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Chapter 1

Backward induction

This chapter deals with situations in which two or more opponents take

actions one after the other. If you are involved in such a situation, you can try

to think ahead to how your opponent might respond to each of your possible

actions, bearing in mind that he is trying to achieve his own objectives, not

yours. However, we shall see that it may not be helpful to carry this idea too

far.

1.1 Tony’s Accident

When one of us (Steve) was a college student, his friend Tony caused a minor

traffic accident. We’ll let Steve tell the story:

The car of the victim, whom I’ll call Vic, was slightly scraped. Tony didn’t

want to tell his insurance company. The next morning, Tony and I went with

Vic to visit some body shops. The upshot was that the repair would cost $80.

Tony and I had lunch with a bottle of wine, and thought over the situation.

Vic’s car was far from new and had accumulated many scrapes. Repairing the

few that Tony had caused would improve the car’s appearance only a little.

We figured that if Tony sent Vic a check for $80, Vic would probably just

pocket it. Perhaps, we thought, Tony should ask to see a receipt showing that

the repairs had actually been performed before he sent Vic the $80.

A game theorist would represent this situation by the game tree in Fig-

ure 1.1. For definiteness, we’ll assume that the value to Vic of repairing the

damage is $20.

Explanation of the game tree:

(1) Tony goes first. He has a choice of two actions: send Vic a check for $80,

or demand a receipt proving that the work has been done.

(2) If Tony sends a check, the game ends. Tony is out $80; Vic will no doubt

keep the money, so he has gained $80. We represent these payoffs by the

ordered pair (−80,80); the first number is Tony’s payoff, the second is

Vic’s.
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2 • Chapter 1

Vic

demand receipt

don’t repair

Tony

send $80

(–80, 80)

(–80, 20) (0, 0)

repair

Figure 1.1. Tony’s Accident. Tony’s payoff is given first.

(3) If Tony demands a receipt, Vic has a choice of two actions: repair the car

and send Tony the receipt, or just forget the whole thing.

(4) If Vic repairs the car and sends Tony the receipt, the game ends. Tony

sends Vic a check for $80, so he is out $80; Vic uses the check to pay for

the repair, so his gain is $20, the value of the repair.

(5) If Vic decides to forget the whole thing, he and Tony each end up with a

gain of 0.

Assuming that we have correctly sized up the situation, we see that if Tony

demands a receipt, Vic will have to decide between two actions, one that gives

him a payoff of $20 and one that gives him a payoff of 0. Vic will presumably

choose to repair the car, which gives him a better payoff. Tony will then be

out $80.

Our conclusion was that Tony was out $80 whatever he did. We did not

like this game.

When the bottle of wine was nearly finished, we thought of a third course

of action that Tony could take: send Vic a check for $40, and tell Vic that he

would send the rest when Vic provided a receipt showing that the work had

actually been done. The game tree now became the one in Figure 1.2.

demand receiptsend $80

Tony

send $40

Vic Vic

(–80, 20) (0, 0) (–80, 20) (–40, 40)

repair don’t repair
repair don’t repair

Figure 1.2. Tony’s Accident: second game tree. Tony’s payoff is given first.
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Backward induction • 3

Most of the new game tree looks like the first one. However:

(1) If Tony takes his new action, sending Vic a check for $40 and asking for

a receipt, Vic will have a choice of two actions: repair the car, or don’t.

(2) If Vic repairs the car, the game ends. Vic will send Tony a receipt, and

Tony will send Vic a second check for $40. Tony will be out $80. Vic will

use both checks to pay for the repair, so he will have a net gain of $20,

the value of the repair.

(3) If Vic does not repair the car, and just pockets the the $40, the game ends.

Tony is out $40, and Vic has gained $40.

Again assuming that we have correctly sized up the situation, we see that

if Tony sends Vic a check for $40 and asks for a receipt, Vic’s best course

of action is to keep the money and not make the repair. Thus Tony is out

only $40.

Tony sent Vic a check for $40, told him he’d send the rest when he saw a

receipt, and never heard from Vic again.

1.2 Games in extensive form with complete information

Tony’s Accident is the kind of situation that is studied in game theory,

because:

(1) It involves more than one individual.

(2) Each individual has several possible actions.

(3) Once each individual has chosen his actions, payoffs to all individuals are

determined.

(4) Each individual is trying to maximize his own payoff.

The key point is that the payoff to an individual depends not only on his own

choices, but also on the choices of others.

We gave two models for Tony’s Accident, which differed in the sets of

actions available to Tony and Vic. Each model was a game in extensive form

with complete information.

A game in extensive form with complete information consists, to begin

with, of the following:

(1) A set P of players. In Figure 1.2, the players are Tony and Vic.

(2) A set N of nodes. In Figure 1.2, the nodes are the little black circles. There

are eight of them in this case.

(3) A set B of actions or moves. In Figure 1.2, the moves are the lines (seven in

this case). Each move connects two nodes, one its start and the other its
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4 • Chapter 1

end. In Figure 1.2, the start of a move is the node at the top of the move,

and the end of a move is the node at the bottom of the move.

A root node is a node that is not the end of any move. In Figure 1.2, the top

node is the only root node.

A terminal node is a node that is not the start of any move. In Figure 1.2

there are five terminal nodes.

A path is sequence of moves such that the end node of any move in the

sequence is the start node of the next move in the sequence. A path is com-

plete if it is not part of any longer path. Paths are sometimes called histories,

and complete paths are called complete histories. If a complete path has finite

length, it must start at a root node and end at a terminal node.

A game in extensive form with complete information also has:

(4) A function from the set of nonterminal nodes to the set of players. This

function, called a labeling of the set of nonterminal nodes, tells us which

player chooses a move at that node. In Figure 1.2, there are three nonter-

minal nodes. One is labeled “Tony” and two are labeled “Vic.”

