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Consumption-Based Model

and Overview

An investor must decide how much to save and how much to consume,
and what portfolio of assets to hold. The most basic pricing equation
comes from the first-order condition for that decision. The marginal utility
loss of consuming a little less today and buying a little more of the asset
should equal the marginal utility gain of consuming a little more of the
asset’s payoff in the future. If the price and payoff do not satisfy this
relation, the investor should buy more or less of the asset. It follows that
the asset’s price should equal the expected discounted value of the asset’s
payoff, using the investor’s marginal utility to discount the payoff. With
this simple idea, I present many classic issues in finance.

Interest rates are related to expected marginal utility growth, and
hence to the expected path of consumption. In a time of high real inter-
est rates, it makes sense to save, buy bonds, and then consume more
tomorrow. Therefore, high real interest rates should be associated with an
expectation of growing consumption.

Most importantly, risk corrections to asset prices should be driven
by the covariance of asset payoffs with marginal utility and hence by the
covariance of asset payoffs with consumption. Other things equal, an asset
that does badly in states of nature like a recession, in which the investor
feels poor and is consuming little, is less desirable than an asset that does
badly in states of nature like a boom in which the investor feels wealthy
and is consuming a great deal. The former asset will sell for a lower price;
its price will reflect a discount for its “riskiness,” and this riskiness depends
on a co-variance, not a variance.

Marginal utility, not consumption, is the fundamental measure of
how you feel. Most of the theory of asset pricing is about how to go
from marginal utility to observable indicators. Consumption is low when
marginal utility is high, of course, so consumption may be a useful indi-
cator. Consumption is also low and marginal utility is high when the
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6 1. Consumption-Based Model and Overview

investor’s other assets have done poorly; thus we may expect that prices
are low for assets that covary positively with a large index such as the mar-
ket portfolio. This is a Capital Asset Pricing Model. We will see a wide
variety of additional indicators for marginal utility, things against which to
compute a convariance in order to predict the risk-adjustment for prices.

1.1 Basic Pricing Equation

An investor’s first-order conditions give the basic consumption-based
model,

pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]



Our basic objective is to figure out the value of any stream of uncer-
tain cash flows. I start with an apparently simple case, which turns out to
capture very general situations.

Let us find the value at time t of a payoff xt+1. If you buy a stock today,
the payoff next period is the stock price plus dividend, xt+1 = pt+1 + dt+1.
xt+1 is a random variable: an investor does not know exactly how much he
will get from his investment, but he can assess the probability of various
possible outcomes. Do not confuse the payoff xt+1 with the profit or return;
xt+1 is the value of the investment at time t + 1, without subtracting or
dividing by the cost of the investment.

We find the value of this payoff by asking what it is worth to a typical
investor. To do this, we need a convenient mathematical formalism to
capture what an investor wants. We model investors by a utility function
defined over current and future values of consumption,

U(ct ct+1) = u(ct)+ βEt

[
u(ct+1)

]


where ct denotes consumption at date t. We often use a convenient power
utility form,

u(ct) =
1

1− γ
c1−γt 


The limit as γ → 1 is

u(c) = ln(c)
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The utility function captures the fundamental desire for more
consumption, rather than posit a desire for intermediate objectives such as
mean and variance of portfolio returns. Consumption ct+1 is also random;
the investor does not know his wealth tomorrow, and hence how much
he will decide to consume tomorrow. The period utility function u(·) is
increasing, reflecting a desire for more consumption, and concave, reflect-
ing the declining marginal value of additional consumption. The last bite
is never as satisfying as the first.

This formalism captures investors’ impatience and their aversion to
risk, so we can quantitatively correct for the risk and delay of cash flows.
Discounting the future by β captures impatience, and β is called the
subjective discount factor. The curvature of the utility function generates
aversion to risk and to intertemporal substitution: The investor prefers a
consumption stream that is steady over time and across states of nature.

Now, assume that the investor can freely buy or sell as much of the
payoff xt+1 as he wishes, at a price pt. How much will he buy or sell? To
find the answer, denote by e the original consumption level (if the investor
bought none of the asset), and denote by ξ the amount of the asset he
chooses to buy. Then, his problem is

max
{ξ}

u(ct)+ Et

[
βu(ct+1)

]
s
t


ct = et − ptξ

ct+1 = et+1 + xt+1ξ


Substituting the constraints into the objective, and setting the derivative
with respect to ξ equal to zero, we obtain the first-order condition for an
optimal consumption and portfolio choice,

ptu
′(ct) = Et

[
βu′(ct+1)xt+1

]
 (1.1)

or

pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]

 (1.2)

The investor buys more or less of the asset until this first-order condition
holds.

Equation (1.1) expresses the standard marginal condition for an opti-
mum: ptu

′(ct) is the loss in utility if the investor buys another unit of
the asset; Et

[
βu′(ct+1)xt+1

]
is the increase in (discounted, expected) util-

ity he obtains from the extra payoff at t+1. The investor continues to buy
or sell the asset until the marginal loss equals the marginal gain.
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Equation (1.2) is the central asset pricing formula. Given the payoff
xt+1 and given the investor’s consumption choice ct ct+1, it tells you what
market price pt to expect. Its economic content is simply the first-order
conditions for optimal consumption and portfolio formation. Most of the
theory of asset pricing just consists of specializations and manipulations
of this formula.

We have stopped short of a complete solution to the model, i.e., an
expression with exogenous items on the right-hand side. We relate one
endogenous variable, price, to two other endogenous variables, consump-
tion and payoffs. One can continue to solve this model and derive the
optimal consumption choice ct ct+1 in terms of more fundamental givens
of the model. In the model I have sketched so far, those givens are the
income sequence et et+1 and a specification of the full set of assets that
the investor may buy and sell. We will in fact study such fuller solutions
below. However, for many purposes one can stop short of specifying (pos-
sibly wrongly) all this extra structure, and obtain very useful predictions
about asset prices from (1.2), even though consumption is an endogenous
variable.

1.2 Marginal Rate of Substitution/Stochastic Discount Factor

We break up the basic consumption-based pricing equation into

p = E(mx)

m = β
u′(ct+1)

u′(ct)


where mt+1 is the stochastic discount factor.

A convenient way to break up the basic pricing equation (1.2) is to
define the stochastic discount factor mt+1

mt+1 ≡ β
u′(ct+1)

u′(ct)

 (1.3)

Then, the basic pricing formula (1.2) can simply be expressed as

pt = Et(mt+1xt+1)
 (1.4)

When it is not necessary to be explicit about time subscripts or the
difference between conditional and unconditional expectation, I will sup-
press the subscripts and just write p = E(mx). The price always comes
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at t, the payoff at t + 1, and the expectation is conditional on time-t
information.

