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CHAPTER 1

GEOMETRODYNAMICS IN BRIEF

§1.1. THE PARABLE OF THE APPLE

One day in the year 1666 Newton had gone to the country,

and seeing the fall of an apple, as his niece to/d me, let himself
be led into a deep meditation on the cause which thus

draws every object along a line whose extension would pass
almost through the center of the Earth.

VOLTAIRE (1738)

Once upon a time a student lay in a garden under an apple tree reflecting on the
difference between Linstein’s and Newton’s views about gravity. He was startled
by the fall of an apple nearby. As he looked at the apple, he noticed ants beginning
to run along its surface (Figure 1.1). His curiosity aroused, he thought to investigate
the principles of navigation followed by an ant. With his magnifying glass, he noted
one track carefully, and, taking his knife, made a cut in the apple skin one mm
above the track and another cut one mm below it. He peeled off the resulting little
highway of skin and laid it out on the face of his book. The track ran as straight
as a laser beam along this highway. No more economical path could the ant have
found to cover the ten cm from start to end of that strip of skin. Any zigs and
zags or even any smooth bend in the path on its way along the apple peel from
starting point to end point would have increased its length.

“What a beautiful geodesic,” the student commented.

His eye fell on two ants starting off from a common point P in slightly different
directions. Their routes happened to carry them through the region of the dimple
at the top of the apple, one on each side of it. Each ant conscientiously pursued
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4 1. GEOMETRODYNAMICS IN BRIEF

Figure 1.1.

The Riemannian geometry of the spacetime of general relativity is here symbolized by the two-dimen-
sional geometry of the surface of an apple. The geodesic tracks followed by the ants on the apple’s
surface symbolize the world line followed through spacetime by a free particle. In any sufficiently localized
region of spacetime, the geometry can be idealized as flat, as symbolized on the apple’s two-dimensional
surface by the straight-line course of the tracks viewed in the magnifying glass (“local Lorentz character”
of geometry of spacetime). In a region of greater extension, the curvature of the manifold (four-dimen-
sional spacetime in the case of the real physical world; curved two-dimensional geometry in the case
of the apple) makes itself felt. Two tracks ¢ and %, originally diverging from a common point ¢, later
approach, cross, and go off in very different directions. In Newtonian theory this effect is ascribed to
gravitation acting at a distance from a center of attraction, symbolized here by the stem of the apple.
According to Einstein a particle gets its moving orders locally, from the geometry of spacetime right
where it is. Its instructions are simple: to follow the straightest possible track (geodesic). Physics is as
simple as it could be locally. Only because spacetime is curved in the large do the tracks cross. Geome-
trodynamics, in brief, is a double story of the effect of geometry on matter (causing originally divergent
geodesics to cross) and the effect of matter on geometry (bending of spacetime initiated by concentration
of mass, symbolized by effect of stem on nearby surface of apple).

his geodesic. Each went as straight on his strip of appleskin as he possibly could.
Yet because of the curvature of the dimple itself, the two tracks not only crossed
but emerged in very different directions.

“What happier illustration of Einstein’s geometric theory of gravity could one

Einstein’s local view of possibly ask?” murmured the student. “The ants move as if they were attracted

physics contrasted with by the apple stem. One might have believed in a Newtonian force at a distance.

Newton’s ""action at a . .

distance’” Yet from nowhere does an ant get his moving orders except from the local geometry
along his track. This is surely Einstein’s concept that all physics takes place by
‘local action.” What a difference from Newton’s ‘action at a distance’ view of physics!
Now I understand better what this book means.”

Physics is simple only when And so saying, he opened his book and read, “Don’t try to describe motion

analyzed locally relative to faraway objects. Physics is simple only when analyzed locally. And locally
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§1.2. SPACETIME WITH AND WITHOUT COORDINATES 5

the world line that a satellite follows [in spacetime, around the Earth] is already
as straight as any world line can be. Forget all this talk about ‘deflection’ and “force
of gravitation.” I'm inside a spaceship. Or I'm floating outside and near it. Do I
feel any ‘force of gravitation’? Not at all. Does the spaceship ‘feel’ such a force?
No. Then why talk about it? Recognize that the spaceship and I traverse a region
of spacetime free of all force. Acknowledge that the motion through that region
is already ideally straight.”

The dinner bell was ringing, but still the student sat, musing to himself. “Let me
see if I can summarize Einstein’s geometric theory of gravity in three ideas: (1)
locally, geodesics appear straight; (2) over more extended regions of space and time,
geodesics originally receding from each other begin to approach at a rate governed
by the curvature of spacetime, and this effect of geometry on matter is what we
mean today by that old word ‘gravitation’; (3) matter in turn warps geometry. The
dimple arises in the apple because the stem is there. I think I see how to put the
whole story even more briefly: Space acts on matter, telling it how to move. In turn,
matter reacts back on space, telling it how to curve. In other words, matter here,”
he said, rising and picking up the apple by its stem, “curves space here. To produce
a curvature in space here is to force a curvature in space there,” he went on, as
he watched a lingering ant busily following its geodesic a finger’s breadth away from
the apple’s stem. “Thus matter here influences matter there. That is Einstein’s
explanation for ‘gravitation.””

Then the dinner bell was quiet, and he was gone, with book, magnifying glass—and

apple.

§1.2. SPACETIME WITH AND WITHOUT COORDINATES

Now it came to me:. . .. the independence of the
gravitational acceleration from the nature of the falling
substance, may be expressed as follows: In a

gravitational field (of small spatial extension) things
behave as they do in a space free of gravitation. . . . This
happened in 1908. Why were another seven years required
for the construction of the general theory of relativity?

The main reason lies in the fact that it is not so easy to
free oneself from the idea that coordinates must have an
immediate metrical meaning.

ALBERT EINSTEIN [in Schilpp (1949), pp. 65-67.]

Nothing is more distressing on first contact with the idea of “curved spacetime” than
the fear that every simple means of measurement has lost its power in this unfamiliar
context. One thinks of oneself as confronted with the task of measuring the shape
of a gigantic and fantastically sculptured iceberg as one stands with a meter stick
in a tossing rowboat on the surface of a heaving ocean. Were it the rowboat itself
whose shape were to be measured, the procedure would be simple enough. One
would draw it up on shore, turn it upside down, and drive tacks in lightly at strategic
points here and there on the surface. The measurement of distances from tack to

For general queries, contact webmaster@press.princeton.edu

Space tells matter how to
move

Matter tells space how to
curve

Problem: how to measure in
curved spacetime



Resolution: characterize
events by what happens
there

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

6 1. GEOMETRODYNAMICS IN BRIEF

Figure 1.2.

The crossing of straws in a barn full of hay is a symbol for the world lines that fill up spacetime. By
their crossings and bends, these world lines mark events with a uniqueness beyond all need of coordinate
systems or coordinates. Typical events symbolized in the diagram, from left to right (black dots), are:
absorption of a photon; reemission of a photon; collision between a particle and a particle; collision
between a photon and a particle; another collision between a photon and a particle; explosion of a
firecracker; and collision of a particle from outside with one of the fragments of that firecracker.

tack would record and reveal the shape of the surface. The precision could be made
arbitrarily great by making the number of tacks arbitrarily large. It takes more daring
to think of driving several score pitons into the towering iceberg. But with all the
daring in the world, how is one to drive a nail into spacetime to mark a point?
Happily, nature provides its own way to localize a point in spacetime, as Einstein
was the first to emphasize. Characterize the point by what happens there! Give a
point in spacetime the name “event.” Where the event lies is defined as clearly and
sharply as where two straws cross each other in a barn full of hay (Figure 1.2). To
say that the event marks a collision of such and such a photon with such and such
a particle is identification enough. The world lines of that photon and that particle
are rooted in the past and stretch out into the future. They have a rich texture of
connections with nearby world lines. These nearby world lines in turn are linked
in a hundred ways with world lines more remote. How then does one tell the location
of an event? Tell first what world lines participate in the event. Next follow each
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Figure 1.3.

Above: Assigning “telephone numbers” to events by way of a system of coordinates. To say that the
coordinate system is “smooth” is to say that events which are almost in the same place have almost
the same coordinates. Below: Putting the same set of events into equally good order by way of a different
system of coordinates. Picked out specially here are two neighboring events: an event named “2” with
coordinates (x°, x1) = (77.2,22.6) and (x%, x1) = (18.5, 51.4); and an event named “#” with coordinates
(x% x1) = (79.9,20.1) and (x7, xT) = (18.4,47.1). Events € and ¢ are connected by the separation “vector”
&. (Precise definition of a vector in a curved spacetime demands going to the mathematical limit in
which the two points have an indefinitely small separation [N-fold reduction of the separation ¥ — 2],
and, in the resultant Jocally flat space, multiplying the separation up again by the factor N [im N — oo;
“tangent space”; “tangent vector”}. Forego here that proper way of stating matters, and forego complete
accuracy; hence the quote around the word “vector”.) In each coordinate system the separation vector
& is characterized by “components” (differences in coordinate values between ¢ and 2):

(89,8 = (7199 — 772,201 — 22.6) = (2.7, — 2.5),
(& &1y = (184 — 185, 47.1 — 51.4) = (= 0.1, —4.3).

See Box 1.1 for further discussion of events, coordinates, and vectors.
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8 1. GEOMETRODYNAMICS IN BRIEF

of these world lines. Name the additional events that they encounter. These events
pick out further world lines. Eventually the whole barn of hay is catalogued. Each
event is named. One can find one’s way as surely to a given intersection as the city
dweller can pick his path to the meeting of St. James Street and Piccadilly. No
numbers. No coordinate system. No coordinates.

That most streets in Japan have no names, and most houses no numbers, illustrates
The name of an event can one’s ability to do without coordinates. One can abandon the names of two world
even be arbitrary lines as a means to identify the event where they intersect. Just as one could name

a Japanese house after its senior occupant, so one can and often does attach arbitrary
names to specific events in spacetime, as in Box 1.1.
Coordinates provide a Coordinates, however, are convenient. How else from the great thick catalog of
convenient naming system events, randomly listed, can one easily discover that along a certain world line one
will first encounter event Trinity, then Baker, then Mike, then Argus—but not the
same events in some permuted order?

To order events, introduce coordinates! (See Figure 1.3.) Coordinates are four
indexed numbers per event in spacetime; on a sheet of paper, only two. Trinity
acquires coordinates

(x%, x1, x2, x3) = (77,23, 64, 11).

In christening events with coordinates, one demands smoothness but foregoes every
Coordinates generally do not  thought of mensuration. The four numbers for an event are nothing but an elaborate
measure length kind of telephone number. Compare their “telephone” numbers to discover whether
two events are neighbors. But do not expect to learn how many meters separate
them from the difference in their telephone numbers!
Nothing prevents a subscriber from being served by competing telephone systems,
Several coordinate systems nor an event from being catalogued by alternative coordinate systems (Figure 1.3).
can be used at once Box 1.1 illustrates the relationships between one coordinate system and another, as
well as the notation used to denote coordinates and their transformations.
Choose two events, known to be neighbors by the nearness of their coordinate
Vectors values in a smooth coordinate system. Draw a little arrow from one event to the
other. Such an arrow is called a vector. (It is a well-defined concept in flat spacetime,
or in curved spacetime in the limit of vanishingly small length; for finite lengths
in curved spacetime, it must be refined and made precise, under the new name
“tangent vector,” on which see Chapter 9.) This vector, like events, can be given
a name. But whether named “John” or “Charles” or “Kip,” it is a unique, well-
defined geometrical object. The name is a convenience, but the vector exists even
without it.
Just as a quadruple of coordinates

(x°, x1, x2, x3) = (77,23, 64, 11)

is a particularly useful name for the event “Trinity” (it can be used to identify what
other events are nearby), so a quadruple of “components”

(€0, €1, €2 83) = (1.2, —0.9,0,2.1)
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Box 1.1 MATHEMATICAL NOTATION FOR EVENTS, COORDINATES, AND VECTORS

Events are denoted by capital script, one-letter Latin names such as P, 2,4, 9.
Sometimes subscripts are used: Po, D1, B

Coordinates of an event ¥ are denoted by HPY, x(P), WP, z(P),
or by xO({y?)’ -Xl(fyj)s XZ(W)),

(),

or more abstractly by XMP) or xU(P),
where it is understood that Greek indices can take on any value 0, 1,
2, or 3.