(5) For each player, a payoff function from the set of complete paths into the

real numbers. Usually the players are numbered from 1 to n, and the ith
player’s payoff function is denoted πi.

A game in extensive form with complete information is required to satisfy

the following conditions:

(a) There is exactly one root node.

(b) If c is any node other than the root node, there is exactly one path from

the root node to c.

One way of thinking of (b) is that if you know the node you are at, you

know exactly how you got there.

Here are two consequences of assumption (b):

1. Each node other than the root node is the end of exactly one move.

(Proof: Let c be a node that is not the root node. It is the end of at least one

move, because there is a path from the root node to c. If c were the end of

two moves m1 and m2, then there would be two paths from the root node

to c: one from the root node to the start of m1, followed by m1; the other

from the root node to the start of m2, followed by m2. But this can’t happen

because of assumption (b).)

2. Every complete path, not just those of finite length, starts at the root

node. (If c is any node other than the root node, there is exactly one path

p from the root node to c. If a path that contains c is complete, it must

contain p.)
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A finite horizon game is one in which there is a number K such that every

complete path has length at most K. In Chapters 1 to 5 of this book we only

discuss finite horizon games. An infinite horizon game is one with arbitrarily

long paths. We discuss these games in Chapter 6.

In a finite horizon game, the complete paths are in one-to-one correspon-

dence with the terminal nodes. Therefore, in a finite horizon game we can

define a player’s payoff function by assigning a number to each terminal

node.

In Figure 1.2, Tony is Player 1 and Vic is Player 2. Thus each terminal node

e has associated with it two numbers, Tony’s payoff π1(e) and Vic’s payoff

π2(e). In Figure 1.2 we have labeled each terminal node with the ordered pair

of payoffs (π1(e),π2(e)).
A game in extensive form with complete information is finite if the number

of nodes is finite. (It follows that the number of moves is finite. In fact, the

number of moves in a finite game is always one less than the number of

nodes.) Such a game is necessarily a finite horizon game.

Games in extensive form with complete information are good models of

situations in which players act one after the other, players understand the

situation completely, and nothing depends on chance. In Tony’s Accident it

was important that Tony knew Vic’s payoffs, at least approximately, or he

would not have been able to choose what to do.

1.3 Strategies

In game theory, a player’s strategy is a plan for what action to take in every

situation that the player might encounter. For a game in extensive form

with complete information, the phrase “every situation that the player might

encounter” is interpreted to mean every node that is labeled with his name.

In Figure 1.2, only one node, the root, is labeled “Tony.” Tony has three

possible strategies, corresponding to the three actions he could choose at

the start of the game. We will call Tony’s strategies s1 (send $80), s2 (demand

a receipt before sending anything), and s3 (send $40).

In Figure 1.2, there are two nodes labeled “Vic.” Vic has four possible strate-

gies, which we label t1, . . . , t4:

Vic’s strategy If Tony demands receipt If Tony sends $40

t1 repair repair

t2 repair don’t repair

t3 don’t repair repair

t4 don’t repair don’t repair
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In general, suppose there are k nodes labeled with a player’s name, and

there aren1 possible moves at the first node,n2 possible moves at the second

node, …, and nk possible moves at the kth node. A strategy for that player

consists of a choice of one of his n1 moves at the first node, one of his n2

moves at the second node, …, and one of his nk moves at the kth node. Thus

the number of strategies available to the player is the product n1n2 · · ·nk.
If we know each player’s strategy, then we know the complete path through

the game tree, so we know both players’ payoffs. With some abuse of notation,

we denote the payoffs to Players 1 and 2 when Player 1 uses the strategy si
and Player 2 uses the strategy tj by π1(si, tj) and π2(si, tj). For example,

(π1(s3, t2),π2(s3, t2)) = (−40,40). Of course, in Figure 1.2, this is the pair of

payoffs associated with the terminal node on the corresponding path through

the game tree.

Recall that if you know the node you are at, you know how you got there.

Thus a strategy can be thought of as a plan for how to act after each course

the game might take (that ends at a node where it is your turn to act).

1.4 Backward induction

Game theorists often assume that players are rational. For a game in extensive

form with complete information, rationality is usually considered to imply

the following:

• Suppose a player has a choice that includes two moves m and m′, and

m yields a higher payoff to that player than m′. Then the player will not

choose m′.

Thus, if you assume that your opponent is rational in this sense, you must

assume that whatever you do, your opponent will respond by doing what is

best for him, not what you might want him to do. (Game theory discourages

wishful thinking.) Your opponent’s response will affect your own payoff. You

should therefore take your opponent’s likely response into account in decid-

ing on your own action. This is exactly what Tony did when he decided to

send Vic a check for $40.

The assumption of rationality motivates the following procedure for select-

ing strategies for all players in a finite game in extensive form with com-

plete information. This procedure is called backward induction or pruning

the game tree.

(1) Select a node c such that all the moves available at c have ends that are

terminal. (Since the game is finite, there must be such a node.)
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(2) Suppose Player i is to choose at node c. Among all the moves available to

him at that node, find the move m whose end e gives the greatest payoff

to Player i. In the rest of this chapter, and until Chapter 6, we shall only

deal with situations in which this move is unique.

(3) Assume that at node c, Player iwill choose the movem. Record this choice

as part of Player i’s strategy.

(4) Delete from the game tree all moves that start at c. The node c is now a

terminal node. Assign to it the payoffs that were previously assigned to

the node e.
(5) The game tree now has fewer nodes. If it has just one node, stop. If it has

more than one node, return to step 1.

In step 2 we find the move that Player i presumably will make should the

course of the game arrive at node c. In step 3 we assume that Player i will

in fact make this move, and record this choice as part of Player i’s strategy.

In step 4 we assign to node c the payoffs to all players that result from this

choice, and we “prune the game tree.” This helps us take this choice into

account when finding the moves players should presumably make at earlier

nodes.

