Theorem 1.1. Let X1, . . . , Xn denote i.i.d. observations having a 
three-times differentiable PDF f(x), and let f (s)(x) denote the sth or­
der derivative of f(x) (s = 1, 2, 3). Let x be an interior point in the 
support of X, and let f̂(x) be that defined in (1.8). Assume that the 
kernel function k( ) is bounded and satisfies (1.10). Also, as n → ∞,·
h 0 and nh →∞, then → 

MSE 
�
f̂(x)

� 
= 
h4 �

κ2f
(2)(x)

�2 
+ 
κf(x)

+ o
�
h4 + (nh)−1

�
4 nh 

= O
�
h4 + (nh)−1

� 
, (1.11) 
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where κ2 = 
� 
v2k(v) dv and κ = 

� 
k2(v) dv. 

Proof of Theorem 1.1. 

MSE 
�
f̂(x)

� 
≡ E

��
f̂(x)− f(x)

�2
� 

= var
�
f̂(x)

� 
+

�
E

�
f̂(x)

� 
− f(x)

�2 

≡ var
�
f̂(x)

� 
+

�
bias 

�
f̂(x)

��2 
. 

We will evaluate the bias(f̂(x)) and var(f̂(x)) terms separately. 

For the bias calculation we will need to use the Taylor expansion 
formula. For a univariate function g(x) that is m times differentiable, 
we have 

1 
g(x) =g(x0) + g(1)(x0)(x − x0) + g(2)(x0)(x − x0)2+2!

1 1 · · · +
(m − 1)!

g(m−1)(x0)(x − x0)m−1 + 
m!
g(m)(ξ)(x − x0)m , 

(s)(x0)
∂sg(x)where g = ∂xs x=x0 , and ξ lies between x and x0.|
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The bias term is given by 

n

bias 
�
f̂(x)

� 
= E 

� 
1 � 

k

�
Xi − x

�� 

− f(x)
nh h 

i=1 

= h−1E
�
k

�
X1 − x

�� 

− f(x)
h 

(by identical distribution) 

= h−1 

� 
f(x1)k

�
x1 − x

� 

dx1 − f(x)
h 

= h−1 

� 
f(x + hv)k(v)h dv − f(x) 

(change of variable, x1 − x = hv) 
1 

= 
� �

f(x) + f (1)(x)hv + f (2)(x)h2 v 2 +O(h3)
� 

k(v) dv
2

− f(x)


h2


f (2)(x)= 
�
f(x) + 0 +

� 
v 2k(v) dv +O

�
h3

�� 

− f(x)
2


by (1.10)


= 
h

2 

2 

f (2)(x)
� 
v 2k(v) dv +O

�
h3

� 
, (1.12) 

where the O
�
h3

� 
term comes from 

(1/3!)h3 

����
� 
f (3)(x̃)v 3k(v)

���� dv ≤ Ch3 

� ��v 3k(v)dv�� = O
�
h3

� 
, 

where C is a positive constant, and where x̃ lies between x and x+hv. 
Note that in the above derivation we assume that f(x) is three-

times differentiable. We can weaken this condition to f(x) being twice 
differentiable, resulting in (O(h3) becomes o(h2), see Exercise 1.5) 

bias 
�
f̂(x)

� 
= E

�
f̂(x)

� 
− f(x) 

h2 

=
2 
f (2)(x)

� 
v 2k(v) dv + o

�
h2

� 
. (1.13) 
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Next we consider the variance term. Observe that 

n

var
�
f̂(x)

� 
= var 

� 
1 � 

k

�
Xi − x

�� 

nh h 
i=1 

n

=
1 

�� 
var 

�
k

�
Xi − x

�� 

+ 0 

� 

n2h2 h 
i=1 

(by independence) 
1 

� �
X1 − x

�� 

= var k
nh2 h 

(by identical distribution) 

1 
� � �

X1 − x
�� � � �

X1 − x
���2

� 

= E k2 E k
nh2 h 

− 
h 

1 
= 

�� 
f(x1)k2 

�
x1 − x

� 

dx1
nh2 h 

�� �
x1 − x

� �2
� 

− f(x1)k
h 

dx1 

1 
� � 

= h f(x + hv)k2(v) dv 
nh2 

� � �2
� 

− h f(x + hv)k(v) dv

1 
� � �

f(x) + f (1)(ξ)hv
� 
k2(v) dv − O

�
h2

�� 

= h
nh2 

=
1 

�
f(x)

� 
k2(v) dv +O

�
h

� 
|v|k2(v) dv

� 

− O (h)
� 

nh 

1 
= 
nh 

{κf(x) +O(h)} , (1.14) 

where κ = 
� 
k2(v) dv. 

Equations (1.12) and (1.14) complete the proof of Theorem 1.1. 

Theorem 1.1 implies that (by Theorem A.7 of Appendix A) 

f̂(x)− f(x) = Op 
�
h2 + (nh)−1/2

� 
= op(1). 

By choosing h = cn−1/α for some c > 0 and α > 1, the condi­
tions required for consistent estimation of f(x), h 0 and → nh → ∞, 
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are clearly satisfied. The overriding question is what values of c and α 
should be used in practice. As can be seen, for a given sample size n, 
if h is small, the resulting estimator will have a small bias but a large 
variance. On the other hand, if h is large, then the resulting estimator 
will have a small variance but a large bias. To minimize MSE(f̂(x)), 
one should balance the squared bias and the variance terms. The op­
timal choice of h (in the sense that MSE(f̂(x)) is minimized) should 
satisfy dMSE(f̂(x))/dh = 0. By using (1.11), it is easy to show that 
the optimal h that minimizes the leading term of MSE(f̂(x)) is given 
by 

hopt = c(x)n−1/5 , (1.15) 

where c(x) = 
�
κf(x)/[κ2f

(2)(x)]2
�1/5 

. 
MSE(f̂(x)) is clearly a “pointwise” property, and by using this as 

the basis for bandwidth selection we are obtaining a bandwidth that 
is optimal when estimating a density at a point x. Examining c(x) in 
(1.15), we can see that a bandwidth which is optimal for estimation at 
a point x located in the tail of a distribution will differ from that which 
is optimal for estimation at a point located at, say, the mode. Suppose 
that we are interested not in tailoring the bandwidth to the pointwise 
estimation of f(x) but instead in tailoring the bandwidth globally for 
all points x, that is, for all x in the support of f( ) (the support of x is·
defined as the set of points of x for which f(x) > 0, i.e., {x : f(x) > 0}). 
In this case we can choose h optimally by minimizing the “integrated 
MSE” (IMSE) of f̂(x). Using (1.11) we have 

def 
� 

E
�
f̂(x)− f(x)

�2 1 
h4κ2 

� �
f (2)(x)

�2 
IMSE(f̂) = dx = 2 dx

4

+ 
κ 

+ o
�
h4 + (nh)−1

� 
. (1.16)

nh 

Again letting hopt denote the optimal smoothing parameter that 
minimizes the leading terms of (1.16), we use simple calculus to get 

hopt = c0n−1/5 , (1.17) 

κ
−2/5

κ1/5 
�� �

f (2)(x)
�2

where c0 = 2 dx
�−1/5 

> 0 is a positive constant. 

Note that if f (2)(x) = 0 for (almost) all x, then c0 is not well defined. 
For example, if X is, say, uniformly distributed over its support, then 
f (s)(x) = 0 for all x and for all s ≥ 1, and (1.17) is not defined in 
this case. It can be shown that in this case (i.e., when X is uniformly 
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distributed), hopt will have a different rate of convergence equal to 
n−1/3; see the related discussion in Section 1.3.1 and Exercise 1.16. 

An interesting extension of the above results can be found in Zinde-
Walsh (2005), who examines the asymptotic process for the kernel den­
sity estimator by means of generalized functions and generalized ran­
dom processes and presents novel results for characterizing the behavior 
of kernel density estimators when the density does not exist, i.e., when 
the density does not exist as a locally summable function. 

1.2	 Univariate Bandwidth Selection: 
Rule-of-Thumb and Plug-In Methods 

Equation (1.17) reveals that the optimal smoothing parameter depends 
on the integrated second derivative of the unknown density through 
c0. In practice, one might choose an initial “pilot value” of h to es­
timate 

� �
f (2)(x)

�2 
dx nonparametrically, and then use this value to 

obtain hopt using (1.17). Such approaches are known as “plug-in meth­
ods” for obvious reasons. One popular way of choosing the initial h, 
suggested by Silverman (1986), is to assume that f(x) belongs to 
a parametric family of distributions, and then to compute h using 
(1.17). For example, if f(x) is a normal PDF with variance σ2, then � �
f (2)(x)

�2 
dx = 3/[8π1/2σ5]. If a standard normal kernel is used, us­

ing (1.17), we get the pilot estimate 

hpilot = (4π)−1/10 
�
(3/8)π−1/2

�−1/5 
σn−1/5 ≈ 1.06σn−1/5 , (1.18) 

which is then plugged into 
� 

[f̂ (2)(x)]2 dx, which then may be used to 
obtain hopt using (1.17). A clearly undesirable property of the plug-in 
method is that it is not fully automatic because one needs to choose 
an initial value of h to estimate 

� 
[f (2)(x)]2 dx (see Marron, Jones and 

Sheather (1996) and also Loader (1999) for further discussion). 
Often, practitioners will use (1.18) itself for the bandwidth. This 

is known as the “normal reference rule-of-thumb” approach since it 
is the optimal bandwidth for a particular family of distributions, in 
this case the normal family. Should the underlying distribution be 
“close” to a normal distribution, then this will provide good results, 
and for exploratory purposes it is certainly computationally attractive. 

nIn practice, σ is replaced by the sample standard deviation of {Xi}i=1, 
while Silverman (1986, p. 47) advocates using a more robust measure 
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of spread which replaces σ with A, an “adaptive” measure of spread 
given by 

A = min(standard deviation, interquartile range/1.34). 

We now turn our attention to a discussion of a number of fully 
automatic or “data-driven” methods for selecting h that are tailored to 
the sample at hand. 

1.3	 Univariate Bandwidth Selection: 
Cross-Validation Methods 

In both theoretical and practical settings, nonparametric kernel esti­
mation has been established as relatively insensitive to choice of ker­
nel function. However, the same cannot be said for bandwidth selec­
tion. Different bandwidths can generate radically differing impressions 
of the underlying distribution. If kernel methods are used simply for 
“exploratory” purposes, then one might undersmooth the density by 
choosing a small value of h and let the eye do any remaining smooth­
ing. Alternatively, one might choose a range of values for h and plot the 
resulting estimates. However, for sound analysis and inference, a prin­
ciple having some known optimality properties must be adopted. One 
can think of choosing the bandwidth as being analogous to choosing the 
number of terms in a series approximation; the more terms one includes 
in the approximation, the more flexible the resulting model becomes, 
while the smaller the bandwidth of a kernel estimator, the more flexi­
ble it becomes. However, increasing flexibility (reducing potential bias) 
necessarily leads to increased variability (increasing potential variance). 
Seen in this light, one naturally appreciates how a number of methods 
discussed below are motivated by the need to balance the squared bias 
and variance of the resulting estimate. 