Time coordinate (when one of the four is picked to play this role) xX%(P).

Space coordinates are XHDP), x2(P), xH(P)
and are sometimes denoted by x}(Py or x¥(P) or. ...

It 1s to be understood that Latin indices take on values 1, 2, or 3.

Shorthand notation: One soon tires of writing explicitly the functional depen-
dence of the coordinates, x#(%); so one adopts the shorthand notation xB
for the coordinates of the event ¢, and xi
for the space coordinates. One even begins to think of x# as representing
the event € itself, but must remind oneself that the values of x°, x1, x2,
x3 depend not only on the choice of ¢ but also on the arbitrary choice
of coordinates!

Other coordinates for the same event ¥ may be denoted x*(P) or just x%,
x¥(9) or just x*
X*(9) or just x*.

s

EXAMPLE: In Figure 1.3 (x%, x) = (77.2,22.6) and (x%, x7) = (18.5,51.4)
refer to the same event. The bars, primes, and hats distinguish one
coordinate system from another; by putting them on the indices rather
than on the x’s, we simplify later notation.

Transformation from one coordinate system to another is achieved by the four
functions x0(x9, x1, x2, x%),
xi(x()’ X], XZ, XR),
x?(x(), Xl, xz7 XB)’
XS(XO, x1, X2, xB)’
which are denoted more succinctly X3(xP).

Separation vector* (little arrow) reaching from one event £ to neighboring event

¢ can be denoted abstractly by uorvor& or? — 2.
It can also be characterized by the coordinate-value differencest between
# and £ (called “components” of the vector) = x4(P) — x49D),

£ = x¥P) — x4(2).

Transformation of components of a vector from one coordinate system to another

&
is achieved by partial derivatives of transformation equations = SXB &8,
3 B - ~ X
since £% = x*(P) — x*(2) = (0x¥/oxP)xB(P) — xF(D)]F
Einstein summation convention is used here: IxE 5 oy@
any index that is repeated in a product is automatically summed on X = X 8,
ox? ox P

*This definition of a vector is valid only in flat spacetime. The refined definition (*‘tangent vector”) in curved spacetime
is not spelled out here (see Chapter 9), but flat-geometry ideas apply with good approximation even in a curved geometry,
when the two points are sufficiently close.

1 These formulas are precisely accurate only when the region of spacetime under consideration is flat and when in addition
the coordinates are Lorentzian. Otherwise they are approximate—though they become arbitrarily good when the separation
between points and the length of the vector become arbitrarily small.
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10 1. GEOMETRODYNAMICS IN BRIEF

is a convenient name for the vector “John” that reaches from

(x9 x1, x%, x3) = (77,23, 64, 11)
to
(x% x1, x2, x%) = (78.2,22.1,64.0, 13.1).

How to work with the components of a vector is explored in Box 1.1,
There are many ways in which a coordinate system can be imperfect. Figure 1.4

Coordinate singularities illustrates a coordinate singularity. For another example of a coordinate singularity,

normally unavoidable run the eye over the surface of a globe to the North Pole. Note the many meridians
that meet there (“collapse of cells of egg crates to zero content”). Can’t one do better?
Find a single coordinate system that will cover the globe without singularity? A
theorem says no. Two is the minimum number of “coordinate patches” required
to cover the two-sphere without singularity (Figure 1.5). This circumstance empha-
sizes anew that points and events are primary, whereas coordinates are a mere
bookkeeping device.

Continuity of spacetime Figures 1.2 and 1.3 show only a few world lines and events. A more detailed
diagram would show a maze of world lines and of light rays and the intersections
between them. From such a picture, one can in imagination step to the idealized
limit: an infinitely dense collection of light rays and of world lines of infinitesimal
test particles. With this idealized physical limit, the mathematical concept of a

The mathematics of continuous four-dimensional “manifold” (four-dimensional space with certain

manifolds applied to the smoothness properties) has a one-to-one correspondence; and in this limit continu-

physics of spacetime ous, differentiable (i.e., smooth) coordinate systems operate. The mathematics then
supplies a tool to reason about the physics.

Dimensionality of spacetime A simple countdown reveals the dimensionality of the manifold. Take a point &
in an n-dimensional manifold. Its neighborhood is an n-dimensional ball (ie., the
interior of a sphere whose surface has n — 1 dimensions). Choose this ball so that
its boundary is a smooth manifold. The dimensionality of this manifold is (n — 1).
In this (n — 1)-dimensional manifold, pick a point . Its neighborhood is an
(n — 1)-dimensional ball. Choose this ball so that..., and so on. Eventually one
comes by this construction to a manifold that is two-dimensional but is not yet known
to be two-dimensional (two-sphere). In this two-dimensional manifold, pick a point
9. Its neighborhood is a two-dimensional ball (“disc”). Choose this disc so that
its boundary is a smooth manifold (circle). In this manifold, pick a point 9. Its
neighborhood is a one-dimensional ball, but is not yet known to be one-dimensional
(“line segment”). The boundaries of this object are two points. This circumstance
tells that the intervening manifold is one-dimensional; therefore the previous mani-
fold was two-dimensional; and so on. The dimensionality of the original manifold
is equal to the number of points employed in the construction. For spacetime, the
dimensionality is 4.

This kind of mathematical reasoning about dimensionality makes good sense at
the everyday scale of distances, at atomic distances (1078 cm), at nuclear dimensions
(10713 ¢m), and even at lengths smaller by several powers of ten, if one judges by
the concord between prediction and observation in quantum electrodynamics at high
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Figure 1.4.
How a mere coordinate singularity arises. Above: A coordinate system becomes singular when the “cells
in the egg crate” are squashed to zero volume. Below: An example showing such a singularity in the
Schwarzschild coordinates r, r often used to describe the geometry around a black hole (Chapter 31).
For simplicity the angular coordinates 8, ¢ have been suppressed. The singularity shows itself in two
ways. First, all the points along the dotted line, while quite distinct one from another, are designated
by the same pair of (r, £) values; namely, » = 2m, t = oo. The coordinates provide no way to distinguish
these points. Second, the “cells in the egg crate,” of which one is shown grey in the diagram, collapse
to zero content at the dotted line. In summary, there is nothing strange about the geometry at the dotted
line; all the singularity lies in the coordinate system (““poor system of telephone numbers™). No confusion
should be permitted to arise from the accidental circumstance that the ¢ coordinate attains an infinite
value on the dotted line. No such infinity would occur if 7 were replaced by the new coordinate 7, defined
by "

(t/2m) = tan(t/2m).
When 7 = oo, the new coordinate 7 is 7 = @m. The 7, ¢ coordinates still provide no way to distinguish
the points along the dotted line. They still give “cells in the egg crate” collapsed to zero content along
the dotted line.
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Figure 1.5.

Singularities in familiar coordinates on the two-sphere can be eliminated by covering the sphere with
two overlapping coordinate patches. A. Spherical polar coordinates, singular at the North and South
Poles, and discontinuous at the international date line. B. Projection of the Euclidean coordinates of
the Euclidean two-plane, tangent at the North Pole, onto the sphere via a line running to the South
Pole; coordinate singularity at the South Pole. C. Coverage of two-sphere by two overlapping coordinate
patches. One, constructed as in B, covers without singularity the northern hemisphere and also the
southern tropics down to the Tropic of Capricorn. The other (grey) also covers without singularity all
of the tropics and the southern hemisphere besides.

energies (corresponding de Broglie wavelength 10716 cm). Moreover, classical general
relativity thinks of the spacetime manifold as a deterministic structure, completely
well-defined down to arbitrarily small distances. Not so quantum general relativity
Breakdown in smoothness of  or “quantum geometrodynamics.” It predicts violent fluctuations in the geometry
spacetime at Planck length at distances on the order of the Planck length,
L* = (hG/c3)1/2
= [(1.054 X 10727 g cm?/sec)(6.670 X 1078 cm3/g sec?)]V/2 X
X (2998 x 10° cm/secy=#/2  (1.1)
1.616 x 10733 cm.

I

No one has found any way to escape this prediction. As nearly as one can estimate,
these fluctuations give space at small distances a “multiply connected” or “foamlike”
character. This lack of smoothness may well deprive even the concept of dimension-
ality itself of any meaning at the Planck scale of distances. The further exploration
of this issue takes one to the frontiers of Einstein’s theory (Chapter 44).

If spacetime at small distances is far from the mathematical model of a continuous
manifold, is there not also at larger distances a wide gap between the mathematical
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§1.3. WEIGHTLESSNESS 13

idealization and the physical reality? The infinitely dense collection of light rays
and of world lines of infinitesimal test particles that are to define all the points of
the manifold: they surely are beyond practical realization. Nobody has ever found
a particle that moves on timelike world lines (finite rest mass) lighter than an electron.
A collection of electrons, even if endowed with zero density of charge (e* and e~
world lines present in equal numbers) will have a density of mass. This density will
curve the very manifold under study. Investigation in infinite detail means unlimited
density, and unlimited disturbance of the geometry.

However, to demand investigatability in infinite detail in the sense just described
is as out of place in general relativity as it would be in electrodynamics or gas
dynamics. Electrodynamics speaks of the strength of the electric and magnetic field
at each point in space and at each moment of time. To measure those fields, it is
willing to contemplate infinitesimal test particles scattered everywhere as densely
as one pleases. However, the test particles do not have to be there at all to give
the field reality. The field has everywhere a clear-cut value and goes about its
deterministic dynamic evolution willy-nilly and continuously, infinitesimal test
particles or no infinitesimal test particles. Similarly with the geometry of space.

In conclusion, when one deals with spacetime in the context of classical physics,
one accepts (1) the notion of “infinitesimal test particle” and (2) the idealization
that the totality of identifiable events forms a four-dimensional continuous manifold.
Only at the end of this book will a look be taken at some of the limitations placed
by the quantum principle on one’s way of speaking about and analyzing spacetime.

§1.3. WEIGHTLESSNESS

“Gravity is a great mystery. Drop a stone. See it fall. Hear it hit. No one understands
why.” What a misleading statement! Mystery about fall? What else should the stone
do except fall? To fall is normal. The abnormality is an object standing in the way
of the stone. If one wishes to pursue a “mystery,” do not follow the track of the
falling stone. Look instead at the impact, and ask what was the force that pushed
the stone away from its natural “world line,” (i.e., its natural track through space-
time). That could lead to an interesting issue of solid-state physics, but that is not
the topic of concern here. Fall is. Free fall is synonymous with weightlessness:
absence of any force to drive the object away from its normal track through space-
time. Travel aboard a freely falling elevator to experience weightlessness. Or travel
aboard a spaceship also falling straight toward the Earth. Or, more happily, travel
aboard a spaceship in that state of steady fall toward the Earth that marks a circular
orbit. In each case one is following a natural track through spacetime.