In Figure 1.2, there are two nodes for which all available moves have ter-

minal ends: the two where Vic is to choose. At the first of these nodes, Vic’s

best move is repair, which gives payoffs of (−80,20). At the second, Vic’s

best move is don’t repair, which gives payoffs of (−40,40). Thus after two

steps of the backward induction procedure, we have recorded the strategy t2
for Vic, and we arrive at the pruned game tree of Figure 1.3.

demand receipt

Tony

send $80 send $40

(–80, 80) (–80, 20) (–40, 40)

Figure 1.3. Tony’s Accident: pruned game tree.

Now the node labeled “Tony” has all its ends terminal. Tony’s best move

is to send $40, which gives him a payoff of −40. Thus Tony’s strategy is s3.

We delete all moves that start at the node labeled “Tony” and label that node

with the payoffs (−40,40). That is now the only remaining node, so we stop.

Thus the backward induction procedure selects strategy s3 for Tony and

strategy t2 for Vic, and predicts that the game will end with the payoffs

(−40,40). This is how the game ended in reality.

When you are doing problems using backward induction, you may find that

recording parts of strategies and then pruning and redrawing game trees is
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too slow. Here is another way to do problems. First, find the nodes c such

that all moves available at c have ends that are terminal. At each of these

nodes, cross out all moves that do not produce the greatest payoff for the

player who chooses. If we do this for the game pictured in Figure 1.2, we get

Figure 1.4.

send $40

don’t repair

Tony

send $80 demand receipt

(–80, 80)

(–80, 20) (0, 0) (–80, 20) (–40, 40)

Vic Vic

repair
don’t repairrepair

Figure 1.4. Tony’s Accident: start of backward induction.

Now you can back up a step. In Figure 1.4 we now see that Tony’s three

possible moves will produce payoffs to him of −80, −80, and −40. Cross out

the two moves that produce payoffs of −80. We obtain Figure 1.5.

send $40

don’t repair

Tony

send $80 demand   receipt

(–80, 80)

(–80, 20) (0, 0) (–80, 20) (–40, 40)

Vic Vic

repair
don’t repairrepair

Figure 1.5. Tony’s Accident: completion of backward induction.

From Figure 1.5 we can read off each player’s strategy; for example, we can

see what Vic will do at each of the nodes where he chooses, should that node

be reached. We can also see how the game will play out if each player uses

the strategy we have found.

In more complicated examples, of course, this procedure will have to be

continued for more steps.

The backward induction procedure can fail if, at any point, step 2 produces

two moves that give the same highest payoff to the player who is to choose.

Figure 1.6 shows an example where backward induction fails. At the node

where Player 2 chooses, both available moves give him a payoff of 1. Player 2
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1

2
(0, 0)

(–1, 1) (1, 1)

a b

c d

Figure 1.6. Failure of backward induction. As is standard when the
players are numbered 1 and 2, Player 1’s payoff is given first.

is indifferent between these moves. Hence Player 1 does not know which

move Player 2 will choose if Player 1 chooses b. Now Player 1 cannot choose

between his moves a and b, since which is better for him depends on which

choice Player 2 would make if Player 1 chose b.

We return to this issue in Chapter 6.

1.5 Big Monkey and Little Monkey 1

Big Monkey and Little Monkey eat coconuts, which dangle from a branch of

the coconut palm. One of them (at least) must climb the tree and shake down

the fruit. Then both can eat it. The monkey that doesn’t climb will have a

head start eating the fruit.

If Big Monkey climbs the tree, he incurs an energy cost of 2 kilocalories (Kc).

If Little Monkey climbs the tree, he incurs a negligible energy cost (because

he’s so little).

A coconut can supply the monkeys with 10 Kc of energy. It will be divided

between the monkeys as follows:

Big Monkey eats Little Monkey eats

If Big Monkey climbs 6 Kc 4 Kc

If both monkeys climb 7 Kc 3 Kc

If Little Monkey climbs 9 Kc 1 Kc

Let’s assume that Big Monkey must decide what to do first. Payoffs are

net gains in kilocalories. The game tree is shown in Figure 1.7. Backward

induction produces the following strategies:

(1) Little Monkey: If Big Monkey waits, climb. If Big Monkey climbs, wait.

(2) Big Monkey: Wait.

Thus Big Monkey waits. Little Monkey, having no better option at this point,

climbs the tree and shakes down the fruit. He scampers quickly down, but
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to no avail: Big Monkey has gobbled most of the fruit. Big Monkey has a net

gain of 9 Kc, Little Monkey 1 Kc.

Big Monkey

Little Monkey Little Monkey

wait climb

wait climb wait climb

(0, 0) (9, 1) (4, 4) (5, 3)

Figure 1.7. Big Monkey and Little Monkey. Big Monkey’s payoff is given first.

1.6 Threats, promises, commitments

The game of Big Monkey and Little Monkey has the following peculiarity.

Suppose Little Monkey adopts the strategy wait no matter what Big Monkey

does. If Big Monkey is convinced that this is in fact Little Monkey’s strategy,

he sees that his own payoff will be 0 if he waits and 4 if he climbs. His best

option is therefore to climb. The payoffs are 4 Kc to each monkey.

Little Monkey’s strategy of waiting no matter what Big Monkey does is not

“rational” in the sense of the last section, since it involves taking an inferior

action should Big Monkey wait. Nevertheless it produces a better outcome for

Little Monkey than his “rational” strategy.

A commitment by Little Monkey to wait if Big Monkey waits is called a

threat. If in fact Little Monkey waits after Big Monkey waits, Big Monkey’s pay-

off is reduced from 9 to 0. Of course, Little Monkey’s payoff is also reduced,

from 1 to 0. The value of the threat, if it can be made believable, is that it

should induce Big Monkey not to wait, so that the threat will not have to be

carried out.

The ordinary use of the word “threat” includes the idea that the threat,

if carried out, would be bad both for the opponent and for the individual

making the threat. Think, for example, of a parent threatening to punish a

child, or a country threatening to go to war. If an action would be bad for

your opponent and good for you, there is no need to threaten to do it; it is

your normal course.

