
3 Stellar Physics

In this chapter, we obtain a physical understanding of main-sequence stars and of their
properties, as outlined in the previous chapter. The Sun is the nearest and best-studied
star, and its properties provide useful standards to which other stars can be compared.
For reference, let us summarize the measured parameters of the Sun. The Earth–Sun
distance is

d� = 1.5 × 108 km = 1 AU. (3.1)

The mass of the Sun is

M� = 2.0 × 1033 g. (3.2)

The radius of the Sun is

r� = 7.0 × 1010 cm. (3.3)

Using the mass and the radius, we can find the mean density of the Sun:

ρ̄ = M�
4
3πR3�

= 3 × 2 × 1033 g

4π × (7 × 1010 cm)3
= 1.4 g cm−3. (3.4)

The Sun’s mean density is thus not too different from that of liquid water. The bolometric
Solar luminosity is

L� = 3.8 × 1033 erg s−1. (3.5)

When divided by 4πd2�, this gives the Solar flux above the Earth’s atmosphere, sometimes
called the solar constant:

f� = 1.4 × 106 erg s−1 cm−2 = 1.4 kW m−2. (3.6)

The effective surface temperature is

TE� = 5800 K. (3.7)
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From Wien’s law (Eq. 2.16), the typical energy of a solar photon is then 1.4 eV. When the
energy flux is divided by this photon energy, the photon flux is

f�,ph ≈ 1.4 × 106 erg s−1 cm−2

1.4 eV × 1.6 × 10−12 erg eV−1 = 6.3 × 1017 s−1 cm−2 (3.8)

(where we have converted between energy units using 1 eV = 1.6 × 10−12 erg).
From radioactive dating of Solar System bodies, the Sun’s age is about

t� = 4.5 × 109 yr. (3.9)

Finally, from a solution of the stellar models that we will develop, the central density and
temperature of the Sun are

ρc = 150 g cm−3, (3.10)

Tc = 15 × 106 K. (3.11)

3.1 Hydrostatic Equilibrium and the Virial Theorem

A star is a sphere of gas that is held together by its self-gravity, and is balanced against
collapse by pressure gradients. To see this, let us calculate the free-fall timescale of the
Sun, i.e., the time it would take to collapse to a point, if there were no pressure support.
Consider a mass element dm at rest in the Sun at a radius r0. Its potential energy is

dU = −GM(r0)dm

r0
, (3.12)

where M(r0) is the mass interior to r0. From conservation of energy, the velocity of the
element as it falls toward the center is

1

2

(
dr

dt

)2

= GM(r0)

r
− GM(r0)

r0
, (3.13)

where we have assumed that the amount of (also-falling) mass interior to r0 remains
constant. Separating the variables and integrating, we find

τff =
∫ τff

0
dt = −

∫ 0

r0

[
2GM(r0)

(
1

r
− 1

r0

)]−1/2

dr

=
(

r3
0

2GM(r0)

)1/2 ∫ 1

0

(
x

1 − x

)1/2

dx. (3.14)

The definite integral on the right equals π/2, and the ratio M(r0)/r3
0 , up to a factor 4π/3,

is the mean density ρ̄, so

τff =
(

3π

32Gρ̄

)1/2

. (3.15)
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Figure 3.1 Hydrostatic equilibrium. The gravitational force Fgr on a mass element
of cross-sectional area A is balanced by the force A dP due to the pressure difference
between the top and the bottom of the mass element.

For the parameters of the Sun, we obtain

τff � =
(

3π

32 × 6.7 × 10−8 cgs × 1.4 g cm−3

)1/2

= 1800 s. (3.16)

Thus, without pressure support, the Sun would collapse to a point within half an hour.
This has not happened because the Sun is in hydrostatic equilibrium. Consider now a

small, cylinder-shaped mass element inside a star, with A the area of the cylinder’s base,
and dr its height (see Fig. 3.1). If there is a pressure difference dP between the top of the
cylinder and its bottom, this will lead to a net force A dp on the mass element, in addition
to the force of gravity toward the center. Equilibrium will exist if

−GM(r)dm

r2
− A dP = 0. (3.17)

But

dm = ρ(r)A dr , (3.18)

which leads us to the first equation of stellar structure, the equation of hydrostatic equi-
librium:

dP(r)

dr
= −GM(r)ρ(r)

r2
. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pressure
must decrease outward (i.e., with increasing radius).

This simple equation, combined with some thermodynamics, can already provide
valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate from
r = 0 to r∗, the outer radius of the star:

∫ r∗

0
4πr3 dP

dr
dr = −

∫ r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)
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The right-hand side, in the form we have written it, is seen to be the energy that would
be gained in constructing the star from the inside out, bringing from infinity shell by
shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the gravitational potential
self-energy of the star, Egr. On the left-hand side, integration by parts gives

[P(r)4πr3]r∗
0 − 3

∫ r∗

0
P(r)4πr2dr . (3.21)

We will define the surface of the star as the radius at which the pressure goes to zero. The
first term is therefore zero. The second term is seen to be −3 times the volume-averaged
pressure, P̄, up to division by the volume V of the star. Equating the two sides, we
obtain

P̄ = −1

3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one-third of its gravitational energy
density. Equation 3.22 is one form of the so-called virial theorem for a gravitationally bound
system.

To see what Eq. 3.22 implies, consider a star composed of a classical, monoatomic,
nonrelativistic, ideal gas of N identical particles.1 At every point in the star the gas equation
of state is

PV = NkT , (3.23)

and its thermal energy is

Eth = 3
2 NkT . (3.24)

Thus,

P = 2

3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both sides
by 4πr2 and integrating over the volume of the star, we find that

P̄V = 2
3 E tot

th , (3.26)

with E tot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

E tot
th = −Egr

2
, (3.27)

1 Classical means that the typical separations between particles are larger than the de Broglie wavelengths of
the particles, λ = h/p, where p is the momentum. Nonrelativistic means that the particle velocities obey v � c. An
ideal gas is defined as a gas in which particles experience only short-range (compared to their typical separations)
interactions with each other—billiard balls on a pool table are the usual analog.
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which is another form of the virial theorem. Equation 3.22 says that when a star contracts
and loses energy, i.e., its gravitational self-energy becomes more negative, then its thermal
energy rises. This means that stars have negative heat capacity—their temperatures rise
when they lose energy. As we will see, this remarkable fact is at the crux of all of stellar
evolution.

A third form of the virial theorem is obtained by considering the total energy of a star,
both gravitational and thermal:

E total = E tot
th + Egr = −E tot

th = Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, nonrelativistic, ideal gas
is negative, meaning the star is bound. (To see what happens in the case of a relativistic
gas, solve Problem 1.) Since all stars constantly radiate away their energy (and hence
Etotal becomes more negative), they are doomed to collapse (Egr becomes more negative),
eventually. We will see in chapter 4 that an exception to this occurs when the stellar gas
moves from the classical to the quantum regime.

We can also use Eq. 3.22 to get an idea of the typical pressure and temperature inside a
star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for a choice of ρ(r).
For example, for a constant density profile, ρ = const.,

Egr = −
∫ r∗

0

GM(r)ρ(r)4πr2dr

r
= −

∫ r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5

GM2∗
r∗

. (3.29)

A density profile, ρ(r), that falls with radius will give a somewhat more negative value of Egr.
Taking a characteristic Egr ∼ −GM2/r , we find that the mean pressure in the Sun is

P̄� ∼ 1

3

GM2�
4
3πr3�r�

= GM2�
4πr4�

≈ 1015 dyne cm−2 = 109atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us assume
again a classical, nonrelativistic ideal gas, with particles of mean mass m̄. Equation 3.27
then applies, and

3

2
NkTvir ∼ 1

2

GM2�
r�

= 1

2

GM�Nm̄

r�
. (3.31)

The mass of an electron is negligibly small, only≈1/2000 compared to the mass of a proton.
For an ionized hydrogen gas, consisting of an equal number of protons and electrons, the
mean mass m̄,

m̄ = me + mp

2
= mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the hydrogen
atom, mH = 1.7 × 10−24 g. The typical thermal energy is then
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kTvir ∼ GM�mH

6r�
= 6.7 × 10−8 cgs × 2 × 1033 g × 1.7 × 10−24 g

6 × 7 × 1010 cm

= 5.4 × 10−10 erg = 0.34 keV. (3.33)

With k = 1.4 × 10−16 erg K−1 = 8.6 × 10−5 eV K−1, this gives a virial temperature of about
4 × 106 K. As we will see, at temperatures of this order of magnitude, nuclear reactions
can take place, and thus replenish the thermal energy that the star radiates away, halting
the gravitational collapse (if only temporarily).