The traveler has one chemical composition, the spaceship another; yet they travel
together, the traveler weightless in his moving home. Objects of such different nuclear
constitution as aluminum and gold fall with accelerations that agree to better than
one part in 101%, according to Roll, Krotkov, and Dicke (1964), one of the most
important null experiments in all physics (see Figure 1.6). Individual molecules fall
in step, too, with macroscopic objects [Estermann, Simpson, and Stern (1938)]; and
so do individual neutrons [Dabbs, Harvey, Paya, and Horstmann (1965)], individual

(continued on page 16)
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14 1. GEOMETRODYNAMICS IN BRIEF

Figure 1.6.

Principle of the Roll-Krotkov-Dicke experiment, which showed that the gravitational accelerations of
gold and aluminum are equal to 1 part in 101* or better (Princeton, 1964). In the upper lefthand corner,
equal masses of gold and aluminum hang from a supporting bar. This bar in turn is supported at its
midpoint. If both objects fall toward the sun with the same acceleration of g = 0.59 cm/sec?, the bar
does not turn. If the Au mass receives a higher acceleration, g + 8g, then the gold end of the bar starts
to turn toward the sun in the Earth-fixed frame. Twelve hours later the sun is on the other side, pulling
the other way. The alternating torque lends itself to recognition against a background of noise because
of its precise 24-hour period. Unhappily, any substantial mass nearby, such as an experimenter, located
at M, will produce a torque that swamps the effect sought. Therefore the actual arrangement was as
shown in the body of the figure. One gold weight and two aluminum weights were supported at the
three corners of a horizontal equilateral triangle, 6 cm on a side (three-fold axis of symmetry, giving
zero response to all the simplest nonuniformities in the gravitational field). Also, the observers performed
all operations remotely to eliminate their own gravitational effects*. To detect a rotation of the torsion
balance as small as ~10~% rad without disturbing the balance, Roll, Krotkov, and Dicke reflected a
very weak light beam from the optically flat back face of the quartz triangle. The image of the source
slit fell on a wire of about the same size as the slit image. The light transmitted past the wire fell on
a photomultiplier. A separate oscillator circuit drove the wire back and forth across the image at 3,000
hertz. When the image was centered perfectly, only even harmonics of the oscillation frequency appeared
in the light intensity. However, when the image was displaced slightly to one side, the fundamental
frequency appeared in the light intensity. The electrical output of the photomultiplier then contained
a 3,000-hertz component. The magnitude and sign of this component were determined automatically.
Equally automatically a proportional n.c. voltage was applied to the electrodes shown in the diagram.
It restored the torsion balance to its zero position. The D.C. voltage required to restore the balance to
its zero position was recorded as a measure of the torque acting on the pendulum. This torque was
Fourier-analyzed over a period of many days. The magnitude of the Fourier component of 24-hour
period indicated a ratio 8g/g = (0.96 = 1.04) x 107'%. Aluminum and gold thus fall with the same
acceleration, despite their important differences summarized in the table.

Ratios Al Au

Number of neutrons

"Number of protons. 1.08 15
Mass of Kinetic oy of K-el
ss of kinetic energy o electron 0.005 0.16
Rest mass of electron
Electrostati - of nucleu
ectrostatic mass-energy of nucleus 0.001 0.004

Mass of atom

The theoretical implications of this experiment will be discussed in greater detail in Chapters 16 and 38.

Braginsky and Panov (1971) at Moscow University performed an experiment identical in principle
to that of Dicke-Roll-Krotkov, but with a modified experimental set-up. Comparing the accelerations
of platinum and aluminum rather than of gold and aluminum, they say that

8g/g < 1x 10712,

*Other perturbations had to be, and were, guarded against. (1) A bit of iron on the torsion balance
as big as 107 c¢cm on a side would have contributed, in the Earth’s magnetic field, a torque a hundred
times greater than the measured torque. (2) The unequal pressure of radiation on the two sides of a
mass would have produced an unacceptably large perturbation if the temperature difference between
these two sides had exceeded 107* °K. (3) Gas evolution from one side of a mass would have propelled
it like a rocket. If the rate of evolution were as great as 1078 g/day, the calculated force would have
been ~ 1077 gem/sec?, enough to affect the measurements. (4) The rotation was measured with respect
to the pier that supported the equipment. As a guarantee that this pier did not itself rotate, it was anchored
to bed rock. (5) Electrostatic forces were eliminated; otherwise they would have perturbed the balance.
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16 1. GEOMETRODYNAMICS IN BRIEF

electrons [Witteborn and Fairbank (1967)] and individual mu mesons [Beall (1970)].
What is more, not one of these objects has to see out into space to know how to
move.

Contemplate the interior of a spaceship, and a key, penny, nut, and pea by accident
or design set free inside. Shielded from all view of the world outside by the walls
of the vessel, each object stays at rest relative to the vessel. Or it moves through
the room in a straight line with uniform velocity. That is the lesson which experience
shouts out.

Forego talk of acceleration! That, paradoxically, is the lesson of the circumstance
that “all objects fall with the same acceleration.” Whose fault were those accelera-
tions, after all? They came from allowing a groundbased observer into the act. The

Box 1.2 MATERIALS OF THE MOST DIVERSE COMPOSITION FALL WITH
THE SAME ACCELERATION (“STANDARD WORLD LINE")

Aristotle: “the downward movement of a mass of
gold or lead, or of any other body endowed with
weight, is quicker in proportion to its size.”

Pre-Galilean literature: metal and wood weights
fall at the same rate.

Galileo: (1) “the variation of speed in air between
balls of gold, lead, copper, porphyry, and other
heavy materials is so slight that in a fall of 100
cubits [about 46 meters] a ball of gold would surely
not outstrip one of copper by as much as four
fingers. Having observed this, I came to the con-
clusion that in a medium totally void of resistance
all bodies would fall with the same speed.” (2)
later experiments of greater precision “diluting
gravity” and finding same time of descent for
different objects along an inclined plane.

Newton: inclined plane replaced by arc of pendu-
lum bob; “time of fall” for bodies of different
composition determined by comparing time of
oscillation of pendulum bobs of the two materials.
Ultimate limit of precision in such experiments
limited by problem of determining effective length
of each pendulum: (acceleration) = (27/pe-
riod)*(length).

Lorand von Eotviés, Budapest, 1889 and 1922:
compared on the rotating earth the vertical defined
by a plumb bob of one material with the vertical
defined by a plumb bob of other material. The
two hanging masses, by the two unbroken threads
that support them, were drawn along identical
world lines through spacetime (middle of the labo-
ratory of Eotvos!). If cut free, would they also
follow identical tracks through spacetime (“normal
world line of test mass”)? If so, the acceleration
that draws the actual world line from the normal
free-fall world line will have a standard value, a.
The experiment of E6tvds did not try to test agree-
ment on the magnitude of a between the two
masses. Doing so would have required (1) cutting
the threads and (2) following the fall of the two
masses. Eotvds renounced this approach in favor
of a static observation that he could make with
greater precision, comparing the direction of a for
the two masses. The direction of the supporting
thread, so his argument ran, reveals the direction
in which the mass is being dragged away from its
normal world line of “free fall” or “weightless-
ness.” This acceleration is the vectorial resultant
of (1) an acceleration of magnitude g, directed
outward against so-called gravity, and (2) an ac-
celeration directed toward the axis of rotation of
the earth, of magnitude w* R sin ¢ (w, angular ve-
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§1.3. WEIGHTLESSNESS 17

push of the ground under his feet was driving him away from a natural world line.
Through that flaw in his arrangements, he became responsible for all those accelera-
tions. Put him in space and strap rockets to his legs. No difference!* Again the
responsibility for what he sees is his. Once more he notes that “all objects fall with

**“No difference” spelled out amounts to Einstein’s (1911) principle of the local equivalence between a
“gravitational field” and an acceleration: “We arrive at a very satisfactory interpretation of this law of
experience, if we assume that the systems K and K’ are physically exactly equivalent, that is, if we assume
that we may just as well regard the system K as being in a space free from gravitational fields, if we then
regard K as uniformly accelerated. This assumption of exact physical equivalence makes it impossible for
us to speak of the absolute acceleration of the system of reference, just as the usual theory of relativity
Jforbids us to ralk of the absolute velocity of a system; and it makes the equal falling of all bodies in a

gravitational field seem a matter of course.”

locity; R, radius of earth; ¢, polar angle measured
from North Pole to location of experiment). This
centripetal acceleration has a vertical component
—w? Rsin?§ too small to come into discussion.
The important component is «w? R sin @ cosd, di-
rected northward and parallel to the surface of the
carth. It deflects the thread by the angle

horizontal acceleration
vertical acceleration

_ w2 Rsinf cosf
g

34 cm/sec?

"~ 980 cm/sec?

= 1.7 X 1073 radian at§ = 45°

sin § cos 8

from the straight line connecting the center of the
earth to the point of support. A difference, dg, of
one part in 10® between g for the two hanging
substances would produce a difference in angle of
hang of plumb bobs equal to 1.7 x 107! radian
at Budapest (# = 42.5°). Edtvds reported 8g/g less
than a few parts in 10°.

Roll, Krotkov, and Dicke, Princeton, 1964: em-
ployed as fiducial acceleration, not the 1.7 cm/sec?
steady horizontal acceleration, produced by the
earth’s rotation at § = 45°, but the daily alternat-

ing 0.59 cm/sec? produced by the sun’s attraction.
Reported [g(Au) — g(Al)|/g less than 1 x 1071
See Figure 1.6.

Braginsky and Panov, Moscow, 1971: like Roll,
Krotkov, and Dicke, employed Sun’s attraction as
fiducial acceleration. Reported |g(Pt) — g(Al)/g
less than 1 x 10712,

Beall, 1970: particles that are deflected less by the
Earth’s or the sun’s gravitational field than a pho-
ton would be, effectively travel faster than light.
If they are charged or have other electromagnetic
structure, they would then emit Cerenkov radia-
tion, and reduce their velocity below threshold in
less than a micron of travel. The threshold is at
energies around 103 mc? Ultrarelativistic particles
in cosmic-ray showers are not easily identified, but
observations of 10! eV muons show that muons
are not “too light” by as much as 5 X 1073. Con-
versely, a particle P bound more strongly than
photons by gravity will transfer the momentum
needed to make pair production y — P + P occur
within a submicron decay length. The existence of
photons with energies above 10% ¢V shows that
e* are not “too heavy” by 5 parts in 10, p* not
by 2 in 10%, A, Z-, £~ not by a few per cent.

J
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Figure 1.7.