The difficulty with threats is how to make them believable, since if the time

comes to carry out the threat, the player making the threat will not want to

do it. Some sort of advance commitment is necessary to make the threat

believable. Perhaps Little Monkey should break his own leg and show up on

crutches!
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In this example the threat by Little Monkey works to his advantage. If Little

Monkey can somehow convince Big Monkey that he will wait if Big Monkey

waits, then from Big Monkey’s point of view, the game tree changes to the

one shown in Figure 1.8.

Big Monkey

Little Monkey Little Monkey

wait climb

wait wait climb

(0, 0) (4, 4) (5, 3)

Figure 1.8. Big Monkey and Little Monkey after Little Monkey commits
to wait if Big Monkey waits. Big Monkey’s payoff is given first.

If Big Monkey uses backward induction on the new game tree, he will climb!

Closely related to threats are promises. In the game of Big Monkey and Lit-

tle Monkey, Little Monkey could make a promise at the node after Big Mon-

key climbs. Little Monkey could promise to climb. This would increase Big

Monkey’s payoff at that node from 4 to 5, while decreasing Little Monkey’s

payoff from 4 to 3. Here, however, even if Big Monkey believes Little Mon-

key’s promise, it will not affect his action in the larger game. He will still wait,

getting a payoff of 9.

The ordinary use of the word “promise” includes the idea that it is both

good for the other person and bad for the person making the promise. If an

action is also good for you, then there is no need to promise to do it; it is your

normal course. Like threats, promises usually require some sort of advance

commitment to make them believable.

Let us consider threats and promises more generally. Consider a two-player

game in extensive form with complete informationG. We first consider a node

c such that all moves that start at c have terminal ends. Suppose for simplicity

that Player 1 is to move at node c. Suppose Player 1’s “rational” choice at node

c, the one she would make if she were using backward induction, is a movem
that gives the two players payoffs (π1, π2). Now imagine that Player 1 com-

mits herself to a different movem′ at node c, which gives the two players pay-

offs (π ′1, π
′
2). Ifmwas the unique choice that gave Player 1 her best payoff, we

necessarily have π ′1 < π1, that is, the new move gives Player 1 a lower payoff.

• Ifπ ′2 < π2 (i.e., if the choicem′ reduces Player 2’s payoff as well), Player 1’s

commitment to m′ at node c is a threat.

• If π ′2 > π2 (i.e., if the choice m′ increases Player 2’s payoff), Player 1’s

commitment to m′ at node c is a promise.
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Now consider any node c where, for simplicity, Player 1 is to move. Suppose

Player 1’s “rational” choice at node c, the one she would make if she were

using backward induction, is a move m. Suppose that if we use backward

induction, when we have reduced to a game in which the node c is terminal,

the payoffs to the two players at c are (π1, π2). Now imagine that Player 1

commits herself to a different move m′ at node c. Remove from the game

G all other moves that start at c, and all parts of the tree that are no longer

connected to the root node once these moves are removed. Call the new game

G′. Suppose that if we use backward induction in G′, when we have reduced

to a game in which the node c is terminal, the payoffs to the two players

at c are (π ′1, π
′
2). Under the uniqueness assumption we have been using, we

necessarily have π ′1 < π1:

• If π ′2 < π2, Player 1’s commitment to m′ at node c is a threat.

• If π ′2 > π2, Player 1’s commitment to m′ at node c is a promise.

1.7 Ultimatum Game

Player 1 is given 100 one dollar bills. She must offer some of them (1 to 99)

to Player 2. If Player 2 accepts the offer, she keeps the bills she was offered,

and Player 1 keeps the rest. If Player 2 rejects the offer, neither player gets

to keep anything.

Let’s assume payoffs are dollars gained in the game. Then the game tree is

shown in Figure 1.9.

Player 1

Player 2 Player 2Player 2Player 2

99
98 2

1

a r a r a r a r

(1, 99) (0, 0) (2, 98) (0, 0) (98, 2) (0, 0) (99, 1) (0, 0)

Figure 1.9. Ultimatum Game with dollar payoffs. Player 1 offers a number
of dollars to Player 2, then Player 2 accepts (a) or rejects (r ) the offer.

Backward induction yields:

• Whatever offer Player 1 makes, Player 2 should accept it, since a gain of

even one dollar is better than a gain of nothing.

• Therefore Player 1 should only offer one dollar. That way she gets to keep

99!
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However, many experiments have shown that people do no not actually

play the Ultimatum Game in accord with this analysis; see the Wikipedia page

for this game (http://en.wikipedia.org/wiki/Ultimatum_game). Offers of less

than about $40 are typically rejected.

A strategy by Player 2 to reject small offers is an implied threat (actu-

ally many implied threats, one for each small offer that she would reject).

If Player 1 believes this threat—and experimentation has shown that she

should—then she should make a fairly large offer. As in the game of Big Mon-

key and Little Monkey, a threat to make an “irrational” move, if it is believed,

can result in a higher payoff than a strategy of always making the “rational”

move.

We should also recognize a difficulty in interpreting game theory experi-

ments. The experimenter can set up an experiment with monetary payoffs,

but she cannot ensure that those are the only payoffs that are important to

the experimental subject.

In fact, experiments suggest that many people prefer that resources not

be divided in a grossly unequal manner, which they perceive as unfair; and

that most people are especially concerned when it is they themselves who

get the short end of the stick. Thus Player 2 may, for example, feel unhappy

about accepting an offer x of less than $50, with the amount of unhappiness

equivalent to 4(50−x) dollars (the lower the offer, the greater the unhappi-

ness). Her payoff if she accepts an offer of x dollars is then x if x > 50, and

x − 4(50− x) = 5x − 200 if x � 50. In this case she should accept offers of

greater than $40, reject offers below $40, and be indifferent between accept-

ing and rejecting offers of exactly $40.