Of course, in reality, just like P(r), the density ρ(r) and the temperature T (r) are also
functions of radius and they grow toward the center of a star. To find them, we need to
define additional equations. We will see that the equation of hydrostatic equilibrium is
one of four coupled differential equations that determine stellar structure.

3.2 Mass Continuity

In the hydrostatic equilibrium equation (Eq. 3.19), we have M(r) and ρ(r), which are easily
related to each other:

dM(r) = ρ(r)4πr2dr , (3.34)

or

dM(r)

dr
= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or the
equation of mass conservation.

3.3 Radiative Energy Transport

The radial gradient in P(r) that supports a star is produced by a gradient in ρ(r) and T (r).
In much of the volume of most stars, T (r) is determined by the rate at which radiative
energy flows in and out through every radius, i.e., the luminosity L(r). To find the equation
that determines T (r), we need to study some of the basics of radiative transfer, the passage
of radiation through matter. In some of the volume of some stars, the energy transport
mechanism that dominates is convection, rather than radiative transport. We discuss con-
vection in section 3.12. Energy transport by means of conduction plays a role only in dense
stellar remnants—white dwarfs and neutron stars—which are discussed in chapter 4.

Photons in stars can be absorbed or scattered out of a beam via interactions with
molecules, with atoms (either neutral or ions), and with electrons. If a photon traverses a
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Figure 3.2 A volume element in a field of targets as viewed in perspective (left).
The target number density is n, and each target presents a cross section σ . From
the base of the cylindrical volume, n dx targets per unit area are seen in projection
(right). A straight line along the length of the volume will therefore intercept, on
average, nσdx targets.

path dx filled with “targets” with a number density n (i.e., the number of targets per unit
volume), then the projected number of targets per unit area lying in the path of the photon
is n dx (see Fig. 3.2). If each target poses an effective cross section2 σ for absorption or
scattering, then the fraction of the area covered by targets is σn dx. Thus, the number of
targets that will typically be intersected by a straight line traversing the path dx, or, in other
words, the number of interactions the photon undergoes, will be

# of interactions = nσdx. (3.36)

Equation 3.36 actually defines the concept of cross section. (Cross section can be defined
equivalently as the ratio between the interaction rate per target particle and the incoming
flux of projectiles.) Setting the left-hand side equal to 1, the typical distance a photon will
travel between interactions is called the mean free path:

l = 1

nσ
. (3.37)

More generally, the stellar matter will consist of a variety of absorbers and scatterers, each
with its own density ni and cross section σi. Thus,

l = 1∑
niσi

≡ 1

ρκ
, (3.38)

where we have used the fact that all the particle densities will be proportional to the mass
density ρ, to define the opacity κ . The opacity obviously has cgs units of cm2 g−1, and will
depend on the local density, temperature, and element abundance.

We will return later to the various processes that produce opacity. However, to get
an idea of the magnitude of the scattering process, let us consider one of the important
interactions—Thomson scattering of photons on free electrons (see Fig. 3.3).

2 The cross section of a particle, which has units of area, quantifies the degree to which the particle is liable
to take part in a particular interaction (e.g., a collision or a reaction) with some other particle.
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Figure 3.3 Thomson scattering of a photon on a free electron.

The Thomson cross section is

σT = 8π

3

(
e2

mec2

)2

= 6.7 × 10−25 cm2. (3.39)

It is independent of temperature and photon energy.3 In the hot interiors of stars, the gas is
fully ionized and therefore free electrons are abundant. If we approximate, for simplicity,
that the gas is all hydrogen, then there is one electron per atom of mass mH, and

ne ≈ ρ

mH
. (3.40)

The mean free path for electron scattering is then

les = 1

neσT
≈ mH

ρ σT
≈ 1.7 × 10−24 g

1.4 g cm−3 × 6.7 × 10−25 cm2
≈ 2 cm, (3.41)

where we have used the mean mass density of the Sun calculated previously. In reality,
the density of the Sun is higher than average in regions where electron scattering is the
dominant source of opacity, while in other regions other processes, apart from electron
scattering, are important. As a result, the actual typical photon mean free path is even
smaller, and is l ≈ 1 mm.

Thus, photons can travel only a tiny distance inside the Sun before being scattered
or absorbed and reemitted in a new direction. Since the new direction is random, the
emergence of photons from the Sun is necessarily a random walk process. The vector D
describing the change in position of a photon after N steps, each described by a vector li
having length l and random orientation (see Fig. 3.4), is

D = l1 + l2 + l3 + · · · + lN . (3.42)

The square of the linear distance covered is

D2 = |l1|2 + |l2|2 + · · · + |lN |2 + 2(l1 · l2 + l1 · l3 + · · · ), (3.43)

and its expectation value is

〈D2〉 = Nl2. (3.44)

3 Note the inverse square dependence of the Thomson cross section on the electron mass. For this reason,
protons and nuclei, which are much heavier, are much less effective photon scatterers. Similarly, the relevant
mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons pose a very small
Thomson-scattering cross section.
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Figure 3.4 The net advance of a photon performing a random walk consisting of N

steps, each described by a vector li , is the vector D.

The expectation value of the term in parentheses in Eq. 3.43 is zero because it is a sum
over many vector dot products, each with a random angle, and hence with both positive
and negative cosines contributing equally. The linear distance covered in a random walk
is therefore

〈D2〉1/2 = D = √
N l. (3.45)

To gain some intuition, it is instructive to calculate how long it takes a photon to travel
from the center of the Sun, where most of the energy is produced, to the surface.4 From
Eq. 3.45, traveling a distance r� will require N = r2�/l2 steps in the random walk. Each
step requires a time l/c. Thus, the total time for the photon to emerge from the Sun is

τrw ≈ l

c

r2�
l2

= r2�
lc

= (7 × 1010 cm)2

10−1 cm × 3 × 1010 cm s−1

= 1.6 × 1012 s = 52, 000 yr. (3.46)

Thus, if the nuclear reactions powering the Sun were to suddenly switch off, we would
not notice5 anything unusual for 50,000 years.

With this background, we can now derive the equation that relates the temperature
profile, T (r), to the flow of radiative energy through a star. The small mean free path of
photons inside the Sun and the very numerous scatterings, absorptions, and reemissions
every photon undergoes reaffirms that locally, every volume element inside the Sun radi-
ates as a blackbody to a very good approximation. However, there is a net flow of radiation
energy outward, meaning there is some small anisotropy (a preferred direction), and
implying there is a higher energy density at smaller radii than at larger radii. The net flow

4 In reality, of course, it is not the same photon that travels this path. In every interaction, the photon can
transfer energy to the particle it scatters on, or distribute its original energy among several photons that emerge
from the interaction. Hence, the photon energy is strongly “degraded” during the passage through the Sun.