“Weightlessness™ as test for a local inertial frame of reference (“Lorentz frame”). Each spring-driven
cannon succeeds in driving its projectile, a steel ball bearing, through the aligned holes in the sheets
of lucite, and into the woven-mesh pocket, when the frame of reference is free of rotation and in free
fall (“normal world line through spacetime™). A cannon would fail (curved and ricocheting trajectory
at bottom of drawing) if the frame were hanging as indicated when the cannon went off (“frame drawn
away by pull of rope from its normal world line through spacetime”). Harold Waage at Princeton has
constructed such a model for an inertial reference frame with lucite sheets about 1 m square. The “fuses”
symbolizing time delay were replaced by electric relays. Penetration fails if the frame (1) rotates, (2)
accelerates, or (3) does any combination of the two. It is difficult to cite any easily realizable device
that more fully illustrates the meaning of the term “local Lorentz frame.”

the same acceleration.” Physics looks as complicated to the jet-driven observer as
it does to the man on the ground. Rule out both observers to make physics look
simple. Instead, travel aboard the freely moving spaceship. Nothing could be more
natural than what one sees: every free object moves in a straight line with uniform
velocity. This is the way to do physics! Work in a very special coordinate system:
Eliminate the acceleration by ~ a coordinate frame in which one is weightless; a local inertial frame of reference.
use of a local inertial frame Or calculate how things look in such a frame. Or—if one is constrained to a ground-
based frame of reference—use a particle moving so fast, and a path length so limited,
that the ideal, freely falling frame of reference and the actual ground-based frame
get out of alignment by an amount negligible on the scale of the experiment. [Given
a 1,500-m linear accelerator, and a 1 GeV electron, time of flight ~ (1.5 X 10°> cm)/
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§1.4. GEOMETRY IS LOCALLY LORENTZIAN 19

(3 X 101° cm/sec) = 0.5 x 1072 sec; fall in this time ~4gr? = (490 cm/sec?)(0.5 X
1079 sec)? ~ 1078 cm.]

In analyzing physics in a local inertial frame of reference, or following an ant
on his little section of apple skin, one wins simplicity by foregoing every reference
to what is far away. Physics is simple only when viewed locally: that is Einstein’s
great lesson.

Newton spoke differently: “Absolute space, in its own nature, without relation
to anything external, remains always similar and immovable.” But how does one
give meaning to Newton’s absolute space, find its cornerstones, mark out its straight
lines? In the real world of gravitation, no particle ever follows one of Newton’s
straight lines. His ideal geometry is beyond observation. “A comet going past the
sun is deviated from an ideal straight line.” No. There is no pavement on which
to mark out that line. The “ideal straight line” is a myth. It never happened, and
it never will.

“It required a severe struggle [for Newton] to arrive at the concept of independent
and absolute space, indispensible for the development of theory. ... Newton’s decision
was, in the contemporary state of science, the only possible one, and particularly the
only fruitful one. But the subsequent development of the problems, proceeding in a
roundabout way which no one could then possibly foresee, has shown that the resistance
of Leibniz and Huygens, intuitively well-founded but supported by inadequate argu-
ments, was actually justified. . . . It has required no less strenuous exertions subsequently

to overcome this concept [of absolute space]”
[A. EINSTEIN (1954)].
What is direct and simple and meaningful, according to Einstein, is the geometry
in every local inertial reference frame. There every particle moves in a straight line
with uniform velocity. Define the local inertial frame so that this simplicity occurs
for the first few particles (Figure 1.7). In the frame thus defined, every other free
particle is observed also to move in a straight line with uniform velocity. Collision
and disintegration processes follow the laws of conservation of momentum and
energy of special relativity. That all these miracles come about, as attested by tens
of thousands of observations in elementary particle physics, is witness to the inner
workings of the machinery of the world. The message is easy to summarize: (1)
physics is always and everywhere locally Lorentzian; i.e., locally the laws of special
relativity are valid; (2) this simplicity shows most clearly in a local Lorentz frame
of reference (“inertial frame of reference”; Figure 1.7); and (3) to test for a local

Lorentz frame, test for weightlessness!

§1.4. LOCAL LORENTZ GEOMETRY,
WITH AND WITHOUT COORDINATES

On the surface of an apple within the space of a thumbprint, the geometry is
Euclidean (Figure 1.1; the view in the magnifying glass). In spacetime, within a
limited region, the geometry is Lorentzian. On the apple the distances between point
and point accord with the theorems of Euclid. In spacetime the intervals (“proper
distance,” “proper time”) between event and event satisfy the corresponding theo-
rems of Lorentz-Minkowski geometry (Box 1.3). These theorems lend themselves

(continued on page 23)
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~

Box 1.3 LOCAL LORENTZ GEOMETRY AND LOCAL EUCLIDEAN GEOMETRY:
WITH AND WITHOUT COORDINATES

I. Local Euclidean Geometry

What does it mean to say that the geometry of <
a tiny thumbprint on the apple is Euclidean?
A. Coordinate-free language (Euclid):
Given a line ¢¢. Extend it by an equal
distance ¢£. Let 4 be a point not on &%
but equidistant from & and £. Then

2 — 2 2
Ses” =S¢ + Sepe”

a I o
(Theorem of Pythagoras; also other theo-
rems of Euclidean geometry.)

B. Language of coordinates (Descartes):
From any point ¢ to any other point ¢ FERT
there is a distance s given in suitable (Eucli- . /' &
dean) coordinates by =1 4
. x2 =10 /

Spa” = [X}(B) = xM@F + [xX(B) — x(@D)F.

x? =
If one succeeds in finding any coordinate s _g /
system where this is true for all points & * 7,
and 4 in the thumbprint, then one is guar- xt =1
anteed that (i) this coordinate system is Tl‘ ‘Il’ Tl 'ﬁ
locally Euclidean, and (ii) the geometry of N N

the apple’s surface is locally Euclidean.

Il. Local Lorentz Geometry

What does it mean to say that the geometry of

a sufficiently limited region of spacetime in the

real physical world is Lorentzian?

A. Coordinate-free language (Robb 1936):

Let ¢ % be the world line of a free particle.
Let 43 be an event not on this world line.
Let a light ray from 4 strike 2 at the
event £. Let a light ray take off from such
an earlier event ¢ along &% that it reaches
9. Then the proper distance s, (spacelike
separation) or proper time 7., (timelike
separation) is given by

2

— 2 _
\ Sga” == = Tpw” = —TupoT gy ‘

For general queries, contact webmaster@press.princeton.edu



§1.4.

—

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

GEOMETRY S LOCALLY LORENTZIAN 21

Proof of above criterion for local Lorentz
geometry, using coordinate methods in the

local Lorentz frame where particle remains
at rest:

Tpw® = 12— X* = (t — X)(t + x)
= TeoTqo:

B. Language of coordinates (Lorentz, Poincaré,
Minkowski, Finstein):
From any event & to any other nearby
event 9, there is a proper distance s,,; or
proper time 7,, given in suitable (local
Lorentz) coordinates by

Sei = — Ty’ = —[XUB) — XA@) x" =4 3
+ [xH) — U@ 04 A
+ [XB) — XA@)P } Pl
+ ) — NP SRRy ¢
o _ .
If one succeeds in finding any coordinate =l -
system where this is locally true for all X! :Om N
neighboring events & and %, then one is I
guaranteed that (i) this coordinate system TR e R e

is locally Lorentzian, and (ii) the geometry
of spacetime is locally Lorentzian.

Ill. Statements of Fact
The geometry of an apple’s surface is locally Eu-

clidean everywhere. The geometry of spacetime is
locally Lorentzian everywhere.
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Box 1.3 (continued)

Local Geometry in the Language of
Modern Mathematics

A. The metric for any manifold:

At each point on the apple, at each event
of spacetime, indeed, at each point of any
“Riemannian manifold,” there exists a geo-
metrical object called the metric tensor g.
It is a machine with two input slots for the
insertion of two vectors:

slot 1 slot 2
} ¥
g( , )-

Ifoneinsertsthe same vectorinto both slots,
one gets out the square of the length of u:

glu,u) = u°.

If one inserts two different vectors, u and v
(it matters not in which order!), one gets out
a number called the “scalar product of & on
v” and denoted v - v:

guvy=gv.uy=u-v=v-u
The metric is a linear machine:

9Qu + 3w, v) = 2g(u, v) + 3g(w, v),
g(u, av + bw) = ag(u, v) + bg(u, w).

Consequently, in a given (arbitrary) coordi-
nate system, its operation on two vectors can
be written in terms of their components as a
bilinear expression:

g(u,v) = g, zuv?
(implied summation on «, f3)
= guu'o' + gpu'v® + gt + -

The quantit?es up = 8pa (a and § running
from O to 3 in spacetime, from 1 to 2 on the
apple) are called the “components of g in the
given coordinate system.”

Components of the metric in local Lorentz and
local Euclidean frames:

To connect the metric with our previous de-
scriptions of the local geometry, introduce
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local Euclidean coordinates (on apple) or
local Lorentz coordinates (in spacetime).

/‘ B

/

¢/
)4
o/

Let & be the separation vector reaching from
& to 8. Its components in the local Eucli-
dean (Lorentz) coordinates are

£ = xHB) — x¥(a)

(cf. Box 1.1). Then the squared length of u,.,,
which is the same as the squared distance
from & to 43, must be (cf. [.B. and [1.B. above)

§-8 =g(&, &) = g8
= 5,47 = (§')° + (£)? on apple
— (02 4+ (E)P + (€7 + (&)

in spacetime.

Consequently, the components of the met-
ric are

o BT & T gy =8n = Q§

1., gug = Oup on apple, in
local Euclidean
coordinates;

8o = —L gox = Q, Eix = (?ik )
in spacetime, in
local Lorentz
coordinates.

These special components of the metric in
local Lorentz coordinates are written here
and hereafter as g;p or 1,5, by analogy
with the Kronecker delta §,5. In matrix
notation:

__/g——)—

01 2 3

| o|—-1 0 0 0

ligsall = liggll = ; 8 (1) (l) 8
l 30 0 0 1
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to empirical test in the appropriate, very special coordinate systems: Euclidean
coordinates in Euclidean geometry; the natural generalization of Euclidean coordi-
nates (local Lorentz coordinates; local inertial frame) in the local Lorentz geometry
of physics. However, the theorems rise above all coordinate systems in their content.
They refer to intervals or distances. Those distances no more call on coordinates
for their definition in our day than they did in the time of Euclid. Points in the
great pile of hay that is spacetime; and distances between these points: that is
geometry! State them in the coordinate-free language or in the language of coordi-
nates: they are the same (Box 1.3).

§1.5. TIME

Time is defined so that motion looks simple.

Time is awake when all things sleep.
Time stands straight when all things fall.
Time shuts in all and will not be shut.
/s, was, and shall be are Time’s children.
O Reasoning, be witness, be stable.

VYASA, the Mahabarata (ca. A.D. 400)

Relative to a local Lorentz frame, a free particle “moves in a straight line with
uniform velocity.” What “straight” means is clear enough in the model inertial
reference frame illustrated in Figure 1.7. But where does the “uniform velocity” come
in? Or where does “velocity” show itself? There is not even one clock in the drawing!

A more fully developed model of a Lorentz reference frame will have not only
holes, as in Fig. 1.7, but also clock-activated shutters over each hole. The projectile
can reach its target only if it (1) travels through the correct region in space and
(2) gets through that hole in the correct interval of time (“window in time”). How
then is time defined? Time is defined so that motion looks simple!

No standard of time is more widely used than the day, the time from one high
noon to the next. Take that as standard, however, and one will find every good clock
or watch clashing with it, for a simple reason. The Earth spins on its axis and also
revolves in orbit about the sun. The motion of the sun across the sky arises from
neither effect alone, but from the two in combination, different in magnitude though
they are. The fast angular velocity of the Earth on its axis (roughly 366.25 complete
turns per year) is wonderfully uniform. Not so the apparent angular velocity of the
sun about the center of the Earth (one turn per year). It is greater than average
by 2 per cent when the Earth in its orbit (eccentricity 0.017) has come 1 per cent
closer than average to the sun (Kepler’s law) and lower by 2 per cent when the
Earth is 1 per cent further than average from the sun. In the first case, the momentary
rate of rotation of the sun across the sky, expressed in turns per year, is approximately

366.25 — (1 + 0.02);
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in the other,

36625 — (1 — 0.02).