Similarly, Player 1 may have payoffs not provided by the experimenter

that lead her to make relatively high offers. She may prefer in general that

resources not be divided in a grossly unequal manner, even at a monetary cost

to herself. Or she may try be the sort of person who does not take advantage

of others and may experience a negative payoff when she does not live up to

her ideals.

The take-home message is that the payoffs assigned to a player must reflect

what is actually important to the player.

We have more to say about the Ultimatum Game in Sections 5.6 and 10.12.

1.8 Rosenthal’s Centipede Game

Like the Ultimatum Game, the Centipede Game is a game theory classic.

Mutt and Jeff start with $2 each. Mutt goes first. On a player’s turn, he has

two possible moves:
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(1) Cooperate (c): The player does nothing. The game master rewards him

with $1.

(2) Defect (d): The player steals $2 from the other player.

The game ends when either (1) one of the players defects, or (2) both play-

ers have at least $100.

Payoffs are dollars gained in the game. The game tree is shown in Fig-

ure 1.10.

(2, 2)      M

(4, 0)

(3, 2)        J

(1, 4)
(3, 3)      M

(5, 1)
(4, 3)        J

(2, 5)

(99, 98)      J

(97, 100)

(99, 99)      M

(101, 97)
(100, 99)      J

(98, 101)

(4, 4)      M

(100, 100)

c d

c d

c d

c d

c d

c d

c d

Figure 1.10. Rosenthal’s Centipede Game. Mutt’s payoff is given first. The amounts the
players have accumulated when a node is reached are shown to the left of the node.

A backward induction analysis begins at the only node both of whose

moves end in terminal nodes: Jeff’s node at which Mutt has accumulated

$100 and Jeff has accumulated $99. If Jeff cooperates, he receives $1 from

the game master, and the game ends with Jeff having $100. If he defects by

stealing $2 from Mutt, the game ends with Jeff having $101. Assuming Jeff is

“rational,” he will defect. So cross out Jeff’s last c move in Figure 1.10.

Now we back up a step, to Mutt’s last node. We see from the figure that

if Mutt cooperates, he will end up with $98, but if he defects, he gets $101

when the game imediately ends. If Mutt is “rational,” he will defect. So cross

out Mutt’s last c move.
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If we continue the backward induction procedure, we find that it yields the

following strategy for each player: whenever it is your turn, defect.

Hence Mutt steals $2 from Jeff at his first turn, and the game ends with

Mutt having $4 and Jeff having nothing.

This is a disconcerting conclusion. If you were given the opportunity to

play this game, don’t you think you could come away with more than $4?

In fact, in experiments, people typically do not defect on the first move.

For more information, consult the Wikipedia page for this game, http://en

.wikipedia.org/wiki/Centipede_game_(game_theory).

What’s wrong with our analysis? Here are a few possibilities.

1. The players care about aspects of the game other than money. For exam-

ple, a player may feel better about himself if he cooperates. Alternatively, a

player may want to seem cooperative, because this normally brings benefits.

If a player wants to be, or to seem, cooperative, we should take account of

this desire in assigning his payoffs.

2. The players use a rule of thumb instead of analyzing the game. People do

not typically make decisions on the basis of a complicated rational analysis.

Instead they follow rules of thumb, such as be cooperative and don’t steal.

In fact, it may not be rational to make most decisions on the basis of a com-

plicated rational analysis, because (a) the cost in time and effort of doing the

analysis may be greater than the advantage gained, and (b) if the analysis is

complicated enough, you are liable to make a mistake anyway.

3. The players use a strategy that is correct for a different, more common

situation. We do not typically encounter “games” that we know in advance

have exactly or at most n stages, where n is a large number. Instead, we typ-

ically encounter games with an unknown number of stages. If the Centipede

Game had an unknown number of stages, there would be no place to start

a backward induction. In Chapter 6 we will study a class of such games for

which it is rational to cooperate as long as your opponent does. When we

encounter the unusual situation of a game with at most 196 stages, which is

the case with the Centipede Game, perhaps we use a strategy that is correct

for the more common situation of a game with an unknown number of stages.

However, the most interesting possibility is that the logical basis for believ-

ing that rational players will use long backward inductions is suspect. We

address this issue in Section 1.13.

1.9 Continuous games

In the games we have considered so far, when it is a player’s turn to move,

she has only a finite number of choices. In the remainder of this chapter,

we consider some games in which each player may choose an action from

an interval of real numbers. For example, if a firm must choose the price to
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charge for an item, we can imagine that the price could be any nonnegative

real number. This allows us to use the power of calculus to find which price

produces the best payoff to the firm.

More precisely, we consider games with two players, Player 1 and Player 2.

Player 1 goes first. The moves available are all real numbers s in some inter-

val I. Next it is Player 2’s turn. The moves available are all real numbers t
in some interval J. Player 2 observes Player 1’s move s and then chooses her

move t. The game is now over, and payoffsπ1(s, t) andπ2(s, t) are calculated.

Does such a game satisfy the definition that we gave in Section 1.2 of a

game in extensive form with complete information? Yes, it does. In the pre-

vious paragraph, to describe the type of game we want to consider, we only

described the moves, not the nodes. However, the nodes are still there. There

is a root node at which Player 1 must choose her move s. Each move s ends at

a new node, at which Player 2 must choose t. Each move t ends at a terminal

node. The set of all complete paths is the set of all pairs (s, t) with s in I and

t in J. Since we described the game in terms of moves, not nodes, it was eas-

ier to describe the payoff functions as assigning numbers to complete paths,

not as assigning numbers to terminal nodes. That is what we did: π1(s, t) and

π2(s, t) assign numbers to each complete path.

Such a game is not finite, but it is a finite horizon game: the length of the

longest path is 2.

Let us find strategies for Players 1 and 2 using the idea of backward induc-

tion. Backward induction as we described it in Section 1.4 cannot be used,

because the game is not finite.

