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7 Spatial Patterns in Biology 

Spatial pattern is a fascinating aspect of biological systems, from the shape and 

size of organisms to the geographic distribution of species. Indeed, “morphogen-
esis,” the generation of pattern, has long been regarded as one of the central prob-
lems of biology, and one that requires theory and models to address. The book On 

Growth and Form by D’Arcy Thompson, published in 1917, continues to be widely 

read and admired—a remarkable achievement in a discipline that has undergone 

rapid change. The conviction that morphogenesis is based upon mechanisms 

whose principles we can discover remains strong. The possible mechanisms can 

be classified in terms of the physical and/or chemical forces involved, or they 

can be classified in terms of the types of models that are used to reproduce ob-
served patterns. Moreover, it is evident that different mechanisms operate in 

different systems. Rather than attempt to survey the different possibilities, we 

shall examine a single mechanism, called a reaction-diffusion system, and study 

two examples in which reaction-diffusion mechanisms have been shown to yield 

observed spatial patterns. 
Reaction-diffusion models were proposed as an explanation of morphogenesis 

by Alan Turing in his last paper. Turing was a remarkable individual who was 

at the center of British efforts to break German codes during World War II. This 

work has been dramatized in novels, film, and plays (Hodges 2000). Turing also 

invented the Turing machine, now one of the fundamental concepts in computer 

science. In the work that we discuss here, Turing hypothesized that the com-
bination of molecular diffusion and chemical reaction of substances he called 

morphogens could lead to instabilities in the homogeneous distribution of these 

substances (Turing 1952). While Turing describes three biological examples of 
morphogenesis (the tentacles of hydra, gastrulation, and the whorl patterns of 
plants such as woodruff), his work did not include analysis of data from these 

systems. 
Many attempts have been made subsequently to demonstrate that Turing 

mechanisms are responsible for the creation of patterns in different systems. 
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Some of these have been successful, but there are natural patterns in which other 

forces also play a critical role in the pattern formation. To cite one example, 
Odell and Oster (1980) investigated the role of traction and mechanical forces 

in the process of gastrulation. Even in the cases in which reaction and diffusion 

do provide the primary basis for pattern formation, identification of the mor-
phogens and their reactions with each other has required years of effort by many 

investigators. Nonetheless, certain patterns displayed by reaction-diffusion sys-
tems are very robust. These patterns can be studied in relatively simple reaction 

systems and the insight gained from them can be used to guide experimental re-
search that seeks to elucidate the details of the biological mechanisms of different 
pattern-forming systems. 

7.1 Reaction-Diffusion Models 

Diffusion is the process by which the random motion of molecules due to thermal 
fluctuations leads to changes in the concentration of chemical species in space 

and time. We will talk later about animal species, and why diffusion models are 

often good approximations to their movements. There are two approaches to the 

derivation of the equations that describe diffusion. The first (historically) starts at 
the “macroscopic” level, treating chemical concentrations as smoothly varying 

functions of space and time, and making assumptions about the net behavior 

of large numbers of molecules in solution. A more fundamental and general 
approach is based on a “microscopic”-level analysis of individual molecules. 

To introduce the individual approach, we begin with a lattice model. Consider 

the integer-valued points on the real line, and a molecule jumping randomly 

among these points. During each time step from t to t + 1, the molecule ran-
domly takes a step to one of the two neighboring points, moving right or left with 

equal probability. This model is an example of a one-dimensional random walk. 
It is a caricature of the fact that in liquids and gases, molecules are constantly 

in motion, changing direction as they collide with one another. This Brownian 

motion was discovered in the nineteenth century by Robert Brown who observed 

the motion of pollen grains floating in water with a microscope. 
The outcome of this random-walk diffusion model is summarized by the prob-

ability distribution of the particle’s location. Let Xn denote the particle’s location 

after n time units, starting from X0 = 0. The choice of random steps to the right 
and left can be generated by tossing a fair coin n times, assigning a right step to 

H and a left step to T . Let R and L be the total number of steps to the right and 

left. If at the end of n steps the particle is at location k, we then have 

R + L = n 
[7.1] 

R − L = k 



January 18, 2006 16:07 m26-main Sheet number 241 Page number 219

( ) ( 

219 Spatial Patterns in Biology 

and hence 2R = n + k ⇒ R = (n + k)/2 [note that n and k must either be both 

even, or both odd, since R is an integer: after an even (odd) number of steps the 

particle is at an even (odd) location]. The probability that Xn = k is therefore 

given by the binomial formula for the probability of getting (n + k)/2 H ’s in n 

tosses of a fair coin, 

Pr{Xn = k} =  
n 

(n + k)/2 

)n1 

2 
. [7.2] 

∣ ∣ 
This holds for ∣k∣ ≤ n with k and n either both even or both odd, otherwise Pr{Xn = 

k} = 0. 
We study approximations of [7.2] for large k and n via the central limit theo-

rem. The central limit theorem is a generalization of the DeMoivre-LaPlace limit 
theorem for the binomial distribution that applies to more general models than 

the simple random walk. For our randomly walking particle, let zj be the change 

in location on the jth step, so that 

Xn = z1 + z2 + · · · + zn. 

Each of the z’s is independent of the others, and they all have the same probability 

distribution of possible values, ±1 with equal probability 1/2. Consequently they 

all have the same mean E[z] = 0, and variance Var(z) = E[z2] − E[z]2 = 1 − 0 = 

1. The central limit theorem states that for a sum Xn of n independent and 

identically distributed random variables with common mean µ and variance σ 2,√ 
the distribution of (Xn − nµ)/ nσ converges to a Gaussian (normal) distribution 

with mean 0 and variance 1. Informally, we express this by saying that the 

distribution of Xn is approximately Gaussian with mean nµ and variance nσ 2. 
For our random walk model, we therefore conclude that the particle’s location 

after n steps has an approximately Gaussian distribution, with mean and variance 

E[Xn] = 0, Var[Xn] = n. [7.3a] 

The central limit theorem also applies to more general situations where exact 
binomial calculations are no longer easy. For example, suppose that at each time-
step jumps to the left or right of some fixed size w > 0 each occur with probability 

p ≤ 1/2, and the particle stays put with probability 1 − 2p. In this case zj has three 

possible values (−w, 0,  w). We still have E[zj ] = 0, but now Var(zj) = 2pw2; hence 

Xn is approximately Gaussian distributed with mean and variance 

E[Xn] = 0, Var[Xn] = 2pw2n. [7.3b] 

Exercise 7.1. Suppose that at each time-step the particle can move to the right with 

probability p and to the left with probability q where p + q ≤ 1. Assuming steps are 

of fixed size w , generalize [7.3b] (which applies if p = q) to this situation (and note 

that if p 
= q the walk is biased: E[zj ] 
= 0). 
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x + wx − w x 
Figure 7.1 Depiction of particles undergoing a random walk on the line with general 

step-size w. 