1.3.1	 Least Squares Cross-Validation 

Least squares cross-validation is a fully automatic data-driven method 
of selecting the smoothing parameter h, originally proposed by Rudemo 
(1982), Stone (1984) and Bowman (1984) (see also Silverman (1986, 
pp. 48-51)). This method is based on the principle of selecting a band­
width that minimizes the integrated squared error of the resulting es­
timate, that is, it provides an optimal bandwidth tailored to all x in 
the support of f(x). 
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The integrated squared difference between f̂ and f is 

� �
f̂(x)− f(x)

�2 
dx = 

� 
f̂(x)2 dx − 2

� 
f̂(x)f(x) dx +

� 
f(x)2 dx. 

(1.19) 
As the third term on the right-hand side of (1.19) is unrelated to h, 
choosing h to minimize (1.19) is therefore equivalent to minimizing 

� 
f̂(x)2 dx − 2

� 
f̂(x)f(x) dx (1.20) 

with respect to h. In the second term, 
� 
f̂(x)f(x) dx can be written as 

EX [f̂(X)], where EX( ) denotes expectation with respect to X and not ·
nwith respect to the random observations {Xj} used for computing j=1 

f̂( ). Therefore, we may estimate EX [f̂(X)] by n−1 
�n

i=1 f̂
 −i(Xi) (i.e., ·

replacing EX by its sample mean), where 

n

f̂  −i(Xi) =
(n − 

1
1)h 

� 
k

�
Xi −

h

Xj
� 

(1.21) 
j=1,j=i 

is the leave-one-out kernel estimator of f(Xi).3 Finally, we estimate the 
first term 

� 
f̂(x)2 dx by 

n n� 
f̂(x)2 dx = 

2

1 
h2 

��� 
k

�
Xi − x

� 

k

�
Xj − x

� 

dx 
n h h 

i=1 j=1 

n n

=
1 
2h 

�� 
k̄  

�
Xi − Xj

� 

, (1.22) 
n h 

i=1 j=1 

where k̄(v) = 
� 
k(u)k(v−u) du is the twofold convolution kernel derived 

from k( ). If k(v) = exp(−v2/2)/
√

2π, a standard normal kernel, then 
¯ 

·
k(v) = exp(−v2/4)/

√
4π, a normal kernel (i.e., normal PDF) with mean 

zero and variance two, which follows since two independent N(0, 1) 
random variables sum to a N(0, 2) random variable. 

3Here we emphasize that it is important to use the leave-one-out kernel estimator 
for computing EX( ) above. This is because the expectations operator presumes that ·
the X and the Xj ’s are independent of one another. Without using the leave-one-out 
estimator, the cross-validation method will break down; see Exercise 1.6 (iii). 
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Least squares cross-validation therefore chooses h to minimize


n n

¯ CVf (h) =
1 �� 

k

�
Xi − Xj

� 

n2h h 
i=1 j=1 

n n2 � � 
k

�
Xi − Xj

� 

, (1.23)− 
n(n − 1)h h 

i=1 j=i,j=1 

which is typically undertaken using numerical search algorithms. 
It can be shown that the leading term of CVf (h) is CVf0 given by 

(ignoring a term unrelated to h; see Exercise 1.6) 

CVf0(h) = B1h
4 + 

κ
, (1.24)

nh

where B1 = (κ2
2/4)

�� 
[f (2)(x)]2 dx

� 
(κ2 = 

� 
v2k(v) dv, κ = 

� 
k2(v) dv). 

Thus, as long as f (2)(x) does not vanish for (almost) all x, we have 
B1 > 0. 

Let h0 denote the value of h that minimizes CVf0. Simple calculus 
shows that h0 = c0n−1/5 where 

��� �2 
�−1/5 

= [κ/(4B1)]
1/5 = κ1/5κ

−2/5 
f (2)(x) dx .c0 2 

A comparison of h0 with hopt in (1.17) reveals that the two are identical, 
i.e., h0 ≡ hopt. This arises because hopt minimizes 

� 
E[f̂(x)− f(x)]2 dx, 

while h0 minimizes E[CVf (h)], the leading term of CVf (h). It can 
be easily seen that E[CVf (h)] + 

� 
f(x)2 dx is an alternative version 

of 
� 

E[f̂(x) − f(x)]2 dx; hence, E[CVf (h)] + 
� 
f(x)2 dx also estimates � 

E[f̂(x)−f(x)]2 dx. Given that 
� 
f(x)2 dx is unrelated to h, one would 

expect that h0 and hopt should be the same. 
Let ĥ denote the value of h that minimizes CVf (h). Given that 

CVf (h) = CVf0 +(s.o.), where (s.o.) denotes smaller order terms (than 
CVf0) and terms unrelated to h, it can be shown that ĥ = h0 + op(h0), 
or, equivalently, that 

ĥ− h0 ĥ

h0 
≡ 
h0 
− 1 → 0 in probability. (1.25) 

Intuitively, (1.25) is easy to understand because CVf (h) = CVf0(h) 
+ (s.o.), thus asymptotically an h that minimizes CVf (h) should be 
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close to an h that minimizes CVf0(h); therefore, we expect that ĥ and 
h0 will be close to each other in the sense of (1.25). Härdle, Hall and 
Marron (1988) showed that (ĥ − h0)/h0 = Op(n−1/10), which indeed 
converges to zero (in probability) but at an extremely slow rate. 

We again underscore the need to use the leave-one-out kernel esti­
mator when constructing CVf as given in (1.23). If instead one were 
to use the standard kernel estimator, least squares cross-validation will 
break down, yielding ĥ = 0. Exercise 1.6 shows that if one does not 
use the leave-one-out kernel estimator when estimating f(Xi), then 
h = 0 minimizes the objective function, which of course violates the 
consistency condition that nh →∞ as n →∞. 

Here we implicitly impose the restriction that f (2)(x) is not a zero 
function, which rules out the case for which f(x) is a uniform PDF. In 
fact this condition can be relaxed. Stone (1984) showed that, as long 
as f(x) is bounded, then the least squares cross-validation method will 
select h optimally in the sense that 

ˆ� 
[f̂(x, h)− f(x)]2 dx 

infh 
� 

[f̂(x, h)− f(x)]2 dx 
→ 1 almost surely, (1.26) 

where f̂(x, ĥ) denotes the kernel estimator of f(x) with cross-validation 
selected ĥ, and f̂(x, h) is the kernel estimator with a generic h. Obvi­
ously, the ratio defined in (1.26) should be greater than or equal to one 
for any n. Therefore, Stone’s (1984) result states that, asymptotically, 
cross-validated smoothing parameter selection is optimal in the sense 
of minimizing the estimation integrated square error. In Exercise 1.16 
we further discuss the intuition underlying why ĥ 0 even when f(x) 
is a uniform PDF. 

→ 

1.3.2 Likelihood Cross-Validation 

Likelihood cross-validation is another automatic data-driven method 
for selecting the smoothing parameter h. This approach yields a den­
sity estimate which has an entropy theoretic interpretation, since the 
estimate will be close to the actual density in a Kullback-Leibler sense. 
This approach was proposed by Duin (1976). 

Likelihood cross-validation chooses h to maximize the (leave-one­
out) log likelihood function given by 

n

L = lnL = 
� 

ln f̂  −i(Xi), 
i=1 
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where f̂  −i(Xi) is the leave-one-out kernel estimator of f(Xi) defined 
in (1.21). The main problem with likelihood cross-validation is that it 
is severely affected by the tail behavior of f(x) and can lead to in­
consistent results for fat tailed distributions when using popular kernel 
functions (see Hall (1987a, 1987b)). For this reason the likelihood cross­
validation method has elicited little interest in the statistical literature. 

However, the likelihood cross-validation method may work well for 
a range of standard distributions (i.e., thin tailed). We consider the 
performance of likelihood cross-validation in Section 1.3.3, when we 
compare the impact of different bandwidth selection methods on the 
resulting density estimate, and in Section 1.13, where we consider em­
pirical applications. 

1.3.3	 An Illustration of Data-Driven Bandwidth 
Selection 

Figure 1.1 presents kernel estimates constructed from n = 500 observa­
tions drawn from a simulated bimodal distribution. The second order 
Gaussian (normal) kernel was used throughout, and least squares cross-
validation was used to select the bandwidth for the estimate appearing 
in the upper left plot of the figure, with hlscv = 0.19. We also plot the es­
timate based on the normal reference rule-of-thumb (href = 0.34) along 
with an undersmoothed estimate (1/5 × hlscv ) and an oversmoothed 
estimate (5 × hlscv ).4 

Figure 1.1 reveals that least squares cross-validation appears to 
yield a reasonable density estimate for this data, while the reference 
rule-of-thumb is inappropriate as it oversmooths somewhat. Extreme 
oversmoothing can lead to a unimodal estimate which completely ob­
scures the true bimodal nature of the underlying distribution. Also, 
undersmoothing leads to too many false modes. See Exercise 1.17 for 
an empirical application that investigates the effects of under- and over­
smoothing on the resulting density estimate. 

1.4 Univariate CDF Estimation 

In Section 1.1 we introduced the empirical CDF estimator Fn(x) given 
in (1.2), while Exercise 1.4 shows that it is a 

√
n-consistent estimator 

4Likelihood cross-validation yielded a bandwidth of hmlcv = 0.15, which results 
in a density estimate virtually identical to that based upon least squares cross-
validation for this dataset. 
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Figure 1.1: Univariate kernel estimates of a mixture of normals using 
least squares cross-validation, the normal reference rule-of-thumb, un­
dersmoothing, and oversmoothing (n = 500). The correct parametric 
data generating process appears as the solid line, the kernel estimate 
as the dashed line. 

of F (x). However, this empirical CDF Fn(x) is not smooth as it jumps 
by 1/n at each sample realization point. One can, however, obtain a 
smoothed estimate of F (x) by integrating f̂(x). Define 

x n

F̂ (x) = 
� 

f̂(v) dv =
1 � 

G

�
x − Xi

� 

, (1.27) 
n h 
i=1−∞ 

where G(x) = 
� x 

k(v) dv is a CDF (which follows directly because k( )−∞ ·
is a PDF; see (1.10)). The next theorem provides the MSE of F̂ (x). 
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Theorem 1.2. Under conditions given in Bowman, Hall and Prvan 
(1998), in particular, assuming that F (x) is twice continuously dif­
ferentiable, k(v) = dG(v)/dv is bounded, symmetric, and compactly 
supported, and that d2F (x)/dx2 is Hölder-continuous, 0 ≤ h ≤ Cn−� 

for some 0 < � < 1 , then as n →∞,8

MSE(F̂ ) = E
�
F̂ (x)− F (x)

�2 

= c0(x)n−1 − c1(x)hn−1 + c2(x)h4 + o
�
h4 + hn−1

� 
, 

where c0 = F (x)(1 − F (x)), c1(x) = α0f(x), α0 = 2
� 
vG(v)k(v) dv, 

f(x) = dF (x)/dx, c2(x) = [(κ2/2)F (2)(x)]2 , κ2 = 
� 
v2k(v) dv, and 

where F (s)(x) = dsF (x)/dxs is the sth derivative of F (x). 