Taking the “mean solar day” to contain 24 X 3,600 = 86,400 standard seconds, one
sees that, when the Earth is 1 per cent closer to (or further from) the sun than average,
then the number of standard seconds from one high noon to the next is greater
(or less) than normal by

0.02 (drop in turns per year)

86,400 sec ~ 4.7 sec.
365.25 (turns per year on average) sec sec

This is the bookkeeping on time from noon to noon. No standard of time that varies
so much from one month to another is acceptable. If adopted, it would make the
speed of light vary from month to month!

This lack of uniformity, once recognized (and it was already recognized by the
ancients), forces one to abandon the solar day as the standard of time; that day
does not make motion look simple. Turn to a new standard that eliminates the motion
of the Earth around the sun and concentrates on the spin of the Earth about its
axis: the sidereal day, the time between one arrival of a star at the zenith and the
next arrival of that star at the zenith. Good! Or good, so long as one’s precision
of measurement does not allow one to see changes in the intrinsic angular velocity
of the Earth. What clock was so bold as first to challenge the spin of the Earth for
accuracy? The machinery of the heavens.

Halley (1693) and later others, including Kant (1754), suspected something was
amiss from apparent discrepancies between the paths of totality in eclipses of the
sun, as predicted by Newtonian gravitation theory using the standard of time then
current, and the location of the sites where ancient Greeks and Romans actually
recorded an eclipse on the day in question. The moon casts a moving shadow in
space. On the day of a solar eclipse, that shadow paints onto the disk of the spinning
Earth a black brush stroke, often thousands of kilometers in length, but of width
generally much less than a hundred kilometers. He who spins the globe upon the
table and wants to make the shadow fall rightly on it must calculate back meticu-
lously to determine two key items: (1) where the moon is relative to Earth and sun
at each moment on the ancient day in question; and (2) how much angle the Earth
has turned through from then until now. Take the eclipse of Jan. 14, a.D. 484, as
an example (Figure 1.8), and assume the same angular velocity for the Earth in
the intervening fifteen centuries as the Earth had in 1900 (astronomical reference
point). One comes out wrong. The Earth has to be set back by 30° (or the moon
moved from its computed position, or some combination of the two effects) to make
the Athens observer fall under the black brush. To catch up those 30° (or less, if
part of the effect is due to a slow change in the angular momentum of the moon),
the Earth had to turn faster in the past than it does today. Assigning most of the
discrepancy to terrestrial spin-down (rate of spin-down compatible with modern
atomic-clock evidence), and assuming a uniform rate of slowing from then to now
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Figure 1.8.

Calculated path of totality for the eclipse of January 14, A.D. 484 (left; calculation based on no spin-down
of Earth relative to its 1900 angular velocity) contrasted with the same path as set ahead enough to
put the center of totality (at sunrise) at Athens [displacement very close to 30°; actual figure of deceleration
adopted in calculations, 32.75 arc sec/(century)?]. This is “undoubtedly the most reliable of all ancient
European eclipses,” according to Dr. F. R. Stephenson, of the Department of Geophysics and Planetary
Physics of the University of Newcastle upon Tyne, who most kindly prepared this diagram especially
for this book. He has also sent a passage from the original Greek biography of Proclus of Athens (died
at Athens A.D. 485) by Marinus of Naples, reading, “Nor were there portents wanting in the year which
preceded his death; for example, such a great eclipse of the Sun that night seemed to fall by day. For
a profound darkness arose so that stars even appeared in the sky. This happened in the eastern sky
when the Sun dwelt in Capricorn” [from Westermann and Boissonade (1878)].

Does this 30° for this eclipse, together with corresponding amounts for other eclipses, represent the
“right”” correction? “Right” is no easy word. From one total eclipse of the sun in the Mediterranean
area to another is normally many years. The various provinces of the Greek and Roman worlds were
far from having a uniform level of peace and settled life, and even farther from having a uniform standard
of what it is to observe an eclipse and put it down for posterity. If the scores of records of the past
are unhappily fragmentary, even more unhappy has been the willingness of a few uncritical “investigators™
in recent times to rush in and identify this and that historical event with this and that calculated eclipse.
Fortunately, by now a great literature is available on the secular deceleration of the Earth’s rotation,
in the highest tradition of critical scholarship, both astronomical and historical. In addition to the books
of O. Neugebauer (1959) and Munk and MacDonald (1960), the paper of Curott (1966), and items cited
by these workers, the following are key items. (For direction to them, we thank Professor Otto Neuge-
bauer—no relation to the other Neugebauer cited below!) For the ancient records, and for calculations
of the tracks of ancient eclipses, F. K. Ginzel (1882, 1883, 1884); for an atlas of calculated eclipse tracks,
Oppolzer (1887) and Ginzel (1899); and for a critical analysis of the evidence. P. V. Neugebauer (1927,
1929, and 1930). This particular eclipse was chosen rather than any other because of the great reliability
of the historical record of it.
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(angular velocity correction proportional to first power of elapsed time: angle cor-
rection itself proportional to square of elapsed time), one estimates from a correction
of

30° or 2 hours 1,500 years ago
the following corrections for intermediate times:

30°/10%, or 1.2 min 150 years ago,
30°/10%, or 0.8 sec 15 years ago.

Thus one sees the downfall of the Earth as a standard of time and its replacement
by the orbital motions of the heavenly bodies as a better standard: a standard that
does more to “make motion look simple.” Astronomical time is itself in turn today
being supplanted by atomic time as a standard of reference (see Box 1.4, “Time
Today™).
Look at a bad clock for a good view of how time is defined. Let ¢ be time on
Good clocks make spacetime  a “good” clock (time coordinate of a local inertial frame); it makes the tracks of
trajectories of free particles free particles through the local region of spacetime look straight. Let T(¢) be the
look straight reading of the “bad” clock; it makes the world lines of free particles through the
local region of spacetime look curved (Figure 1.9). The old value of the acceleration,
translated into the new (“bad”) time, becomes

0= dix (A1) dTd , (dT) '
it dt\dt dT)~ d? dT dr] dT?%

To explain the apparent accelerations of the particles, the user of the new time
introduces a force that one knows to be fictitious:

(dx ) (d2T )

d2x dT) \ a2

= _ - . 1.2

Fo=m e " (dT)2 (1.2)
dt

It is clear from this example of a “bad” time that Newton thought of a “good” time
when he set up the principle that “Time flows uniformly” (427/dr* = 0). Time is
defined to make motion look simple!

The principle of uniformity, taken by itself, leaves free the scale of the time
variable. The quantity 7 = ar + b satisfies the requirement as well as ¢ itself. The
history of timekeeping discloses many choices of the unit and origin of time. Each
one required some human action to give it sanction, from the fiat of a Pharaoh to
the communique of a committee. In this book the amount of time it takes light to
travel one centimeter is decreed to be the unit of time. Spacelike intervals and

Our choice of unit for timelike intervals are measured in terms of one and the same geometric unit: the

measuring time: the centimeter. Any other decision would complicate in analysis what is simple in nature.

geometrodynamic Centimeter. -\ other choice would live up to Minkowski’s words, “Henceforth space by itself,
and time by itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality.”
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Figure 1.9.

Good clock (left) vs. bad clock (right) as seen in the maps they give of the same free particles moving
through the same region of spacetime. The world lines as depicted at the right give the impression that
a force is at work. The good definition of time eliminates such fictitious forces. The dashed lines connect
corresponding instants on the two time scales.

One can measure time more accurately today than distance. Is that an argument
against taking the elementary unit to be the centimeter? No, provided that this
definition of the centimeter is accepted: the geometrodynamic standard centimeter
is the fraction

1/(9.460546 x 1017 (1.3)

of the interval between the two “effective equinoxes” that bound the tropical year
1900.0. The tropical year 1900.0 has already been recognized internationally as the
fiducial interval by reason of its definiteness and the precision with which it is known.
Standards committees have defined the ephemeris second so that 31,556,925.974 sec
make up that standard interval. Were the speed of light known with perfect precision,
the standards committees could have given in the same breath the number of
centimeters in the standard interval. But it isn’t; it is known to only six decimals.
Moreover, the international centimeter is defined in terms of the orange-red wave-
length of Kr® to only nine decimals (16,507.6373 wavelengths). Yet the standard
second is given to 11 decimals. We match the standard second by arbitrarily defining
the geometrodynamic standard centimeter so that

9.4605460000 x 1017

such centimeters are contained in the standard tropical year 1900.0. The speed of
light then becomes exactly

9.4605460000 X 107
31,556,925.974

geometrodynamic cm/sec. (1.4)

This is compatible with the speed of light, as known in 1967, in units of “international
cm/sec’:

29.,979,300,000 = 30,000 international cm/sec.
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Box 1.4 TIME TODAY

Prior to 1956 the second was defined as the frac-
tion 1/86,400 of the mean solar day.

From 1956 to 1967 the “second” meant the
ephemeris second, defined as the fraction
1/(31,556,925.9747) of the tropical year
00h00OmO00s December 31, 1899.

Since 1967 the standard second has been the
SI (Syst¢tme International) second, defined as
9,192,631,770 periods of the unperturbed micro-
wave transition between the two hyperfine levels
of the ground state of Cs!33,

Like the foregoing evolution of the unit for the
time interval, the evolution of a time coordinate
has been marked by several stages.

Universal time, UTO, is based on the count of
days as they actually occurred historically; in other
words, on the actual spin of the earth on its axis;
historically, on mean solar time (solar position as
corrected by the “equation of time”; i.e., the faster
travel of the earth when near the sun than when
far from the sun) as determined at Greenwich
Observatory.

UTI, the “navigator’s time scale,” is the same
time as corrected for the wobble of the earth on
its axis (4¢ ~ 0.05 sec).

UT2 is UTI as corrected for the periodic fluc-
tuations of unknown origin with periods of one-
half year and one year (4s ~ 0.05 sec; measured
to 3 ms in one day).

Ephemeris Time, ET (as defined by the theory
of gravitation and by astronomical observations
and calculations), is essentially determined by the
orbital motion of the earth around the sun.
“Measurement uncertainties limit the realization
of accurate ephemeris time to about 0.05 sec for
a nine-year average.”

Coordinated Universal Time (UTC) is broadcast
on stations such as WWV. It was adopted interna-
tionally in February 1971 to become effective Jan-
uary 1, 1972. The clock rate is controlled by atomic
clocks to be as uniform as possible for one year
(atomic time is measured to ~0.1 microsec in 1
min, with diffusion rates of 0.1 microsec per day
for ensembles of clocks), but is changed by the
infrequent addition or deletion of a second—called
a “leap second”—so that UTC never differs more
than 0.7 sec from the navigator’s time scale, UTI.

>

Time suspended
for a second

Time will stand still throughout
the world for one second at mid-
night, June 30. Al radio time
signals will insert a * leap second ™
to bring Greenwich Mean Time into
line with the earth's loss of three
thousandths of a second a day.