The term stochastic discount factor refers to the way m generalizes stan-
dard discount factor ideas. If there is no uncertainty, we can express prices
via the standard present value formula

pt =
1
Rf

xt+1 (1.5)

where Rf is the gross risk-free rate. 1/Rf is the discount factor. Since gross
interest rates are typically greater than one, the payoff xt+1 sells “at a
discount.” Riskier assets have lower prices than equivalent risk-free assets,
so they are often valued by using risk-adjusted discount factors,

pi
t =

1
Ri

Et

(
xit+1

)



Here, I have added the i superscript to emphasize that each risky asset i
must be discounted by an asset-specific risk-adjusted discount factor 1/Ri.

In this context, equation (1.4) is obviously a generalization, and it says
something deep: one can incorporate all risk corrections by defining a sin-
gle stochastic discount factor—the same one for each asset—and putting it
inside the expectation. mt+1 is stochastic or random because it is not known
with certainty at time t. The correlation between the random components
of the common discount factor m and the asset-specific payoff xi generate
asset-specific risk corrections.

mt+1 is also often called the marginal rate of substitution after (1.3). In
that equation, mt+1 is the rate at which the investor is willing to substitute
consumption at time t + 1 for consumption at time t. mt+1 is sometimes
also called the pricing kernel. If you know what a kernel is and you express
the expectation as an integral, you can see where the name comes from.
It is sometimes called a change of measure or a state-price density.

For the moment, introducing the discount factor m and breaking the
basic pricing equation (1.2) into (1.3) and (1.4) is just a notational conve-
nience. However, it represents a much deeper and more useful separation.
For example, notice that p = E(mx) would still be valid if we changed
the utility function, but we would have a different function connecting m
to data. All asset pricing models amount to alternative ways of connect-
ing the stochastic discount factor to data. At the same time, we will study
lots of alternative expressions of p = E(mx), and we can summarize many
empirical approaches by applying them to p = E(mx). By separating our
models into these two components, we do not have to redo all that elab-
oration for each asset pricing model.
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1.3 Prices, Payoffs, and Notation

The price pt gives rights to a payoff xt+1. In practice, this notation covers
a variety of cases, including the following:

Price pt Payoff xt+1

Stock pt pt+1 + dt+1

Return 1 Rt+1

Price-dividend ratio
pt

dt

(
pt+1

dt+1
+ 1

)
dt+1

dt

Excess return 0 Re
t+1 = Ra

t+1 −Rb
t+1

Managed portfolio zt ztRt+1

Moment condition E(ptzt) xt+1zt

One-period bond pt 1

Risk-free rate 1 Rf

Option C max(ST −K 0)

The price pt and payoff xt+1 seem like a very restrictive kind of secu-
rity. In fact, this notation is quite general and allows us easily to accom-
modate many different asset pricing questions. In particular, we can cover
stocks, bonds, and options and make clear that there is one theory for all
asset pricing.

For stocks, the one-period payoff is of course the next price plus divi-
dend, xt+1 = pt+1 + dt+1. We frequently divide the payoff xt+1 by the price
pt to obtain a gross return

Rt+1 ≡
xt+1

pt




We can think of a return as a payoff with price one. If you pay one dollar
today, the return is how many dollars or units of consumption you get
tomorrow. Thus, returns obey

1 = E(mR)

which is by far the most important special case of the basic formula
p = E(mx). I use capital letters to denote gross returns R, which have
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a numerical value like 1.05. I use lowercase letters to denote net returns
r = R− 1 or log (continuously compounded) returns r = ln(R), both of
which have numerical values like 0.05. One may also quote percent returns
100× r .

Returns are often used in empirical work because they are typically
stationary over time. (Stationary in the statistical sense; they do not have
trends and you can meaningfully take an average. “Stationary” does not
mean constant.) However, thinking in terms of returns takes us away from
the central task of finding asset prices. Dividing by dividends and creating
a payoff of the form

xt+1 =
(
1+ pt+1

dt+1

)
dt+1

dt

corresponding to a price pt/dt is a way to look at prices but still to examine
stationary variables.

Not everything can be reduced to a return. If you borrow a dollar at
the interest rate Rf and invest it in an asset with return R, you pay no
money out-of-pocket today, and get the payoff R−Rf . This is a payoff with
a zero price, so you obviously cannot divide payoff by price to get a return.
Zero price does not imply zero payoff. It is a bet in which the value of the
chance of losing exactly balances the value of the chance of winning, so
that no money changes hands when the bet is made. It is common to study
equity strategies in which one short-sells one stock or portfolio and invests
the proceeds in another stock or portfolio, generating an excess return.
I denote any such difference between returns as an excess return, Re. It is
also called a zero-cost portfolio.

In fact, much asset pricing focuses on excess returns. Our economic
understanding of interest rate variation turns out to have little to do with
our understanding of risk premia, so it is convenient to separate the two
phenomena by looking at interest rates and excess returns separately.

We also want to think about the managed portfolios, in which one invests
more or less in an asset according to some signal. The “price” of such a
strategy is the amount invested at time t, say zt, and the payoff is ztRt+1.
For example, a market timing strategy might make an investment in stocks
proportional to the price-dividend ratio, investing less when prices are
higher. We could represent such a strategy as a payoff using zt = a −
b(pt/dt).

When we think about conditioning information below, we will think of
objects like zt as instruments. Then we take an unconditional expectation
of ptzt = Et(mt+1xt+1)zt, yielding E(ptzt) = E(mt+1xt+1zt). We can think
of this operation as creating a “security” with payoff xt+1zt+1, and “price”
E(ptzt) represented with unconditional expectations.
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A one-period bond is of course a claim to a unit payoff. Bonds,
options, investment projects are all examples in which it is often more
useful to think of prices and payoffs rather than returns.

Prices and returns can be real (denominated in goods) or nominal
(denominated in dollars); p = E(mx) can refer to either case. The only
difference is whether we use a real or nominal discount factor. If prices,
returns, and payoffs are nominal, we should use a nominal discount factor.
For example, if p and x denote nominal values, then we can create real
prices and payoffs to write

pt

�t

= Et

[(
β
u′(ct+1)

u′(ct)

)
xt+1

�t+1

]


where � denotes the price level (cpi). Obviously, this is the same as defin-
ing a nominal discount factor by

pt = Et

[(
β
u′(ct+1)

u′(ct)
�t

�t+1

)
xt+1

]



To accommodate all these cases, I will simply use the notation price pt

and payoff xt+1. These symbols can denote 0 1 or zt and Re
t rt+1,

or ztRt+1, respectively, according to the case. Lots of other definitions of
p and x are useful as well.

1.4 Classic Issues in Finance

I use simple manipulations of the basic pricing equation to introduce
classic issues in finance: the economics of interest rates, risk adjustments,
systematic versus idiosyncratic risk, expected return-beta representations, the
mean-variance frontier, the slope of the mean-variance frontier, time-varying
expected returns, and present-value relations.