We begin with the last move, which is Player 2’s. Assuming she is rational,

she will observe Player 1’s move s and then choose t in J to maximize the

function π2(s, t) with s fixed. For fixed s, π2(s, t) is a function of one variable

t. Suppose it takes on its maximum value in J at a unique value of t. This

number t is Player 2’s best response to Player 1’s move s. Normally the best

response t will depend on s, so we write t = b(s). The function t = b(s) gives

a strategy for Player 2; that is, it gives Player 2 a choice of action for every

possible choice s in I that Player 1 might make.

Player 1 should choose s taking into account Player 2’s strategy. If Player 1

assumes that Player 2 is rational and hence will use her best-response strat-

egy, then Player 1 should choose s in I to maximize the function π1(s, b(s)).
This is again a function of one variable.

1.10 Stackelberg’s model of duopoly 1

In a duopoly, a certain good is produced by just two firms, which we

label 1 and 2. In Stackelberg’s model of duopoly (Wikipedia article: http://
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en.wikipedia.org/wiki/Stackelberg_duopoly), each firm tries to maximize its

own profit by choosing an appropriate level of production. Firm 1 chooses

its level of production first; then Firm 2 observes this choice and chooses its

own level of production. Would you rather run Firm 1 or Firm 2?

Let s be the quantity produced by Firm 1 and let t be the quantity produced

by Firm 2. Then the total quantity of the good produced is q = s + t. The

market price p of the good depends on q: p = φ(q). At this price, everything

produced can be sold.

Suppose Firm 1’s cost to produce the quantity s of the good, which we

denote c1(s), is 4s, and Firm 2’s cost to produce the quantity t of the good,

which we denote c2(t), is 4t. In other words, both Firm 1 and Firm 2 have the

same unit cost of production 4.

1.10.1 First model. We assume that price falls linearly as total produc-

tion of the two firms increases. In particular, we assume

p = 20− 2(s + t). (1.1)

We denote the profits of the two firms by π1 and π2. Now profit is revenue

minus cost, and revenue is price times quantity sold. Since the price depends

on q = s + t, each firm’s profit depends in part on how much is produced by

the other firm. More precisely,

π1(s, t) = ps − c1(s) =
(
20− 2(s + t))s − 4s = (16− 2t)s − 2s2, (1.2)

π2(s, t) = pt − c2(t) =
(
20− 2(s + t))t − 4t = (16− 2s)t − 2t2. (1.3)

We regard the profits as payoffs in a game. The players are Firms 1 and 2.

In this subsection we allow the levels of production s and t to be any real

numbers, even negative numbers and numbers large enough to make the

price negative. This doesn’t make sense economically, but it avoids mathe-

matical complications.

Since Firm 1 chooses s first, we begin our analysis by finding Firm 2’s best

response t = b(s). To do this, we must find where the function π2(s, t), with

s fixed, has its maximum. Sinceπ2(s, t)with s fixed has a graph that is just an

upside-down parabola, we can do this by taking the derivative with respect

to t and setting it equal to 0:

∂π2

∂t
= 16− 2s − 4t = 0.

If we solve this equation for t, we will have Firm 2’s best-response function:

t = b(s) = 4− 1
2s.
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Finally, we must maximize π1(s, b(s)), the payoff that Firm 1 can expect

from each choice s, assuming that Firm 2 uses its best-response strategy.

From (1.2), we have

π1(s, b(s)) = π1
(
s,4− 1

2s
) = (16− 2

(
4− 1

2s
))
s − 2s2 = 8s − s2.

Again this function has a graph that is an upside-down parabola, so we can

find where it is maximum by taking the derivative and setting it equal to 0:

d
ds
π1(s, b(s)) = 8− 2s = 0 ⇒ s = 4.

Thus π1(s, b(s)) is maximum at s∗ = 4. Given this choice of production level

for Firm 1, Firm 2 chooses the production level

t∗ = b(s∗) = 4− 1
24 = 2.

The price is

p∗ = 20− 2(s∗ + t∗) = 20− 2(4+ 2) = 8.

From (1.2) and (1.3), the profits are

π1(s∗, t∗) = (16− 2 · 2)4− 2 · 42 = 16,

π2(s∗, t∗) = (16− 2 · 4)2− 2 · 22 = 8.

Firm 1 has twice the level of production and twice the profit of Firm 2. It is

better to run the firm that chooses its production level first.

1.10.2 Second model. As remarked, the model in the previous subsec-

tion has a disconcerting aspect: the levels of production s and t, and the price

p, are all allowed to be negative. We now complicate the model to deal with

this objection.

First, we only allow nonnegative production levels: 0 � s < ∞ and 0 �
t <∞. Second, we assume that if total production rises above 10, the level at

which formula (1.1) for the price gives 0, then the price is 0, not the negative

number given by formula (1.1):

p =
⎧⎨
⎩20− 2(s + t) if s + t < 10,

0 if s + t � 10.

We again ask the question, what will be the production level and profit of

each firm?
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The payoff is again the profit, but the formulas are different:

π1(s, t) = ps − c1(s) =
⎧⎨
⎩
(
20− 2(s + t))s − 4s if 0 � s + t < 10,

−4s if s + t � 10,
(1.4)

π2(s, t) = pt − c2(t) =
⎧⎨
⎩
(
20− 2(s + t))t − 4t if 0 � s + t < 10,

−4t if s + t � 10.
(1.5)

We again begin our analysis by finding Firm 2’s best response t = b(s).
Unit cost of production is 4. If Firm 1 produces so much that all by itself

it drives the price down to 4 or lower, there is no way for Firm 2 to make a

positive profit. In this case Firm 2’s best response is to produce nothing: that

way its profit is 0, which is better than losing money.

Firm 1 by itself drives the price p down to 4 when 20 − 2s = 4, that is,

when its level of production is s = 8. We conclude that if Firm 1’s level of

production s is 8 or higher, Firm 2’s best response is 0.