THE TIMES The signal from the Royal Green-
wich Observatory to Broadcasting
Wednesday | House at midnight GMT (1 am

BST July 1) will be six short pips
marking the seconds 55 to 60 inclu-
sive, followed by a lengthened sig-
nal at the following second to mark
the new minute.

June 21 1972

The foregoing account is abstracted from J. A.
Barnes (1971). The following is extracted from a
table (not official at time of receipt), kindly sup-
plied by the Time and Frequency Division of the
U.S. National Bureau of Standards in Boulder,
Colorado.

Timekeeping capabilities of some familiar clocks
are as follows:

Tuning fork wrist watch (1960),
1 min/mo.

Quartz crystal clock (1921-1930),
1 psec/day,
1 sec/yr.

Quartz crystal wrist watch (1971),
0.2 sec/2 mos.,
1 sec/yr.

Cesium beam (atomic resonance, Cs'?3), (1952
1955),
0.1 psec/day,
0.5 psec/mo.

Rubidium gas cell (Rb? resonance), (1957),
0.1 psec/day,
1-5 psec/mo.

Hydrogen maser (1960),
0.01 psec/2 hr,
0.1 psec/day.

Methane stabilized laser (1969),
0.01 psec/100 sec.
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Recent measurements [Evenson et al. (1972)] change the details of the foregoing
1967 argument, but not the principles.

§1.6. CURVATURE

Gravitation seems to have disappeared. Everywhere the geometry of spacetime is
locally Lorentzian. And in Lorentz geometry, particles move in a straight line with
constant velocity. Where is any gravitational deflection to be seen in that? For
answer, turn back to the apple (Figure 1.1). Inspect again the geodesic tracks of
the ants on the surface of the apple. Note the reconvergence of two nearby geodesics
that originally diverged from a common point. What is the analog in the real world
of physics? What analogous concept fits Einstein’s injunction that physics is only
simple when analyzed locally? Don’t look at the distance from the spaceship to the
Earth. Look at the distance from the spaceship to a nearby spaceship! Or, to avoid
any possible concern about attraction between the two ships, look at two nearby
test particles in orbit about the Earth. To avoid distraction by the nonlocal element
(the Earth) in the situation, conduct the study in the interior of a spaceship, also
in orbit about the Earth. But this region has already been counted as a local inertial
frame! What gravitational physics is to be seen there? None. Relative to the spaceship
and therefore relative to each other, the two test particles move in a straight line
with uniform velocity, to the precision of measurement that is contemplated (see
Box 1.5, “Test for Flatness”). Now the key point begins to appear: precision of
measurement. Increase it until one begins to discern the gradual acceleration of the
test particles away from each other, if they lie along a common radius through the
center of the Earth; or toward each other, if their separation lies perpendicular to
that line. In Newtonian language, the source of these accelerations is the tide-pro-
ducing action of the Earth. To the observer in the spaceship, however, no Earth
is to be seen. And following Einstein, he knows it is important to analyze motion
locally. He represents the separation of the new test particle from the fiducial test
particle by the vector & (k = 1,2, 3; components measured in a local Lorentz frame).
For the acceleration of this separation, one knows from Newtonian physics what
he will find: if the Cartesian z-axis is in the radial direction, then

d2£z _ Gmconv g‘z'

drr c?r3 ’

dzéy Gmconv

——-dl‘Q = — ——————C2r3 %y’ (15)
dzes _2Gmyy, o,

e i3

Proof: In Newtonian physics the acceleration of a single particle toward the center
of the Earth in conventional units of time is Gm,,,,/r% where G is the Newtonian
constant of gravitation, 6.670 X 1078 cm3/g sec® and m,,,, is the mass of the Earth
in conventional units of grams. In geometric units of time (cm of light-travel time),
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the acceleration is Gmy,,,/c?#2. When the two particles are separated by a distance
¢ perpendicular to r, the one downward acceleration vector is out of line with the
other by the angle £/r. Consequently one particle accelerates toward the other by
the stated amount. When the separation is parallel to r, the relative acceleration
is given by evaluating the Newtonian acceleration at » and at r + &, and taking the
difference (¢ times d/dr) Q.E.D. In conclusion, the “local tide-producing acceleration”
of Newtonian gravitation theory provides the local description of gravitation that
Einstein bids one to seek.

What has this tide-producing acceleration to do with curvature? (See Box 1.6.)
Look again at the apple or, better, at a sphere of radius a (Figure 1.10). The
separation of nearby geodesics satisfies the “equation of geodesic deviation,”

Relative acceleration is
caused by curvature

d?¢/ds® + RE = 0. (1.6)

Here R = 1/4? is the so-called Gaussian curvature of the surface. For the surface
of the apple, the same equation applies, with the one difference that the curvature
R varies from place to place.

~

Box 1.5 TEST FOR FLATNESS

1. Specify the extension in space L (cm or m) (d/dry(m/r?y =
and extension in time 7 (cm or m of light travel =
time) of the region under study. =

—2m/r3
—0.888 cm/(6.37 X 10% cm)?
—3.44 x 10727 cm™2

(“cm of relative displacement per cm of light-
travel time per cm of light-travel time per cm of
vertical separation”). Two test particles with a ver-
tical separation £* = 10* cm acquire in the time
{ = 10" em (difference between time and proper
time negligible for such slowly moving test parti-
cles) a relative displacement

2. Specify the precision 8¢ with which one can
measure the separation of test particles in this
region.

3. Follow the motion of test particles moving
along initially parallel world lines through this
region of spacetime.

4. When the world lines remain parallel to the ¥ = _%RZOZoﬂi, il )
precision 8¢ for all directions of travel, then one = i;; X 1077 cm™?(10! cm)? 10* cm
= 1.72 mm.

says that “in a region so limited and to a precision

so specified, spacetime is flat.” (Change in relative separation less for other direc-

tions of motion). When the minimum uncertainty

EXAMPLE: Region just above the surface of the
earth, 100 m X 100 m X 100 m (space extension),
followed for 109m of light-travel time (7., ~
3 sec). Mass of Earth, m,,, =598 X 10°7 g,
m = (0742 x 10728 cm/g) X (5.98 x 10%7 g) =
0.444 cm [see eq. (1.12)]. Tide-producing accelera-
tion R?,,, (relative acceleration in z-direction of
two test particles initially at rest and separated
from each other by 1 cm of vertical elevation) is

8¢ attainable in a measurement over a 100 m
spacing is “worse” than this figure (exceeds 1.72
mm), then to this level of precision the region of
spacetime under consideration can be treated as
flat. When the uncertainty in measurement is
“better” (less) than 1.72 mm, then one must limit
attention to a smaller region of space or a shorter
interval of time or both, to find a region of space-
time that can be regarded as flat to that precision.

J
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Figure 1.10.

Curvature as manifested in the “acceleration of the separation” of two
nearby geodesics. Two geodesics, originally parallel, and separated by the
distance (‘“‘geodesic deviation™) &, are no longer parallel when followed
a distance 5. The separation is § = &, cos ¢ = §, cos (s/a), where a is
the radius of the sphere. The separation follows the equation of simple
harmonic motion, d%¢/ds? + (1/a%) ¢ = 0 (“equation of geodesic devia-
tion”).

The direction of the separation vector, &, is fixed fully by its orthogon-
ality to the fiducial geodesic. Hence, no reference to the direction of &
is needed or used in the equation of geodesic deviation; only the magni-
tude £ of § appears there, and only the magnitude, not direction, of the
relative acceleration appears.

In a space of more than two dimensions, an equation of the same general form
applies, with several differences. In two dimensions the direction of acceleration of
one geodesic relative to a nearby, fiducial geodesic is fixed uniquely by the demand
that their separation vector, §, be perpendicular to the fiducial geodesic (see Figure
1.10). Not so in three dimensions or higher. There § can remain perpendicular to
the fiducial geodesic but rotate about it (Figure 1.11). Thus, to specify the relative
acceleration uniquely, one must give not only its magnitude, but also its direction.

The relative acceleration in three dimensions and higher, then, is a vector. Call
it “D2?&/ds?” and call its four components “D?¢*/ds?” Why the capital D? Why
not “d?¢*/ds*’? Because our coordinate system is completely arbitrary (cf. § 1.2). The
twisting and turning of the coordinate lines can induce changes from point to point
in the components & of £, even if the vector £ is not changing at all. Consequently,
the accelerations of the components d2£*/ds? are generally not equal to the compo-
nents D2£%/ds? of the acceleration!

How, then, in curved spacetime can one determine the components D2£%/ds? of
the relative acceleration? By a more complicated version of the equation of geodesic
deviation (1.6). Differential geometry (Part III of this book) provides us with a
geometrical object called the Riemann curvature tensor, “Riemann.” Riemann is

(continued on page 34)

desic

Fiducial 85

Figure 1.11.

The separation vector § between two geodesics in a curved three-
dimensional manifold. Here § can not only change its length from
point to point, but also rotate at a varying rate about the fiducial
geodesic. Consequently, the relative acceleration of the geodesics must
be characterized by a direction as well as a magnitude; it must be
a vector, D2F /ds?.
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Box 1.6 CURVATURE OF WHAT?

Nothing seems more attractive at first glance than
the idea that gravitation is a manifestation of the
curvature of space (A), and nothing more ridicu-
lous at a second glance (B). How can the tracks
of a ball and of a bullet be curved so differently
if that curvature arises from the geometry of
space? No wonder that great Riemann did not give
the world a geometric theory of gravity. Yes, at
the age of 28 (June 10, 1854) he gave the world
the mathematical machinery to define and calcu-
late curvature (metric and Riemannian geometry).
Yes, he spent his dying days at 40 working to find
a unified account of electricity and gravitation. But
if there was one reason more than any other why
he failed to make the decisive connection between
gravitation and curvature, it was this, that he
thought of space and the curvature of space, not

of spacetime and the curvature of spacetime. To
make that forward step took the forty years to
special relativity (1905: time on the same footing
as space) and then another ten years (1915: gen-
eral relativity). Depicted in spacetime (C), the
tracks of ball and bullet appear to have compara-
ble curvature. In fact, however, neither track has
any curvature at all. They both look curved in (C)
only because one has forgotten that the spacetime
they reside in is itself curved—curved precisely
enough to make these tracks the straightest lines
in existence (“geodesics”).

If it is at first satisfying to see curvature, and
curvature of spacetime at that, coming to the fore
in so direct a way, then a little more reflection
produces a renewed sense of concern. Curvature
with respect to what? Not with respect to the labo-

Photograph of stars
when sun (eclipsed

when sun swims
elsewhere * *

by moon) lies % * ;
as indicated ¥ T

|

!

T

|
Photograph of stars X*

A. Bending of light by the sun depicted as a conse-
quence of the curvature of space near the sun. Ray of
light pursues geodesic, but geometry in which it travels
is curved (actual travel takes place in spacetime rather
than space; correct deflection is twice that given by
above elementary picture). Deflection inversely propor-
tional to angular separation between star and center of
sun. See Box 40.1 for actual deflections observed at time
of an eclipse.

[32]
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ratory. The earth-bound laboratory has no simple
status whatsoever in a proper discussion. First, it
is no Lorentz frame. Second, even to mention the
earth makes one think of an action-at-a-distance
version of gravity (distance from center of earth
to ball or bullet). In contrast, it was the whole
point of Einstein that physics looks simple only
when analyzed locally. To look at local physics,
however, means to compare one geodesic of one
test particle with geodesics of other test particles
traveling (1) nearby with (2) nearly the same di-
rections and (3) nearly the same speeds. Then one
can “look at the separations between these nearby
test particles and from the second time-rate of
change of these separations and the ‘equation of
geodesic deviation’ (equation 1.8) read out the B. Tracks of ball and bullet through space as seen in
curvature of spacetime.” laboratory have very different curvatures.