A few simple rearrangements and manipulations of the basic pricing
equation p = E(mx) give a lot of intuition and introduce some classic
issues in finance, including determinants of the interest rate, risk correc-
tions, idiosyncratic versus systematic risk, beta pricing models, and mean-
variance frontiers.
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Risk-Free Rate

The risk-free rate is related to the discount factor by

Rf = 1/E(m)


With lognormal consumption growth,

r
f
t = δ+ γEt(! ln ct+1)−

γ2

2
σ 2
t (! ln ct+1)


Real interest rates are high when people are impatient (δ), when
expected consumption growth is high (intertemporal substitution), or when
risk is low (precautionary saving). A more curved utility function (γ) or a
lower elasticity of intertemporal substitution (1/γ) means that interest rates
are more sensitive to changes in expected consumption growth.

The risk-free rate is given by

Rf = 1/E(m)
 (1.6)

The risk-free rate is known ahead of time, so p = E(mx) becomes 1 =
E(mRf) = E(m)Rf .

If a risk-free security is not traded, we can define Rf = 1/E(m) as the
“shadow” risk-free rate. In some models it is called the “zero-beta” rate.
If one introduced a risk-free security with return Rf = 1/E(m), investors
would be just indifferent to buying or selling it. I use Rf to simplify for-
mulas below with this understanding.

To think about the economics behind real interest rates in a simple
setup, use power utility u′(c) = c−γ. Start by turning off uncertainty, in
which case

Rf = 1
β

(
ct+1

ct

)γ




We can see three effects right away:

1. Real interest rates are high when people are impatient, i.e. when β is
low. If everyone wants to consume now, it takes a high interest rate to
convince them to save.

2. Real interest rates are high when consumption growth is high. In times
of high interest rates, it pays investors to consume less now, invest more,
and consume more in the future. Thus, high interest rates lower the
level of consumption today, while raising its growth rate from today to
tomorrow.
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3. Real interest rates are more sensitive to consumption growth if the
power parameter γ is large. If utility is highly curved, the investor cares
more about maintaining a consumption profile that is smooth over
time, and is less willing to rearrange consumption over time in response
to interest rate incentives. Thus it takes a larger interest rate change to
induce him to a given consumption growth.

To understand how interest rates behave when there is some uncer-
tainty, I specify that consumption growth is lognormally distributed. In
this case, the real risk-free rate equation becomes

r
f
t = δ+ γEt(! ln ct+1)−

γ2

2
σ 2
t (! ln ct+1) (1.7)

where I have defined the log risk-free rate rft and subjective discount rate δ
by

r
f
t = lnRf

t ; β = e−δ

and ! denotes the first difference operator,

! ln ct+1 = ln ct+1 − ln ct


To derive expression (1.7) for the risk-free rate, start with

R
f
t = 1/Et

[
β

(
ct+1

ct

)−γ]



Using the fact that normal z means

E
(
ez
) = eE(z)+(1/2)σ

2(z)

(you can check this by writing out the integral that defines the expecta-
tion), we have

R
f
t = [

e−δe−γEt(! ln ct+1)+(γ2/2)σ2
t (! ln ct+1)

]−1



Then take logarithms. The combination of lognormal distributions and
power utility is one of the basic tricks to getting analytical solutions in
this kind of model. Section 1.5 shows how to get the same result in
continuous time.

Looking at (1.7), we see the same results as we had with the determin-
istic case. Real interest rates are high when impatience δ is high and when
consumption growth is high; higher γ makes interest rates more sensitive
to consumption growth. The new σ 2 term captures precautionary savings.
When consumption is more volatile, people with this utility function are
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more worried about the low consumption states than they are pleased by
the high consumption states. Therefore, people want to save more, driv-
ing down interest rates.

We can also read the same terms backwards: consumption growth is
high when real interest rates are high, since people save more now and
spend it in the future, and consumption is less sensitive to interest rates
as the desire for a smooth consumption stream, captured by γ, rises. Sec-
tion 2.2 takes up the question of which way we should read this equation—
as consumption determining interest rates, or as interest rates determin-
ing consumption.

For the power utility function, the curvature parameter γ simulta-
neously controls intertemporal substitution—aversion to a consumption
stream that varies over time, risk aversion—aversion to a consumption
stream that varies across states of nature, and precautionary savings, which
turns out to depend on the third derivative of the utility function. This
link is particular to the power utility function. More general utility func-
tions loosen the links between these three quantities.

Risk Corrections

Payoffs that are positively correlated with consumption growth have
lower prices, to compensate investors for risk.

p = E(x)

Rf
+ cov(m x)

E(Ri)−Rf = −Rf cov
(
mRi

)



Expected returns are proportional to the covariance of returns with discount
factors.

Using the definition of covariance cov(m x) = E(mx)−E(m)E(x), we
can write p = E(mx) as

p = E(m)E(x)+ cov(m x)
 (1.8)

Substituting the risk-free rate equation (1.6), we obtain

p = E(x)

Rf
+ cov(m x)
 (1.9)

The first term in (1.9) is the standard discounted present-value for-
mula. This is the asset’s price in a risk-neutral world—if consumption is
constant or if utility is linear. The second term is a risk adjustment. An
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asset whose payoff covaries positively with the discount factor has its price
raised and vice versa.

To understand the risk adjustment, substitute back for m in terms of
consumption, to obtain

p = E(x)

Rf
+ cov

[
βu′(ct+1) xt+1

]
u′(ct)


 (1.10)

Marginal utility u′(c) declines as c rises. Thus, an asset’s price is lowered if
its payoff covaries positively with consumption. Conversely, an asset’s price
is raised if it covaries negatively with consumption.

Why? Investors do not like uncertainty about consumption. If you
buy an asset whose payoff covaries positively with consumption, one that
pays off well when you are already feeling wealthy, and pays off badly
when you are already feeling poor, that asset will make your consumption
stream more volatile. You will require a low price to induce you to buy
such an asset. If you buy an asset whose payoff covaries negatively with
consumption, it helps to smooth consumption and so is more valuable
than its expected payoff might indicate. Insurance is an extreme example.
Insurance pays off exactly when wealth and consumption would otherwise
be low—you get a check when your house burns down. For this reason,
you are happy to hold insurance, even though you expect to lose money—
even though the price of insurance is greater than its expected payoff
discounted at the risk-free rate.

To emphasize why the covariance of a payoff with the discount factor
rather than its variance determines its riskiness, keep in mind that the
investor cares about the volatility of consumption. He does not care about
the volatility of his individual assets or of his portfolio, if he can keep
a steady consumption. Consider then what happens to the volatility of
consumption if the investor buys a little more ξ of payoff x. σ 2(c) becomes

σ 2(c+ ξx) = σ 2(c)+ 2ξ cov(c x)+ ξ2σ 2(x)


For small (marginal) portfolio changes, the covariance between consump-
tion and payoff determines the effect of adding a bit more of each payoff
on the volatility of consumption.