The random walk model has the advantage of simplicity, but space is not a 

lattice, so we want continuous analogs for this analysis of random walks. To 

get a continuous model we will scale down the increments of time and distance 

to 0 in such a way that the distribution of particle locations approaches a limit. 
Specifically, we suppose that a move of length w to the left or right can occur every 

h units of time, with p ≤ 1/2 being the probability of a move in each direction, 
see Figure 7.1. The Gaussian approximation [7.3b] tell us how w and h should be 

related to each other, in order to reach a limit: the variance in a particle’s location 

at time t has to remain the same. The number of steps up to time t is n = t /h so 

the variance is 

22pw2n = 2pw /h × t = 2Dt [7.4] 

where we have defined D = pw2/h. Thus, we rescale so that D remains constant 
(or at least approaches a limiting value as w, h → 0). 

We also consider the overall behavior of a large number of particles, obeying the 

same random walk model but moving independently of each other. Let C(x, t)w 

be the number of particles in the interval centered on x (between the dashed 

vertical lines surrounding x in Figure 7.1); thus C(x, t) is the “concentration at 
x” at time t , the number of particles per unit area. As a result of the moves that 
occur between t and t + h we then have 

C(x, t + h)w = C(x, t)w − 2pC(x, t)w + p[C(x − w, t )w + C(x + w, t)w]. [7.5] 

That is, the number in the interval at time t + h is the number there at time t , 
minus those who leave, plus those who move in. The expressions in [7.5] for 

the numbers of moving particles are really the expected number (total number 

of particles × the probability of a move); by ignoring deviations from the ex-
pected number we are tacitly assuming that there are “many” particles in each 

compartment, even when C is small. 
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Now we do Taylor series expansions of C in space and time, 

∂C
(a) C(x, t + h) − C(x, t) = (x, t)h + O(h2)

∂t 

∂2C
(b) C(x + w, t) − C(x, t ) = 

∂C 
(x, t)w + 

∂x2 
(x, t) 

w2 

+ O(w3) [7.6] 
∂x 2 

∂C ∂2 C (−w)2 

(c) C(x − w, t ) − C(x, t) = (x, t)(−w) + 
∂x2 

(x, t ) + O(w3).
∂x 2 

Equation [7.5] says that (a) = p × [(b) + (c)]. Expressing this in terms of the right-
hand sides of [7.6], we get that 

∂C 

∂x2 
(x, t ) + O(w3(x, t )h + O(h2 ) = pw2 ∂

2 C 
).

∂t 

Rearranging, and recalling that pw2/h = D, we get  

∂C ∂2C 
(x, t ) + O(h) = D 

∂x2 
(x, t) + O(w3/h).

∂t 

Finally we let h, w → 0 with D = pw2/h constant. Since w3/h = Dw/p, the O(w3/h) 

term goes to 0, and we get the diffusion equation 

∂C ∂2C 
(x, t ) = D 

∂x2 
(x, t). [7.7]

∂t 

This equation is a continuous description of the law of diffusion for particles 

undergoing Brownian motion on the line. To relate this back to the random walk 

model, consider the situation where there is a single particle (so the integral of 
C over space is equal to 1 at all times), starting at location 0. A direct calculation 

shows that 

−x21 
)1/2 

p(x, t) = exp [7.8]
4π Dt 4Dt 

is a solution to [7.7] with these properties. This is the formula for a Gaussian 

distribution with mean zero and variance 2Dt , which is exactly the Gaussian 

approximation for the underlying random walk model. 
In the plane, the corresponding equation for the concentrations C(x, y, t) of 

Brownian motion particles is 

∂C 
( 

∂2C ∂2C = D + 
∂y2 

. [7.9]
∂t ∂x2 

The simple form of this equation results from the fact that motion in the vertical 
direction is independent of the motion in the horizontal direction. Similar to 

our one-dimensional equation, this can be derived by dividing the plane up into 

squares of side w, writing the balance equation for the numbers of particles mov-
ing into and out of each box, and scaling space and time in a way that preserves 

a Gaussian approximation for the distribution of individual particles. 
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To reach these simple equations we have made the heroic assumptions that 
particles take steps of fixed size, at fixed time intervals. Nonetheless, there is 

considerable experimental evidence supporting these equations as a quantita-
tively accurate description of Brownian diffusion. One reason for this is that our 

assumptions can actually be relaxed considerably—for example, by allowing par-
ticles to have a probability distribution of step lengths, that might correspond 

to the free path of a Brownian particle between one collision and the next, or 

the flight distance of an insect moving from one flower to another in a field. In 

that case, the simple diffusion equation emerges as the leading-order terms in 

an expansion involving higher-order derivatives in space (e.g., Goel and Richter-
Dyn 1974), so long as conditions are homogeneous in space. A second reason 

is the central limit theorem, which yields a Gaussian approximation depending 

only on the mean and variance of the displacements in each unit of time, and 

how displacements in successive time intervals are correlated with each other. 
Over a macroscopic time span long enough that many steps occur, any “micro-
scopic” model that gets these ingredients right, necessarily leads to the same 

approximate Gaussian distribution for the long-term distribution, and hence to 

the same partial differential equation for the concentration profile of many such 

particles. Thus, the long-term spread of some animal populations is described 

well by a simple two-dimensional diffusion model, even though the underlying 

assumptions about individual movement steps are rarely satisfied (Turchin 1998). 
However, the diffusion model fails when animals exhibit distinct short-range and 

long-range movement behaviors, so that the macroscopic displacements on the 

time scale of interest may result in part from a small number of large moves, 
leading to non-Gaussian patterns of spread. A third, related reason is that the 

diffusion equation can be derived from macroscopic-level properties. In partic-
ular the same balance equation [7.5] results from Fick’s Law of Diffusion, which 

asserts that the rate of material flux across a surface (e.g., the dashed vertical lines 

in Figure 7.1) is proportional to the concentration gradient across the surface (see, 
e.g., Berg 1983 or Edelstein-Keshet 1988 for a derivation of the diffusion equation 

from Fick’s Law). So any microscopic model which implies Fick’s Law will again 

yield the same diffusion equation. 
Boundary conditions are an important ingredient in obtaining a well-posed ini-

tial value problem for the diffusion equation. If our particles are random-walking 

within a bounded interval I on the line, or a bounded spatial area A in the plane, 
the diffusion equation does not specify what happens when particles reach the 

boundary. Additional boundary conditions must be imposed for there to be a 

unique solution to the diffusion equation. The appropriate boundary conditions 

reflect properties of the biological system being modeled. Two common bound-
ary conditions are no flux, and constant concentration (in time). No-flux bound-
ary conditions correspond to a situation where particles cannot move across the 

boundary. The equations describing this are that the directional derivative of the 
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concentration, in the direction perpendicular to the boundary, is identically 0. 
In the case of an interval I = [a, b] on the line, no-flux boundary conditions are 

simply 

∂C 
(x, t ) ≡ 0 at  x = a and x = b. 