5 In fact, even then, nothing dramatic would happen. As we will see in section 3.9, a slow contraction of the
Sun would begin, with a timescale of ∼107 yr. Over ∼105 yr, the solar radius would shrink only by ∼1%, which
is small but discernible.
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Figure 3.5 Radiative diffusion of energy between volume shells in a star, driven by
the gradient in the thermal energy density.

of radiation energy through a mass shell at radius r , per unit time, is just L(r) (see Fig. 3.5).
This must equal the excess energy in the shell, compared to a shell at larger radius, divided
by the time it takes this excess energy to flow across the shell’s width �r . The excess energy
density is �u, which multiplied by the shell’s volume gives the total excess energy of the
shell, 4πr2�r�u. The time for the photons to cross the shell in a random walk is (�r)2/lc.
Thus,

L(r) ≈ −4πr2�r�u

(�r)2/lc
= −4πr2lc

�u

�r
. (3.47)

A more rigorous derivation of this equation adds a factor 1/3 on the right-hand side,
which comes about from an integration of cos2 θ over solid angle (see the derivation of the
equation of radiation pressure, Eq. 3.74). Including this factor and replacing the differences
with differentials, we obtain

L(r)

4πr2
= − cl

3

du

dr
. (3.48)

Note that this is, in effect, a diffusion equation, describing the outward flow of energy. The
left-hand side is the energy flux. On the right-hand side, du/dr is the gradient in energy
density, and −cl/3 is a diffusion coefficient that sets the proportionality relating the energy
flow and the energy density gradient. The opacity, as reflected in the mean free path l,
controls the flow of radiation through the star. For low opacity (large l), the flow will be
relatively unobstructed, and hence the luminosity will be high, and vice versa.

Since at every radius the energy density is close to that of blackbody radiation (Eq. 2.9),
then

u = aT 4, (3.49)

and

du

dr
= du

dT

dT

dr
= 4aT 3 dT

dr
. (3.50)

Substituting in Eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of radiative
energy transport,
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dT (r)

dr
= − 3L(r)κ(r)ρ(r)

4πr24acT 3(r)
. (3.51)

From Eqs. 3.48 and 3.49, together with an estimate of the mean free path, we can make
an order-of-magnitude prediction of the Sun’s luminosity. Approximating −du/dr with
∼u/r� = aT 4/r�, we have

L� ∼ 4πr2
�

cl

3

aT 4

r�
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a typical
temperature and taking l = 0.1 cm, we find

L� ∼ 4π

3
7 × 1010 cm × 3 × 1010 cm s−1 × 10−1 cm × 7.6 × 10−15 cgs × (4 × 106 K)4

= 2 × 1033 erg s−1, (3.53)

in reasonable agreement with the observed solar luminosity, L� = 3.8 × 1033 erg s−1. (We
have abbreviated above the units of the radiation constant, a, as cgs.) The above estimate
can also be used to argue that, based on its observed luminosity, the Sun must be composed
primarily of ionized hydrogen. If the Sun were composed of, say, ionized carbon, the mean
particle mass would be m̄ ≈ 12mH/7 ≈ 2mH, rather than mH/2. Equation 3.33 would then
give a virial temperature that is 4 times as high, resulting in a luminosity prediction in
Eq. 3.52 that is too high by two orders of magnitude.

3.4 Energy Conservation

We will see that the luminosity of a star is produced by nuclear reactions, with output
energies that depend on the local conditions (density and temperature) and hence on r .
Let us define ε(r) as the power produced per unit mass of stellar material. Energy conser-
vation means that the addition to a star’s luminosity due to the energy production in a thin
shell at radius r is

dL = εdm = ερ4πr2dr , (3.54)

or

dL(r)

dr
= 4πr2ρ(r)ε(r), (3.55)

which is the equation of energy conservation.
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3.5 The Equations of Stellar Structure

We have derived four coupled first-order differential equations describing stellar structure.
Let us rewrite them here:

dP(r)

dr
= −GM(r)ρ(r)

r2
, (3.56)

dM(r)

dr
= 4πr2ρ(r), (3.57)

dT (r)

dr
= − 3L(r)κ(r)ρ(r)

4πr24acT (r)3
, (3.58)

dL(r)

dr
= 4πr2ρ(r)ε(r). (3.59)

We can define four boundary conditions for these equations, for example,

M(r = 0) = 0, (3.60)

L(r = 0) = 0, (3.61)

P(r = r∗) = 0, (3.62)

M(r = r∗) = M∗, (3.63)

where M∗ is the total mass of the star. (In reality, at the radius r∗ of the photosphere of
the star, P does not really go completely to zero, nor do T and ρ, and more sophisticated
boundary conditions are required, which account for the processes in the photosphere.)

To these four differential equations we need to add three equations connecting the pres-
sure, the opacity, and the energy production rate of the gas with its density, temperature,
and composition:

P = P(ρ, T , composition), (3.64)

κ = κ(ρ, T , composition), (3.65)

ε = ε(ρ, T , composition). (3.66)

The function P(ρ, T ) is usually called the equation of state. Each of these three functions
will depend on the composition through the element abundances and the ionization states
of each element in the gas. It is common in astronomy to parametrize the mass abun-
dances of hydrogen, helium, and all the heavier elements (the latter are often referred to
collectively by the term “metals”) as

X ≡ ρH

ρ
, Y ≡ ρHe

ρ
, Z ≡ ρmetals

ρ
. (3.67)

We have thus ended up with seven coupled equations defining the seven unknown
functions: P(r), M(r), ρ(r), T (r), κ(r), L(r), and ε(r). As there are four boundary conditions
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for the four first-order differential equations, if there is a solution, it is unique. This is
usually expressed in the form of the Vogt–Russell conjecture, which states that the properties
and evolution of an isolated star are fully determined by its initial mass and its chemical
abundances. These determine the star’s observable parameters: its surface temperature,
radius, and luminosity. Two variables that we have neglected in this treatment, and that
have minor influence on stellar structure, are stellar rotation and magnetic fields. To
proceed, we need to define the three functions, P, κ , and ε.

3.6 The Equation of State

Different equations of state P(ρ, T , X , Y , Z) apply for different ranges of gas density, tem-
perature, and abundance. Under the conditions in most normal stars, the equation of state
of a classical, nonrelativistic, ideal gas, provides a good description. Consider, for example,
such a gas, composed of three different kinds of particles, each with its own mass mi and
density ni. The mean particle mass will be

m̄ = n1m1 + n2m2 + n3m3

n1 + n2 + n3
= ρ

n
. (3.68)

The gas pressure will then be

Pg = nkT = ρ

m̄
kT . (3.69)

The mean mass will depend on the chemical abundance and ionization state of the gas.
As we have already seen, for completely ionized pure hydrogen,

m̄ = mH

2
, (3.70)

and therefore m̄/mH = 0.5.
More generally, the number densities of hydrogen, helium, or an element of atomic

mass number A (i.e., an element with a total of A protons and neutrons in each atomic
nucleus) will be

nH = Xρ

mH
, nHe = Yρ

4mH
, nA = ZAρ

AmH
, (3.71)

where ZA is the mass abundance of an element of atomic mass number A. Complete
ionization of hydrogen results in two particles (an electron and a proton); of helium, three
particles (two electrons and a nucleus); and of an atom with atomic number Z (i.e., with
Z protons or electrons), Z + 1 particles, which for heavy enough atoms is always close to
A/2. Thus, for an ionized gas we will have

n = 2nH + 3nHe +
∑ A

2
nA = ρ

mH

(
2X + 3

4
Y + 1

2
Z

)

= ρ

2mH

(
3X + Y

2
+ 1

)
, (3.72)
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody
intensity B strikes the wall of a container at an angle θ to its perpendicular. The
projected area of the beam, dA, is increased by 1/cos θ , and therefore the power
reaching the wall per unit area is decreased to B cos θ . Since a photon’s momen-
tum, p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos2 θ/c. The total pressure is obtained by integrating over all angles
of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,

m̄

mH
= ρ

nmH
= 2

1 + 3X + 0.5Y
(3.73)

for a totally ionized gas. For solar abundances, X = 0.71, Y = 0.27, Z = 0.02, and therefore
m̄/mH = 0.61. In the central regions of the Sun, about half of the hydrogen has already
been converted into helium by nuclear reactions, and as a result X = 0.34, Y = 0.64, and
Z = 0.02, giving m̄/mH = 0.85.