We use returns so often that it is worth restating the same intuition
for the special case that the price is 1 and the payoff is a return. Start with
the basic pricing equation for returns,

1 = E(mRi)


I denote the return Ri to emphasize that the point of the theory is to
distinguish the behavior of one asset Ri from another Rj.
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The asset pricing model says that, although expected returns can vary
across time and assets, expected discounted returns should always be the
same, 1. Applying the covariance decomposition,

1 = E(m)E(Ri)+ cov(mRi) (1.11)

and, using Rf = 1/E(m),

E(Ri)−Rf = −Rf cov(mRi) (1.12)

or

E(Ri)−Rf = −cov
[
u′(ct+1)R

i
t+1

]
E
[
u′(ct+1)

] 
 (1.13)

All assets have an expected return equal to the risk-free rate, plus a
risk adjustment. Assets whose returns covary positively with consumption
make consumption more volatile, and so must promise higher expected
returns to induce investors to hold them. Conversely, assets that covary
negatively with consumption, such as insurance, can offer expected rates
of return that are lower than the risk-free rate, or even negative (net)
expected returns.

Much of finance focuses on expected returns. We think of expected
returns increasing or decreasing to clear markets; we offer intuition that
“riskier” securities must offer higher expected returns to get investors to
hold them, rather than saying “riskier” securities trade for lower prices
so that investors will hold them. Of course, a low initial price for a given
payoff corresponds to a high expected return, so this is no more than a
different language for the same phenomenon.

Idiosyncratic Risk Does Not Affect Prices

Only the component of a payoff perfectly correlated with the discount
factor generates an extra return. Idiosyncratic risk, uncorrelated with the dis-
count factor, generates no premium.

You might think that an asset with a volatile payoff is “risky” and thus
should have a large risk correction. However, if the payoff is uncorrelated
with the discount factor m, the asset receives no risk correction to its price,
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and pays an expected return equal to the risk-free rate! In equations, if

cov(m x) = 0

then

p = E(x)

Rf


no matter how large σ 2(x). This prediction holds even if the payoff x is
highly volatile and investors are highly risk averse. The reason is simple:
if you buy a little bit more of such an asset, it has no first-order effect on
the variance of your consumption stream.

More generally, one gets no compensation or risk adjustment for hold-
ing idiosyncratic risk. Only systematic risk generates a risk correction. To
give meaning to these words, we can decompose any payoff x into a part
correlated with the discount factor and an idiosyncratic part uncorrelated
with the discount factor by running a regression,

x = proj(x|m)+ ε


Then, the price of the residual or idiosyncratic risk ε is zero, and the
price of x is the same as the price of its projection on m. The projection
of x on m is of course that part of x which is perfectly correlated with m.
The idiosyncratic component of any payoff is that part uncorrelated with m.
Thus only the systematic part of a payoff accounts for its price.

Projection means linear regression without a constant,

proj(x|m) = E(mx)

E(m2)
m


You can verify that regression residuals are orthogonal to right-hand vari-
ables E(mε) = 0 from this definition. E(mε) = 0 of course means that
the price of ε is zero,

p(proj(x|m)) = p

(
E(mx)

E(m2)
m

)
= E

(
m2E(mx)

E(m2)

)
= E(mx) = p(x)


The words “systematic” and “idiosyncratic” are defined differently in
different contexts, which can lead to some confusion. In this decomposi-
tion, the residuals ε can be correlated with each other, though they are not
correlated with the discount factor. The APT starts with a factor-analytic
decomposition of the covariance of payoffs, and the word “idiosyncratic”
there is reserved for the component of payoffs uncorrelated with all of
the other payoffs.
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Expected Return-Beta Representation

We can write p = E(mx) as

E(Ri) = Rf + βimλm


We can express the expected return equation (1.12), for a return Ri,
as

E(Ri) = Rf +
(
cov(Rim)

var(m)

)(
−var(m)

E(m)

)
(1.14)

or

E(Ri) = Rf + βimλm (1.15)

where βim is the regression coefficient of the return Ri on m. This is a beta
pricing model. It says that each expected return should be proportional to
the regression coefficient, or beta, in a regression of that return on the
discount factor m. Notice that the coefficient λm is the same for all assets
i, while the βim varies from asset to asset. The λm is often interpreted as
the price of risk and the β as the quantity of risk in each asset. As you can
see, the price of risk λm depends on the volatility of the discount factor.

Obviously, there is nothing deep about saying that expected returns
are proportional to betas rather than to covariances. There is a long his-
torical tradition and some minor convenience in favor of betas. The betas
refer to the projection of R on m that we studied above, so you see again
a sense in which only the systematic component of risk matters.

With m = β(ct+1/ct)
−γ, we can take a Taylor approximation of

equation (1.14) to express betas in terms of a more concrete variable, con-
sumption growth, rather than marginal utility. The result, which I derive
more explicitly and conveniently in the continuous-time limit below, is

E(Ri) = Rf + βi!cλ!c (1.16)

λ!c = γ var(!c)


Expected returns should increase linearly with their betas on consumption
growth itself. In addition, though it is treated as a free parameter in many
applications, the factor risk premium λ!c is determined by risk aversion
and the volatility of consumption. The more risk averse people are, or the
riskier their environment, the larger an expected return premium one
must pay to get investors to hold risky (high beta) assets.
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Mean-Variance Frontier

All asset returns lie inside a mean-variance frontier. Assets on the fron-
tier are perfectly correlated with each other and with the discount factor.
Returns on the frontier can be generated as portfolios of any two frontier
returns. We can construct a discount factor from any frontier return (except
Rf ), and an expected return-beta representation holds using any frontier
return (except Rf ) as the factor.

Asset pricing theory has focused a lot on the means and variances of
asset returns. Interestingly, the set of means and variances of returns is
limited. All assets priced by the discount factor m must obey

∣∣E(Ri)−Rf
∣∣ ≤ σ(m)

E(m)
σ (Ri)
 (1.17)

To derive (1.17) write for a given asset return Ri

1 = E(mRi) = E(m)E(Ri)+ ρmRiσ(Ri)σ(m)

and hence

E(Ri) = Rf − ρmRi

σ(m)

E(m)
σ(Ri)
 (1.18)

Correlation coefficients cannot be greater than 1 in magnitude, leading
to (1.17).

This simple calculation has many interesting and classic implications.

1. Means and variances of asset returns must lie in the wedge-shaped
region illustrated in Figure 1.1. The boundary of the mean-variance
region in which assets can lie is called the mean-variance frontier. It
answers a naturally interesting question, “how much mean return can
you get for a given level of variance?”

2. All returns on the frontier are perfectly correlated with the discount
factor: the frontier is generated by |ρmRi | = 1. Returns on the upper
part of the frontier are perfectly negatively correlated with the discount
factor and hence positively correlated with consumption. They are
“maximally risky” and thus get the highest expected returns. Returns
on the lower part of the frontier are perfectly positively correlated
with the discount factor and hence negatively correlated with con-
sumption. They thus provide the best insurance against consumption
fluctuations.
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Figure 1.1. Mean-variance frontier. The mean and standard deviation of all assets priced
by a discount factor m must lie in the wedge-shaped region.