Proof. Note that E 
�
F̂ (x)

� 
= E

�
G

�
x−
h
Xi 

��
. Then we have (

� 
= 

� ∞ )−∞

� �
x − Xi

�� � �
x − z

�
E G = G f(z)dz 

h h 

= h G(v)f(x − hv) dv = − G(v)dF (x − hv) 

= − [G(v)F (x − hv)] v=∞ +
� 
k(v)F (x − hv) dv|v=−∞ 

= 
� 
k(v)

�
F (x)− F (1)(x)hv + (1/2)h2F (2)(x)v 2

� 
dv 

+ o(h2) 

= F (x) + (1/2)κ2h
2F (2)(x) + o(h2), (1.28) 

where at the second equality above we used 

� −∞
[. . . ] dv = 

� ∞ 

[. . . ] dv. − 
∞ −∞ 

Also note that we did not use a Taylor expansion in 
� 
G(v)F (x−hv) dv 

since 
� 
vmG(v) dv = +∞ for any m ≥ 0. We first used integration by 

parts to get k(v), and then used the Taylor expansion since 
� 
vmk(v) dv 

is usually finite. For example, if k(v) has bounded support or k(v) is 
a standard normal kernel function, then 

� 
vmk(v) dv is finite for any 

m ≥ 0. 
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Similarly, 

E
�
G2 

�
x − Xi

�� 

= 
� 
G2 

�
x − z

� 

f(z)dz = h
� 
G2(v)f(x − hv) dv 

h h


= 
� 
G2(v)dF (x − hv)
− 

= 2 G(v)k(v)F (x − hv) dv 
� 
G(v)k(v)[F (x)− F (1)(x)hv] dv +O(h2)= 2

= F (x)− α0hf(x) +O(h2), 

(1.29) 

where α0 = 2
� 
vG(v)k(v) dv, and where we have used the fact that 

� ∞ � ∞
2 G(v)k(v) dv = dG2(v) = G2(∞)− G2(−∞) = 1, 

−∞ −∞ 

because G( ) is a (user-specified) CDF kernel function. ·
(1/2)κ2h

2F (2)(x)From (1.28) we have bias[F̂ (x)] = + o(h2), and 
from (1.28) and (1.29) we have 

var
�
F̂ (x)

� 
= n−1var 

�
G

�
x − Xi

�� 

h � � �
x − Xi

�� � �
x − Xi

��2
� 

= n−1 E G2 

h 
− EG

h 

= n−1F (x)[1 − F (x)] − α0f(x)hn−1 + o(h/n). 

Hence, 

E
�
F̂ (x)− F (x)

�2 
= 

�
bias 

�
F̂ (x)

��2 
+ var

�
F̂ (x)

� 

= n−1F (x) [1− F (x)] + h4(κ2/2)2 
�
F (2)(x)

�2 

− α0f(x)
h 

+ o(h4 + n−1h). (1.30) 
n 

This completes the proof of Theorem 1.2.
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From Theorem 1.2 we immediately obtain the following result on 
the IMSE of F̂ : 

IMSE(F̂ ) = 
� 

E
�
F̂ (x)− F (x)

�2 
dx 

= C0n
−1 − C1hn

−1 + C2h
4 + o

�
h4 + hn−1

� 
, (1.31) 

where Cj = 
� 
cj(x) dx (j = 0, 1, 2). Letting h0 denote the value of h 

that minimizes the leading term of IMSE, we obtain 

h0 = a0n
−1/3 , 

where a0 = [C1/(4C2)]1/3, hence the optimal smoothing parameter for 
estimating univariate a CDF has a faster rate of convergence than the 
optimal smoothing parameter for estimating a univariate PDF (n−1/3 

versus n−1/5). With h ∼ n−1/3, we have h2 = O(n−2/3) = o(n−1/2). 
Hence, 

√
n[F̂ (x)− F (x)] N(0, F (x)[1− F (x)]) in distribution by the →

Liapunov central limit theorem (CLT); see Theorem A.5 in Appendix 
A for this and a range of other useful CLTs. 

As is the case for nonparametric PDF estimation, nonparametric 
CDF estimation has widespread potential application though it is not 
nearly as widely used. For instance, it can be used to test stochastic 
dominance without imposing parametric assumptions on the underly­
ing CDFs; see, e.g., Barrett and Donald (2003) and Linton, Whang and 
Maasoumi (2005). 

1.5	 Univariate CDF Bandwidth Selection: 
Cross-Validation Methods 

Bowman et al. (1998) suggest choosing h for F̂ (x) by minimizing the 
following cross-validation function: 

1 n	

ˆCVF (h) = 
�� �

1(Xi ≤ x)− F−i(x)
�2 

dx, (1.32) 
n 
i=1 

where F̂−i(x) = (n−1)−1 
�n

j=i G
�
x−
h
Xj

� 
is the leave-one-out estimator 

of F (x). 
Bowman et al. (1998) show that CVF = E[CVF ] + (s.o.) and that 
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(see Exercise 1.9)


E[CVF (h)] = 
� 
F (1− F ) dx +

1 
� 
F (1− F ) dx − C1hn

−1 

+ C2h
4 + o

�
hn−

n 
1

−
+

1 
h4

� 
. 

(1.33) 

We observe that (1.33) has the same leading term as IMSE( F̂ ) 
given in (1.31). Thus, asymptotically, selecting h via cross-validation 
leads to the same asymptotic optimality property for F̂ (x) that would 
arise when using h0, the optimal deterministic smoothing parameter. 
If we let ĥ denote the cross-validated smoothing parameter, then it can 
be shown that h/hˆ

0 1 in probability. Note that when using ĥ, the →
asymptotic distribution of F̂ (x, ĥ) is the same as F̂ (x, h0) (by using a 
stochastic equicontinuity argument as outlined in Appendix A), that 
is, 

d√
n

�
F̂ (x)− F (x)

� 
N (0, F (x)(1 − F (x))) , (1.34)→ 

where F̂ (x) is defined in (1.27) with h replaced by ĥ. Note that no 
bias term appears in (1.34) since bias( F̂ (x)) = O(h0

2) = O(n−2/3) = 
o(n−1/2), which was not the case for PDF estimation. Here the squared 
bias term has order smaller than the leading variance term of O(n−1) 
(i.e., var( F̂ (x)) = O(n−1)). 

We now turn our attention to a generalization of the univariate ker­
nel estimators developed above, namely multivariate kernel estimators. 
Again, we consider only the continuous case in this chapter; we tackle 
discrete and mixed continuous and discrete data cases in Chapters 3 
and 4. 

1.6 Multivariate Density Estimation 

Suppose that X1, . . . , Xn constitute an i.i.d. q-vector (Xi ∈ Rq, for 
some q > 1) having a common PDF f(x) = f(x1, x2, . . . , xq). Let Xis 

denote the sth component of Xi (s = 1, . . . , q). Using a “product kernel 
function” constructed from the product of univariate kernel functions, 
we estimate the PDF f(x) by 

n

f̂(x) = 
1 � 

K

�
Xi − x

� 

, (1.35)
nh1 . . . hq h 

i=1 
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where K
�
Xi−x

� 
= k

�
Xi1−x1 

� 
× · · · × k

�
Xiq−xq 

�
, and where k(·) is a h h1 hq 

univariate kernel function satisfying (1.10). 
The proof of MSE consistency of f̂(x) is similar to the univariate 

case. In particular, one can show that 

q q

bias 
�
f̂(x)

� 
= 
κ2 

� 
h2 
sfss(x) +O 

�� 
h3 
s 

� 

, (1.36)
2 

s=1 s=1 

where fss(x) is the second order derivative of f(x) with respect to xs, 
κ2 = 

� 
v2k(v) dv, and one can also show that 

q

var
�
f̂(x)

� 
=

1 
� 

κqf(x) +O 

�� 
hs 

2 

�� 

= O
� 

1 
� 

,
nh1 . . . hq nh1 . . . hqs=1 

(1.37) 
where κ = 

� 
k2(v) dv. The proofs of (1.36) and (1.37), which are similar 

to the univariate X case, are left as an exercise (see Exercise 1.11). 
Summarizing, we obtain the result 

MSE 
�
f̂(x)

� 
= 

�
bias 

�
f̂(x)

��2 
+ var

�
f̂(x)

� 

⎛ 
q

�2 
⎞ 

= O⎝
�� 

h2 
s + (nh1 . . . hq)−1⎠ . 

s=1 

Hence, if as n → ∞, max1≤s≤q hs 0 and nh1 . . . hq → ∞, then →
we have f̂(x) f(x) in MSE, which implies that f̂(x) f(x) in 
probability. 

→ → 

As we saw in the univariate case, the optimal smoothing parame­
ters hs should balance the squared bias and variance terms, i.e., h4 

s = 
O

�
(nh1 . . . hq)−1

� 
for all s. Thus, we have hs = csn−1/(q+4) for some 

positive constant cs (s = 1, . . . , q). The cross-validation methods dis­
cussed in Section 1.3 can be easily generalized to the multivariate data 
setting, and we can show that least squares cross-validation can opti­
mally select the hs’s in the sense outlined in Section 1.3 (see Section 
1.8 below). 

We briefly remark on the independence assumption invoked for the 
proofs presented above. Our assumption was that the data is indepen­
dent across the i index. Note that no restrictions were placed on the s 
index for each component Xis (s = 1, . . . , q). The product kernel is used 
simply for convenience, and it certainly does not require that the Xis’s 
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are independent across the s index. In other words, the multivariate 
kernel density estimator (1.35) is capable of capturing general depen­
dence among the different components of Xi. Furthermore, we shall 
relax the “independence across observations” assumption in Chapter 
18, and will see that all of the results developed above carry over to 
the weakly dependent data setting. 

1.7	 Multivariate Bandwidth Selection: 
Rule-of-Thumb and Plug-In Methods 

In Section 1.2 we discussed the use of the so-called normal reference 
rule-of-thumb and plug-in methods in a univariate setting. The gener­
alization of the univariate normal reference rule-of-thumb to a multi­
variate setting is straightforward. Letting q be the dimension of Xi, one 
can choose hs = csXs,sdn

−1/(4+q) for s = 1, . . . , q, where Xs,sd is the 
nsample standard deviation of {Xis} and cs is a positive constant. i=1 

In practice one still faces the problem of how to choose cs. The choice 
of cs = 1.06 for all s = 1, . . . , q is computationally attractive; how­
ever, this selection treats the different Xis’s symmetrically. In practice, 
should the joint PDF change rapidly in one dimension (say in x1) but 
change slowly in another (say in x2), then one should select a relatively 
small value of c1 (hence a small h1) and a relatively large value for c2 

(h2). Unlike the cross-validation methods that we will discuss shortly, 
rule-of-thumb methods do not offer this flexibility. 