In contrast, if Firm 1 produces s < 8, it leaves the price above 4 and gives

Firm 2 an opportunity to make a positive profit. In this case Firm 2’s profit is

given by

π2(s, t) =
⎧⎨
⎩
(
20− 2(s + t))t − 4t = (16− 2s)t − 2t2 if 0 � t < 10− s,
−4t if t � 10− s.

See Figure 1.11.

t
4 – (1/2)s 8 – s 10 – s

Figure 1.11. Graph of π2(s, t) for fixed s < 8 in the numerical example.
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From the figure, the function π2(s, t) with s fixed is maximum where

(∂π2/∂t)(s, t) = 0, which occurs at t = 4− 1
2s.

Thus Firm 2’s best-response function is

b(s) =
⎧⎨
⎩4− 1

2s if 0 � s < 8,

0 if s � 8.

We now turn to calculating π1(s, b(s)), the payoff that Firm 1 can expect

from each choice s, assuming that Firm 2 uses its best-response strategy.

Notice that for 0 � s < 8, we have

s + b(s) = s + 4− 1
2s = 4+ 1

2s < 4+ 1
28 = 8 < 10.

Therefore, for 0 � s < 8, we use the first line of (1.4) to calculate

π1(s, b(s)):

π1(s, b(s)) = π1
(
s,4− 1

2s
) = (16− 2

(
4− 1

2s
))
s − 2s2 = 8s − s2.

Firm 1 will not choose an s � 8, since, as we have seen, that would force

the price down to the cost of production 4 or lower. Therefore we will not

bother to calculate π1(s, b(s)) for s � 8.

The function π1(s, b(s)) on the interval 0 � s � 8 is maximum at s∗ = 4,

where the derivative of 8s − s2 is 0, just as in our first model. The value of

t∗ = b(s∗) is also the same, as are the price and profits.

1.11 Stackelberg’s model of duopoly 2

In this section we give a more general treatment of Stackelberg’s model of

duopoly.

1.11.1 First model. In this subsection we make the following assump-

tions, which generalize those used in Subsection 1.10.1.

(1) Price falls linearly with total production. In other words, there are positive

numbers α and β such that the formula for the price is

p = α− β(s + t).

(2) Each firm has the same unit cost of production c > 0. Thus c1(s) = cs
and c2(t) = ct.

(3) α > c. In other words, the price of the good when very little is produced

is greater than the unit cost of production. If this assumption is violated,

the good will not be produced.

(4) The production levels s and t can be any real numbers.
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Firm 1 chooses its level of production s first. Then Firm 2 observes s and

chooses t. We ask the question, what will be the production level and profit

of each firm?

The payoffs are

π1(s, t) = ps − c1(s) =
(
α− β(s + t))s − cs = (α− βt − c)s − βs2,

π2(s, t) = pt − c2(t) =
(
α− β(s + t))t − ct = (α− βs − c)t − βt2.

We find Firm 2’s best response t = b(s) by finding where the function

π2(s, t), with s fixed, has its maximum. Since π2(s, t) with s fixed has a graph

that is an upside-down parabola, we just take the derivative with respect to

t and set it equal to 0:

∂π2

∂t
= α− βs − c − 2βt = 0.

We solve this equation for t to find Firm 2’s best-response function:

t = b(s) = α− c
2β

− 1
2
s.

Finally, we must maximize π1(s, b(s)), the payoff that Firm 1 can expect

from each choice s, assuming that Firm 2 uses its best-response strategy. We

have

π1(s, b(s)) = π1

(
s,
α− c

2β
− 1

2
s
)
=
(
α− β

(
α− c

2β
− 1

2
s
)
− c

)
s − βs2

= α− c
2

s − β
2
s2.

Again this function has a graph that is an upside-down parabola, so we can

find where it is maximum by taking the derivative and setting it equal to 0:

d
ds
π1(s, b(s)) = α− c

2
− βs = 0 ⇒ s = α− c

2β
.

Thus π1(s, b(s)) is maximum at s∗ = (α − c)/2β. Given this choice of pro-

duction level for Firm 1, Firm 2 chooses the production level

t∗ = b(s∗) = α− c
4β

.

Since we assumed α > c, the production levels s∗ and t∗ are positive, which

makes sense. The price is

p∗ = α− β(s∗ + t∗) = α− β
(
α− c

2β
+ α− c

4β

)
= 1

4
α+ 3

4
c = c + 1

4
(α− c).
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Since α > c, this price is greater than the cost of production c, which also

makes sense.

The profits are

π1(s∗, t∗) = (α− c)2
8β

, π2(s∗, t∗) = (α− c)2
16β

.

As in our numerical example, Firm 1 has twice the level of production and

twice the profit of Firm 2.

1.11.2 Second model. As in Subsection 1.10.2, we now complicate the

model to prevent the levels of production s and t and the price p from tak-

ing negative values. We replace assumption (1) in Subsection 1.11.1 with the

following:

(1′) Price falls linearly with total production until it reaches 0; for higher total

production, the price remains 0. In other words, there are positive num-

bers α and β such that the formula for the price is

p =
⎧⎨
⎩α− β(s + t) if s + t < α

β ,

0 if s + t � α
β .

Assumptions (2) and (3) remain unchanged. We replace assumption (4) with:

(4′) The production levels s and t must be nonnegative: 0 � s < ∞ and 0 �
t <∞.

We again ask the question, what will be the production level and profit of

each firm?

The payoffs in the general case are

π1(s, t) = ps − c1(s) =
⎧⎨
⎩
(
α− β(s + t))s − cs if 0 � s + t < α

β ,

−cs if s + t � α
β ,

(1.6)

π2(s, t) = pt − c2(t) =
⎧⎨
⎩
(
α− β(s + t))t − ct if 0 � s + t < α

β ,

−ct if s + t � α
β .