3. All frontier returns are also perfectly correlated with each other,
since they are all perfectly correlated with the discount factor. This
fact implies that we can span or synthesize any frontier return from
two such returns. For example, if you pick any single frontier return
Rm, then all frontier returns Rmv must be expressible as

Rmv = Rf + a
(
Rm −Rf

)

for some number a.
4. Since each point on the mean-variance frontier is perfectly correlated

with the discount factor, we must be able to pick constants a b d e
such that

m = a+ bRmv

Rmv = d+ em


Thus, any mean-variance efficient return carries all pricing information. Given
a mean-variance efficient return and the risk-free rate, we can find a
discount factor that prices all assets and vice versa.

5. Given a discount factor, we can also construct a single-beta representa-
tion, so expected returns can be described in a single-beta representation using
any mean-variance efficient return (except the risk-free rate),

E(Ri) = Rf + βimv

[
E(Rmv)−Rf

]
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The essence of the beta pricing model is that, even though the means
and standard deviations of returns fill out the space inside the mean-
variance frontier, a graph of mean returns versus betas should yield a
straight line. Since the beta model applies to every return including
Rmv itself, and Rmv has a beta of 1 on itself, we can identify the factor
risk premium as λ = E(Rmv −Rf).

The last two points suggest an intimate relationship between discount
factors, beta models, and mean-variance frontiers. I explore this rela-
tion in detail in Chapter 6. A problem at the end of this chapter guides
you through the algebra to demonstrate points 4 and 5 explicitly.

6. We can plot the decomposition of a return into a “priced” or “sys-
tematic” component and a “residual,” or “idiosyncratic” component as
shown in Figure 1.1. The priced part is perfectly correlated with the dis-
count factor, and hence perfectly correlated with any frontier return.
The residual or idiosyncratic part generates no expected return, so it
lies flat as shown in the figure, and it is uncorrelated with the discount
factor or any frontier return. Assets inside the frontier or even on the
lower portion of the frontier are not “worse” than assets on the fron-
tier. The frontier and its internal region characterize equilibrium asset
returns, with rational investors happy to hold all assets. You would not
want to put your whole portfolio in one “inefficient” asset, but you are
happy to put some wealth in such assets.

Slope of the Mean-Standard Deviation
Frontier and Equity Premium Puzzle

The Sharpe ratio is limited by the volatility of the discount factor. The
maximal risk-return trade-off is steeper if there is more risk or more risk
aversion, ∣∣∣∣E(R)−Rf

σ(R)

∣∣∣∣ ≤ σ(m)

E(m)
≈ γσ(! ln c)


This formula captures the equity premium puzzle, which suggests that either
people are very risk averse, or the stock returns of the last 50 years were
good luck which will not continue.

The ratio of mean excess return to standard deviation

E(Ri)−Rf

σ(Ri)

is known as the Sharpe ratio. It is a more interesting characterization of a
security than the mean return alone. If you borrow and put more money
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into a security, you can increase the mean return of your position, but you
do not increase the Sharpe ratio, since the standard deviation increases
at the same rate as the mean.

The slope of the mean-standard deviation frontier is the largest avail-
able Sharpe ratio, and thus is naturally interesting. It answers “how much
more mean return can I get by shouldering a bit more volatility in my
portfolio?”

Let Rmv denote the return of a portfolio on the frontier. From
equation (1.17), the slope of the frontier is

∣∣∣∣E(R
mv)−Rf

σ(Rmv)

∣∣∣∣ = σ(m)

E(m)
= σ(m)Rf 


Thus, the slope of the frontier is governed by the volatility of the discount
factor.

For an economic interpretation, again consider the power utility func-
tion, u′(c) = c−γ,

∣∣∣∣E(R
mv)−Rf

σ(Rmv)

∣∣∣∣ = σ
[
(ct+1/ct)

−γ]
E
[(
ct+1/ct

)−γ] 
 (1.19)

The standard deviation on the right hand side is large if consumption is
volatile or if γ is large. We can state this approximation precisely using
the lognormal assumption. If consumption growth is lognormal,

∣∣∣∣E(R
mv)−Rf

σ(Rmv)

∣∣∣∣ =
√
eγ

2σ2(! ln ct+1) − 1 ≈ γσ(! ln c)
 (1.20)

(A problem at the end of the chapter guides you through the algebra
of the first equality. The relation is exact in continuous time, and thus
the approximation is easiest to derive by reference to the continuous-time
result; see Section 1.5.)

Reading the equation, the slope of the mean-standard deviation frontier is
higher if the economy is riskier—if consumption is more volatile—or if investors
are more risk averse. Both situations naturally make investors more reluc-
tant to take on the extra risk of holding risky assets. Both situations also
raise the slope of the expected return-beta line of the consumption beta
model, (1.16). (Or, conversely, in an economy with a high Sharpe ratio,
low risk-aversion investors should take on so much risk that their con-
sumption becomes volatile.)

In postwar U.S. data, the slope of the historical mean-standard devi-
ation frontier, or of average return-beta lines, is much higher than rea-
sonable risk aversion and consumption volatility estimates suggest. This is
the “equity premium puzzle.” Over the last 50 years in the United States,
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real stock returns have averaged 9% with a standard deviation of about
16%, while the real return on treasury bills has been about 1%. Thus,
the historical annual market Sharpe ratio has been about 0.5. Aggregate
nondurable and services consumption growth had a mean and standard
deviation of about 1%. We can only reconcile these facts with (1.20) if
investors have a risk-aversion coefficient of 50!

Obvious ways of generalizing the calculation just make matters worse.
Equation (1.20) relates consumption growth to the mean-variance fron-
tier of all contingent claims. Market indices with 0.5 Sharpe ratios are if
anything inside that frontier, so recognizing market incompleteness makes
matters worse. Aggregate consumption has about 0.2 correlation with the
market return, while the equality (1.20) takes the worst possible case that
consumption growth and asset returns are perfectly correlated. If you add
this fact, you need risk aversion of 250 to explain the market Sharpe ratio!
Individuals have riskier consumption streams than aggregate, but as their
risk goes up their correlation with any aggregate must decrease propor-
tionally, so to first order recognizing individual risk will not help either.

Clearly, either (1) people are a lot more risk averse than we might
have thought, (2) the stock returns of the last 50 years were largely good
luck rather than an equilibrium compensation for risk, or (3) something
is deeply wrong with the model, including the utility function and use of
aggregate consumption data. This “equity premium puzzle” has attracted
the attention of a lot of research in finance, especially on the last item.
I return to the equity premium in more detail in Chapter 21.

Random Walks and Time-Varying Expected Returns

If investors are risk neutral, returns are unpredictable, and prices follow
martingales. In general, prices scaled by marginal utility are martingales, and
returns can be predictable if investors are risk averse and if the conditional
second moments of returns and discount factors vary over time. This is more
plausible at long horizons.