In addition to the kinetic gas pressure, the photons in a star exert radiation pressure.
Let us digress briefly, and derive the equation of state for this kind of pressure. Consider
photons inside a blackbody radiator with an intensity given by the Planck function, Iν = Bν ,
which, when integrated over wavelength, we denoted as B. As illustrated in Fig. 3.6,
the energy arriving at the surface of the radiator per unit time, per unit area, at some
angle θ to the perpendicular to the surface, is B cos θ , because the area of the beam, when
projected onto the wall of the radiator, is increased by 1/cos θ . Now, consider the photons
in the beam, which strike the fully reflective surface of the radiator at the angle θ . Every
photon of energy E has momentum p = E/c. When reflected, it transmits to the surface
a momentum �p = (2E/c) cos θ . Therefore, there is a second factor of cos θ that must
be applied to the incoming beam. The rate of momentum transfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But, the rate
of momentum transfer (i.e., the force) per unit area is, by definition, the pressure. Thus,

P = F

A
= dp/dt

A
= 2

c

∫ π

π/2
B cos2 θ sin θdθ

∫ 2π

0
dφ = 4π

3c
B = 1

3
u, (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4) between
intensity and energy density. Note that the derivation above applies not only to photons,
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
bremsstrahlung, or “free–free” radiation. Right: In the inverse process of free–free
absorption, a photon is absorbed by a free electron. The process is possible only if
a neighboring ion, which can share some of the photon’s momentum, is present.

but to any particles with an isotropic velocity distribution, and with kinetic energies large
compared to their rest-mass energies, so that the relation p ≈ E/c (which is exact for
photons) is a good approximation. Thus, the equation of state in which the radiation
pressure equals one-third of the thermal energy density holds for any ultrarelativistic gas.

Returning to the case of the pressure due to a thermal photon gas inside a star, we can
write

Prad = 1
3 u = 1

3 aT 4, (3.75)

which under some circumstances can become important or dominant (see Problems 2
and 3). The full equation of state for normal stars will therefore be

P = Pg + Prad = ρkT

m̄
+ 1

3
aT 4. (3.76)

We will see in chapter 4 that the conditions in white dwarfs and in neutron stars dictate
equations of state that are very different from this form.

3.7 Opacity

Like the equation of state, the opacity, κ , at every radius in the star will depend on the
density, the temperature, and the chemical composition at that radius. We have already
mentioned one important source of opacity: Thomson scattering of photons off free elec-
trons. Let us now calculate correctly the electron density for an ionized gas of arbitrary
abundance (rather than pure hydrogen, as before):

ne = nH + 2nHe +
∑ A

2
nA = ρ

mH

(
X + 2

4
Y + 1

2
Z

)
= ρ

2mH
(1 + X ), (3.77)

where we have again assumed that the number of electrons in an atom of mass number
A is A/2. Therefore,

κes = neσT

ρ
= σT

2mH
(1 + X ) = (1 + X ) 0.2 cm2 g−1. (3.78)
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In regions of a star with relatively low temperatures, such that some or all of the elec-
trons are still bound to their atoms, three additional processes that are important sources of
opacity are bound–bound, bound–free (also called photoionization), and free–free absorp-
tion. In bound–bound and bound–free absorption, which we have already discussed in the
context of photospheric absorption features, an atom or ion is excited to a higher energy
level, or ionized to a higher degree of ionization, by absorbing a photon. Free–free absorp-
tion is the inverse process of free–free emission, often called bremsstrahlung (“braking
radiation” in German). In free–free emission (see Fig. 3.7), a free electron is accelerated
by the electric potential of an ion, and as a result radiates. Thus, in free–free absorption, a
photon is absorbed by a free electron and an ion, which share the photon’s momentum and
energy. All three processes depend on photon wavelength, in addition to gas temperature,
density, and composition.

When averaged over all wavelengths, the mean opacity due to both bound–free absorption
and free–free absorption behaves approximately as

κ̄bf ,ff ∼ ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges in
temperature and density. For example, free–free absorption actually increases with temper-
ature at low temperature and density, with the increase in free electron density. Similarly,
bound–free opacity cuts off at high temperatures at which the atoms are fully ionized.
Additional sources of opacity, significant especially in low-mass stars, are molecules and
H− ions.6

3.8 Scaling Relations on the Main Sequence

From the equations we have derived so far, we can already deduce and understand the
observed functional forms of the mass–luminosity relation, L ∼ Mα , and the effective-
temperature–luminosity relation, L ∼ T 8

E , that are observed for main-sequence stars. Let us
assume, for simplicity, that the functions P(r), M(r), ρ(r), and T (r) are roughly power laws,
i.e., P(r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can immediately write the first three differential
equations (Eqs. 3.56, 3.57, and 3.58) as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)

and

L ∼ T 4r

κρ
(3.82)

6 The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen atom.
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(just as, instead of solving a differential equation, say, df /dx = x4, we can write directly
f ∼ x5). For moderately massive stars, the pressure will be dominated by the kinetic gas
pressure, and the opacity by electron scattering. Therefore,

P ∼ ρT (3.83)

and (Eq. 3.78)

κ = const. (3.84)

Equating 3.80 and 3.83, we find

T ∼ M

r
(3.85)

(which is basically just the virial theorem again, for a nonrelativistic, classical, ideal gas—
Eq. 3.27). Substituting this into 3.82, and using 3.81 to express r3ρ, we find

L ∼ M3, (3.86)

as observed for main-sequence stars more massive than the Sun.
Equation 3.85 also suggests that r ∼ M on the main sequence. To see this, consider a

star that is forming from a mass M that is contracting under its own gravity and heating
up (star formation is discussed in some detail in chapter 5). The contraction will stop,
and an equilibrium will be set up, once the density and the temperature in the core
are high enough for the onset of nuclear reactions. We will see that the nuclear power
density depends mainly on temperature. Thus, for any initial mass, r will stop shrinking
when a particular core temperature is reached. Therefore, the internal temperature T is
comparable in all main-sequence stars (i.e., it is weakly dependent on mass, and hence
approximately constant), and

r ∼ M. (3.87)

Detailed models confirm that the core temperature varies only by a factor ≈4 over a range
of ∼100 in mass on the main sequence. With r ∼ M, we see from Eq. 3.81 that the density
of a star decreases as M−2, so that more massive stars will have low density, and low-mass
stars will have high density.

Proceeding to low-mass stars, the high density means there is a dominant role for
bound–free and free–free opacity,

κ ∼ ρ

T 3.5
. (3.88)

Since T ∼ const., r ∼ M, and ρ ∼ M−2, then κ ∼ ρ ∼ M−2, and Eq. 3.82 gives

L ∼ T 4r

κρ
∼ r

ρ2
∼ M5, (3.89)

as seen in low-mass stars.
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For the most massive stars, the low gas density will make radiation pressure dominant
in the equation of state (see Problem 3),

P ∼ T 4, (3.90)

and electron scattering, with κ = const., will again be the main source of opacity. Equating
with 3.80 and substituting for T 4 in Eq. 3.82, we find

L ∼ M, (3.91)

a flattening of the mass–luminosity relationship that is, in fact, observed for the most
massive stars.

Finally, we can also reproduce the functional dependence of the main sequence in the
H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for moderately massive
stars. Let us then take an intermediate slope, L ∼ M4, as representative. Since r ∼ M, then

σT 4
E = L

4πr2∗
∼ M4

M2
∼ M2 ∼ L1/2, (3.92)

so

L ∼ T 8
E , (3.93)

as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the different
sources of pressure and opacity in stars of different masses, and of the fact that the onset
of nuclear hydrogen burning keeps the core temperatures of all main-sequence stars in a
narrow range. The latter fact is elucidated below.

3.9 Nuclear Energy Production

The last function we still need to describe is the power density ε(ρ, T , X , Y , Z). To see
that the energy source behind ε must be nuclear burning, we consider the alternatives.
Suppose that the source of the Sun’s energy were gravitational, i.e., that the Sun had
radiated until now the potential energy liberated by contracting from infinity to its present
radius. From the virial theorem, we saw that the thermal energy resulting from such a
contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the other half of the gravitational energy released by the contraction, and which
the Sun could have radiated, is

Erad ∼ 1

2

GM2�
r�

. (3.95)

To see how long the Sun could have shined at its present luminosity with this energy
source, we divide this energy by the solar luminosity. This gives the so-called Kelvin–
Helmholtz timescale,
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τkh ∼ 1

2

GM2�
r�

1

L�
= 6.7 × 10−8 cgs × (2 × 1033 g)2

2 × 7 × 1010 cm × 3.8 × 1033 erg s−1

= 5 × 1014 s = 1.6 × 107 yr. (3.96)

The geological record shows that the Earth and Moon have existed for over 4 billion years,
and that the Sun has been shining with about the same luminosity during all of this period.
A similar calculation shows that chemical reactions (e.g., if the Sun were producing energy
by combining hydrogen and oxygen into water) are also not viable for producing the solar
luminosity for so long.