For plug-in methods, on the other hand, the leading (squared) bias 
and variance terms of f̂(x) must be estimated, and then h1, . . . , hq must 
be chosen to minimize the leading MSE term of f̂(x). However, the 
leading MSE term of f̂(x) involves the unknown f(x) and its partial 
derivative functions, and pilot bandwidths must be selected for each 
variable in order to estimate these unknown functions. How to best 
select the initial pilot smoothing parameters can be tricky in high-
dimensional settings, and the plug-in methods are not widely used in 
applied settings to the best of our knowledge, nor would we counsel 
their use other than for exploratory data analysis. 
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1.8	 Multivariate Bandwidth Selection: 
Cross-Validation Methods 

1.8.1	 Least Squares Cross-Validation 

The univariate least squares cross-validation method discussed in Sec­
tion 1.3.1 can be readily generalized to the multivariate density esti­
mation setting. Replacing the univariate kernel function in (1.23) by 
a multivariate product kernel, the cross-validation objective function 
now becomes 

1 n	 n

¯ CVf (h1, . . . , hq) = 
2 

�� 
Kh(Xi, Xj) 

n
i=1 j=1 

2 n n

− 
n(n − 1) 

� � 
Kh(Xi, Xj), (1.38) 

i=1 j=i,j=1 

where 
q

Kh(Xi, Xj) = 
� 

h−s 
1k

�
Xis − Xjs 

� 

,
hs s=1 

q

¯	 ¯ Kh(Xi, Xj) = 
� 

h−s 
1k

�
Xis − Xjs 

� 

,
hs s=1 

and k̄(v) is the twofold convolution kernel based upon k( ), where k( )· ·
is a univariate kernel function satisfying (1.10). 

Exercise 1.12 shows that the leading term of CVf (h1, . . . , hq) is 
given by (ignoring a term unrelated to the hs’s) 

q

CVf0(h1, . . . , hq) = 
� �� 

Bs(x)h2 
s 

�2 

dx + 
κq 

, (1.39)
nh1 . . . hqs=1 

where Bs(x) = (κ2/2)fss(x). 
Defining as via hs = asn−1/(q+4) (s = 1, . . . , q), we have 

CVf0(h1, . . . , hq) = n−4/(q+4)χf (a1, . . . , aq), (1.40) 

where 

� � 
q

2 

�2 

χf (a1, . . . , aq) = 
� 

Bs(x)as dx + 
κq 

. (1.41) 
a1 . . . aqs=1 
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Let the as0’s be the values of the as’s that minimize χf (a1, . . . , aq). 
Under the same conditions used in the univariate case and, in addition, 
assuming that fss(x) is not a zero function for all s, Li and Zhou (2005) 
show that each as 0 is uniquely defined, positive, and finite (see Exercise 
1.10). Let h0

1, . . . , h
0 
q denote the values of h1, . . . , hq that minimize CVf0. 

Then from (1.40) we know that h0 
s = as0n−1/(q+4) = O

�
n−1/(q+4)

�
. 

Exercise 1.12 shows that CVf0 is also the leading term of E[CVf ]. 
Therefore, the nonstochastic smoothing parameters h0 

s can be inter­
preted as optimal smoothing parameters that minimize the leading 
term of the IMSE. 

Let ĥ1, . . . , ĥq denote the values of h1, . . . , hq that minimize CVf . 
Using the fact that CVf = CVf0 + (s.o.), we can show that ĥs = 
h0 
s + op(h0 

s). Thus, we have 

ĥs 
h

−
0 
s 

h0 
s	 = 

h

ĥ
0 
s

s − 1 → 0 in probability, for s = 1, . . . , q. (1.42) 

Therefore, smoothing parameters selected via cross-validation have the 
same asymptotic optimality properties as the nonstochastic optimal 
smoothing parameters. 

Note that if fss(x) = 0 almost everywhere (a.e.) for some s, then 
Bs = 0 and the above result does not hold. Stone (1984) shows that 
the cross-validation method still selects h1, . . . , hq optimally in the 
sense that the integrated estimation square error is minimized; see also 
Ouyang et al. (2006) for a more detailed discussion of this case. 

1.8.2	 Likelihood Cross-Validation 

Likelihood cross-validation for multivariate models follows directly via 
(multivariate) maximization of the likelihood function outlined in Sec­
tion 1.3.2, hence we do not go into further details here. However, we do 
point out that, though straightforward to implement, it suffers from the 
same defects outlined for the univariate case in the presence of fat tail 
distributions (i.e., it has a tendency to oversmooth in such situations). 

1.9	 Asymptotic Normality of Density 
Estimators 

In this section we show that f̂(x) has an asymptotic normal distri­
bution. The most popular CLT is the Lindeberg-Levy CLT given in 
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Theorem A.3 of Appendix A, which states that n1/2[n−1 
�n

i=1 Zi] →
N(0, σ2) in distribution, provided that Zi is i.i.d. (0, σ2). Though the 
Lindeberg-Levy CLT can be used to derive the asymptotic distribution 
of various semiparametric estimators discussed in Chapters 7, 8, and 
9, it cannot be used to derive the asymptotic distribution of f̂(x). This 
is because f̂(x) = n−1 

�
i Zi,n, where the summand Zi,n = Kh(Xi, x) 

depends on n (since h = h(n)). We shall make use of the Liapunov 
CLT given in Theorem A.5 of Appendix A 

Theorem 1.3. Let X1, . . . , Xn be i.i.d. q-vectors with its PDF f( )·
having three-times bounded continuous derivatives. Let x be an interior 
point of the support of X. If, as n → ∞, hs 0 for all s = 1, . . . , q, 

h6 
→

nh1 . . . hq →∞, and (nh1 . . . hq)
�q 0, then s=1 

q�
nh1 . . . hq 

� 

f̂(x)− f(x)− 
κ2 

� 
h

s 

2 

→ 

(x) 

� 
d 
N(0, κqf(x)).

2 sfss → 
s=1 

Proof. Using (1.36) and (1.37), one can easily show that 
q�

nh1 . . . hq 

� 

f̂(x)− f(x)− 
κ2 

� 
h2fss(x) 

� 

2 s

s=1 

has asymptotic mean zero and asymptotic variance κqf(x), i.e., 
q�

nh1 . . . hq 

� 

f̂(x)− f(x)− 
κ2 

� 
h2 
sfss(x) 

� 

2 
s=1 

=
�
nh1 . . . hq 

�
f̂(x)− E

�
f̂(x)

�� 

q

+
�
nh1 . . . hq 

� 

E
�
f̂(x)

� 
− f(x)− 

κ2 
� 

hs
2fss(x) 

� 

2 
s=1 

=
�
nh1 . . . hq 

�
f̂(x)− E

�
f̂(x)

�� 

q

+O 

�
�
nh1 . . . hq 

� 
hs 

3 

� 

(by (1.36)) 
s=1


n


= 
�

(nh1 . . . hq)−1/2


i=1


× 

�
K

�
Xi 

h

− x
� 

− E
�
K

�
Xi 

h

− x
��� 

+ o(1) 

n

d
≡ 

� 
Zn,i + o(1) → N (0, κqf(x)) , 

i=1 
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by Liapunov’s CLT, provided we can verify that Liapunov’s CLT con­
dition (A.21) holds, where 

Zn,i = (nh1 . . . hq)−1/2 

�
K

�
Xi − x

� 

− E
�
K

�
Xi − x

��� 

h h 

and 
n n

def
� 

σ2 = 
� 

var(Zn,i) = κqf(x) + o(1)n,i


i=1 i=1


by (1.37). Pagan and Ullah (1999, p. 40) show that (A.21) holds under 
the condition given in Theorem 1.3. The condition that 

� 
k(v)2+δ dv < 

∞ for some δ > 0 used in Pagan and Ullah is implied by our assumption 
that k(v) is nonnegative and bounded, and that

� 
k(v) dv = 1, because � 

k(v)2+δ dv ≤ C
� 
k(v) dv = C is finite, where C = supv∈Rq k(v)1+δ . 

1.10 Uniform Rates of Convergence 

Up to now we have demonstrated only the case of pointwise and IMSE 
consistency (which implies consistency in probability). In this section 
we generalize pointwise consistency in order to obtain a stronger “uni­
form consistency” result. We will prove that nonparametric kernel es­
timators are uniformly almost surely consistent and derive their uni­
form almost sure rate of convergence. Almost sure convergence implies 
convergence in probability; however, the converse is not true, i.e., con­
vergence in probability may not imply convergence almost surely; see 
Serfling (1980) for specific examples. 

We have already established pointwise consistency for an interior 
point in the support of X. However, it turns out that popular kernel 
functions such as (1.9) may not lead to consistent estimation of f(x) 
when x is at the boundary of its support, hence we need to exclude the 
boundary ranges when considering the uniform convergence rate. This 
highlights an important aspect of kernel estimation in general, and a 
number of kernel estimators introduced in later sections are motivated 
by the desire to mitigate such “boundary effects.” We first show that 
when x is at (or near) the boundary of its support, f̂(x) may not be a 
consistent estimator of f(x). 

Consider the case where X is univariate having bounded support. 
For simplicity we assume that X ∈ [0, 1]. The pointwise consistency 
result f̂(x) − f(x) = op(1) obtained earlier requires that x lie in the 
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interior of its support. Exercise 1.13 shows that, for x at the boundary of 
its support, MSE f̂(x)) may not be o(1). Therefore, some modifications 
may be needed to consistently estimate f(x) for x at the boundary of its 
support. Typical modifications include the use of boundary kernels or 
data reflection (see Gasser and Müller (1979), Hall and Wehrly (1991), 
and Scott (1992, pp. 148–149)). By way of example, consider the case 
where x lies on its lowermost boundary, i.e., x = 0, hence f̂(0) = 
(nh)−1 

�n K((Xi − 0)/h). Exercise 1.13 shows that for this case,i=1 

E[f̂(0)] = f(0)/2 + O(h). Therefore, bias f̂(0)] = E[f̂(0)] − f(0) = 
−f(0)/2 + O(h), which will not converge to zero if f(0) =� 0 (when 
f(0) > 0). 

In the literature, various boundary kernels are proposed to overcome 
the boundary (bias) problem. For example, a simple boundary corrected 
kernel is given by (assuming that X ∈ [0, 1]) 

⎧
h−1k

�y−x� 
/

� ∞
k(v) dv if x ∈ [0, h)⎪

kh(x, y) = 
⎨ 

h−1k
�y−hx� −x/h 

if x ∈ [h, 1− h] ⎪
h−1k

�y−hx� 
/

� (1−x)/h 
k(v) dv if x ∈ (1− h, 1],⎩ 

h −∞ 
(1.43) 

where k( ) is a second order kernel satisfying (1.10). Now, we estimate·
f(x) by 

1 n

f̂(x) = 
� 

kh(x,Xi), (1.44) 
n 
i=1 

where kh(x,Xi) is defined in (1.43). Exercise 1.14 shows that the above 
boundary corrected kernel successfully overcomes the boundary prob­
lem. 