So far, we have concentrated on the behavior of prices or expected
returns across assets. We should also consider the behavior of the price
or return of a given asset over time. Going back to the basic first-order
condition,

ptu
′(ct) = Et[βu

′(ct+1)(pt+1 + dt+1)]
 (1.21)

If investors are risk neutral, i.e., if u(c) is linear or there is no variation
in consumption, if the security pays no dividends between t and t+1, and
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for short time horizons where β is close to 1, this equation reduces to

pt = Et(pt+1)


Equivalently, prices follow a time-series process of the form

pt+1 = pt + εt+1


If the variance σ 2
t (εt+1) is constant, prices follow a random walk. More

generally, prices follow a martingale. Intuitively, if the price today is a lot
lower than investors’ expectations of the price tomorrow, then investors
will try to buy the security. But this action will drive up the price of the
security until the price today does equal the expected price tomorrow.
Another way of saying the same thing is that returns should not be pre-
dictable; dividing by pt, expected returns Et(pt+1/pt) = 1 should be con-
stant; returns should be like coin flips.

The more general equation (1.21) says that prices should follow a mar-
tingale after adjusting for dividends and scaling by marginal utility. Since
martingales have useful mathematical properties, and since risk neutral-
ity is such a simple economic environment, many asset pricing results are
easily derived by scaling prices and dividends by discounted marginal util-
ity first, and then using “risk-neutral” formulas and risk-neutral economic
arguments.

Since consumption and risk aversion do not change much day to day,
we might expect the random walk view to hold pretty well on a day-to-day
basis. This idea contradicts the still popular notion that there are “sys-
tems” or “technical analysis” by which one can predict where stock prices
are going on any given day. The random walk view has been remarkably
successful. Despite decades of dredging the data, and the popularity of
media reports that purport to explain where markets are going, trading
rules that reliably survive transactions costs and do not implicitly expose
the investor to risk have not yet been reliably demonstrated.

However, more recently, evidence has accumulated that long-horizon
excess returns are quite predictable, and to some this evidence indicates
that the whole enterprise of economic explanation of asset returns is
flawed. To think about this issue, write our basic equation for expected
returns as

Et(Rt+1)−R
f
t = −covt(mt+1Rt+1)

Et(mt+1)

= σt(mt+1)

Et(mt+1)
σt(Rt+1)ρt(mt+1Rt+1) (1.22)

≈ γtσt(!ct+1)σt(Rt+1)ρt(mt+1Rt+1)
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I include the t subscripts to emphasize that the relation applies to
conditional moments. Sometimes, the conditional mean or other moment
of a random variable is different from its unconditional moment. Condi-
tional on tonight’s weather forecast, you can better predict rain tomorrow
than just knowing the average rain for that date. In the special case that
random variables are i.i.d. (independent and identically distributed), like
coin flips, the conditional and unconditional moments are the same, but
that is a special case and not likely to be true of asset prices, returns,
and macroeconomic variables. In the theory so far, we have thought of an
investor, today, forming expectations of payoffs, consumption, and other
variables tomorrow. Thus, the moments are really all conditional, and if we
want to be precise we should include some notation to express this fact.
I use subscripts Et(xt+1) to denote conditional expectation; the notation
E(xt+1|It) where It is the information set at time t is more precise but a
little more cumbersome.

Examining equation (1.22), we see that returns can be somewhat
predictable—the expected return can vary over time. First, if the condi-
tional variance of returns changes over time, we might expect the condi-
tional mean return to vary as well—the return can just move in and out
along a line of constant Sharpe ratio. This explanation does not seem
to help much in the data; variables that forecast means do not seem to
forecast variances and vice versa. Unless we want to probe the conditional
correlation, predictable excess returns have to be explained by changing
risk—σt(!ct+1)—or changing risk aversion γ. It is not plausible that risk
or risk aversion change at daily frequencies, but fortunately returns are
not predictable at daily frequencies. It is much more plausible that risk
and risk aversion change over the business cycle, and this is exactly the
horizon at which we see predictable excess returns. Models that make this
connection precise are a very active area of current research.

Present-Value Statement

pt = Et

∞∑
j=0

mt t+jdt+j


It is convenient to use only the two-period valuation, thinking of a
price pt and a payoff xt+1
 But there are times when we want to relate a
price to the entire cash flow stream, rather than just to one dividend and
next period’s price.
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The most straightforward way to do this is to write out a longer-term
objective,

Et

∞∑
j=0

βju(ct+j)


Now suppose an investor can purchase a stream {dt+j} at price pt. As
with the two-period model, his first-order condition gives us the pricing
formula directly,

pt = Et

∞∑
j=0

βj
u′(ct+j)

u′(ct)
dt+j = Et

∞∑
j=0

mt t+jdt+j
 (1.23)

You can see that if this equation holds at time t and time t+ 1, then
we can derive the two-period version

pt = Et[mt+1(pt+1 + dt+1)]
 (1.24)

Thus, the infinite-period and two-period models are equivalent.
(Going in the other direction is a little tougher. If you chain

together (1.24), you get (1.23) plus an extra term. To get (1.23) you
also need the “transversality condition” limt→∞ Et[mt t+jpt+j] = 0. This is
an extra first-order condition of the infinite-period investor, which is not
present with overlapping generations of two-period investors. It rules out
“bubbles” in which prices grow so fast that people will buy now just to
resell at higher prices later, even if there are no dividends.)

From (1.23) we can write a risk adjustment to prices, as we did with
one-period payoffs,

pt =
∞∑
j=1

Etdt+j

R
f
t t+j

+
∞∑
j=1

covt(dt+j mtt+j)

where R
f
t t+j ≡ Et(mt t+j)

−1 is the j period interest rate. Again, assets
whose dividend streams covary negatively with marginal utility, and posi-
tively with consumption, have lower prices, since holding those assets gives
the investor a more volatile consumption stream. (It is common instead
to write prices as a discounted value using a risk-adjusted discount factor,
e.g., pi

t =
∑∞

j=1 Etd
i
t+j/(R

i)j, but this approach is difficult to use correctly
for multiperiod problems, especially when expected returns can vary over
time.)

At a deeper level, the expectation in the two-period formula p =
E(mx) sums over states of nature. Equation (1.23) just sums over time as
well and is mathematically identical.
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1.5 Discount Factors in Continuous Time

Continuous-time versions of the basic pricing equations.