∂x 

Constant boundary conditions arise when the concentration at the boundary 

is fixed by external conditions. For example, the region of interest may be im-
mersed in a large reservoir of fluid which is well mixed and maintains a constant 
concentration. Particles can move across the boundary, but the external reser-
voir is so large that there is no significant change in its concentration of particles 

due to this movement. For example, the ion fluxes of membrane currents can 

be small enough that they make little change in intracellular or extracellular 

concentrations of the ions. 
In the absence of spatial variation in concentrations, systems of equations for 

chemical reactions have the form 

ċi = fi(c1, . . . , ck ). 

Here ci is the concentration of species i, there are k species altogether and the fi 

give the rate of change of ci due to chemical reactions. A reaction-diffusion model 
assumes that chemical concentrations may vary in space, and that the changes in 

chemical concentrations at a given location come from both chemical reactions 

and diffusion. In two space dimensions the model is 

∂ci ∂2 ci ∂2 c = fi (c1, . . . , ck ) + Di 
∂x2 

+ 
∂y2 

[7.10]
∂t 

where each ci is a function of (x, y, t). 

7.2 The Turing Mechanism 

Diffusion is a force that acts to homogenize concentrations. An initial distribu-
tion of concentrations will evolve to a spatially uniform state if diffusion is the 

only force acting on a substance and the boundary conditions are compatible 

with constant concentration in the interior of a domain. Therefore, it is surpris-
ing that instability of a reaction-diffusion system can give rise to spatial pattern 

for initial concentrations that are close to a stable equilibrium of the reaction sys-
tem alone. Intuition says that diffusion should make things spatially smoother 

and more stable. The discovery that diffusion can destabilize an otherwise sta-
ble equilibrium was made by Alan Turing in 1952. We give one version of his 

argument here. 
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The systems we will consider are reaction-diffusion equations for a pair of chem-
ical species on the unit circle. The circle is used as a domain because it is one 

dimensional, compact, and has no boundary. We further assume that the kinetic 

equations for the chemical reactions have a stable steady state and have been 

linearized about that state. Letting u1(x, t) and u2(x, t ) represent the departures of 
the chemical concentrations from their steady-state values, we obtain equations 

of the form 

∂u1 ∂2 u1
= a11u1 + a12u2 + D1 
∂x2
∂t 

[7.11] 
∂u2 ∂2 u2
= a21u1 + a22 u2 + D2 

∂x2
∂t 

for the linearized system. Here x is the angular coordinate along the circle and the 

ui satisfy periodic boundary conditions ui(x + 2π , t ) = ui(x, t) since ui is a function 

on the circle. 
Now u1(x, t) = u2(x, t) ≡ 0 is a solution of this system that represents the ho-

mogeneous steady-state concentrations. We want to investigate the stability of 
this steady state, looking for instabilities of the homogeneous steady state that 
give rise to spatial patterns. This is more difficult than studying the stability of 
equilibria for ordinary differential equations because the state of the system at 
each time is a pair of functions (u1(x), u2(x)) describing the spatial distribution 

of concentrations. We can think of the set of possible concentration functions 

(u1(x), u2(x)) as forming an infinite dimensional phase space space and the par-
tial differential equations [7.11] as defining a vector field on this phase space. 
Theorems about existence and uniqueness of solutions are more complicated in 

this infinite-dimensional context, but we plunge ahead anyway. 
The equations are linear, so we seek solutions constructed from the eigenvalues 

and eigenvectors of the right-hand side of the equations. Since the states of the 

system are functions, the eigenvectors of this problem are called eigenfunctions. 
To find eigenfunctions, we utilize the fact that 

d2 sin(nx) = −n2 sin(nx).
dx2 

Of course, a similar formula holds for cos(nx). Substituting 

(w1(t) sin(nx), w2 (t) sin(nx)) = (u1(x, t), u2 (x, t)) 

into the reaction diffusion equation gives 

dwi sin(nx) = (ai1w1 + ai2 w2 − n2Diwi (t )) sin(nx)
dt 

for i = 1, 2. We conclude that the functions whose spatial dependence is sin(nx) 

comprise a two-dimensional space that is invariant: solutions with initial con-
ditions in this space stay in the space. Dividing the last equations by sin(nx) 

removes the x dependence and leaves us with the pair of linear differential equa-
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tions 

dw1
 = a11w1 + a12 w2 − n2D1w1
dt 
[7.12] 

dw2
 = a21w1 + a22 w2 − n2D2w2
dt 

for the coefficients w1(t), w2(t) of spatial patterns whose spatial dependence 

is sin(nx). If the origin is a stable equilibrium of this system, then initial 
conditions will decay to the zero solution. On the other hand, if the ori-
gin is an unstable equilibrium then nonzero initial conditions of the form 

(w1(0) sin(nx), w2(0) sin(nx)) yield solutions of [7.11] that grow in amplitude. 
The matrix of equation [7.12] is 

a11 − n2D1 a12A(n) = . [7.13] 
a21 a22 − n2 D2 

Note that n = 0 gives the matrix for homogeneous perturbations to the zero solu-
tion of [7.11] and corresponds to the stability of the steady state for the reaction 

equations with no diffusion. 
Spatial patterns will arise if the spatially homogeneous steady state is stable 

against spatially homogeneous perturbations (n = 0), but is unstable against some 

spatially inhomogeneous perturbations (n > 0). Our goal, therefore, is to analyze 

[7.13] to determine when this situation can occur. 
There will be stability against homogeneous perturbations if all eigenvalues of 

A(0) have negative real part. That is, we must have 

a11a22 − a12 a21 > 0 (positive determinant) and a11 + a22 < 0 (negative trace). 

We next seek a value of n with A(n) having an eigenvalue with positive real part. 
The trace of A(n) is a11 + a22 − n2(D1 + D2) which decreases with n. So the trace 

of A(n) is negative for all n. Thus the only way to create a matrix with positive 

eigenvalue is to have the determinant become negative: 

2a11a22 − a12 a21 − n (D1a22 + D2a11) + n4D1 D2 < 0. 

