
Chapter One


Introduction 

The purpose of this book is three-fold: to report the current status of existence and 
construction problems for Hadamard matrices and their generalisations; to give an 
accessible account of the new unifying approach to these problems using group 
cohomology; and to support an understanding of how these ideas are applied in 
digital communications. I have tried to present results and open problems with 
sufficient rigour, and direction to the literature, to enable readers to begin their own 
research, but with enough perspective for them to gain an overview without needing 
in-depth knowledge of the algebraic background. 

The book has two Parts. In Part 1, consisting of four Chapters, our present 
understanding of Hadamard matrices, generalised Hadamard matrices and higher 
dimensional Hadamard matrices is summarised. One Chapter is devoted to intro­
duction and explanation of the main applications of Hadamard matrices in digital 
signal and data sequence processing, principally for spectral analysis and signal 
error protection, separation or encryption. 

Generalised Hadamard matrices and higher dimensional Hadamard matrices are 
each natural enlargements of the class of Hadamard matrices, in the direction of 
entries not restricted to {±1} and not restricted to 2-dimensional (2-D) arrays, re­
spectively. Part 1 contains the basic definitions and properties of these three types 
of Hadamard matrices and, for each of them, a status report on recent results using 
classical techniques. The two ideas from which Warwick de Launey and I devel­
oped the group extensions approach to Hadamard matrices: group development 
of Hadamard matrices and construction of higher dimensional Hadamard matrices 
from relative difference sets are highlighted. 

Part 2, also consisting of four Chapters, develops in detail the unifying group 
extensions approach to existence and construction of the three types of Hadamard 
matrices covered in Part 1. Some necessary algebraic background is included. This 
Part covers the major theoretical advances made over the past 15 years, culminat­
ing in the Five-fold Constellation, which identifies cocyclic generalised Hadamard 
matrices with particular ‘stars’ in four other areas of mathematics and engineering: 
group cohomology (factor pairs), incidence structures (divisible designs), combi­
natorics (relative difference sets) and signal correlation (perfect arrays). The work 
in this Part has not been collected before, or is accessible only in journal articles. 
Some is not yet published. 

The latter half of Part 2 introduces less mature, but very exciting, theoretical 
results on the atomic structure of cohomology classes. These shift orbits have re­
mained invisible for nearly a century, but carry the statistical information about 
distributions of the entries of cocyclic matrices that determines whether or not 
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they will produce Hadamard matrices, high-distance error-correcting codes and 
low-correlation sequences. Finally, the first applications of the theory of cocyclic 
Hadamard matrices to multiphase signal and data sequence processing are pre­
sented. We construct novel and optimal families of such cocyclic generalised 
Hadamard matrices and their corresponding Generalised Hadamard Transforms, 
codes and sequences. 

Half the open research problems arise in this last quarter of the book. 
A summary of each Chapter follows. 
Chapter 2 covers basic definitions and properties of Hadamard matrices, in ab­

breviated form. There are many excellent texts [288, 1, 123, 315], reviews [68, 69] 
and databases [212, 287, 297], describing Hadamard matrices and their numer­
ous constructions in more detail; the intention here is to provide a succinct sum­
mary and update of research over the past decade or so. Direct constructions of 
Hadamard matrices by Sylvester, Paley and Williamson and from Hadamard de­
signs are described and illustrated. 

More modern techniques of constructing Hadamard matrices, by patterning en­
tries according to the multiplication table of a group, are treated next. This is our 
first link to cocycles and cocyclic Hadamard matrices. In the final section of Chap­
ter 2, advances towards direct confirmation of the celebrated Hadamard Conjecture, 
and improved asymptotic support for it, are outlined, as is progress on the circulant 
Hadamard conjecture. 

The purely intellectual excitement and challenge of finding new Hadamard ma­
trices and homing in on confirmation of the Hadamard Conjecture is heightened 
by the knowledge that they are marvellously useful. Chapter 3 is devoted to two 
of their three principal applications: Hadamard transform spectroscopy and object 
recognition, and coding of digital signals. Applications in design of experiments 
are not included. Most emphasis is placed on coding of digital signals or data 
sequences for error correction, separation, correlation or encryption. 

Each application area is introduced briefly to explain how the Hadamard matrix 
is applied, but in enough detail, and in the language of the application, to explain 
current trends. My aim is to bridge the two worlds: to translate the physical appli­
cation into terms a pure mathematician will appreciate and the theoretical structure 
into terms an applied mathematician, computer scientist or communications engi­
neer can adapt and use. 