A viable energy source for the Sun and other main-sequence stars is nuclear fusion
of hydrogen into helium. Most of the nuclear energy of the Sun comes from a chain of
reactions called the p-p chain. The first step is the reaction

p + p → d + e+ + νe, (3.97)

where d designates a deuteron, composed of a proton and a neutron. As we will see in
section 3.10, the timescale for this process inside the Sun is 1010 yr. The timescale is so
long mainly because the reaction proceeds via the weak interaction (as is evidenced by the
emission of a neutrino). The positron, the deuteron, and the neutrino share an energy of
0.425 MeV. Once the reaction occurs, the positron quickly annihilates with an electron,
producing two 0.511-MeV γ -ray photons. The neutrino, having a weak interaction with
matter, escapes the Sun and carries off its energy, which has a mean of 0.26 MeV. The
remaining kinetic energy and photons quickly thermalize by means of frequent matter–
matter and matter–photon collisions. Typically, within 1 s, the deuteron will merge with
another proton to form 3He:

p + d → 3He + γ , (3.98)

with a total energy release (kinetic + the γ -ray photon) of 5.49 MeV. Finally, on a timescale
of 300,000 years, we have

3He + 3He → 4He + p + p, (3.99)

with a kinetic energy release of 12.86 MeV. Every time this three-step chain occurs twice,
four protons are converted into a 4He nucleus, two neutrinos, photons, and kinetic energy.
The total energy released per 4He nucleus is thus

(4 × 0.511 + 2 × 0.425 + 2 × 5.49 + 12.86) MeV = 26.73 MeV. (3.100)

Deducting the 2 × 0.511 MeV from the annihilation of two preexisting electrons, we find
that this is just the rest-mass difference between four free protons and a 4He nucleus:

[m(4p) − m(4He)]c2 = 25.71 MeV = 0.7% m(4p)c2. (3.101)

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The time for
the Sun to radiate away just 10% of the energy available from this source is
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τnuc = 0.1 × 0.007 × M�c2

L�

= 0.1 × 0.007 × 2 × 1033 g × (3 × 1010 cm s−1)2

3.8 × 1033 erg s−1

= 3.3 × 1017 s = 1010 yr. (3.102)

In other words, in terms of energy budget, hydrogen fusion can easily produce the solar
luminosity over the age of the Solar System.

Next, we need to see whether the conditions in the Sun are suitable for these reactions
to actually take place. Consider two nuclei with atomic numbers (i.e., number of protons
per nucleus) ZA and ZB. The strong interaction produces a short-range attractive force
between the nuclei on scales smaller than

r0 ≈ 1.4 × 10−13 cm. (3.103)

The strong interaction goes to zero at larger distances, and the Coulomb repulsion between
the nuclei takes over. The Coulomb energy barrier is

Ecoul = ZAZBe2

r
, (3.104)

which at r0 is of order

Ecoul(r0) ≈ ZAZB MeV. (3.105)

Figure 3.8 shows schematically the combined nuclear (strong) and electrostatic (Coulomb)
potential. In the reference frame of one of the nuclei, the other nucleus, with kinetic energy
E, can classically approach only to a distance

r1 = ZAZBe2

E
, (3.106)

where it will be repelled away. At a typical internal stellar temperature of 107 K, the kinetic
energy of a nucleus is 1.5kT ∼ 1 keV. The characteristic kinetic energy is thus of order
10−3 of the energy required to overcome the Coulomb barrier. Typical nuclei will approach
each other only to a separation r1 ∼ 10−10 cm, 1000 times larger than the distance at which
the strong nuclear binding force operates. Perhaps those nuclei that are in the high-energy
tail of the Maxwell–Boltzmann distribution can overcome the barrier? The fraction of
nuclei with such energies is

e−E/kT ≈ e−1000 ≈ 10−434. (3.107)

The number of protons in the Sun is

Np ≈ M�
mH

= 2 × 1033 g

1.7 × 10−24 g
≈ 1057. (3.108)

Thus, there is not a single nucleus in the Sun (or, for that matter, in all the stars in the
observable Universe) with the kinetic energy required classically to overcome the Coulomb
barrier and undergo nuclear fusion with another nucleus.
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Figure 3.8 Schematic illustration of the potential energy V (r) between two nuclei
as a function of separation r . For two protons, the Coulomb repulsion reaches a
maximum, with V (r) ∼ 1 MeV at r = r0, at which point the short-range nuclear
force sets in and binds the nuclei (negative potential energy). Two nuclei with
relative kinetic energy of ∼1 keV, typical for the temperatures in stellar interiors,
can classically approach each other only to within a separation r1, 1000 times greater
than r0. The dashed rectangle is a rectangular barrier of height 〈V (r)〉 ≈ 3E/2, which
we use to approximate the Coulomb barrier in our calculation of the probability for
quantum tunneling through the potential.

Fortunately, quantum tunneling through the barrier allows nuclear reactions to take
place after all. To see this, let us describe this two-body problem by means of the time-
independent Schrödinger equation, for a wave function � in a spherically symmetric
potential V (r):

h−2

2μ
∇2� = [V (r) − E]�, (3.109)

where the reduced mass of the two nuclei, of masses mA and mB, is

μ ≡ mAmB

mA + mB
. (3.110)

In our case, the potential is

V (r) = ZAZBe2

r
, (3.111)

and E is the kinetic energy. Let us obtain an order-of-magnitude solution to the Schrödinger
equation. By our definition of r1, the radius of closest classical approach, we have V (r1) = E.
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We can then write V (r) = Er1/r , and the mean, volume-averaged height of the potential
between r1 and r0 � r1 is

〈V (r)〉 =
∫ r1

r0
4πr2V (r)dr∫ r1

r0
4πr2dr

≈ 3

2
E. (3.112)

Approximating V (r) with a constant function of this height (a “rectangular barrier”), the
radial component of the Schrödinger equation becomes

h−2

2μ

1

r

d2(r�)

dr2
≈ E

2
�, (3.113)

which has a solution

� = A
eβr

r
, β =

√
μE

h−
. (3.114)

(The second independent solution of the equation, with an amplitude that rises with
decreasing radius, is unphysical.) The wave function amplitude, squared, is proportional
to the probability density for a particle to be at a given location. Multiplying the ratio of the
probability densities by the ratio of the volume elements, 4πr2

0 dr and 4πr2
1 dr , thus gives

the probability that a nucleus will tunnel from r1 to within r0 � r1 of the other nucleus:

|�(r0)|2 r2
0

|�(r1)|2 r2
1

= e2βr0

e2βr1
≈ e−2βr1 = exp

(
−2

√
μE

h−
ZAZBe2

E

)

= exp
(

−2
√

μ

h−
ZAZBe2 1√

E

)
. (3.115)

A full solution of the Schrödinger equation gives the same answer, but with an additional
factor π/

√
2 in the exponential. If we recall the definition of the fine-structure constant,

α = e2

h−c
≈ 1

137
, (3.116)

and define an energy

EG = (παZAZB)22μc2, (3.117)

then the probability of penetrating the Coulomb barrier simplifies to the function

g(E) = e−√
EG/E . (3.118)

The quantity EG is called the Gamow energy and g(E) is called the Gamow factor. For two
protons,

EG =
(

π
1

137
× 1 × 1

)2

2
1

2
mpc2 ≈ 500 keV. (3.119)

(It is convenient to remember that the rest energy of a proton, mpc2, is 0.94 GeV.)
Thus, for the typical kinetic energy of particles in the Sun’s core, E ∼ 1 keV, we find
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g(E) ∼ e−22 ∼ 10−10. While this probability, for a given pair or protons, is still small, it is
considerably larger than the classical probability we found in Eq. 3.107.