Discrete Continuous

pt = Et

∞∑
j=1

βj
u′(ct+j)

u′(ct)
Dt+j ptu

′(ct) = Et

∫ ∞

s=0
e−δsu′(ct+s)Dt+s ds

mt+1 = β
u′(ct+1)

u′(ct)
*t = e−δtu′(ct)

p = E(mx) 0 = *D dt+ Et[d(*p)]

E(R) = Rf −Rf cov(mR) Et

(
dp

p

)
+ D

p
dt = r

f
t dt− Et

[
d*

*

dp

p

]

It is often convenient to express asset pricing ideas in the language of
continuous-time stochastic differential equations rather than discrete-time
stochastic difference equations as I have done so far. The appendix con-
tains a brief introduction to continuous-time processes that covers what
you need to know for this book. Even if you want to end up with a discrete-
time representation, manipulations are often easier in continuous time.
For example, relating interest rates and Sharpe ratios to consumption
growth in the last section required a clumsy lognormal approximation;
you will see the same sort of thing done much more cleanly in this section.

The choice of discrete versus continuous time is one of modeling con-
venience. The richness of the theory of continuous-time processes often
allows you to obtain analytical results that would be unavailable in discrete
time. On the other hand, in the complexity of most practical situations,
you often end up resorting to numerical simulation of a discretized model
anyway. In those cases, it might be clearer to start with a discrete model.
But this is all a choice of language. One should become familiar enough
with discrete- as well as continuous-time representations of the same ideas
to pick the representation that is most convenient for a particular appli-
cation.

First, we need to think about how to model securities, in place of price
pt and one-period payoff xt+1. Let a generic security have price pt at any
moment in time, and let it pay dividends at the rate Dt dt. (I will continue
to denote functions of time as pt rather than p(t) to maintain continuity
with the discrete-time treatment, and I will drop the time subscripts where
they are obvious, e.g., dp in place of dpt. In an interval dt, the security
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pays dividends Dt dt. I use capital D for dividends to distinguish them
from the differential operator d.)

The instantaneous total return is

dpt

pt

+ Dt

pt

dt


We model the price of risky assets as diffusions, for example,

dpt

pt

= µ(·) dt+ σ(·) dz


(I use the notation dz for increments to a standard Brownian motion, e.g.,
zt+! − zt ∼ N (0 !). I use the notation (·) to indicate that the drift and
diffusions µ and σ can be functions of state variables. I limit the discus-
sion to diffusion processes—no jumps.) What is nice about this diffusion
model is that the increments dz are normal. However, the dependence of
µ and σ on state variables means that the finite-time distribution of prices
f (pt+!|It) need not be normal.

We can think of a risk-free security as one that has a constant price
equal to 1 and pays the risk-free rate as a dividend,

p = 1 Dt = r
f
t  (1.25)

or as a security that pays no dividend but whose price climbs determinis-
tically at a rate

dpt

pt

= r
f
t dt
 (1.26)

Next, we need to express the first-order conditions in continuous time.
The utility function is

U
({ct}) = E

∫ ∞

t=0
e−δtu(ct) dt


Suppose the investor can buy a security whose price is pt and that pays a
dividend stream Dt. As we did in deriving the present-value price relation
in discrete time, the first-order condition for this problem gives us the
infinite-period version of the basic pricing equation right away,1

ptu
′(ct) = Et

∫ ∞

s=0
e−δsu′(ct+s)Dt+s ds
 (1.27)

1One unit of the security pays the dividend stream Dt, i.e., Dt dt units of the numeraire
consumption good in a time interval dt. The security costs pt units of the consumption good.
The investor can finance the purchase of ξ units of the security by reducing consumption
from et to ct = et − ξpt/dt during time interval dt. The loss in utility from doing so is
u′(ct)(et − ct) dt = u′(ct)ξpt. The gain is the right-hand side of (1.27) multiplied by ξ.
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This equation is an obvious continuous-time analogue to

pt = Et

∞∑
j=0

βt
u′(ct+j)

u′(ct)
Dt+j


It turns out that dividing by u′(ct) is not a good idea in continuous
time, since the ratio u′(ct+!)/u

′(ct) is not well behaved for small time inter-
vals. Instead, we can keep track of the level of marginal utility. Therefore,
define the “discount factor” in continuous time as

*t ≡ e−δtu′(ct)


Then we can write the pricing equation as

pt*t = Et

∫ ∞

s=0
*t+sDt+s ds
 (1.28)

(Some people like to define *t = u′(ct), in which case you keep the e−δt

in the equation. Others like to scale *t by the risk-free rate, in which case
you get an extra e−

∫ s
τ=0 r

f
t+τ dτ in the equation. The latter procedure makes

it look like a risk-neutral or present-value formula valuation.)
The analogue to the one-period pricing equation p = E(mx) is

0 = *D dt+ Et

[
d(*p)

]

 (1.29)

To derive this fundamental equation, take the difference of
equation (1.28) at t and t + ! (or, start directly with the first-order
condition for buying the security at t and selling it at t+ !),

pt*t = Et

∫ !

s=0
*t+sDt+s ds+ Et

[
*t+!pt+!

]



For ! small the term in the integral can be approximated as

pt*t ≈ *tDt!+ Et

[
*t+!pt+!

]

 (1.30)

We want to get to d something, so introduce differences by writing

pt*t ≈ *tDt!+ Et

[
*tpt + (*t+!pt+! −*tpt)

]

 (1.31)

Canceling pt*t,

0 ≈ *tDt!+ Et(*t+!pt+! −*tpt)


Taking the limit as ! → 0,

0 = *tDt dt+ Et

[
d(*tpt)

]
or, dropping time subscripts, equation (1.29).
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Equation (1.29) looks different than p = E(mx) because there is no
price on the left-hand side; we are used to thinking of the one-period
pricing equation as determining price at t given other things, including
price at t+ 1. But price at t is really here, of course, as you can see from
equation (1.30) or (1.31). It is just easier to express the difference in price
over time rather than price today on the left and payoff (including price
tomorrow) on the right.

With no dividends and constant *, 0 = Et(dpt) = Et(pt+! − pt)
says that price should follow a martingale. Thus, Et[d(*p)] = 0 means
that marginal utility-weighted price should follow a martingale, and (1.29)
adjusts for dividends. Thus, it is the same as the equation (1.21), ptu

′(ct) =
Et(mt+1(pt+1 + dt+1)) that we derived in discrete time.

Since we will write down price processes for dp and discount factor
processes for d*, and to interpret (1.29) in terms of expected returns, it
is often convenient to break up the d(*tpt) term using Ito’s lemma:

d(*p) = p d*+* dp+ dp d*
 (1.32)

Using the expanded version (1.32) in the basic equation (1.29), and divid-
ing by p* to make it pretty, we obtain an equivalent, slightly less compact
but slightly more intuitive version,

0 = D

p
dt+ Et

[
d*

*
+ dp

p
+ d*

*

dp

p

]

 (1.33)

(This formula only works when both * and p can never be zero. It is often
enough the case that this formula is useful. If not, multiply through by *
and p and keep them in numerators.)

Applying the basic pricing equations (1.29) or (1.33) to a risk-free
rate, defined as (1.25) or (1.26), we obtain

r
f
t dt = −Et

(
d*t

*t

)

 (1.34)

This equation is the obvious continuous-time equivalent to

R
f
t = 1

Et(mt+1)



If a risk-free rate is not traded, we can use (1.34) to define a shadow risk-
free rate or zero-beta rate.