Chapter 4 moves us from Hadamard matrices to generalisations where matrix 
entries are not restricted to {±1}. More than one direction for enlargement of the 
class of Hadamard matrices has flourished, but generalisations to maximal determi­
nant matrices, weighing matrices, orthogonal designs and nonsquare matrices will 
not be covered. The two main formulations we treat are complex Hadamard ma­
trices (invertible, with entries on the complex unit circle) — especially those with 
entries which are roots of unity, called Butson matrices here — and generalised 
Hadamard matrices (with entries from a finite group N , for which the inner quo­
tient of any distinct pair of rows in the integral group ring ZN equals λ (

�
u∈N u), 

for some fixed integer λ). To complicate matters, in the literature the term complex 
Hadamard matrix often refers only to a Butson matrix with entries in {±1, ±√−1}, 
of which those with uniformly distributed rows are also called quaternary gener­
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alised Hadamard matrices. Although complex Hadamard matrices will be revisited 
on occasion, the principal subject of this book is generalised Hadamard matrices. 
Jungnickel’s seminal 1982 result, relating generalised Hadamard matrices, class 
regular divisible designs and relative difference sets, underscores the richness of 
the interconnections between these areas and the group extensions approach de­
scribed in the second part. 

This Chapter follows the structure of Chapter 2, for each of Butson, complex 
Hadamard and generalised Hadamard matrices in turn, illustrated with numerous 
examples. One section covers their applications to multiphase signals and se­
quences. The final section is new work, unifying the two formulations in the invert­
ible Generalised Butson Hadamard matrices, which include all complex Hadamard 
matrices and all invertible generalised Hadamard matrices, and their Generalised 
Hadamard Transforms. 

Chapter 5 enlarges the class of Hadamard matrices from 2-D to n-dimensional 
arrays with entries from {±1}. It deals with n-dimensional proper Hadamard ma­
trices, introduced by Shlichta in 1971, which have the property that all 2-D sub-
arrays obtained by fixing any n − 2 coordinates are Hadamard matrices. 

Despite a strong presumption of their utility — based on that of Hadamard ma­
trices — and their formative role in development of the group extensions approach 
to Hadamard matrices, remarkably little is known about higher dimensional proper 
Hadamard matrices. The first monograph on the subject is Yang [334]. A sum­
mary of construction techniques, relationships between these techniques, equiva­
lence classes and applications to Boolean functions useful for cryptography and to 
error-correcting array codes is presented. 

Higher dimensional proper Hadamard matrices were central to the discovery of 
cocyclic Hadamard matrices by Warwick de Launey and myself. His effort to char­
acterise those Hadamard matrices which would generate higher dimensional proper 
Hadamard matrices led him to isolate functions which must satisfy specific rela­
tions between their values and which I subsequently identified as cocycles. 

A 2-dimensional cocycle between finite groups G and N , with trivial action, is a 
function ψ : G N satisfying the equation × G → 

ψ(g, h)ψ(gh, k) = ψ(h, k)ψ(g, hk), ∀ g, h, k ∈ G. 

We then rederived this equation by asking when an abstract combinatorial design 
could be functionally generated from a single row. This cocyclic development of 
matrices includes group development of matrices, which was described in Chapter 
2. The cocyclic matrix developed from ψ : G N is× G → 

[ψ(g, h)]g,h∈G. 

A cocycle whose matrix is Hadamard is called orthogonal. 
The first Chapter of Part 2, Chapter 6, concerns cocycles, which arise naturally 

in many areas: surface topology, algebra and quantum mechanics, for instance. 
The usual unit studied in group cohomology is a cohomology (equivalence) class 
of cocycles, not the individual cocycles comprising it, so the examples, properties 
and constructions collected here do not appear in cohomology texts and are listed 
for the first time. 
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Some time is spent on the practicalities of computing cocycles. One of the ad­
vantages of the group extensions approach to Hadamard matrices is that the in­
ternal structure of a cocyclic matrix promises efficiency in computer searches for 
generalised Hadamard matrices, cutting down the search space over exhaustion 
dramatically. But first we need to find and list the cocycles. Three algorithms 
are presented: one, the Flannery-O’Brien algorithm, was developed to exploit the 
ideas presented in this book and is distributed as a module in the computer algebra 
package MAGMA. 

The Chapter continues by showing that most of the direct constructions of Had­
amard matrices listed in Chapter 2 are cocyclic, for some group G and N = {±1}. 
To date, cocyclic construction is the most successful general method known, both 
theoretical and computational, for finding Hadamard matrices. In particular, the 
most productive single construction of Hadamard matrices, due to Ito, is cocyclic 
over the dihedral groups. The Cocyclic Hadamard Conjecture follows: that for 
each odd t there is a group G of order 4t such that a G-cocyclic Hadamard matrix 
exists. The Chapter concludes with a status report on 12 research questions posed 
by the author in earlier papers on cocyclic Hadamard matrices. 