C. Tracks of ball and bullet through spacetime, as re-
corded in laboratory, have comparable curvatures.
Track compared to arc of circle: (radius) = (horizontal
distance)?/8 (rise).

[33]
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the higher-dimensional analog of the Gaussian curvature R of our apple’s surface.
Riemann is the mathematical embodiment of the bends and warps in spacetime.
And Riemann is the agent by which those bends and warps (curvature of spacetime)
produce the relative acceleration of geodesics.

Riemann, like the metric tensor g of Box 1.3, can be thought of as a family of
machines, one machine residing at each event in spacetime. Each machine has three
slots for the insertion of three vectors:

slot 1 slot 2 slot 3

\ S ¥

Riemann ( ) , ).

Choose a fiducial geodesic (free-particle world line) passing through an event 2,
and denote its unit tangent vector (particle 4-velocity) there by

u = dx/dr; components, u* = dx*/dr. .7

Choose another, neighboring geodesic, and denote by £ its perpendicular separation
from the fiducial geodesic. Then insert u into the first slot of Riemann at 2, £ into
the second slot, and u into the third. Riemann will grind for awhile; then out will
pop a new vector,

Riemann (u, &, u).

Riemann tensor, through The equation of geodesic deviation states that this new vector is the negative of

equation of geodesic the relative acceleration of the two geodesics:
deviation, produces relative

accelerations

D?§ /dr* + Riemann (u,&,u) = 0. (1.8)

The Riemann tensor, like the metric tensor (Box 1.3), and like all other tensors,
is a linear machine. The vector it puts out is a linear function of each vector inserted
into a slot:

Riemann (Qu, aw + bv, 3r)
=2 X a X 3 Riemann (u,w,r) + 2 X b X 3 Riemann (u, v, r). (1.9)

Consequently, in any coordinate system the components of the vector put out can
be written as a “trilinear function” of the components of the vectors put in:

r = Riemann (u,v, w) <= r® = R%_; uf v¥ w’. (1.10)

(Here there is an implied summation on the indices S, v, §; cf. Box 1.1.) The
4 X 4 X 4 X 4 =256 numbers R%,.; are called the “components of the Riemann
tensor in the given coordinate system.” In terms of components, the equation of
geodesic deviation states

D2 dx? _ dx?®

Zs L Ra, Py
d72+ Bysd’rsd'r

= 0. (1.8
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In Einstein’s geometric theory of gravity, this equation of geodesic deviation Equation of geodesic
summarizes the entire effect of geometry on matter. It does for gravitation physics ~deviation is analog of Lorentz
: force law
what the Lorentz force equation,

2ya a
Dex eFadx

a?  m P dr

=0, (1.11)

does for electromagnetism. See Box 1.7.
The units of measurement of the curvature are cm 2 just as well in spacetime
as on the surface of the apple. Nothing does so much to make these units stand
out clearly as to express mass in “geometrized units”: Geometrized units

m(cm) = (G/c®)mg, (8)
= (0.742 X 10-28 cm/gym,, . (g). (1.12)

4 )

Box 1.7 EQUATION OF MOTION UNDER THE INFLUENCE OF A GRAVITATIONAL FIELD
AND AN ELECTROMAGNETIC FIELD, COMPARED AND CONTRASTED

Electromagnetism Gravitation [Equation of
[Lorentz force, equation (1.11)] geodesic deviation (1.8")]
Acceleration is defined for
one particle? Yes No
Acceleration defined how? Actual world line compared to Already an uncharged test
world line of uncharged particle, which can’t
“fiducial” test particle accelerate relative to
passing through same point itself! Acceleration
with same 4-velocity. measured relative to a

nearby test particle as
fiduciary standard.

Acceleration depends on all
four components of the
4-velocity of the particle? Yes Yes

Universal acceleration for all
test particles in same
locations with same
4-velocity? No: is proportional to e/m Yes

Driving field Electromagnetic field Riemann curvature tensor
Ostensible number of distinct
components of driving

field 4xX4=16 4+ = 256

Actual number when allowance
is made for symmetries of

tensor 6 20
Names for more familiar of 3 electric 6 components of local
these components 3 magnetic Newtonian tide-producing

acceleration

- Y
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This conversion from grams to centimeters by means of the ratio

G/c? =0742 x 1072 cm/g

is completely analogous to converting from seconds to centimeters by means of the
ratio

_ 94605460000 x 1017 cm
N 31,556,925.974 sec

(see end of §1.5). The sun, which in conventional units has m,,, = 1.989 x 1033 g,

has in geometrized units a mass m = 1.477 km. Box 1.8 gives further discussion.

Using geometrized units, and using the Newtonian theory of gravity, one can

readily evaluate nine of the most interesting components of the Riemann curvature

tensor near the Earth or the sun. The method is the gravitational analog of deter-

mining the electric field strength by measuring the acceleration of a slowly moving

Components of Riemann test particle. Consider the separation between the geodesics of two nearby and slowly
tensor evaluated from relative  moving (v <) particles at a distance r from the Earth or sun. In the standard, nearly

accelerations of slowly . . . . . .
moving particles inertial coordinates of celestial mechanics, all components of the 4-velocity of the

4 )

Box 1.8 GEOMETRIZED UNITS

Throughout this book, we use “geometrized units,” from grams to centimeters to seconds to ergs to
in which the speed of light ¢, Newton’s gravita- . ... For example:

tional constant G, and Boltzman’s constant k are
all equal to unity. The following alternative ways
to express the number 1.0 are of great value:

Mass of sun = M, = 1.989 x 1033 g
(1989 x 1032 g) X (G/c?)
1.477 x 10° cm

(1.989 x 1033 g) X (c?)
1.788 x 10°* ergs.

1.0 =¢=12997930 -- . x 10° cm/sec
1.0 = G/¢? = 0.7425 x 107*8 cm/g;
1.0 = G/c* = 0.826 x 107* cm/erg;

I

1.0 = Gk/c* = 1.140 X 107% em/K; The standard unit, in terms of which everything
10 = ¢2/GV2 = 348 X 10%* cm/gauss™. 1s me.asured in this bf)ok, is ceptimeters. Hc?wever,
occasionally conventional units are used; in such
One can multiply a factor of unity, expressed in cases a subscript “conv” is sometimes, but not
any one of these ways, into any term in any equa- always, appended to the quantity measured:
tion without affecting the validity of the equation.
Thereby one can convert one’s units of measure Mgeony = 1,989 X 1033 g,
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fiducial test particle can be neglected except dx°/dr = 1. The space components of
the equation of geodesic deviation read

A2k /dr? + RE gt = 0. (1.13)

Comparing with the conclusions of Newtonian theory, equations (1.5), we arrive at
the following information about the curvature of spacetime near a center of mass:

Riszy Rigzo Rzl = |m/r® 0 0
R0 R Rl = 0 m/rd 0 (1.14)
Rz Rz Rz 0 0 —2m/r

(units cm~2). Here and henceforth the caret or “hat” is used to indicate the compo-
nents of a vector or tensor in a local Lorentz frame of reference (“physical compo-
nents,” as distinguished from components in a general coordinate system). Einstein’s
theory will determine the values of the other components of curvature (e.g.,
Riéié = —m/r?); but these nine terms are the ones of principal relevance for
many applications of gravitation theory. They are analogous to the components
of the electric field in the Lorentz equation of motion. Many of the terms not
evaluated are analogous to magnetic field components—ordinarily weak unless the
source is in rapid motion.

This ends the survey of the effect of geometry on matter (“effect of curvature
of apple in causing geodesics to cross”—especially great near the dimple at the top,
just as the curvature of spacetime is especially large near a center of gravitational
attraction). Now for the effect of matter on geometry (“effect of stem of apple in
causing dimple”)!

§1.7. EFFECT OF MATTER ON GEOMETRY

The weight of any heavy body of known weight at a particular
distance from the center of the world varies according to the
variation of its distance therefrom; so that as often as it is
removed from the center, it becomes heavier, and when brought
near to it, is lighter. On this account, the relation of gravity to
gravity is as the relation of distance to distance from the center.

AL KHAZINT (Merv, A.D. 1115), Book of the Balance of Wisdom

Figure 1.12 shows a sphere of the same density, p = 5.52 g/cm?, as the average
density of the Earth. A hole is bored through this sphere. Two test particles, 4 and
B, execute simple harmonic motion in this hole, with an 84-minute period. Therefore
their geodesic separation &, however it may be oriented, undergoes a simple periodic
motion with the same 84-minute period:

d?g/dr* = — (4777 p) g, j=xoryorz (1.15)
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N

Box 1.9 GALILEO GALILEI
Pisa, February 15, 1564—Arcetri, Florence, January 8, 1642

“In questions of science the authority
of a thousand is not worth the humble
reasoning of a single individual.”

GALILEO GALILEI (1632)

“‘The spaces described by a body falling from rest
with a uniformly accelerated motion are to each other
as the squares of the time intervals employed in
traversing these distances.””

GALILEQO GALILE! (1638)

Uffizi Gallery, Florence

“Everything that has been said before and imagined by other people [about the
tides) is in my opinion completely invalid. But among the great men who have
philosophised about this marvellous effect of nature the one who surprised me the
most is Kepler. More than other people he was a person of independent genius,
sharp, and had in his hands the motion of the earth. He later pricked up his ears
and became interested in the action of the moon on the water, and in other occult
phenomena, and similar childishness.”’

GALILEQO GALILEI {1632)

“It is a most beautiful and delightful sight to behold [with the new telescope] the
body of the Moon . . . the Moon certainly does not possess a smooth and polished
surface, but one rough and uneven . . . full of vast protuberances, deep chasms
and sinuosities . . . stars in myriads, which have never been seen before and
which surpass the old, previously known, stars in number more than ten times. |
have discovered four planets, neither known nor observed by any one of the
astronomers before my time . . . got rid of disputes about the Galaxy or Milky
Way, and made its nature clear to the very senses, not to say to the
understanding . . . the galaxy is nothing else than a mass of lumincus stars
planted together in clusters . . . the number of small ones is quite beyond
determination—the stars which have been called by every one of the astronomers
up to this day nebulous are groups of small stars set thick together in a wonderful
way.

GALILEO GALILEl IN SIDEREUS NUNCIUS (1610)

““So the principles which are set forth in this treatise will, when taken up by
thoughtful minds, lead to many another more remarkable result; and it is to be
believed that it will be so on account of the nobility of the subject, which is
superior to any other in nature.””

GALILEO GALILEI (1638)

\_ Y
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Figure 1.12.

Test particles 4 and B move up and down a hole bored through
the Earth, idealized as of uniform density. At radius r, a parti-
cle feels Newtonian acceleration

84 min.

| ar_ 1 _ay
dr? T 2 dr,, 2
G (mass inside radius »)
/Sy - 2 72
_ G 4 5
- = W T Peonv!”
= —w?r.

Consequently, each particle oscillates in simple harmonic mo-
tion with precisely the same angular frequency as a satellite,
grazing the model Earth, traverses its circular orbit:

© 582 p/em?
2 -2 47 -2
e wi(cm™?) = T'rp(cm 2),
Pm(see?) = 20 g/em,

Comparing this actual motion with the equation of geodesic deviation (1.13) for
slowly moving particles in a nearly inertial frame, we can read off some of the
curvature components for the interior of this model Earth.