If D1 = D2, this too is impossible because a11 + a22 < 0 and the determinant in-
creases with n. However, Turing observed that with diffusion constants D1 and 

D2 that differ, the determinant may become negative for positive values of n. For 

example, if we set a11 = 1, a12 = −6, a21 = 1, a22 = −4, D1 = 0.5, D2 = 10, and 

n = 1, then 

0.5 −6 
A(1) = ,


1 −14


which has determinant −1 but a11a22 − a12a21 = 2 > 0 and a11 + a22 = −3 < 0. 
It is easily seen that the signs of the reaction coefficients a11 and a22 must be 

opposite in any example of the Turing mechanism. This example demonstrates 
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that diffusion can destabilize a homogeneous stable steady state for a system of 
chemical reactions. 

These observations on the conditions required for the Turing mechanism are 

the starting point for a class of reaction-diffusion models based upon local activa-
tion and long-range inhibition, introduced by Gierer and Meinhardt in 1972. The 

“activator” u1 is a substance for which deviations from its equilibrium state will be 

amplified in the absence of diffusion or coupling to the inhibitor, that is, a11 > 0. 
This is usually referred to as autocatalysis or positive feedback. The inhibitor re-
turns to equilibrium when perturbed, and the requirement that a11 + a22 < 0 

implies that it is “stronger” than the activator; that is, the exponential rate at 
which it returns to equilibrium is faster than the activator grows. In order for 

D1a22 + D2a11 > 0, we must have D2 > D1: the rate of diffusion of the inhibitor 

must be larger than the rate of diffusion of the activator. Finally, to have sta-
bility of the homogeneous steady state, we required a11a22 − a12a21 > 0. Since 

a11a22 < 0, this implies also that a12a21 < 0. For this we assume that the activator 

stimulates production of the inhibitor (a21 > 0) and that the inhibitor limits the 

production of the activator (a12 < 0). The combination of fast diffusion of the 

inhibitor together with its effect on limiting production of activator is termed lat-
eral inhibition. A large region of activator will stimulate production of inhibitor 

that diffuses and reduces production of inhibitor. In the appropriate circum-
stances, this leads to a nonuniform distribution of activator with local peaks that 
are small enough to be in balance with the inhibitor whose production they stim-
ulate nearby. The Gierer-Meinhardt model and its followers are nonlinear models 

that satisfy these conditions, with nonlinearities that prevent unbounded growth 

of the concentrations of activator and inhibitor. 

7.3 Pattern Selection: Steady Patterns 

The Turing argument does not help much to understand which spatial patterns 

will emerge when diffusion together with chemical reactions destabilizes a homo-
geneous steady state of concentrations. Leopards have spots, zebras have stripes 

and there is a profusion of intricate patterns on butterfly wings. Figures 7.2 and 

7.3 show examples of these patterns. We can hypothesize that the leopard got 
its spots from a reaction-diffusion mechanism. More specifically, we want to 

know which patterns are produced by which reaction-diffusion systems. This 

information is helpful in investigations of the biological mechanisms underly-
ing animal coat patterns and the differentiation of tissues that takes place during 

development of an organism. From a mathematical perspective, our entry point 
is to regard the reaction-diffusion system [7.10] as a dynamical system and seek 

to extend the concepts for analyzing dynamical systems to spatially extended sys-
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Figure 7.2 An example of animal coat patterns: the eastern chipmunk, Tamias striatus. (Photograph 

©Marie Read, used with permission.) 

tems in which spatial pattern and time varying dynamics can interact with one 

another. Since we have not discussed them, we focus on the patterns themselves 

first. 
Equilibrium solutions of the reaction-diffusion system [7.10] satisfy the equa-

tions 

∂2 ciDi 
∂x

c
2 

i + 
∂2

= fi (c1, . . . , ck ) [7.14]
∂y2 

together with the boundary conditions that were imposed for [7.10]. This is still 
a system of partial differential equations which may have many solutions. We 

ask how many solutions there are and how they depend upon the Di, fi, and the 

boundary conditions. Once the solutions to [7.14] have been determined, we 

can examine their stability as solutions of the system [7.10] which includes time 

dependence. Similar questions arise in many physical problems, and there is an 

extensive body of mathematics that has been created to help us solve systems of 
partial differential equations like [7.14]. We draw upon this mathematics to help 

us get started. 
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Figure 7.3 An example of insect color patterns: two bee-

tles from the genus Anoplophora with different patterns. 

Left: Anoplophora medenbachii (Ritsema), female, from Java, 

Indonesia. Right: Anoplophora mamaua (Schultze), male, 

from Mindoro Island, Phillipines. (Photographs by Kent 

Loeffler, Department of Plant Pathology, Cornell Univer-

sity. From W. Lingafelter and E. R. Hoebeke. 2002. Re-

vision of Anoplophora (Coleoptera: Cerambycidae). Ento-

mological Society of Washington, Washington, D.C. Used 

with permission.) 

The simplest version of the boundary value problems that we seek to solve is a 

single, linear equation in one dimension with zero boundary conditions: 

d2u −D + au = 0
dx2 

[7.15] 

u(0) = U (L) = 0. 

u(x) ≡ 0, the function that is identically zero, is always a solution of this equa-
tion. We are interested in finding additional solutions that would represent a 

spatial pattern. If a > 0, then the solutions of the equation Dd2u/dx2 + au = 0 are 

trigonometric functions of the form u(x) = c1 cos( a/Dx) + c2 sin( a/Dx). To see 

whether this u satisfies the boundary conditions of [7.15], we evaluate u(0) = c1 

and u(L) = c1 cos( a/DL) + c2 sin( a/DL). Thus the boundary conditions are 

satisfied if c1 = 0 and c2 sin( a/DL) = 0. If a/DL is an integer multiple of π , 
sin( a/DL) = 0 and the boundary condition at L is satisfied for all values of c2. If  

aL2 = (nπ)2, then the nonzero solutions of the equation have n − 1 zeros in the 

interior of the interval [0, L]. 



January 18, 2006 16:07 m26-main Sheet number 251 Page number 229

√ 

√ 

√ 

( ) 

229 Spatial Patterns in Biology 

Exercise 7.2. Show that if a < 0, then the solutions of the equation Dd2u/dx2 + au = 

0 are sums of exponential functions, and the only solutions of the boundary value 

problem [7.15] is the zero function. 