With this interpretation, we can rearrange equation (1.33) as

Et

(
dpt

pt

)
+ Dt

pt

dt = r
f
t dt− Et

[
d*t

*t

dpt

pt

]

 (1.35)
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This is the obvious continuous-time analogue to

E(R) = Rf −Rf cov(mR)
 (1.36)

The last term in (1.35) is the covariance of the return with the discount
factor or marginal utility. Since means are order dt, there is no difference
between covariance and second moment in the last term of (1.35). The
interest rate component of the last term of (1.36) naturally vanishes as
the time interval gets short.

Ito’s lemma makes many transformations simple in continuous time.
For example, the nonlinear transformation between consumption and the
discount factor led us to some tricky approximations in discrete time. This
transformation is easy in continuous time (diffusions are locally normal,
so it is really the same trick). With *t = e−δtu′(ct) we have

d*t =−δe−δtu′(ct) dt+ e−δtu′′(ct) dct +
1
2
e−δtu′′′(ct) dc

2
t 

d*t

*t

=−δ dt+ ctu
′′(ct)

u′(ct)
dct
ct

+ 1
2
c2t u

′′′(ct)
u′(ct)

dc2t
c2t



(1.37)

Denote the local curvature and third derivative of the utility function as

γt = −ctu
′′(ct)

u′(ct)


ηt =
c2t u

′′′(ct)
u′(ct)




(For power utility, the former is the power coefficient γ and the latter is
ηt = γ(γ + 1).)

Using this formula we can quickly redo the relationship between inter-
est rates and consumption growth, equation (1.7),

r
f
t = − 1

dt
Et

(
d*t

*t

)
= δ+ γt

1
dt
Et

(
dct
ct

)
− 1

2
ηt

1
dt
Et

(
dc2t
c2t

)



We can also easily express asset prices in terms of consumption risk
rather than discount factor risk, as in equation (1.16). Using (1.37) in
(1.35),

Et

(
dpt

pt

)
+ Dt

pt

dt− r
f
t dt = γEt

(
dct
ct

dpt

pt

)

 (1.38)

Thus, assets whose returns covary more strongly with consumption get
higher mean excess returns, and the constant relating covariance to mean
return is the utility curvature coefficient γ.
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Since correlations are less than 1, equation (1.38) implies that Sharpe
ratios are related to utility curvature and consumption volatility directly;
we do not need the ugly lognormal facts and an approximation that we
needed in (1.20). Using µp ≡ Et(dpt/pt); σ 2

p = Et[(dpt/pt)
2]; σ 2

c =
Et[(dct/ct)

2],

µp + Dt

pt
dt− r

f
t dt

σp

≤ γσc


Problems—Chapter 1

1.

(a) The absolute risk-aversion coefficient is

u′′(c)
u′(c)




We scale by u′(c) because expected utility is only defined up to linear
transformations—a+bu(c) gives the same predictions as u(c)—and this
measure of the second derivative is invariant to linear transformations.
Show that the utility function with constant absolute risk aversion is

u(c) = −e−αc

(b) The coefficient of relative risk aversion in a one-period model (i.e.,
when consumption equals wealth) is defined as

rra = cu′′(c)
u′(c)




For power utility u′(c) = c−γ, show that the risk-aversion coefficient
equals the power.

(c) The elasticity of intertemporal substitution is defined in a non-
stochastic model with interest rate R as

ξI ≡ −c2/c1d(c1/c2)

dR/R



Show that with power utility u′(c) = c−γ, the intertemporal substitution
elasticity is equal to 1/γ. (Hint: differentiate the first-order conditions)

2. Show that the “idiosyncratic risk” line in Figure 1.1 is horizontal.

3.

(a) Suppose you have a mean–variance efficient return Rmv and the
risk-free rate. Using the fact that Rmv is perfectly correlated with the
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discount factor, construct a discount factor m in terms of Rf and Rmv,
with no free parameters. (You have to find the constants a and b in
m = a+ bRmv. They will depend on things like E(Rmv).)

(b) Using this result, and the beta model in terms of m, show that
expected returns can be described in a single-beta representation using
any mean-variance efficient return (except the risk-free rate).

E(Ri) = Rf + βimv

[
E(Rmv)−Rf

]



4. Can the “Sharpe ratio” between two risky assets exceed the slope of
the mean-variance frontier? That is, if Rmv is on the frontier, is it possible
that

E(Ri)− E(Rj)

σ(Ri −Rj)
>

E(Rmv)−Rf

σ(Rmv)
?

5. Show that if consumption growth is lognormal, then

∣∣∣∣E(R
mv)−Rf

σ(Rmv)

∣∣∣∣ = σ
[
(ct+1/ct)

−γ]
E
[(
ct+1/ct

)−γ] =
√
eγ

2σ2(! ln ct+1) − 1 ≈ γσ(! ln c)


(Start with σ 2(x) = E(x2) − E(x)2 and the lognormal property E(ez) =
eEz+(1/2)σ

2(z).)

6. There are assets with mean return equal to the risk-free rate, but
substantial standard deviation of returns. Long-term bonds are pretty close
examples. Why would anyone hold such an asset? Wouldn’t it be better to
put your money in a mean-variance frontier asset?

7. The first-order conditions for an infinitely lived investor who can buy
an asset with dividend stream {dt} are

pt = Et

∞∑
j=1

βj
u′(ct+j)

u′(ct)
dt+j
 (1.39)

The first-order conditions for buying a security with price pt and payoff
xt+1 = dt+1 + pt+1 are

pt = Et

[
β
u′(ct+1)

u′(ct)

(
pt+1 + dt+1

)]

 (1.40)
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(a) Derive (1.40) from (1.39)

(b) Derive (1.39) from (1.40). You need an extra condition. Show that
this extra condition is a first-order condition for maximization. To do
this, think about what strategy the consumer could follow to improve
utility if the condition did not hold, both if this is if the only security
available and if the investor can trade all state- and date-contingent
claims.

8. Suppose a consumer has a utility function that includes leisure. (This
could also be a second good, or a good produced in another country.)
Using the continuous-time setup, show that expected returns will now
depend on two covariances, the covariance of returns with leisure and the
covariance of returns with consumption, so long as leisure enters non-
separably, i.e., u(c l) cannot be written v(c) + w(l). (This is a three line
problem, but you need to apply Ito’s lemma to *.)

9. From

1 = E(mR)

show that the negative of the mean log discount factor must be larger
than any mean return,

−E(lnm) > E(lnR)


How is it possible that E(lnR) is bounded—what about returns of the
form R = (1− α)Rf + αRm for arbitrarily large α? (Hint: start by assum-
ing m and R are lognormal. Then see if you can generalize the results
using Jensen’s inequality, E(f(x)) > f(E(x)) for f convex. The return
that solves maxR E(lnR) is known as the growth optimal portfolio.)