We now establish the uniform almost sure convergence rate of f̂(x)−
f(x) for x ∈ S, where S is a bounded set excluding the boundary 
range of the support of X. In the above example, when the support of 
x is [0, 1], we can choose S = [�, 1 − �] for arbitrarily small positive � 
(0 < � < 1/2). We assume that f(x) is bounded below by a positive 
constant on S. 

Theorem 1.4. Under smoothness conditions on f( ) given in Masry·
(1996b), and also assuming that infx∈S f(x) ≥ δ > 0, we have 

q

sup 
���f̂(x)− f(x)

��� = O 

� 
(ln(n))1/

)

2

1/2 
+

� 
h2 
s 

� 

almost surely. 
x∈S (nh1 . . . hq s=1 
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A detailed proof of Theorem 1.4 is given in Section 1.12. 
Since almost sure convergence implies convergence in probability, 

the uniform rate also holds in probability, i.e., under the same condi­
tions as in Theorem 1.4, we have 

q
� 

(ln(n))1/2 
� 

sup 
���f̂(x)− f(x)

��� = Op (nh1 . . . hq)1/2 
+

� 
h2 .s 

s=1x∈S 

Using the results of (1.36) and (1.37), we can establish the following 
uniform MSE rate. 

Theorem 1.5. Assuming that f(x) is twice differentiable with bounded 
second derivatives, then we have 

q

supE
��
f̂(x)− f(x)

�2
� 

= O 

�� 
h4 + (nh1 . . . hq)−1 

� 

.s 

s=1x∈S 

Proof. This follows from (1.36) and (1.37), by noting that sup f(x) 
and sup fss(x) are both finite (s = 1, . . . , q). 

x∈S 

x∈S | | 

Note that although convergence in MSE implies convergence in 
probability, one cannot derive the uniform convergence rate in proba­
bility from Theorem 1.5. This is because 

E
� 

sup 
�
f̂(x)− f(x)

�2
� 

= supE
�
f̂(x)− f(x)

�2 
, 

x∈S x∈S 

and 

P
� 

sup 
���f̂(x)− f(x)

��� > �

� 

=� supP
����f̂(x)− f(x)

��� > �
� 
. 

x∈S x∈S 

The sup and the E( ) or the P( ) operators do not commute with one· ·
another. 

Cheng (1997) proposes alternative (local linear) density estimators 
that achieve automatic boundary corrections and enjoy some typical 
optimality properties. Cheng also suggests a data-based bandwidth se­
lector (in the spirit of plug-in rules), and demonstrates that the band­
width selector is very efficient regardless of whether there are non­
smooth boundaries in the support of the density. 
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1.11 Higher Order Kernel Functions 

Recall that decreasing the bandwidth h lowers the bias of a kernel 
estimator but increases its variance. Higher order kernel functions are 
devices used for bias reduction which are also capable of reducing the 
MSE of the resulting estimator. Many popular kernel functions such as 
the one defined in (1.10) are called “second order” kernels. The order of 
a kernel, ν (ν > 0), is defined as the order of the first nonzero moment. 
For example, if 

� 
uk(u) du = 0, but 

� 
u2k(u) du =� 0, then k(·) is said 

to be a second order kernel (ν = 2). A general νth order kernel (ν ≥ 2 
is an integer) must therefore satisfy the following conditions: 

(i) k(u) du = 1, 

(ii)
� 
u lk(u) du = 0, (l = 1, . . . , ν − 1), (1.45) 

(iii) u νk(u)du = κν = 0. 

Obviously, when ν = 2, (1.45) collapses to (1.10). 
If one replaces the second order kernel in f̂(x) of (1.35) by a νth 

order kernel function, then as was the case when using a second order 
kernel, under the assumption that f(x) is νth order differentiable, and 
assuming that the hs’s all have the same order of magnitude, one can 
show that 

q

bias 
�
f̂(x)

� 
= O 

�� 
hνs 

� 

(1.46) 
s=1 

and 
var

�
f̂(x)

� 
= O

�
(nh1 . . . hq)−1

� 
(1.47) 

(see Exercise 1.15). Hence, we have 

q

MSE 
�
f̂(x)

� 
= O 

�� 
hs 

2ν + (nh1 . . . hq)−1 

� 

(1.48) 
s=1 

and 
q

f̂(x)− f(x) = Op 

�� 
hν + (nh1 . . . hq)−1/2 

� 

.s 

s=1 

Thus, by using a νth higher order kernel function (ν > 2), one can 
reduce the order of the bias of f̂(x) from O

��q
s=1 h

2 
s

� 
to O (

�q
s=1 h

ν
s), 
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and the optimal value of hs may once again be obtained by balancing 
the squared bias and the variance, giving hs = O

�
n−1/(2ν+q)

�
, while 

the rate of convergence is now f̂(x)−f(x) = Op(n−ν/(2ν+q)). Assuming 
that f(x) is differentiable up to any finite order, then one can choose ν 
to be sufficiently large, and the resulting rate can be made arbitrarily 
close to Op(n−1/2). Note, however, that for ν > 2, no nonnegative ker­
nel exists that satisfies (1.45). This means that, necessarily, we have to 
assign negative weights to some range of the data which implies that 
one may get negative density estimates, clearly an undesirable side-
effect. Furthermore, in finite-sample applications nonnegative second 
order kernels have often been found to yield more stable estimation 
results than their higher order counterparts. Therefore, higher order 
kernel functions are mainly used for theoretical purposes; for example, 
to achieve a 

√
n-rate of convergence for some finite dimensional param­

eter in a semiparametric model, one often has to use high order kernel 
functions (see Chapter 7 for such an example). 

Higher order kernel functions are quite easy to construct. Assum­
ing that k(u) is symmetric around zero,5 i.e., k(u) = k(−u), then � 
u2m+1k(u) du = 0 for all positive integers m. By way of example, 

in order to construct a simple fourth order kernel (i.e., ν = 4), one 
could begin with, say, a second order kernel such as the standard nor­
mal kernel, set up a polynomial in its argument, and solve for the roots 
of the polynomial subject to the desired moment constraints. For ex­
ample, letting Φ(u) = (2π)−1/2 exp(−u2/2) be a second order Gaussian 
kernel, we could begin with the polynomial 

k(u) = (a + bu2)Φ(u), (1.49) 

where a and b are two constants which must satisfy the require­
ments of a fourth order kernel. Letting k(u) satisfy (1.45) with ν = 4 
(
� 
ulk(u) du = 0 for l = 1, 3 because k(u) is an even function), we 

therefore only require 
� 
k(u) du = 1 and 

� 
u2k(u) du = 0. From these 

two restrictions, one can easily obtain the result a = 3/2 and b = −1/2. 
For readers requiring some higher order kernel functions, we provide a 
few examples based on the second order Gaussian and Epanechnikov 
kernels, perhaps the two most popular kernels in applied nonparamet­
ric estimation. As noted, the fourth order univariate Gaussian kernel 

5Typically, only symmetric kernel functions are used in practice, though see 
Abadir and Lawford (2004) for recent work involving optimal asymmetric kernels. 
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is given by the formula 

k(u) = 
�

3 1 
u 2

� 
exp(−u2/2) 

,
2
− 

2
√

2π 
while the sixth order univariate Gaussian kernel is given by 

k(u) = 
�

15 5 
u 2 +

1 
u 4

� 
exp(−u2/2) 

.
8 
− 

4 8
√

2π 
The second order univariate Epanechnikov kernel is the optimal kernel 
based on a calculus of variations solution to minimizing the IMSE of 
the kernel estimator (see Serfling (1980, pp. 40–43)). The univariate 
second order Epanechnikov kernel is given by the formula 

3 1 2
� �

1− 5u
2
� 

if u < 5.0 
k(u) = 

0 
4
√

5 

otherwise, 

the fourth order univariate Epanechnikov kernel by 
3 

�
15 7 1 2 

k(u) = 

� 

4
√

5 8 − u2
� �

1− u2
� 

if u < 5.08 5

0	 otherwise, 

while the sixth order univariate Epanechnikov kernel is given by 

k(u) = 

� 

4
√3

5 

�
175 − 105 u2 + 231 u4

� �
1− 1 u2

� 
if u2 < 5.064 32 320 5

0	 otherwise. 

Figure 1.2 plots the second, fourth, and sixth order Epanechnikov 
kernels defined above. Clearly, for ν > 2, the kernels indeed assign 
negative weights which can result in negative density estimates, not a 
desirable feature. 

For related work involving exact mean integrated squared error for 
higher order kernels in the context of univariate kernel density estima­
tion, see Hansen (2005). Also, for related work using iterative meth­
ods to estimate transformation-kernel densities, see Yang and Marron 
(1999) and Yang (2000). 

1.12	 Proof of Theorem 1.4 (Uniform Almost 
Sure Convergence) 

The proof below is based on the arguments presented in Masry (1996b), 
who establishes uniform almost sure rates for local polynomial regres­
sion with weakly dependent (α-mixing) data; see Chapter 18 for fur­
ther details on weakly dependent processes. Since the bias of the kernel 
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Figure 1.2: Epanechnikov kernels of varying order. 

density estimator is of order O(
�q

s=1 h
2 
s) and the variance is of order 

O((nh1 . . . hq)−1), it is easy to show that the optimal rate of conver­
gence requires that all hs should be of the same order of magnitude. 
Therefore, for expositional simplicity, we will make the simplifying as­
sumption that 

h1 = = hq = h.· · · 

This will not affect the optimal rate of convergence, but it simplifies the 
derivation tremendously. We emphasize that, in practice, one should al­
ways allow hs (s = 1, . . . , s) to differ from each other, which is of course 
always permitted when using fully data-driven methods of bandwidth 
selection such as cross-validation. Only for the theoretical analysis that 
immediately follows do we assume that all smoothing parameters are 
the same. 

Proof. Let Wn = Wn(x) = |f̂(x) − f(x)|. To prove that the ran­
dom variable Wn is of order (η) almost surely (a.s.), we can show 
that 

�∞
n=1 P (|Wn/η| > 1) is finite (for some η > 0). Then by the 

Borel-Cantelli lemma (see Lemma A.7 in Appendix A), we know that 
Wn = O(η) a.s. Here, the supremum operator complicates the proof 
because S is an uncountable set. Letting Ln denote a countable set, 
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then we have 

P max Wn(x) > η ≤ (# of Ln) max P(Wn(x) > η). (1.50) 
x∈Ln x∈Ln 

But in our case, x ∈ S is uncountable and we cannot simply use an 
inequality like (1.50) to bound P (sup Wn(x) > η).x∈S

However, since S is a bounded set we can partition S into countable 
subsets with the volume of each subset being as small as necessary. 
Then P(sup Wn(x) > η) can be transformed into a problem likex∈S | |
P (maxx∈Ln |Wn(x)| > η) and the inequality of (1.50) can be used to 
handle this term. Using this idea we prove Theorem 1.4 below. 