To interpret the implications of this equation, we can regard either a or L as a 

parameter that varies. For example, if we are interested in a developing organ-
ism that is growing and there is diffusion reaction process governed by equation 

[7.15], then when the organism reaches a critical length L = nπ/ a/D, this pro-
cess could produce a “segmented” spatial pattern with n segments. However, the 

model [7.15] seems deficient in two respects: (1) the pattern appears only at the 

critical lengths L = nπ/ a/D and then disappears again at longer lengths, and 

(2) the amplitude of the pattern is not determined. 
To “improve” model [7.15], we consider a slight change that makes it nonlinear: 

d2u
D + au − u3 = 0

dx2 
[7.16] 

u(0) = u(L) = 0. 

The term u3 added to the differential equation is nonlinear. It serves to limit the 

growth of u due to the reaction terms of the system. Despite the nonlinearity, 
we can still analyze properties of the system [7.16] by viewing the differential 
equation as a dynamical system. To do so, we introduce another dependent 
variable v that represents du/dx and consider the vector field 

du = v
dx 

[7.17] 
dv −au + u3 

= .
dx D 

Solutions u(x) of the equation Dd2u/dx2 + au − u3 = 0 correspond exactly to so-
lutions (u(x), v(x)) of [7.17] with v = du/dx. The variable x plays the role of the 

“time” variable in the dynamical system [7.17]. For a > 0, the vector field [7.17] √ √ 
has three equilibrium points at u = −  a, 0,  a and v = 0. The eigenvalues of the 

equilibrium at the origin are purely imaginary: ± a/Di. The key to understand-
ing the phase portrait of system [7.17] is that the function 

1 4E(u, v) = 
1 

v2 + 
a

u2 − u
2 2D 4D 

is constant on trajectories.1 The level sets of E surrounding the origin are closed 

curves, so there is a family of trajectories that are periodic orbits. See Figure 7.4. 
To solve the boundary value problem [7.16], we want to pick out trajectories that 

1To prove this, use the chain rule to differentiate E with respect to x: 

dE ∂E du ∂E dv 
( 

a 1 3 

) −au + u3 

= + = u − u v + v = 0.
dx ∂u dx ∂v dx D D D 
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Figure 7.4 Trajectories of the vector field [7.17] are level curves of the function

E(u, v) = (1/2)v2 + (a/2D)u2 − (1/4D)u4.

have u = 0 at times 0 and L. Due to the symmetry of the equation, this will
happen if there is an integer n so that the periodic orbit has period 2L/n. A cal-
culation with elliptic functions implies that the periods of the periodic orbits grow
as their amplitude grows. The range of values for the periods is from 2π/

√
a/D,

the value determined by the eigenvalues at the origin, to ∞, the value obtained
as the periodic orbits approach the saddle equilibria. This implies that each time
L = nπ/

√
a/D, a new solution will emerge at the origin and grow in amplitude.

Thus, the number of solutions increases as L increases. Our analysis does not
address the more difficult question of which of these solutions (if any) is stable
as an equilibrium of the reaction-diffusion system [7.10], but it does limit the
possible steady patterns.

Exercise 7.3. This exercise uses calculus to show that the period E of the solutions to
[7.17] increases with amplitude. The periodic solutions lie along the curves (1/2)v2 +
(a/2D)u2 − (1/4D)u4 = c. A more convenient parametrization is to write

2c = ab2

D
− b4

2D

where b is the value of |u| at its intersection with the u-axis. Solving for v along this
curve,

v = ±
√

a
D

(b2 − u2) − 1
2D

(b4 − u4).

Substituting this expression into du/dx = v , we obtain

du
dx

= ±
√

a
D

(b2 − u2) − 1
2D

(b4 − u4).



January 18, 2006 16:07 m26-main Sheet number 253 Page number 231

( ) 

231 

0 

Spatial Patterns in Biology 

After a half-period E/2 beginning at the point (u, v ) = ( − b, 0), the solution reaches 

the point (u, v ) = (b, 0). The fundamental theorem of calculus then gives ∫ E/2 du
2b = dx

dx 

as an integral formula for determining the value of E(b). 

•	 Apply a change of variables x = bw to “normalize” the domain of u to [−1, 1] in the 

formula for E. 

•	 Differentiate the normalized integral with respect to b to conclude that the period E 

increases with b. 

We turn next to the steady spatial patterns produced by solving system [7.14] 
when diffusion is taking place in a two-dimensional region. The Turing mecha-
nism postulates that the geometry of these solutions determines the spatial pat-
terns observed in developing organisms. This hypothesis can be studied in the 

context of patterns on the coats of animals like zebras, giraffes and leopards and 

on the wings of butterflies. The principal biological task in verifying the hy-
pothesis is to identify the diffusible morphogens. This quest has been pursued 

for decades, but has been given a large boost during the past twenty years by 

genomic techniques. 
When the amplitude of the solutions to equation [7.16] is small, these solutions 

are almost sinusoidal. This is no accident. Linearization of the equation around 

the trivial solution leads back to system [7.15]. With two space dimensions the 

corresponding problem is 

∂2 u ∂2u
D + + au = 0	 [7.18]

∂x2 ∂y2 

with boundary conditions u = 0 along a curve that bounds a region R in the 

plane. As in the system [7.15], there will be specific values of a for which there 

are nonzero solutions. The Turing mechanism postulates that the geometry of 
these solutions determines the spatial patterns observed in developing organisms. 
This prompts us to ask how the solutions of this eigenvalue problem depend 

upon the shape of the region R. We resort to numerical methods to solve [7.18] 
on arbitrary domains, but there do not appear to be any simple answers as to how 

the solutions depend upon the boundary as was the case for the one-dimensional 
problem. 

The Turing hypothesis is very attractive, but is it correct? Decades of research 

have given rise to a large body of information without producing a simple yes 

or no answer. As always, biology is complicated. The organism that has been 

and continues to be studied the most intensively is the fruit fly Drosophila. The 

development of the segmentation pattern on the abdomen with its bristles and 

the development of the wing of Drosophila have been studied intensively using 

genetic techniques (Gurdon and Bourillot 2001). One of the key concepts in 
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Turing’s hypothesis is the presence of morphogens whose concentration gradi-
ents control the development of specific structures in the organism. Morphogens 

for Drosophila development have been identified conclusively using genetic tech-
niques, along with signaling pathways for their genetic expression and pathways 

that are “activated” by the morphogens. Identification of these morphogens 

took a very long time because they are proteins that are active at extremely low 

concentrations of 10−11 to 10−9 M. Spatial patterns of morphogen concentration 

are difficult to measure, but appear correlated with the structures they induce 

as predicted by Turing’s hypothesis. The morphogens bind to receptors on the 

surfaces of cells and lead to gene expression through a signaling cascade triggered 

by the surface binding events. Thus, the cellular response to morphogen concen-
tration is complex with many steps that can interact, each potentially affecting 

the outcome of the developmental fate of a cell. 
The second aspect of the Turing hypothesis is that the mechanism for the 

transport of morphogens is diffusion. Here the evidence suggests that diffusion 

is hardly the only transport mechanism. Proteins are large molecules that dif-
fuse slowly, and at the extremely low concentrations of the morphogens, the 

force of diffusion is small. Moreover, the rates of diffusion are affected by other 

factors than the morphogen concentration. For example, the Hedgehog protein 

is a morphogen in Drosophila that is modified after translation by cleavage and 

then covalent linking with cholesterol. These variant forms of Hedgehog have 

very different diffusion rates in the extracellular matrix of the Drosophila embryo 