3.10 Nuclear Reaction Rates

Even if tunneling occurs, and two nuclei are within the strong force’s interaction range,
the probability of a nuclear reaction will still depend on a nuclear cross section, which will
generally depend inversely on the kinetic energy. Thus, the total cross section for a nuclear
reaction involving ingredient nuclei A and B is

σAB(E) = S0

E
e−√

EG/E , (3.120)

where S0 is a constant, or a weak function of energy, with units of [area]×[energy].
For a given nuclear reaction, S0 is generally derived from accelerator experiments, or
is calculated theoretically.

The number of reactions per nucleus A as it traverses a distance dx in a field with a
density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

If we divide both sides by dt, then the number of reactions per nucleus A per unit time is

dNA

dt
= nBσABvAB, (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function, ε(ρ, T , X , Y , Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of nuclei
A will give the number of reactions per unit time and per unit volume, i.e., the reaction
rate per unit volume,

RAB = nAnBσABvAB. (3.123)

If every reaction releases an energy Q , multiplying by Q gives the power per unit volume.
Dividing by ρ then gives the power per unit mass, rather than per unit volume:

ε = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA = ρXA

AAmH
, nB = ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic mass
numbers of the two nucleus types, ε can be expressed as

ε = ρXAXB

m2
HAAAB

σABvABQ . (3.126)
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In reality, the nuclei in a gas will have a distribution of velocities, so every velocity has
some probability of occurring. Hence, ε can be obtained by averaging vABσAB over all
velocities, with each velocity weighted by its probability, P(vAB):

ε = ρXAXB

m2
HAAAB

〈σABvAB〉Q , (3.127)

with

〈σABvAB〉 =
∫ ∞

0
σABvABP(vAB)dvAB. (3.128)

A classical, nonrelativistic gas will have a distribution of velocities described by the
Maxwell–Boltzmann distribution. The relative velocities of nuclei A and B will also follow
a Maxwell–Boltzmann distribution,

P(v )dv = 4π
( μ

2πkT

)3/2
v 2 exp

(
−μv 2

2kT

)
dv , (3.129)

but with a mass represented by the reduced mass of the particles, μ. For brevity, we have
omitted here the subscript AB from the velocities.

Inserting 3.120 and 3.129 into 3.128, and changing the integration variable from velocity
to kinetic energy using E = 1

2μv 2, dE = μv dv , we obtain

〈σv 〉 =
(

8

πμ

)1/2 S0

(kT )3/2

∫ ∞

0
e−E/kT e−√

EG/EdE. (3.130)

The integrand in this expression,

f (E) = e−E/kT e−√
EG/E , (3.131)

is composed of the product of two exponential functions, one (from the Boltzmann
distribution) falling with energy, and the other (due to the Gamow factor embodying
the Coulomb repulsion) rising with energy. Obviously, f (E) will have a narrow maximum
at some energy E0, at which most of the reactions take place (see Fig. 3.9). The maximum
of f (E) is easily found by taking its derivative and equating to zero. It is at

E0 =
(

kT

2

)2/3

E1/3
G . (3.132)

A Taylor expansion of f (E) around E0 shows f (E) can be approximated by a Gaussian with
a width parameter (i.e., the “σ ,” or standard deviation, of the Gaussian e−x2/2σ 2

) of

� = 21/6

31/2
E1/6

G (kT )5/6. (3.133)

The value of the integral can therefore be approximated well with the area of the Gaussian,√
2π f (E0)� (see Problem 7). Replacing in 3.127, we obtain the final expression for the

power density due to a given nuclear reaction:

ε = 25/3
√

2√
3

ρXAXB

m2
HAAAB

√
μ

QS0
E1/6

G

(kT )2/3
exp

[
−3

(
EG

4kT

)1/3
]

. (3.134)
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Figure 3.9 The Boltzmann probability distribution, P(E), the Gamow factor, g(E), and their
product, f (E). P(E) is shown for kT = 1 keV, g(E) is for the case of two protons, with
EG = 500 keV, and both g(E) and f (E) have been scaled up by large factors for display pur-
poses. The rarity of protons with large kinetic energies, as described by P(E), combined with
the Coulomb barrier, embodied by g(E), limit the protons taking part in nuclear reactions
to those with energies near E0, where f (E) peaks. f (E) can be approximated as a Gaussian
centered at E0 (E0 ≈ 5 keV for the case shown), with width parameter �.

Equation 3.134 can tell us, for example, the luminosity produced by the p-p chain in
the Sun. For a rough estimate, let us take for the mass density in the core of the Sun the
central density, ρ = 150 g cm−3. As already noted in section 3.6, in the central regions
of the Sun, some of the hydrogen has already been converted into helium by nuclear
reactions. Let us assume a typical hydrogen abundance of X = 0.5, which we can use for
XA and XB. The first step in the p-p chain, the p + p → d + e+ + νe reaction, is by far
the slowest of the three steps in the chain, and it is therefore the bottleneck that sets the
rate of the entire p-p process. The constant S0 for this reaction is calculated theoretically
to be ≈4 × 10−46 cm2 keV, which is characteristic of weak interactions. For Q , let us
take the entire thermal energy release of each p-p chain completion, since once the first
step occurs, on a timescale of 1010 yr, the following two reactions, with timescales of
order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that every
completion of the chain produces 26.73 MeV of energy and two neutrinos. Subtracting the
0.52 MeV carried off, on average, by the two neutrinos, the thermal energy released per
p-p chain completion is Q = 26.2 MeV. As already noted, EG = 500 keV for two protons,
and the typical core temperature is kT = 1 keV. The atomic mass numbers are, of course,
AA = AB = 1, and the reduced mass is μ = mp/2. Finally, since we are considering a
reaction between identical particles (i.e., protons on protons) we need to divide the collision
rate by 2, to avoid double counting. With these numbers, Eq. 3.134 gives a power density of

ε = 10 erg s−1 g−1. (3.135)
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Multiplying this by the mass of the core of the Sun, say, 0.2M� = 4 × 1032 g, gives a
luminosity of ∼4 × 1033 erg s−1, in good agreement with the observed solar luminosity of
3.8 × 1033 erg s−1.

Reviewing the derivation of Eqs. 3.122–3.134, we see that we can also recover the reaction
rate per nucleus, dNA/dt, by dividing back from ε a factor (XAQ )/(mHAA). For the p + p

reaction, this gives a rate of 1.6 × 10−18 s−1 per proton. The reciprocal of this rate is the
typical time a proton has to wait until it reacts with another proton, and indeed equals

τpp ∼ 6 × 1017 s ∼ 2 × 1010 yr, (3.136)

as asserted above. Thus, we have shown that hydrogen fusion provides an energy source
that can power the observed luminosity of the Sun over the known age of the Solar System,
about 5 billion years, not only in terms of energy budget (Eq. 3.102) but also in terms of
the energy generation rate. Furthermore, we see that the timescale to deplete the hydrogen
fuel in the solar core is of order 10 billion years.

The total power density at a point in a star with a given temperature, density, and
abundance will be the sum of the power densities due to all the possible nuclear reactions,
each described by Eq. 3.134. Because of the exponential term in 3.134, there will be a strong
preference for reactions between species with low atomic number, and hence small EG.
For example, compare the reactions

p + d → 3He + γ (EG = 0.66 MeV) (3.137)

and

p + 12C → 13N + γ (EG = 32.9 MeV), (3.138)

which have comparable nuclear cross sections S0 (both reactions follow the same process
of adding a proton to a nucleus and emitting a photon). At a typical kinetic energy of 1 keV,
if the abundances of deuterium and carbon nuclei were comparable, the ratio between the
rates would be

R(p12C)

R(pd)
∼ exp

[
−3

32.91/3 − 0.661/3

(4 × 0.001)1/3

]
∼ e−44 ∼ 10−20. (3.139)

Furthermore, the higher the Gamow energy, the more strongly will the reaction rate
depend on temperature. For example, a first-order Taylor expansion of Eq. 3.134 around
T = 1.5 × 107 K, the central temperature of the Sun, shows that the p + p → d + e+ + νe

rate depends on temperature approximately as T 4, while the p + 12C → 13N + γ rate goes
like T 18 (see Problem 8). The steep positive temperature dependence of nuclear reac-
tions, combined with the virial theorem, means that nuclear reactions serve as a natural
“thermostat” that keeps stars stable. Suppose, for example, that the temperature inside
a star rises. This will increase the rate of nuclear reactions, leading to an increase in
luminosity. Due to opacity, this additional energy will not directly escape from the star,
resulting in a temporary increase in total energy. Since

Etot = 1
2 Egr = −Eth, (3.140)
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the gravitational energy Egr will grow (i.e., become less negative), meaning the star will
expand, and Eth will become smaller, meaning the temperature will be reduced again.
This explains why main-sequence stars of very different masses have comparable core
temperatures.