We write 
���f̂(x)− f(x)

��� = 
���f̂(x)− E

�
f̂(x)

� 
+ E

�
f̂(x)

� 
− f(x)

���
≤ 

���f̂(x)− E
�
f̂(x)

���� +
���E

�
f̂(x)

� 
− f(x)

��� . 

We prove Theorem 1.4 by showing that 

sup 
���E

�
f̂(x)

� 
− f(x)

��� = O
�
h2

� 
, (1.51) 

x∈S 

and that 

sup 
���f̂(x)− E

�
f̂(x)

���� = O 

�
(ln(n))1/2

� 

almost surely. (1.52) 
x∈S (nhq)1/2 

We first prove (1.51). Because the compact set S is in the interior 
of its support, by a change-of-variables argument, we have, for x ∈ S, 

E
�
f̂(x)

� 
− f(x) = 

� 
f(x + hv)K(v) dv − f(x) 

h2 

� 
f (2)(˜= v� x)vK(v) dv 

≤ C1h
2 

� 
v�vK(v) dv ≤ Ch2 = O

�
h2

� 

uniformly in x ∈ S. Thus, we have proved (1.51). 
We now turn to the proof of (1.52). Since S is compact (closed 

and bounded), it can be covered by a finite number Ln = L(n) of (q­
dimensional) cubes Ik = Ik,n, with centers xk,n and length ln (k = 
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1, . . . , L(n)). We know that Ln = constant/(ln)q because S is compact, 
which gives ln = constant/Ln 

1/q . We write 

sup 
���f̂(x)− E

�
f̂(x)

���� = max sup 
���f̂(x)− E

�
f̂(x)

����
x∈S 1≤k≤L(n) x∈S∩Ik 

max sup 
���f̂(x)− f̂(xk,n)

���≤ 
1≤k≤L(n) x∈S∩Ik 

+	 max 
���f̂(xk,n)− E

�
f̂(xk,n)

����
1≤k≤L(n) 

+ max sup 
���E

�
f̂(xk,n)

� 
− E

�
f̂(x)

����
1≤k≤L(n) x∈S∩Ik 

≡ Q1 +Q2 +Q3. 

Note that Q2 does not depend on x, so sup does not appear inx∈S∩Ik 

the definition of Q2. 
We first consider Q2. Write Wn(x) = f̂(x) − E

�
f̂(x)

� 
= 

�
i Zn,i, 

where Zn,i = (nhq)−1{K((Xi − x)/h) − E[K((Xi − x)/h)]}. For any 
η > 0, we have 

P[Q2 > η] = P max Wn(xk,n) > η
1≤k≤L(n)

| | 

≤ P[Wn(x1,n) > η or Wn(x2,n) > η, . . . , or Wn(xL(n),n) > η] 

≤ P (Wn(x1,n) > η) + P (Wn(x2,n) > η) + . . . 

+ P
�
Wn(xL(n),n) > η

� 

≤ L(n) sup P [|Wn(x)| > η] .	 (1.53) 
x∈S 

Since K( ) is bounded, and letting A1 = supx K(x) , we have 
|Zn,i| ≤ 2A1

·
/(nhq) for all i = 1, . . . , n. Define λn =

|
(nh

|
q ln(n))1/2 . 

Then λn|Zn,i| ≤ 2A1[ln(n)/(nhq)]1/2 ≤ 1/2 for all i = 1, . . . , n for n 
sufficiently large.6 Using the inequality exp(x) ≤ 1+x+x2 for x ≤ 1/2, 
we have exp(±λnZn,i) ≤ 1 + λnZn,i + λ2Z2 . Hence, 

| | 
n	 n,i

Z2E [exp(±λnZn,i)] ≤ 1 + λ2 
n,i

� ≤ exp 
�
E

�
λ2 

n,i

�� 
, (1.54)nE

�
Z2 

n

where we used E(Zn,i) = 0 while for the second inequality we used 
1 + v ≤ exp(v) for v ≥ 0 (v = E[λ2Z2 ]).n n,i

6For now, any choice of λn ≤ (nhq)/(4A1) will lead to |λnZn,i| ≤ 1/2. Later on 
we will show that, in order to obtain the optimal rate for Q2, one needs to choose 
λn = (nhq ln(n))1/2 . 
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By the Markov inequality (see Lemma A.23 with φ(x) = exp(ax)) 
we know that 

E[exp(Xa)]
P[X > c] ≤ 

exp(ac) 
, (a > 0). (1.55) 

Using (1.55) we have 

n

P [ Wn(x) > η] = P 

������
� 

Zn,i 

����� > η 

� 

| | 
i=1


n n


= P 

�� 
Zn,i > η 

� 

+ P 

�� 
Zn,i < −η 

�


i=1 i=1


n n

�� 

Zn,i > η 

� 

+ P 

� � 
Zn,i > η 

�


≤ P −
i=1 i=1 

E [exp(λn 
�n Zn,i)] + E [exp(−λn 

�n Zn,i)]i=1 i=1≤ 
exp(λnηn) 

(by (1.55), a = λn, c = η) 
n

≤ 2 exp(−λnη) 
� 

exp 

� 

λ2 
� 

E(Z2 

�� 

n n,i 

i=1 

(by (1.54)) 

≤ 2 exp(−λnη)
�
exp 

�
A2λ

2/(nhq)
�� 
, (1.56)n

where we used 

E
�
Z2 

� ≤ (nhq)−2E
�
K2((Xi − x)/h)

� ≤ A2(n 2hq)−1[1 + o(1)].n,i

Because the last bound in (1.56) is independent of x, it is also the 
uniform bound, i.e., 

� 
A2λ

2 
� 

supP [|Wn(x)| > η] ≤ 2 exp −λnη + 
nhq

n . (1.57) 
x∈S 

We want to have η 0 as fast as possible, and at the same time we→
need λnη → ∞ at a rate which ensures that (1.57) is summable.7 We 
can choose λnη = C4 ln(n), or λn = C4 ln(n)/η. Finding the fastest rate 
for which η 0 is equivalent to finding the fastest rate for which λn→ →
∞. We also need the order of λnη ≥ λ2/

�
nhd

�
, or ln(n) ≥ λn

2/
�
nhd

�
.n

7A sequence {an}∞ is said to be summable if
n=1 | Pj
∞
=1 aj | < ∞.
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Thus, we simply need to maximize the order of λn → ∞ subject to 
λ2 
n ≤ (nhq) ln(n). Doing so, we get 

λn = [(nhq) ln(n)]1/2 and η = C4 ln(n)/λn = C4 [ln(n)/ (nhq)]1/2 . 
(1.58) 

Using (1.58) we get 

−λnη/2 +A2λn
2/ (nhq) = −C4 ln(n) +A2 ln(n) 

= −α ln(n), 

where α = C4 − A2. Substituting this into (1.57) and then into (1.53) 
gives us 

P[Q2 > ηn] ≤ 2L(n)/nα . (1.59) 

By choosing C4 sufficiently large, we can obtain the result that 
L(n)/na is summable by properly choosing the order of L(n), i.e., �∞

n=1 P(|Q2/ηn| > 1) ≤ 4
�∞

n=1 L(n)/na < ∞. Therefore, by the 
Borel-Cantelli lemma we know that 

Q2 = O(ηn) = O
�
(ln(n))1/2/ (nhq)1/2

� 
almost surely. (1.60) 

We now consider Q1 and Q3. Recall that || · || denotes the usual 
Euclidean norm of a vector. By the Lipschitz condition on K( ), we ·
know that 

sup |K((Xi − x)/h)− K((Xi − xk,n)/h)| ≤ C1h
−1 sup ||x − xk,n||

x∈S∩Ik x∈S∩Ik 

≤ C2h
−1ln. 

Therefore, by choosing ln = (ln(n))1/2h(q+2)/2/n1/2, we have 

|Q1| ≤ C2h
−(q+1)ln = O

�
(ln(n)/ (nhq))1/2

� 
. (1.61) 

By exactly the same argument we can show that 

|Q3| ≤ C3h
−(q+1)ln = O

�
(ln(n)/(nhq))1/2

� 
. (1.62) 

Equations (1.60) through (1.62) prove (1.52), and this completes 
the proof of Theorem 1.4. 

1.13 Applications 

We now consider a number of applications of univariate and multivari­
ate density estimation that illustrate the flexibility and power of the 
kernel approach. 
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Figure 1.3: Parametric density estimate (vertical lines represent (log) 
minimum wages in 1979 and 1989). 

1.13.1 Female Wage Inequality 

DiNardo and Tobias (2001, p. 12) used nonparametric kernel methods 
to investigate the phenomenon of female wage inequality which grew 
from 1979 to 1989. Sometimes the scale of a parametric distribution 
is used as a crude measure of inequality, and the standard deviation 
of log wages increased 25% from 0.41 to 0.50 over this period.8 One 
might think that common culprits underlying such changes would in­
clude international trade, technical change, or perhaps organizational 
change. As we will see below, DiNardo and Tobias show that the kernel 
estimator can help reveal who the true culprit is. 

If one used a parametric model and assumed, say, a normal distri­
bution for log wages, one would arrive at the description of the data 
presented in Figure 1.3. 

Use of nonparametric kernel methods and a simple “normal refer­

8The minimum wages in 1979 and 1989 were $2.90/hour and $3.35/hour, while 
the CPI was 72.6, 124.0, and 172.2 in 1979, 1989, and 2000 respectively. Wages were 
taken from the Current Population Survey (CPS). There were 140,284 and 167,863 
observations in the 1979 and 1989 samples respectively. The Gaussian kernel was 
used, and the normal reference rule-of-thumb bandwidths were 0.050 and 0.053 for 
the 1979 and 1989 samples respectively. Wage values appearing in Figures 1.3 and 
1.4 are in current (2000) dollars. 
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Figure 1.4: Nonparametric density estimate (vertical lines represent 
(log) minimum wages in 1979 and 1989). 

ence rule-of-thumb” (h = 1.06σn−1/5) bandwidth along with a second 
order Gaussian kernel yields the estimates plotted in Figure 1.4. 

The two kernel density estimates based on the normal reference 
rule-of-thumb presented in Figure 1.4 appear to be undersmoothed. 
However, these estimates clearly reveal a feature not captured by para­
metric methods: a binding modal minimum wage for 1979 that is no 
longer binding in 1989 for most women. This finding suggests that the 
growing wage inequality can be explained by truncation induced by a 
binding real minimum wage in 1979. That is, in 1979, unlike 1989, em­
ployers were paying minimum wage to many employees, which distorts 
and reduces the variance of the wage distribution. The real value of the 
minimum wage falls over time, becoming nonbinding in 1989. Thus, 
the nonparametric estimator readily reveals the true reason underlying 
growing wage inequality, and focuses attention away from other possi­
ble explanations, such as international trade, technical change, or pos­
sibly organizational change. This example serves simply to underscore 
the fact that traditional parametric approaches may mask important 
characteristics present in data. 
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Figure 1.5: Unemployment rate and ln(city size) joint density estimate. 