(Strigini and Cohen 1999). In addition to diffusion, modes of active transport 
and “relay” mechanisms that involve repeated secretion and internalization of 
morphogens from cell to cell seem to be present in some systems. Thus, Turing 

mechanisms for pattern formation appear more complicated than the simplest 
reaction-diffusion models in that the morphogens act by triggering whole sig-
naling pathways, and diffusion may be augmented by more “active” transport 
processes. Nonetheless, one can ask whether observed developmental patterns 

match solutions of reaction-diffusion equations. In some cases, the answer is 

yes; for example, in butterfly eyespots (Monteiro et al. 2001). Dynamical mod-
els will be a useful tool in unraveling additional details about morphogenesis in 

developing organisms. 

7.4 Moving Patterns: Chemical Waves and Heartbeats 

Thus far we have considered equilibrium solutions of reaction-diffusion systems. 
These are by no means the only solutions, or the only ones that are important in 

biological systems. For example, propagation of action potentials along nerves 

is a reaction-diffusion process that is essential to the function of the nervous 
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system. The complex anatomy of biological systems gives rise to diffusion in 

one-dimensional fibers, two-dimensional sheets, or three-dimensional volumes. 
Visualizing time-dependent phenomena in three-dimensional tissue is a chal-
lenge, so most of the time-dependent spatial patterns that have been studied are 

two-dimensional patterns on surfaces. The example we discuss here is electrical 
stimulation of the heartbeat, a vitally important part of our lives. Failure of a 

coordinated heartbeat leads to death within a matter of minutes. Our hearts are 

thick enough that this is a three-dimensional process, but we treat the problem 

as two dimensional as do most studies of spatial patterns of electrical activity in 

the heart. This section gives a glimpse of the mathematics used to study time-
dependent solutions of reaction-diffusion systems, pointing to references that go 

farther. Throughout the section we work with reaction-diffusion systems in two 

space dimensions. 
The simplest types of time-dependent solution to reaction-diffusion systems are 

called traveling waves. These are solutions in which the time dependence takes the 

form of a fixed spatial pattern translating in time. If one introduces a coordinate 

system that translates with the pattern, then the solution of the reaction-diffusion 

system appears steady in this coordinate system. Analytically, planar traveling 

waves solve ordinary differential equations that are derived from the reaction-
diffusion system in the following way. The orientation of the traveling wave is 

given by a wave vector (kx, ky ) that specifies the normal direction to the lines on 

which the solution is constant. We denote the wave speed by s. The special form of 
the traveling wave solution is then expressed by stating that the concentrations 

ci(x, y, t) are functions of the scalar variable ξ = kxx + kyy − st . More formally, 
there are functions c̄i such that ci(x, y, t) = c̄i(kxx + kyy − st) = c̄i(ξ) is a solution 

of the equation [7.10]. If we substitute c̄i into [7.10], then we obtain a system 

of ordinary differential equations with independent variable ξ . Using the chain 

rule, we find 

∂ci dξ dc̄i dc̄i ∂ci dc̄i ∂ci dc̄i = = −s ; = kx ; = ky . 
∂t dt dξ dξ ∂x dξ ∂y dξ 

Therefore 

d2 ̄ 

fi (c1, . . . , ck ) + Di (k2 + ky 

2 ) 
dξ

c
2 

i + s
dc̄i = 0.
x dξ 

This is a second-order ordinary differential equation that is converted into a vec-
tor field by introducing additional dependent variables for dc̄i/dξ . 

The geometry of traveling waves is determined by their dependence upon the 

single independent variable ξ . In  (x, y, t) “space-time,” the level surfaces of the 

ξ are planes whose normal vector is (kx, ky , −s). A train of water waves is a good 

example to help us visualize the behavior of traveling waves. The crests and 

troughs of the wave are perpendicular to the vector (kx, ky ) at all times, and they 

move at a speed s in the direction of this vector. Although traveling waves are 
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observed in many phenomena, the boundary conditions of physical models are 

seldom compatible with traveling-wave solutions. Typically, the waves will be 

deformed near the domain boundary to “match” the constraints imposed by the 

boundary conditions with the propensity of the medium to support traveling 

waves. 

Exercise 7.4. Consider the linear system of reaction diffusion equations 

∂c1 ∂2c1 ∂2c1 = d + + ac1 − bc2dt ∂x2 ∂y 2 

∂c2 ∂2 c2 ∂2c2 = d + + bc1 + ac2 .dt ∂x2 ∂y 2 

When does this system have traveling wave solutions of the form 

c1(x, t) = cos (kxx − st) 

c2(x, t) = sin (kxx − st)? 

When these solutions exist, find a formula for traveling-wave solutions whose wave 

vector is parallel to (kx , ky ). 

Planar traveling waves have a space-time symmetry: the wave profiles at differ-
ent times are translations of each other. We exploit this symmetry to reduce the 

partial differential equation to an ordinary differential equation when comput-
ing the shape of a traveling wave. There are additional mathematical reasons to 

expect that stable time-dependent solutions of reaction-diffusion systems might 
have symmetries, and we can search for solutions that have different types of sym-
metries than traveling waves. Such patterns were first observed in experiments 

with thin layers of a chemically reacting fluid. Two striking types of solutions 

with rotational symmetries, target patterns and spiral waves, are produced by the 

oscillating Belousov-Zhabotinsky (BZ) chemical reaction. Oscillating chemical re-
actions have been known for about a century (e.g., Bray 1921), but they have 

been seen as a chemical curiosity at best for much of that period. The laws of 
thermodynamics tell us that a closed system of reactions eventually comes to 

equilibrium, just as friction eventually brings a mechanical system that is not 
acted upon by external forces to rest. Nonetheless, reactions can oscillate for 

a long time and reactors which receive a steady inflow of reactants can sustain 

oscillations indefinitely. Epstein and Showalter (1996) survey different types of 
spatio-temporal phenomena in varied chemical oscillators. The system that has 

been studied most extensively is the BZ reaction. It was discovered by Belousov 

in 1951, but his colleagues were skeptical of his work and widespread awareness 

of his work came only much later [see the account by Winfree (1987)]. The BZ 

reaction itself involves oxidation of malonic or citric acid by bromate ions, cat-
alyzed by cerium. Addition of an indicator dye to the medium shows the different 
phases of the reaction as vivid color changes. When the reaction takes place in 