The thermostatic behavior controls also the long-term evolution of stars. Eventually,
when the dominant nuclear fuel runs out, the power density ε will drop. The star will then
contract, Eth will increase, and T will rise until a new nuclear reaction, involving nuclei of
higher atomic number, can become effective.

A key prediction of the picture we have outlined, in which the energy of the Sun derives
from the p-p chain, is that there will be a constant flux of neutrinos coming out of the Sun.
As opposed to the photons, the weak interaction of the neutrinos with matter guarantees
that they can escape the core of the Sun almost unobstructed.7 As calculated above, the
thermal energy released per p-p chain completion is 26.2 MeV. The neutrino number flux
on Earth should therefore be twice the solar energy flux divided by 26.2 MeV:

fneutrino = 2f�
26.2 MeV

= 2 × 1.4 × 106 erg s−1 cm−2

26.2 × 1.6 × 10−6 erg
= 6.7 × 1010 s−1 cm−2. (3.141)

This huge particle flux goes mostly unhindered through our bodies and through the entire
Earth, and is extremely difficult to detect. Experiments to measure the solar neutrino flux
began in the 1960s, and consistently indicated a deficit in the flux of electron neutrinos
arriving from the Sun. It is now established that the total neutrino flux from the Sun is
actually very close to the predictions of solar models. The originally observed deficit was
the result of previously unknown flavor oscillations, in which some of the original electron
neutrinos turn into other types of neutrinos en route from the Sun to the Earth.

We note, for completeness, that apart from the particular p-p chain described in
Eqs. 3.97–3.99, which is the main nuclear reaction sequence in the Sun, other nuclear
reactions occur, and produce neutrinos that are detectable on Earth (see Problem 9). In
stars more massive than the Sun, hydrogen is converted to helium also via a different
sequence of reactions, called the CNO cycle. In the CNO cycle, the trace amounts of car-
bon, nitrogen, and oxygen in the gas serve as catalysts in the hydrogen-to-helium burning,
without any additional C, N, or O being synthesized. The main branch of the CNO cycle
actually begins with reaction 3.138,

p + 12C → 13N + γ . (3.142)

This is followed by

13N → 13C + e+ + νe, (3.143)

p + 13C → 14N + γ , (3.144)

p + 14N → 15O + γ , (3.145)
15O → 15N + e+ + νe, (3.146)

7 Typical cross sections for scattering of neutrinos on matter are of order 10−43 cm2, 1018 times smaller than
the Thomson cross section for photons. Scaling from Eq. 3.41, the mean free path for neutrinos in the Sun is
∼1018 cm, 107 times greater than the solar radius.
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and finally,

p + 15N → 12C + 4He. (3.147)

Although we noted that reaction 3.142 is slower by 20 orders of magnitude than the p-p
chain’s p + d → 3He + γ , the p + d reaction can take place only after overcoming the
p + p bottleneck, which has a timescale 18 orders of magnitude longer than p + d. The
lack of such a bottleneck for the p + 12C reaction is further compensated by this reaction’s
strong dependence on temperature. Although core temperature varies only weakly with
stellar mass, the slightly higher core temperatures in more massive stars are enough to
make the CNO cycle the dominant hydrogen-burning mechanism in main-sequence stars
of mass 1.2M� and higher.

3.11 Solution of the Equations of Stellar Structure

We have now derived the four differential equations and the three additional functions that,
together with boundary conditions, define uniquely the equilibrium properties of a star of
a given mass and composition. Along the way, we already deduced many of the observed
properties of main-sequence stars. “Solving” this system of coupled equations means
finding the functions P(r), T (r), and ρ(r), which are the ones that are usually considered
to describe the structure of the star. Unfortunately, there is no analytic solution to the
equations, unless some unrealistic assumptions are made (see, e.g., Problems 4 and 5).
Nevertheless, a numerical solution can be obtained straightforwardly, and is the most
reasonable way to proceed anyway, given the complicated nature of the functions P, κ ,
and ε when all relevant processes are included. In a numerical solution, the differentials
in the equations are replaced by differences. Then, an example of one possible calculation
scheme is one in which the radial structure of a star is followed shell by shell, going either
outward from the center or inward from the surface.

3.12 Convection

Under certain conditions, the main means of energy transport in some regions of a star
is convection, rather than radiative transport. Convection occurs when a volume element
of material that is displaced from its equilibrium position, rather than returning to the
original position, continues moving in the displacement direction. For example, if the
displacement is upward to a region of lower density, and after the displacement the density
of the volume element is lower than that of its new surroundings, the element will continue
to be buoyed upward. When convection sets in, it is very efficient at transporting heat, and
becomes the dominant transport mechanism.

To see what are the conditions for the onset of convection, consider a volume element
of gas at equilibrium radius r inside a star , where the temperature, pressure, and density
are T , P, and ρ, respectively (see Fig. 3.10). Now let us displace the element to a radius
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Figure 3.10 A mass element (lower circle) inside a star undergoes a small displace-
ment dr to a higher position (upper circle), and expands adiabatically to match the
new surrounding pressure P + dP. If, after the expansion, the density inside the
element, ρ + δρ, is larger than the surrounding density ρ + dρ, the element will
sink back to its former equilibrium position. If, on the other hand, the density inside
the volume is lower than that of the surroundings, the mass element will be buoyed
up, and convection ensues.

r + dr , where the parameters of the surroundings are T + dT , P + dP, and ρ + dρ. Since
the gas in the star obeys

ρ ∝ P

T
, (3.148)

taking the logarithmic derivative gives

dρ

ρ
= dP

P
− dT

T
. (3.149)

To simplify the problem, we will assume that, at its new location, the volume element
expands adiabatically (i.e., without exchanging heat with its new surroundings, so dQ = 0,
and therefore the entropy, defined as dS = dQ/T , remains constant). The element expands
until its pressure matches the surrounding pressure, and reaches new parameters T + δT ,
ρ + δρ, and P + δP = P + dP, where we have identified the small changes inside the
element with a “δ” rather than a “d.” Since we approximate the expansion of the element
to be adiabatic, it obeys an equation of state

P ∝ ργ , (3.150)

where the adiabatic index, γ , is the usual ratio of heat capacities at constant pressure and
constant volume. Taking again the logarithmic derivative, we obtain

δρ

ρ
= 1

γ

δP

P
. (3.151)

The element will continue to float up, rather than falling back to equilibrium, if after the
expansion its density is lower than that of the surroundings, i.e.,

ρ + δρ < ρ + dρ, (3.152)
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or simply

δρ < dρ, (3.153)

(recall that both δρ and dρ are negative), or dividing both sides by ρ,

δρ

ρ
<

dρ

ρ
. (3.154)

Substituting from Eqs. 3.149 and 3.151, the condition for convection becomes

1

γ

δP

P
<

dP

P
− dT

T
. (3.155)

Recalling that δP = dP, this becomes

dT

T
<

γ − 1

γ

dP

P
, (3.156)

or upon division by dr ,

dT

dr
<

γ − 1

γ

T

P

dP

dr
. (3.157)

Since the radial temperature and pressure gradients are both negative, the condition for
convection is that the temperature profile must fall fast enough with increasing radius,
i.e., convection sets in when

∣∣∣∣dT

dr

∣∣∣∣ >
γ − 1

γ

T

P

∣∣∣∣dP

dr

∣∣∣∣ . (3.158)

For a nonrelativistic gas without internal degrees of freedom (e.g., ionized hydrogen),
γ = 5/3. As the number of internal degrees of freedom increases, γ becomes smaller,
making convection possible even if |dT/dr| is small. This can occur when the gas is
made of atoms, which can be excited or ionized, or of molecules that have rotational and
vibrational degrees of freedom and can be dissociated. Convection therefore occurs in
some cool regions of stars, where atoms and molecules exist. This applies to the outer
layers of intermediate-mass main-sequence stars and red giants, and to large ranges in
radius in low-mass stars. Another range of applicability of convection is in the cores of
massive stars. The Sun is convective in the outer 28% of its radius.