1.13.2 Unemployment Rates and City Size 

For this example we use U.S. data on city population (ln(city size)) 
and unemployment rates based upon a sample of n = 295 cities. Gan 
and Zhang (2006) present a theory predicting that the larger the city, 
the smaller the unemployment rate (on average). In Figure 1.5 we plot 
the estimated joint PDF using least squares cross-validated bandwidth 
selection and a second order Gaussian kernel. The cross-validated band­
widths are 0.665 and 0.351 for the unemployment rate and population 
respectively. 

The joint density estimate presented in Figure 1.5 is consistent with 
the hypothesis that large cities tend to have low unemployment rates 
and vice versa. That is, Figure 1.5 reveals a somewhat “right-angled” 
distribution having probability mass at low unemployment rates and 
large city sizes, while as the city size falls we observe the probability 
mass shifting first toward the origin and then, as city size falls further, 
the mass shifts toward higher unemployment rates. 
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1.13.3 Adolescent Growth 

Abnormal adolescent growth can provide an early warning that a child 
has a medical problem. For instance, too rapid growth may indicate 
the presence of a hydrocephalus (an accumulation of liquid within the 
cavity of the cranium), a brain tumor, or other conditions that cause 
macrocephaly (having an unusually large head), while too slow growth 
may indicate malformations of the brain, early fusion of sutures or 
other problems. Insufficient gain in weight, height or a combination may 
indicate failure-to-thrive, chronic illness, neglect or other problems. 

We consider data from the population of healthy U.S. children ob­
tained from the Center for Disease Control and Prevention’s (CDC) Na­
tional Health and Nutrition Examination Survey. We combine data and 
use two recent cross-sectional nationally representative health exami­
nation surveys for the years 1999/2000 and 2001/2002. For each cross 
section, two separate datasets must be linked (a body measurement 
dataset and a demographic variable dataset). The combined linked 
datasets contains 8, 399 complete observations for children and youths 
ages 2-20 years of age. We model the joint distribution of height and 
weight by sex. 

Figures 1.6 and 1.7 reveal that the joint distribution of height and 
weight is similar for males and females; however, that for males contains 
greater probability mass at higher values of both weight and height. 
That is, one is more likely to observe both taller and heavier boys than 
girls. Such data lays the foundation for the construction of adolescent 
growth charts, for instance, weight for stature charts.9 See also Wei and 
He (2006) for related work on conditional growth charts. 

1.13.4 Old Faithful Geyser Data 

The Old Faithful Geyser is a tourist attraction located in Yellowstone 
National Park. This famous dataset containing n = 272 observations 
consists of two variables, eruption duration (minutes) and waiting time 
until the next eruption (minutes). This dataset is used by the park 
service to model, among other things, expected duration conditional 
upon the amount of time that has elapsed since the previous eruption. 
Modeling the joint distribution is, however, of interest in its own right. 
The underlying bimodal nature of the joint PDF is readily revealed by 

9See http://www.cdc.gov/growthcharts for official growth charts developed by 
the National Center for Health Statistics. 

http://www.cdc.gov/growthcharts
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Figure 1.6: Weight and height joint density estimate for males. 

the kernel estimator graphed in Figure 1.8 constructed using likelihood 
cross-validated bandwidths and a second order Gaussian kernel.10 

If one were to instead model this density with a parametric model 
such as the bivariate normal (being symmetric, unimodal, and mono­
tonically decreasing away from the mode), one would of course fail to 
uncover the underlying structure readily revealed by the kernel esti­
mate. 

1.13.5	 Evolution of Real Income Distribution in Italy, 
1951–1998 

Baiocchi (2006) recently considered the evolution of the distribution 
of real income in Italy using kernel methods. He considers a series of 

10Likelihood cross-validated bandwidths were computed and were equal to (h1, h2) 
= (0.368σ1n

−1/6 , 0.764σ2n
−1/6), while least squares cross-validated bandwidths 

were (h1, h2) = (0.307σ1n
−1/6 , 0.733σ2n

−1/6) where h1 is that for eruption dura­
tion and h2 that for waiting time. 
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Figure 1.7: Weight and height joint density estimate for females. 

“stacked” univariate kernel density estimates of the income distribution 
for 21 regions and plots the resulting evolution of the univariate kernel 
density estimates over time. We are indebted to Giovanni Baiocchi for 
providing the data containing observations for the period 1951–1998 
(millions of lire, 1990 = base) used to generate a series of univariate 
kernel estimates using likelihood cross-validation. Figure 1.9 presents 
the evolution of real GDP per capita (millions of 1990 lire) by stacking 
the series of annual (i.e., cross section) univariate kernel estimates in a 
3D plot. 

Figure 1.9 reveals that the distribution of income has evolved from a 
unimodal one in the early 1950s to a markedly bimodal one in the 1990s. 
This result is robust to bandwidth choice, and is observed whether us­
ing simple rules-of-thumb or data-driven methods such as likelihood 
cross-validation. The kernel method readily reveals this evolution which 
might easily be missed were one to use parametric models of the in­
come distribution (e.g., the lognormal distribution commonly found in 
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Figure 1.8: Joint density estimate for the Old Faithful data. 

applied work). 

1.14 Exercises 

Exercise 1.1. Consider the following sample of continuous data: 

{−0.57, 0.25,−0.08, 1.40,−1.05,−1.00, 0.37,−1.15, 0.73, 1.59}, 

(e.g., the real seasonally adjusted GDP gap in trillions of dollars). 
Recall that the parametric normal density function is given by 

1 1(x−µ)2 

f(x) = √
2πσ2 

e− 
2 σ . 

(i) Compute and graph the parametric density function for this data 
(i.e., compute µ̂ and σ̂2) assuming an underlying normal distri­
bution. 
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Figure 1.9: Evolution of the income distribution in Italy, 1951–1998 
(series of univariate cross section kernel estimates). 

(ii) Compute and graph a histogram for this data using bin widths 
of 0.5 ranging from -1.5 through 2.0. 

Recall that the kernel estimator of a univariate density function 
for continuous data can be expressed as 

1960 
1970 

1980 
1990 

Year 

510152025303540 

GDP 
per capita 

0.00 
0.04 
0.08 
0.12 
0.16 

f(x, y) 

n

f̂(x) =
1 � 

K

�
Xi − x

� 

nh h 
i=1 

and that a common (optimal) kernel is the Epanechnikov kernel 
given by 

� ⎧
3 

�
1 
�
Xi−x

�2
� 

if 
���Xi−x

��� < 
√

5 
K

�
Xi − x 

= 
⎨ 

4
√

5 
1− 5 h h 

h ⎩ 0 otherwise, 

where h is a smoothing parameter restricted to lie in the range 
(0,∞]. 
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(iii)	 Using the same tiny sample of data, compute the kernel estima­
tor of the density function for every sample realization using the 
bandwidth h = 1.5. Show all steps. 

(iv)	 Using the same data, compute the kernel estimator of the density 
function for every sample realization using the bandwidth h = 
0.5. Show all steps. 

(v) On the same axes, graph your estimates of the density functions 
using a smooth curve to “connect the dots” for each function. 

(vi)	 Describe the effect of increasing the smoothing parameter on the 
estimated density function. 

Exercise 1.2. Let p̂ be defined as in (1.1). Show that p̂ is the maximum 
likelihood estimator of p = P(H). 

Hint: Define Xi = 1 if the ith trial is H, and Xi = 0 if it is T . Then 
the likelihood function is 

�n
i=1 f(Xi) = 

�n
i=1 p

Xi(1 − p)1−Xi . The log-
likelihood function is ln L = (

�n Xi) ln p+ [
�n (1− Xi)] ln(1− p).i=1 i=1

Exercise 1.3. 

(i) Show that MSE (p̂n) = p(1− p)/n, where p = P(H). 

(ii)	 Show that plim p̂ = p.n→∞ 

(iii)	 Supposing that p = P(H) ∈ (0, 1), show that the ordinary limit 
limn→∞ p̂ does not exist. 

Note that the ordinary limit is defined as follows. Letting an be a 
sequence of real numbers, we write limn→∞ an = c if for all (small) 
� > 0, there exists a positive integer n0 such that an − c < � for 
all n ≥ n0. 

| | 

Hint: For (ii) use the result from (i) along with Theorem A.3 of 
Appendix A. 

Hint: For (iii) argue by contradiction. 

Exercise 1.4. Let F (x) be defined as in (1.2). 

(i) Show that MSE[Fn(x)] = O(n−1) (note that this implies that 
Fn(x)− F (x) = Op(n−1/2) by Theorem A.7 of Appendix A. 
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(ii)	 Prove that 
√
n(Fn(x)− F (x)) d N(0, F (x)(1 − F (x))).→ 

Hint: First show that E[Fn(x)] = F (x) and var(Fn(x)) = F (x)(1 −
F (x)). Then use the Lindeberg-Levy CLT. 

Exercise 1.5. Prove (1.13) under the assumption that f(x) has a 
continuous second order derivative at x. 

Hint: Use the dominated convergence theorem given by Lemma 
A.26 in Appendix A. 

Exercise 1.6. Write kij = k
�
Xi−

h
Xj

� 
and k̄  ij = k̄  

�
Xi−

h
Xj

�
. Using 

n−2 = (n(n − 1))−1 − (n2(n − 1))−1, we obtain from (1.23) 
n	 n n n

¯
CVf (h) = 
n(n − 

1 
1)h 

�� 
kij − 

n(n − 
2 

1)h 

�� 
kij


i=1 j=1	 i=1 j=i 

1 n n


− 
n2(n − 1)h 

�� 
k̄  ij


i=1 j=1 

1 ¯ 1 n n

[¯ =
(n − 1)h

k(0) + 
n(n − 1)h 

�� 
kij − 2kij ] +Op(n−1) 

i=1 j=i 

=
(n − 

κ 

1)h 
+ Jn +Op(h(nh)−1),	 (1.63) 

where Jn = [n(n − 1)h]−1 
�n �n [k̄  ij − 2kij ] and κ = 

� 
k2(v) dv ≡i=1 j=i

k̄(0).	
�

(i) Show that E(Jn) = B0 +B1h
4 +O(h5), where B0 = − 

� 
f(x)2 dx, 

and B1 = (κ2
2/4){� 

[f (2)(x)]2 dx}. 
(ii)	 Accept the fact that Jn = E(Jn) + smaller order terms. So, 

asymptotically, minimizing CVf (h) is equivalent to minimizing 
def

I(h)	 = (nh)−1κ+ E(Jn). Obtain that ĥ which minimizes I(h). 