Cocycles are special cases of factor pairs of functions. Chapter 7 contains 
the full description of the theory of orthogonal factor pairs and the generalised 
Hadamard matrices they determine. The theory has been complete for only a few 
years. Sufficient background information on group extensions, factor pairs and 
cohomology of finite groups is included to make the book self-contained. 

The limiting class of generalised Hadamard matrices obtained using the group 
extensions approach is the class of coupled cocyclic generalised Hadamard matri­
ces. We can do no better than this. Whilst not every generalised Hadamard matrix 
is a coupled cocyclic matrix, I know of only one counterexample, a matrix of order 
6 with entries from the group Z3 of integers modulo 3. I know of no Hadamard 
matrix which is not cocyclic — but the sheer number of inequivalent Hadamard 
matrices even for small orders makes it unlikely all will be cocyclic. 

The Chapter’s central purpose is to convey the pervasive influence of cocyclic 
generalised Hadamard matrices, by locating them (in four different guises) within 
combinatorics, group cohomology, incidence structures and digital sequence de­
sign. This is done by proving mutual equivalences — the Five-fold Constellation 
— between coupled cocyclic generalised Hadamard matrices, semiregular relative 
difference sets, orthogonal factor pairs, semiregular class regular divisible designs 
with regular action and well-correlated arrays. These equivalences have been estab­
lished in increasing generality over the past decade by de Launey, Flannery, Perera, 
Hughes and the author, with the fullest expression due to Galati. The general form 
of the fifth equivalence — with well-correlated arrays — is given here for the first 
time. Such universality helps to explain the tremendous variety of uses to which 
we can put these matrices. 

Chapter 8 deals with the way in which different definitions of equivalence class 
interrelate within the Five-fold Constellation. There are preexisting concepts of 
equivalence for generalised Hadamard matrices, for transversals of subgroups in 
groups, and for factor pairs and group extensions arising naturally from theoretical 
considerations in each area, and they do not coincide. The equivalence relation for 
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transversals is revealed to be the strongest relation. It becomes a very productive 
and novel way of investigating each of the ‘stars’ of the Constellation. 

When equivalence of transversals is transcribed to an action on factor pairs, it 
forms orbits termed bundles. These bundles are copied around the Five-fold Con­
stellation. For splitting factor pairs, bundles define equivalence classes of functions 
G N , which form the basis of a new theory of nonlinearity. For semiregular rel­→
ative difference sets, the resulting taxonomy allows us to establish a classification 
program for their equivalence classes and begin to populate it. This problem is at 
the heart of research in relative difference sets. 

Two components of bundle action can be isolated, one an action by automor­
phism groups of G and N and the other a differential G-action called shift action 
which arises from translation and renormalisation of transversals. Thus a bundle is 
an automorphism orbit of shift orbits, and vice versa. These components, though 
not wholly independent, can be extracted and investigated in more general situa­
tions. 

Shift action is a remarkably universal action and should be identifiable in more 
contexts than in fact appears to be the case. Shift action operates wholly within the 
natural equivalence classes of factor pairs, partitioning each one into shift orbits — 
its atomic structure. So, it is invisible from the point of view of cohomology theory, 
but it is critical to our study. Shift orbits (and the bundles they generate) carry the 
statistical information about distributions of the entries of cocyclic matrices that 
determines whether or not they will produce Hadamard matrices, high-distance 
error-correcting codes and low-correlation sequences. 

Some external sightings of shift action in disguise have been made: in differential 
cryptanalysis and in the Loewy series for p-groups. LeBel’s thesis [217] identifies 
shift action within the trivial cohomology class with a natural action in a quotient 
algebra of the standard module of a group ring. 

In the final, and longest, Chapter, we begin to reap the rewards of all the preced­
ing hard work. Chapter 9 contains a multitude of new constructions and applica­
tions of cocyclic complex and generalised Hadamard matrices, and a tantalising set 
of new problems, too. 

Initially we look at several recent applications of cocycles, not necessarily or­
thogonal, to computation in Galois rings, to elliptic curve cryptography and to the 
developing field of cocyclic codes over nonbinary alphabets. 

Then splitting orthogonal factor pairs are applied to establish a general theory 
of nonlinear functions suitable for use as cryptographic primitives. These include 
planar, bent and maximally nonlinear functions, and surprising and beautiful con­
nections with finite presemifields and projective planes are uncovered. 

In turn, these help identify large classes of new cocyclic generalised Hadamard 
matrices. We are next led to the discovery of families of optimal codes, such as 
the q-ary codes meeting the Plotkin bound found by Udaya and myself and the 
extremal self-dual binary codes found by Rao. 

Finally, differential uniformity, an important measure of the resistance of a block 
encryption cipher to differential attack, is extended to array encryption ciphers, and 
a class of orthogonal cocycles proposed as array S-box functions. 

I hope the reader will find this field as rich and exciting as I do. Good luck and 
good hunting! 