Once convection sets in, it mixes material at different radii and thus works toward
equilibrating temperatures, i.e., lowering the absolute value of the temperature gradient
|dT/dr|. Therefore, convection can be implemented into stellar structure computations by
testing, at every radius, if the convection condition has been met. If it has, convection will
bring the temperature gradient back to its critical value, and therefore the radiative energy
transport equation (3.51) can be replaced by Eq. 3.158, but with an equality sign:

dT

dr
= γ − 1

γ

T (r)

P(r)

dP

dr
. (3.159)
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Problems

1. In Eqs. 3.23–3.28, we saw that, for a star composed of a classical, nonrelativistic, ideal
gas, Etotal = Etot

th + Egr = −Etot
th , and therefore the star is bound. Repeat the derivation,

but for a classical, relativistic gas of particles. Recall (Eq. 3.75) that the equation of state
of a relativistic gas is P = 1

3 Eth/V. Show that, in this case, Egr = −Etot
th , and therefore

Etotal = Etot
th + Egr = 0, i.e., the star is marginally bound. As a result, stars dominated by

radiation pressure are unstable.

2. The pressure inside a normal star is given by (Eq. 3.76)

P = Pg + Prad = ρkT

m̄
+ 1

3
aT 4.

Using parameters appropriate to the Sun, show that throughout the Sun, including the
core, where the internal temperature is about 107 K, the kinetic pressure dominates.

3. Because of the destabilizing influence of radiation pressure (see Problem 1), the most
massive stars that can form are those in which the radiation pressure and the nonrela-
tivistic kinetic pressure are approximately equal. Estimate the mass of the most massive
stars, as follows.
a. Assume that the gravitational binding energy of a star of mass M and radius R is

|Egr| ∼ GM2/R. Use the virial theorem (Eq. 3.22),

P̄ = −1

3

Egr

V
,

to show that

P ∼
(

4π

34

)1/3

GM2/3ρ4/3,

where ρ is the typical density.
b. Show that if the radiation pressure, Prad = 1

3 aT 4, equals the kinetic pressure, then the
total pressure is

P = 2
(

3

a

)1/3 (
kρ

m̄

)4/3

.

c. Equate the expressions for the pressure in (a) and (b), to obtain an expression for
the maximal mass of a star. Find its value, in solar masses, assuming a fully ionized
hydrogen composition.
Answer: M = 110M�.

4. Consider a hypothetical star of radius R, with density ρ that is constant, i.e., independent
of radius. The star is composed of a classical, nonrelativistic, ideal gas of fully ionized
hydrogen.
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a. Solve the equations of stellar structure for the pressure profile, P(r), with the boundary
condition P(R) = 0.
Answer: P(r) = (2π/3)Gρ2(R2 − r 2).

b. Find the temperature profile, T(r).
c. Assume that the nuclear energy production rate depends on temperature as ε ∼ T 4.

(This is the approximate dependence of the rate for the p-p chain at the temperature
in the core of the Sun.) At what radius does ε decrease to 0.1 of its central value, and
what fraction of the star’s volume is included within this radius?

5. Suppose a star of total mass M and radius R has a density profile ρ = ρc(1 − r/R),
where ρc is the central density.
a. Find M(r).
b. Express the total mass M in terms of R and ρc.
c. Solve for the pressure profile, P(r), with the boundary condition P(R) = 0.

Answer:

P(r) = πGρ2
c R2

[
5

36
− 2

3

( r

R

)2
+ 7

9

( r

R

)3
− 1

4

( r

R

)4
]

.

6. Consider a star of mass M = 10M�, composed entirely of fully ionized 12C. Its core
temperature is Tc = 6 × 108 K (compared to Tc,� = 1.5 × 107 K for the Sun).
a. What is the mean particle mass m̄, in units of mH?

Answer: 12/7.
b. Use the classical ideal gas law, the dimensional relation between mass, density, and

radius, and the virial theorem to find the scaling of the stellar radius r∗ with total
mass M, mean particle mass m̄, and core temperature Tc. Using the values of these
parameters for the Sun, derive the radius of the star.
Answer: 0.70r�.

c. If the luminosity of the star is L = 107L�, what is the effective surface temperature?
d. Suppose the star produces energy via the reaction

12C + 12C → 24Mg.

The atomic weight of 12C is 12, and that of 24Mg is 23.985. (The atomic weight of a
nucleus is defined as the ratio of its mass to 1/12 the mass of a 12C nucleus.) What
fraction of the star’s mass can be converted into thermal energy?
Answer: 6.3 × 10−4.

e. How much time does it take for the star to use up 10% of its carbon?
Answer: 950 yr.

7. We saw that the nuclear reaction rate in a star depends on

〈σv 〉 ∝
∫ ∞

0
f (E)dE,
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where

f (E) ≡ e−E/kT e−√
EG/E ,

and EG is the Gamow energy (Eq. 3.131).
a. By taking the derivative of f (E) and equating to zero, show that f(E) has a maximum at

E0 =
(

kT

2

)2/3

E1/3
G .

b. Perform a Taylor expansion, to second order, of f (E) around E0, to approximate f (E)
with a Gaussian. Show that the width parameter (i.e., the “σ”) of the Gaussian is

� = 21/6

31/2
E1/6

G (kT )5/6.

Hint: Take the logarithm of f (E), before Taylor expanding, and then exponentiate again
the Taylor expansion.

c. Show that

∫ ∞

0
f (E)dE = √

2π f (E0)�.

8. Show that the dependence on temperature of the nuclear power density (Eq. 3.134) at a
temperature T near T0 can be approximated as a power law, ε ∝ Tβ , where

β =
(

EG

4kT0

)1/3

− 2

3
.

Evaluate β at T0 = 1.5 × 107 K, for the reactions p + p → d + e+ + νe and p +12C →
13N + γ .
Hint: From Eq. 3.134, find ln ε, and calculate d(ln ε)/d(ln T)|T0 . This is the first-order
coefficient in a Taylor expansion of ln ε as a function of ln T (a pure power-law relation
between ε and T would obey ln ε = const. + β ln T).

9. We saw (Eq. 3.141) that, on Earth, the number flux of solar neutrinos from the p-p chain is

fneutrino = 2f�
26.2 MeV

= 2 × 1.4 × 106 erg s−1 cm−2

26.2 × 1.6 × 10−6 erg

= 6.7 × 1010 s−1 cm−2.

Other nuclear reactions in the Sun supplement this neutrino flux with a small additional
flux of higher-energy neutrinos. A neutrino detector in Japan, named SuperKamiokande,
consists of a tank of 50 kton of water, surrounded by photomultiplier tubes. The tubes
detect the flash of Cerenkov radiation emitted by a recoiling electron when a high-energy
neutrino scatters on it.
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a. How many electrons are there in the water of the detector?
b. Calculate the detection rate for neutrino scattering, in events per day, if 10−6 of the

solar neutrinos have a high enough energy to be detected by this experiment, and
each electron poses a scattering cross section σ = 10−43 cm2.
Hint: Consider the density of neutrino targets “seen” by an individual electron, with
a relative velocity of c between the neutrinos and the electron, to obtain the rate at
which one electron interacts with the incoming neutrinos, and multiply by the total
number of electrons, from (a), to obtain the rate in the entire detector.
Answers: 1.6 × 1034 electrons; 9 events per day.
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