(iii)	 Assume that k(0) ≥ k(v) for all v (which is usually true for kernel 
estimation). If we do not use the leave-one-out estimator, then 

defwe would instead have the objective function V (h) = (nh)−1[κ−
2k(0)]+E(Jn). Show that h = 0 minimizes V (h), which obviously 
violates the requirement that nh → ∞ as n → ∞. This shows 
that we must use the leave-one-out estimator when constructing 
CVf (h). 
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(iv) In deriving (1.63) we used 

def ¯ An = (n 2(n − 1)h)−1 
�� 

k((Xi − Xj)/h) = Op(n−1). 
i j=i 

Prove this result. 

(v) Using the U-statistic H-decomposition given in Lemma A.15 of 
Appendix A, show that Jn = E(Jn) + Op(h1/2(nh)−1+n−1/2h4)+ 
terms unrelated to h. Therefore, we indeed have Jn = E(Jn) + 
(s.o.) (for a given value of h). 

Hints: Note that k̄( ) is also a nonnegative, symmetric PDF, i.e., ·� 
k̄(v) dv = 1, 

� 
vsk̄(v) dv = 0 when s is an odd positive integer. 

(i) 

E[k̄  12] = h−1E

� 
k

�
X1 − x

� 

k

�
X2 − x

� 

dx 
h h 

h−1 

� � �
X1 − x

��� �
X2 − x

�� 

= Ek Ek dx 
h h 

h−1 

� � �
X1 − x

��2 

= Ek dx 
h


= h
� �

f(x) + 0 + (κ2/2)f (2)(x)h2 + 0


+(κ4/4!)f (4)(x)h4 +O(h5)
�2

dx. 

�
X1 − X2

�
E[k12] = Ek

h � �
x1 − x2

� 

= k f(x1)f(x2) dx1 dx2
h 

= h
� 
f(x)

�
f(x) + 0 + (κ2/2)f (2)(x)h2 + 0 

+ (κ4/4!)f (4)(x)h4
� 
dx +O(h5). 

(ii) Note that k̄(0) = 
� 
k2(v) dv > 0. 

(iii) Show that h 0 produces a value of the objective function →
V (h) = −∞. Thus, h = 0 minimizes V (h). 
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(iv)	 Show that E[ An ] = E(An) = O(n−1), then apply Theorem A.7. |	 |

(v) Using the U-statistic H-decomposition (again, see Appendix A), 
show that the last two terms in the H-decomposition are of or­
der Op(n−1/2h4) (plus terms unrelated to h) and Op(h1/2(nh)−1), 
respectively. 

Exercise 1.7. Derive (1.27), i.e., show that 

x	 n�	
f̂(v) dv = n−1 

� 
G

�
x − Xi

� 

. 
h 

i=1−∞ 

Hint: Use f̂(v) = (nh)−1 
�n

i=1 k
�
Xi
h
−v 

� 
and do a change of variable 

(xi − v)/h = t and dxi = h dv. 

Exercise 1.8. 

(i) Discuss the relationship between the kernel and empirical CDF 
estimators, i.e., F̂ (x) and Fn(x) = n−1 

�n 1(Xi ≤ x).i=1 

(ii)	 Discuss whether or not one can use h = 0 in F̂ (x) defined in 
(1.27), i.e., can one let h 0 arbitrarily fast in F̂ (x)?→ 

(iii)	 F̂ (x) and Fn(x) have the same asymptotic distribution. What is 
the advantage of using F̂ (x) over Fn(x)? Which estimator do you 
expect to have smaller finite-sample MSE? Explain. 

Exercise 1.9. Derive (1.33). 
Hint: Write 1i(x) = 1(Xi ≤ x) and Gx,xj = G((x − Xj)/h), then 

1 n n n

E[CVF (h)] = 
n(n − 1)2 

� ��� 
E

��
1i(x)− Gx,xj

� 

i=1 j=i l=i 

× [1i(x)− Gx,xl
]} dx 

1 
= 
n − 1 

� 
E

��
1i(x)− Gx,xj

�2
� 
dx 

+ 
n − 2

� 
E

�
E

�
1i(x)− Gx,xj Xi

��2 
dx 

n − 1 
|

= CV1 + CV2, 
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then show that 

CV1 = (n − 1)−1 

�
2

� 
F (1− F ) dx − C1h+O(h2)

� 

and 

CV2 = 
�
1− 

n − 
1

1 

��� 
F (x)(1 − F (x)) dx + h4 

� 
C2(x)2 dx

� 

. 

Exercise 1.10. Define a q× q matrix A with its (t, s)th element given 
by At,s = (κ2/2)

� 
Bt(x)Bs(x) dx. 

(i)	 Show that A is positive semidefinite. 

(ii)	 Show that if A is positive definite, then the as0’s defined in (1.41) 
are all uniquely determined, positive, and finite. 

A necessary condition for A to be positive definite is that fss(x) 
is not a zero function for all s = 1, . . . , q. 

Hint: 

(i) Note that for any q × 1 vector z = (z1, . . . , zq)� that z�Az = � 
[
�q Bs(x)zs]2 dx ≥ 0. s=1 

2	 0(ii)	 Define zs = as, then χf = z�Az +κq/
√
z1 . . . zq, and let zs denote 

values of zs that minimize χf . It is easy to argue that ∞ > 
infz1,...,zq χf > 0. This implies that z0 > 0 for all s. The fact that s 

A is positive definite implies that z0 < ∞ for all s. Finally, z0 
s	 s 

is uniquely determined by a result given in Li and Zhou (2005). 
0 0Therefore, as = 

�
zs is uniquely determined, positive and finite 

for all s = 1, . . . , q. 

Note that A being positive definite is a sufficient condition. Li and 
Zhou (2005) provide a weaker necessary and sufficient condition 
for this result. 

Exercise 1.11. Prove (1.36) and (1.37). 
Hint: For a multivariate Taylor expansion, we have f(x0 + x) = 

f(x0)+
�q

s=1 (x0)(xs−xs0)+(1/2)
�q �

s
q 
�=1 fss� (x̃)(xs−xs0)(xs� −fs s=1 

xs�0), x̃ is on the line segment between x and x0. 

Exercise 1.12. For the multivariate case, we have 

κq 
CVf (h1, . . . , hq) = + Jn +Op 

��
n 2h1 . . . hq

�−1
� 

nh1 . . . hq 

where Jn = [n(n − 1)]−1 
�

i 

�
j=� i 

�
K̄ 
n(Xi, Xj)− 2Kn(Xi, Xj)

�
. 
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(i) Show that E(Jn) = 
� ��q

s=1 Bs(x)h
2 
s

�2 
dx + o

��q
s=1 h

4 
s

�
, where 

the definition of Bs(x) is given in Section 1.8. 

(ii)	 Use the U-statistic H-decomposition to show that (ignoring the 
term unrelated to the Hs’s) 

⎛ 
q

�2
⎞ 

E(Jn) +Op ⎝n−1/2 

�� 
h2Jn = s 

⎠ 

s=1 

+Op 

�
(h1 . . . hq)

1/2 (nh1 . . . hq)
−1

� 
. 

Note that (i) and (ii) together imply that 

a

CVf = 
� 

Bsh
4 
s + κq(nh1 . . . hq)−1 + op 

�
η2

2 + η1

� 

s=1 

where η2 = 
�q

s=1 h
2 
s and η1 = (nh1 . . . hq)−1 . 

Hint: Using H-decomposition, show that the second moments of the 
second and third terms are of order O(n−1/2η2

2) and O
�
(h1 . . . h1)η1

2
�
, 

respectively. 

Exercise 1.13. Assuming that X ∈ [0, 1] and f(0) > 0, show that 
E[f̂(0)] = f(0)/2+O(h) so that f̂(0) is a biased estimator of f(0) even 
asymptotically. 

Hint: f̂(0) = (nh)−1 
�n

i=1 k((Xi − 0)/h), and 

E[f̂(0)] = h−1E[k(Xi/h)] = h−1 

� 1 

f(x1)k(x1/h) dx1 
0 � 1/h 

= f(hv)k(v) dv 
0 � ∞
f(0) k(v) dv = f(0)/2.→ 

0 

Exercise 1.14. With the boundary-corrected kernel defined in (1.43), 
and with f̂(x) defined in (1.44) and with the support of X being [0, 1], 
show that for x ∈ [0, h] at the boundary region, we have E[f̂(x)] = 
f(x) + O(h). Explicitly state the conditions that you need to derive 
this result. 

Therefore, bias[f̂(x)] = O(h) 0 as n → ∞, and the boundary­→
corrected kernel restores the asymptotic unbiasedness for f̂(x) for x at 
the boundary region. 
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Hint: One can write x = αh with 0 ≤ α ≤ 1. One can assume 
that |f(x)− f(z)| ≤ C|x − z| for all x, z ∈ [0, 1], where C is a positive 
constant. Then 

hE[f̂(x)] = h−1 

� ∞ k
�
x1−x� 

f(x1) dx1
k(v) dv−x/h 

� 
−
∞
x/h � ∞ k(w)

= � ∞
k(v) dv

f(αh+ wh)dw (used x/h = α and x = αh) 
−α −α � ∞

k(w)dw 
= f(0) −α
�� 

−
∞
α k(v) dv

� +O(h)


= f(0) + O(h). 

Exercise 1.15. With a νth order kernel, prove (1.46) and (1.47) for 
the univariate x case (i.e., q = 1). 

Exercise 1.16. Intuitively, one might think that when f(x) is a uni­
form density, say on [0, 1], then one can choose a nonshrinking value 
of h to estimate f(x) for some x ∈ [0, 1] (i.e., h does not go to zero as 
n → ∞). This intuition is correct when x is an interior point of [0, 1]. 
However, at (or near) the boundary of [0, 1], estimation bias will not 
go to zero even for uniform f(x). 

(i) Show that if h does not converge to 0 as n →∞, then 
� 1[f̂(x, h)−0 

f(x)]2 dx will not go to zero, where f(x) is the uniform PDF. 

(ii) Show that if h 0 as n → ∞, then 
� 1[f̂(x, h) − f(x)]2 dx 0→ 0 →

as n →∞, where f(x) is the uniform PDF. 

(i) and (ii) above explain why the cross-validated selection of h, 
ĥ, must converge to zero as n → ∞, and why one does not need the 
condition that f (2)(x) is not a zero function. Of course when f(x) is a 
uniform PDF, ĥ will no longer have the usual order (n−1/5). Instead it 
has an order equal to n−1/3 since the bias now is of order h rather than 
h2 . 

Exercise 1.17. Consider the Italian income data from Section 1.13.5. 
For the two samples of size n = 21 for the years 1951 and 1998, compute 
the density estimates using the reference rule-of-thumb in (1.17) pre­
suming an underlying normal distribution. How many times larger than 
this would the bandwidth have to be to remove the bimodal feature 
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present in the 1998 sample? Next, compute the density estimates using 
least squares cross-validation. Presuming that these bandwidths repre­
sent the “optimal” bandwidths, how much larger would the bandwidth 
for 1998 have to be to produce an apparently unimodal distribution? 
Finally, compare your least squares cross-validated density estimates 
with a näıve histogram. Do your estimates appear to be sensible, i.e., 
do they reflect features you believe are in fact present in the data? 