January 18, 2006 16:07 m26-main Sheet number 257 Page number 235

235 Spatial Patterns in Biology 

Figure 7.5 Spiral patterns of the BZ reaction (Reprinted with permission from A. T. Win-

free, S. Caudle, G. Chen, P. McGuire, and Z. Szilagyi, Chaos 6: 617 (1996). Copyright 

1996, American Institute of Physics). 

a thin layer, it is capable of displaying striking spatial patterns like those shown 

in Figure 7.5. The pattern shown in this figure separates into domains, in each 

of which a spiral pattern rotates around a “core” at its center, typically with a 

period on the order of a minute. Target patterns are time-dependent structures 

in which circular waves propagate radially from a center. 
The spatial patterns produced by the BZ system have been studied extensively 

in the laboratory. There has been a lively interaction between experiment, the-
ory, and simulation surrounding this fascinating system (Field and Burger 1985). 
Some of the research has sought to construct good dynamical models for the 

BZ reaction. Producing models that agree quantitatively with the observations 

has proved to be difficult, despite the fact that the molecules participating in 

the reaction are small. Another aspect of the research has been to investigate 

carefully the spatial patterns formed by the BZ reaction and to study their stabil-
ity. This research draws heavily upon the roles of both topology and symmetry 

in dynamical systems. Spiral waves have the property that they look steady in 

a rotating coordinate system that rotates with the angular velocity of the waves. 
However, unlike traveling waves, one cannot reduce the equations describing spi-
ral waves to ordinary differential equations. Thus, research on spiral waves has 

depended heavily upon numerical simulations of partial differential equations, 
especially simpler model systems exhibiting spiral waves than those describing 
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the detailed kinetics of the BZ reaction or the electrical excitability of the heart. 
Dwight Barkley has written a freely distributed computer code, ez-spiral, for 

the reaction-diffusion system 

∂u ∂2u ∂2u v + b 
) 

= + + ε−1u(1 − u) u − 
∂t ∂x2 ∂y2 a 

[7.19] 
∂v ∂2 v ∂2 v = Dv + + u − v 
∂t ∂x2 ∂y2 

which serves as such a model system. 

Exercise 7.5. Download the program ezspiral and experiment with the patterns 

that it produces. Alternatively, implement your own program of this type. Imple-
mentation requires that the spatial derivatives of the reaction-diffusion system be 

discretized. The simplest discretizations are given by the finite-difference formulas 

∂u u(x, y , t + h) − u(x, y , t)
(x, y , t) ≈ 

∂t h 

∂v v (x, y , t + h) − v (x, y , t)
(x, y , t) ≈ 

∂t h 

∂2u 

∂x2
(x, y , t) ≈ 

(∂u/∂x)(x, y , t) − (∂u/∂x)(x − k, y )

h


u(x + k, y , t) − u(x, y , t) − (u(x, y , t) − u(x − k, y , t))≈ 
k2 

∂2u 

∂y 2
(x, y , t) ≈ 

(∂u/∂y )(x, y , t) − (∂u/∂y )(x, y − k, t)

k


u(x, y + k, t) − u(x, y , t) − (u(x, y , t) − u(x, y − k, t))≈ 
k2 

. 

Here h is the time-step of the method and k is the spacing of points in a regular 
rectangular mesh used to represent the spatial domain. Simulation of the model 
requires boundary conditions as well, and these can be difficult to implement for 
domains with irregular boundaries. Ezspiral uses periodic or no-flux boundary 

conditions in a rectangular domain. The periodic boundary conditions are easiest to 

implement and correspond to solve the system on a two-dimensional torus that has 

no boundary. If we ignore arteries and veins, the surface of the heart itself can be 

regarded as having the topology of a two-dimensional sphere without boundary, but 
it is harder to discretize the spatial derivatives of the reaction-diffusion equation on 

a sphere. No flux boundary conditions can be implemented simply and efficiently 

with a trick. The flux of u flowing between two adjacent sites at (x, y ) and (x − k, y ) is  

given by u(x, y ) − u(x − k, y ). To implement no-flux boundary conditions, we extend 

the computational domain by adding another row of points to each edge of the 

boundary. We then assign values to u and v on these extra rows to be equal to those 
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on the adjacent site inside the domain. This allows us to use the formulas above to 

compute the spatial derivatives at grid points in the domain along the boundary, and 

the values that we compute implement the no-flux boundary conditions. 

The insights derived from studies of the spatial patterns produced by the BZ 

reaction have been applied to biological systems, notably by Winfree’s theory 

of ventricular fibrillation in the heart (Winfree 1987). Strong contractions of 
the ventricles provide the main force for pumping the blood through the lungs 

and body. Contractions of the heart muscle are triggered by action potentials 

that propagate by a reaction-diffusion process in a coordinated traveling wave. 
The action potentials are initiated at the sinoatrial node on the right atrium, 
spread across the atria to the atrioventricular node, and then spread through the 

ventricles along the system of Purkinje fibers. Myocardial tissue does not oscillate 

without stimulation, but fires action potentials in response to a small stimulation. 
Each spreading wave of electrical excitation is analogous to a grass fire: a fire front 
propagates through the grass as one burning patch of grass ignites its neighbors. 
However, the action potentials in the heart are clearly different from grass fires 

in that the tissue recovers its ability to fire action potentials following a brief 
refractory period after an action potential. The pumping action of the heart 
depends on the spatial coherence of the action potential waves. 

Heart malfunction can be fatal within minutes or hours. Ventricular fibrillation 

is an immediately life-threatening cardiac arrhythmia in which the spatial pattern 

of electrical action potentials in the heart becomes more complex and disordered, 
prompting the heart muscle to quiver. Blood flow largely stops, leading to rapid 

death. Regulations in the United States now require that many public institutions 

such as schools and airports have electrical defibrillators available for use. These 

devices shock the heart in an attempt to synchronize action potentials and restore 

the normal spatial patterns of action potentials. Many scientists believe that 
ventricular fibrillation is preceded by the formation of spiral waves of action 

potentials in the heart. Witkowski et al. (1998) published a striking visualization 

of spiral waves in the heart. The frequency of the spiral waves is typically much 

higher than that of the normal heartbeat, a condition called tachycardia. Once 

spiral waves or ventricular fibrillation are established, the heart needs to be given a 

substantial shock in order to restore normal excitation and contraction. Winfree’s 

1987 book, When Time Breaks Down, is a lively, nontechnical introduction to these 

theories about ventricular fibrillation. 
Propagation of cardiac action potentials can be modeled by systems of equa-

tions that couple diffusion of ions to Hodgkin-Huxley-type models for the mem-
brane potential of cardiac cells. These equations have precisely the same form as 

reaction-diffusion systems, with gating equations for channels and an equation 

for the membrane potential replacing the chemical reactions in the system. Since 

the equations have the same form, the same methods can be used in their math-
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Figure 7.6 Map of spiral wave in the (x, y) plane into the (c1, c2) concentration plane. 