Riszo Riozo Rigi Loo
R%:5 RYo Ri0||= @mp/3)[10 1 0 (1.16)
R¥z RV Rz 001

This example illustrates how the curvature of spacetime is connected to the distribu-
tion of matter.

Let a gravitational wave from a supernova pass through the Earth. Idealize the
Earth’s matter as so nearly incompressible that its density remains practically un-
changed. The wave is characterized by ripples in the curvature of spacetime, propa-
gating with the speed of light. The ripples will show up in the components Rf,
of the Riemann tensor, and in the relative acceleration of our two test particles.
The left side of equation (1.16) will ripple; but the right side will not. Equation
(1.16) will break down. No longer will the Riemann curvature be generated directly
and solely by the Earth’s matter.

Nevertheless, Einstein tells us, a part of equation (1.16) is undisturbed by the
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waves: its trace

Rf)() = Ri(‘)i@ + R&()&() + Ré()é() = 47p. (117)

Even in the vacuum outside the Earth this is valid; there both sides vanish [cf. (1.14)].
More generally, a certain piece of the Riemann tensor, called the Einstein tensor

Einstein tensor introduced and denoted Einstein or G, is always generated directly by the local distribution

of matter. Einstein is the geometric object that generalizes Ry, the lefthand side

(

Box 1.10 ISAAC NEWTON
Woolsthorpe, Lincolnshire, England, December 25, 1642—
Kensington, London, March 20, 1726

“The description of right lines and circles, upon which geometry
is founded, belongs to mechanics. Geometry does not teach
us to draw these lines, but requires them to be drawn.”’

[FROM P. 1 OF NEWTON’'S PREFACE TO
THE FIRST (1687) EDITION OF THE PRINCIPIA]

“Absolute space, in its own nature,

without relation to anything external, remains
always similar and immovable

“Absolute, true, and mathematical time,

of itself, and from its own nature, flows
equably without relation to anything external.”’

[FROM THE SCHOLIUM IN THE PRINCIPIA]

I have not been able to discover the cause of those properties of gravity from
phenomena, and | frame no hypotheses,; for whatever is not reduced from the
phenomena is to be called an hypothesis, and hypotheses . . . have no place in
experimental philosophy. . . . And to us it is enough that gravity does really exist,
and act according to the laws which we have explained, and abundantly serves to
account for all the motions of the celestial bodies, and of our sea.”’

[FROM THE GENERAL SCHOLIUM ADDED AT THE END OF THE THIRD BOOK OF THE PRINCIPIA IN

THE SECOND EDITION OF 1713; ESPECIALLY FAMOUS FOR THE PHRASE OFTEN QUOTED FROM
NEWTON'S ORIGINAL LATIN, “"HYPOTHESES NON FINGO."']

“And the same year [1665 or 1666] | began to think of gravity extending to the

orb of the Moon, and having found out. . . . All this was in the two plague years

of 1665 and 1666, for in those days | was in the prime of my age for invention,
and minded Mathematicks and Philosophy more than at any time since.”’

[FROM MEMORANDUM IN NEWTON'S HANDWRITING ABOUT HIS DISCOVERIES ON FLUXIONS, THE
BINOMIAL THEOREM, OPTICS, DYNAMICS, AND GRAVITY, BELIEVED TO HAVE BEEN WRITTEN

ABOUT 1714, AND FOUND BY ADAMS ABOUT 1887 IN THE "PORTSMOUTH COLLECTION'" OF
NEWTON PAPERS]
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of equation (1.17). Like Ry, Einstein is a sort of average of Riemann over all
directions. Generating Einstein and generalizing the righthand side of (1.16) is a
geometric object called the stress-energy tensor of the matter. It is denoted T. No
coordinates are need to define Einstein, and none to define T; like the Riemann
tensor, Riemann, and the metric tensor, g, they exist in the complete absence of
coordinates. Moreover, in nature they are always equal, aside from a factor of 8=:

Einstein = G = 8«T. (1.18)

“For hypotheses ought . . . to explain the properties of things and not attempt to
predetermine them except in so far as they can be an aid to experiments.””

[FROM LETTER OF NEWTON TO |I. M. PARDIES, 1672, AS QUOTED IN THE CAJORI NOTES AT THE
END OF NEWTON (1687), P. 673]

““That one body may act upon another at a distance through a vacuum, without
the mediation of any thing else, by and through which their action and force may
be conveyed from one to another, is to me so great an absurdity, that | believe no
man, who has in philosophical matters a competent faculty of thinking, can ever
fall into it.”"

[PASSAGE OFTEN QUOTED BY MICHAEL FARADAY FROM LETTERS OF NEWTON TO RICHARD

BENTLY, 1692-1693, AS QUOTED IN THE NOTES OF THE CAJORI EDITION OF NEWTON (1687), P.
643]

“‘The attractions of gravity, magnetism, and electricity, reach to very sensible
distances, and so have been observed . . . ; and there may be others which reach
to so small distances as hitherto escape observation; . . . some force, which in
immediate contract is exceeding strong, at small distances performs the chemical
operations above-mentioned, and reaches not far from the particles with any
sensible effect.”’

[FROM QUERY 31 AT THE END OF NEWTON'S OFPT/CKS {1730)]

“What is there in places almost empty of matter, and whence is it that the sun
and planets gravitate towards one another, without dense matter between them?
Whence is it that nature doth nothing in vain; and whence arises all that order and
beauty which we see in the world? To what end are comets, and whence is it that
planets move all one and the same way in orbs concentrick, while comets move all
manner of ways in orbs very excentrick; and what hinders the fixed stars from
falling upon one another?’’

[FROM QUERY 28]

““He is not eternity or infinity, but eternal and infinite; He is not duration or space,
but He endures and is present. He endures forever, and is everywhere present; and
by existing always and everywhere, He constitutes duration and space. . . . And
thus much concerning God; to discourse of whom from the appearances of things,
does certainly belong to natural philosophy.””

[FROM THE GENERAL SCHOLIUM AT THE END OF THE PRINCIPIA (1687)]

For general queries, contact webmaster@press.princeton.edu

Stress-energy tensor
introduced




© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

42 1. GEOMETRODYNAMICS IN BRIEF

Einstein field equation: how This Einstein field equation, rewritten in terms of components in an arbitrary coordi-
matter generates curvature nate System reads

Gop = 87T,p. (1.19)

The Einstein field equation is elegant and rich. No equation of physics can be
written more simply. And none contains such a treasure of applications and conse-
quences.

The field equation shows how the stress-energy of matter generates an average
curvature (Einstein = G) in its neighborhood. Simultaneously, the field equation
is a propagation equation for the remaining, anisotropic part of the curvature: it
governs the external spacetime curvature of a static source (Earth); it governs the
generation of gravitational waves (ripples in curvature of spacetime) by stress-encrgy
in motion; and it governs the propagation of those waves through the universe. The
field equation even contains within itself the equations of motion (“Force =

Consequences of Einstein
field equation

Box 1.11
ALBERT EINSTEIN /
Ulm, Germany,
March 14, 1879—
Princeton, New Jersey,
April 18, 1955

Library of E. 7. Hochschule, Zdrich Académie des Sciences. Paris Archives of California Institute of Technology

\ SEAL: Courtesy of the Lewis and Rosa Strauss Foundation aad Princeton University Press
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mass X acceleration”) for the matter whose stress-energy generates the curvature.

Those were some consequences of G = 87 7. Now for some applications.

The field equation governs the motion of the planets in the solar system; it governs
the deflection of light by the sun; it governs the collapse of a star to form a black
hole; it determines uniquely the external spacetime geometry of a black hole (“a
black hole has no hair”); it governs the evolution of spacetime singularities at the
end point of collapse; it governs the expansion and recontraction of the universe.
And more; much more.

In order to understand how the simple equation G = 8% T can be so all powerful,
it is desirable to backtrack, and spend a few chapters rebuilding the entire picture
of spacetime, of its curvature, and of its laws, this time with greater care, detail,
and mathematics.

Thus ends this survey of the effect of geometry on matter, and the reaction of
matter back on geometry, rounding out the parable of the apple.

Applications of Einstein field
equation

“What really interests me is whether God had any choice in the creation of the
world”’

EINSTEIN TO AN ASSISTANT, AS QUOTED BY G. HOLTON (1971), P. 20

“But the years of anxious searching in the dark, with their intense longing, their
alternations of confidence and exhaustion, and the final emergence into the
light—only those who have experienced it can understand that””

EINSTEIN, AS QUOTED BY M. KLEIN (1971), P. 1315

“‘Of all the communities available to us there is not one | would want to devote
myself to, except for the society of the true searchers, which has very few living
members at any time. . .”’

EINSTEIN LETTER TO BORN, QUOTED BY BORN (1971), P. 82

| am studying your great works and—when | get stuck anywhere—now have the
pleasure of seeing your friendly young face before me smiling and explaining”’’

EINSTEIN, LETTER OF MAY 2, 1920, AFTER MEETING NIELS BOHR

“As far as the laws of mathematics refer to reality, they are not certain, and as far
as they are certain, they do not refer to reality.”’

EINSTEIN (1921), P. 28

““The most incomprehensible thing about the world is that it is comprehensible.””
EINSTEIN, IN SCHILPP (1949), P. 112
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EXERCISES Exercise 1.1. CURVATURE OF A CYLINDER

Show that the Gaussian curvature R of the surface of a cylinder is zero by showing that
geodesics on that surface (unroll!) suffer no geodesic deviation. Give an independent argu-
ment for the same conclusion by employing the formula R = 1/p,p,, where p, and p, are
the principal radii of curvature at the point in question with respect to the enveloping
Euclidean three-dimensional space.

Exercise 1.2. SPRING TIDE VS. NEAP TIDE

Evaluate (1) in conventional units and (2) in geometrized units the magnitude of the Newton-
ian tide-producing acceleration R™,,,(m,n = 1,2,3) generated at the Earth by (1) the
moon (m,, , = 7.35 X 102% g, r = 3.84 x 10'° cm) and (2) the sun (m,,,, = 1.989 x 103 g,
r = 1496 x 1013 cm). By what factor do you expect spring tides to exceed neap tides?

Exercise 1.3. KEPLER ENCAPSULATED

A small satellite has a circular frequency w(cm™') in an orbit of radius r about a central
object of mass m(cm). From the known value of w, show that it is possible to determine
neither r nor m individually, but only the effective “Kepler density” of the object as averaged
over a sphere of the same radius as the orbit. Give the formula for »? in terms of this Kepler
density.

It is a reminder of the continuity of history that Kepler and Galileo (Box 1.9) wrote back
and forth, and that the year that witnessed the death of Galileo saw the birth of Newton
(Box 1.10). After Newton the first dramatically new synthesis of the laws of gravitation came
from Einstein (Box 1.11).

And what the dead had no speech for, when living,

They can tell you, being dead; the communication
Of the dead is tongued with fire beyond

the language of the living.

T. S. ELIOT, in LITTLE GIDDING (1842)

| measured the skies

Now the shadows [ measure
Skybound was the mind

Earthbound the body rests

JOHANNES KEPLER, d. November 15, 1630.

He wrote his epitaph in Latin;
it is translated by Coleman (1967), p. 109.

Ubi materia, ibi geometria.
JOHANNES KEPLER
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