The dark core of the spiral in the (x, y) plane is mapped into the shaded region in the 

(c1, c2 ) plane, stretching over the disk B. The boundary of the core is mapped onto 

the curve C bounding the shaded region, making one turn around B. All of the points 

outside the core are mapped into the annulus A. 

ematical analysis. To the extent that spatial patterns for these systems do not 
depend upon the details of their “kinetic” terms, we can gain insight into the 

spatial patterns of cardiac arrhythmias by studying reaction-diffusion systems. 
Since heart tissue is a difficult medium to work with, we draw inspiration from 

studies of the BZ reaction to guide investigations of the electrical activity of the 

heart. 
Winfree (1987) describes topological principles related to the spatial patterns 

formed by time-dependent solutions of reaction-diffusion equations, especially 

spiral waves. We shall discuss these principles in the setting of systems in which 

there are two chemical concentrations. At any time, the state of the system gives 

a map of the “spatial” (x, y) plane into the (c1, c2) “concentration” plane. Figure 

7.6 illustrates this map. Assume there is a spiral wave pattern in which there 

is a “core” disk outside of which the concentrations always lie in an annulus 

A contained in the concentration plane.2 The complement of an annulus has 

two components, one bounded and one unbounded. We denote the bounded 

component of the complement by B. Consider the concentration map on the 

boundary of the core disk. The image will be a curve C in the annulus A that 
returns to its starting point. The number of times that C winds around B is a 

topological property of C that does not change if C is continuously deformed. 
Consequently, if the solution evolves continuously as a spiral wave, the image 

of the concentration map outside the spiral core will continue to surround B the 

same number of times. Thus, spirals have a propensity to persist: very large per-

2An annulus is a region that can be continuously deformed into a region of the form 0 < a < x2 + y2 < b. 
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turbations are required to destroy them unless they are spontaneously unstable. 
Typically, instability of the spiral manifests itself in the emergence of more disor-
dered, complex patterns that are described as spiral turbulence. Spiral turbulence 

is widely regarded as a good model for ventricular fibrillation. These properties 

help explain why defibrillation is required to “restart” a normal sinus rhythm in 

a heart that is in ventricular fibrillation. They also help explain why a sudden 

shock like a sharp blow to the chest can sometimes trigger a normal heart to go 

into a state of fibrillation and cause sudden cardiac death. 
Retaining the terminology from the previous paragraph, topology also implies 

that if C winds around B a nonzero number of times, then the image of the core 

disk must contain all of B. The concentrations in the core of the spiral must be 

different from those found in the arms of the spiral. This precludes the possibil-
ity of developing models for the spiral core in terms of a single angular “phase 

variable” of concentration. Models with a single phase variable are frequently 

used to study the synchronization of coupled oscillators (Strogatz 2003), but we 

cannot model the core of spiral waves in this way. Similar arguments also explain 

why spirals in the BZ system are typically observed as counter-rotating pairs. The 

experimental methods that have been used to producing spirals in the BZ system 

begin with a disturbance in the interior of a homogeneous pattern. Following the 

disturbance, the net change of phase around the region of disturbance is zero. As 

spirals develop near the disturbance, the sum of the angular changes produced 

by their arms must still sum to zero. The simplest pattern that does this is a pair 

of counter-rotating spirals. 
The occurrence of spiral waves was surprising when they were first observed, but 

even more surprising were observations that show that the spiral cores are capable 

of coherent motions along flowerlike patterns that resemble those produced by 

a spirograph! See Figure 7.7. The shape of these meanders has been explained by 

Barkley as a result of the symmetries of the reaction-diffusion equations (Barkley 

1994). In addition to these meandering spirals, in other circumstances the spi-
rals become more unstable and degenerate into disordered patterns that have 

been described as spatio-temporal turbulence. Using Fitzhugh-Nagumo equations 

equivalent to those used in the ez spiral model [7.19], Winfree (1991) pro-
duced a diagram of spatio-temporal bifurcations of spirals in a reaction-diffusion 

system. He hypothesized that disordered patterns evolving from spiral waves are 

the root cause of ventricular fibrillation in the heart. 
As with the Turing mechanism for morphogenesis, we are faced with evaluating 

the validity of a theory based upon simple dynamical models. The spiral-wave 

theory of ventricular fibrillation proposes a mechanism for one of the leading 

causes of death: there are 300,000 people who die of sudden cardiac arrest in the 

United States yearly. The theory suggests that sudden cardiac death often results 

from the inability of the heart to pump blood when spiral waves become unstable. 
Clearly, we want not only a conceptual understanding of ventricular fibrillation 
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Figure 7.7 Meandering paths of spiral cores in simulations of a reaction-

diffusion system (from Winfree 1991). 

but also the means of preventing its occurrence. From a clinical perspective, 
research on ventricular fibrillation focuses on the breakdown of normal action 

potential propagation in the sinus rhythm. Two primary causes for block of ac-
tion potentials are (1) damage to heart tissue that prevents normal conduction of 
action potentials and (2) changes in cellular properties that lead to abnormally 

long action potential durations and inadequate time to recover from a refractory 

period for a normal rhythm. For example, Fox et al. (2002) observed that period-
doubling bifurcations in the chemical kinetics seem to lead to instability of wave 

propagation. Spiral waves and scroll waves (Winfree and Strogatz 1983; Keener 

1989), their three-dimensional counterparts, lead to ventral tachycardia, degrad-
ing the ability of the heart tissue to recover from its refractory period to keep 

up with the pacing from the wave core. Damaged tissue can give rise to dead re-
gions around which spiral-like waves of action potentials can propagate. Winfree 

placed emphasis on spiral waves and their topological properties as fundamental 
aspects of cardiac arrhythmias. Whether or not these topological properties are as 

important in sudden cardiac death as proposed by Winfree, his theories have had 

an important influence in focusing attention on action potential propagation as 

a reaction-diffusion process that is central to cardiac function and disease. Com-
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putational models of this process will undoubtedly remain an important tool in 

research on the heart. 
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