(1.7)

As usual we begin our analysis by finding Firm 2’s best response t = b(s).
If Firm 1 produces so much that by itself it drives the price down to the

unit cost of production c or lower, then Firm 2 canot make a positive profit.

In this case Firm 2’s best response is to produce nothing. Firm 1 by itself

drives the price p down to c when α − βs = c, that is, when s = (α − c)/β.

We conclude that if s � (α− c)/β, Firm 2’s best response is 0.
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In contrast, if Firm 1 produces s < (α − c)/β, it leaves the price above c
and gives Firm 2 an opportunity to make a positive profit. In this case Firm

2’s profit is given by

π2(s, t) =
⎧⎨
⎩
(
α− β(s + t))t − ct = (α− βs − c)t − βt2 if 0 � t < α

β − s,
−ct if t � α

β − s.

See Figure 1.12. From the figure, the functionπ2(s, t)with s fixed is maximum

where (∂π2/∂t)(s, t) = 0, which occurs at

t = α− c
2β

− 1
2
s.

Thus Firm 2’s best-response function is:

b(s) =

⎧⎪⎪⎨
⎪⎪⎩
α− c

2β
− 1

2
s if 0 � s < α− c

β
,

0 if s � α− c
β

.

t
1
2

s – s– s
α – c α – c
2β β β

– α

Figure 1.12. Graph of π2(s, t) for fixed s < (α− c)/β.

We now calculate π1(s, b(s)), the payoff that Firm 1 can expect from each

choice s, assuming that Firm 2 uses its best-response strategy. Notice that

for 0 � s < (α− c)/β, we have

s + b(s) = s + α− c
2β

− 1
2
s = α− c

2β
+ 1

2
s <

α− c
2β

+ α− c
2β

= α− c
β

<
α
β
.
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Therefore, for 0 � s < (α − c)/β, we use the first line of formula (1.6) to

calculate π1(s, b(s)):

π1(s, b(s)) = π1

(
s,
α− c

2β
− 1

2
s
)
=
(
α− β

(
s + α− c

2β
− 1

2
s
))

s − cs

= α− c
2

s − β
2
s2.

Firm 1 will not choose an s � (α − c)/β, since, as we have seen, that would

force the price down to c or lower. Therefore we will not bother to calculate

π1(s, b(s)) for s � (α− c)/β.

The function π1(s, b(s)) on the interval 0 � s � (α− c)/β is maximum at

s∗ = (α− c)/2β, where the derivative of 1
2(α− c)s −

1
2βs

2 is 0, just as in our

first model. The value of t∗ = b(s∗) is also the same, as are the price and

profits.

1.12 Backward induction for finite horizon games

Backward induction as defined in Section 1.4 does not apply to any game that

is not finite. However, a variant of backward induction can be used on any

finite horizon game with complete information. It is actually this variant that

we have been using since Section 1.9.

Let us describe this variant of backward induction in general. The idea is

that, in a game that is not finite, we cannot remove nodes one by one, because

we will never finish. Instead we must remove big collections of nodes at each

step.

(1) Let k � 1 be the length of the longest path in the game. (This number

is finite, since we are dealing with a finite horizon game.) Consider the

collection C of all nodes c such that every move that starts at c is the last

move in a path of length k. Each such move has an end that is terminal.

(2) For each node c in C, identify the player i(c) who is to choose at node c.

Among all the moves available to her at that node, find the move m(c)
whose end gives the greatest payoff to Player i(c). We assume that this

move is unique.

(3) Assume that at each node c in C, Player i(c) will choose the move m(c).
Record this choice as part of Player i(c)’s strategy.

(4) Delete from the game tree all moves that start at one of the nodes in C.

The nodes c in C are now terminal nodes. Assign to each node c in C the

payoffs that were previously assigned to the node at the end of the move

m(c).
(5) In the new game tree, the length of the longest path is now k−1. If k−1 = 0,

stop. Otherwise, return to step 1.
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1.13 Critique of backward induction

The basic insight of backward induction is that you should think ahead to how

your opponent, acting in his own interest, is liable to react to what you do, and

act accordingly to maximize your chance of success. This idea clearly makes

sense even in situations that are not as completely defined as the games

we analyze. For example, the mixed martial arts trainer Greg Jackson has

analyzed countless fight videos and used them to make game trees showing

what moves lead to what responses. From these game trees he can figure

out which moves in various situations will increase the likelihood of a win.

As another example, consider the game of chess. Because of the rule that

a draw results when a position is repeated three times, the game tree for

chess is finite. Unfortunately, it has 10123 nodes and hence is far too big for

a computer to analyze. (The number of atoms in the observable universe is

estimated to be around 1080.) Thus computer chess programs cannot use

backward induction from the terminal nodes. Instead they investigate paths

through the game tree from a given position to a given depth and assign

values to the end nodes based on estimates of the probability of winning

from that position. They then use backward induction from those nodes.

Despite successes like these, it is not clear that backward induction is

always a good guide to choosing a move.

Let’s first consider Tony’s Accident. To justify using backward induction

at all, Tony has to assume that Vic will always choose his own best move in

response to Tony’s move. In addition, Tony should know Vic’s payoffs, or at

least he should know the order in which Vic values the different outcomes, so

that he will know which of Vic’s available moves Vic will choose in response

to Tony’s move. If Tony does not know the order in which Vic values the

outcomes, he can still use backward induction based on his belief about Vic’s

order. This is what Tony did. The success of the procedure then depends on

the correctness of Tony’s beliefs about Vic.

In Chapter 6 we consider a game, the Samaritan’s Dilemma, that raises an

additional issue. In that game, Daughter wants to decide how much to save

from her earnings this year toward her college expenses next year. Father will

then observe how much she saves and chip in some of his own earnings. To

figure out how much to give, he will balance his desire to keep his earnings

to spend on himself against his desire to help his daughter. To justify her

use of backward induction in this situation, Daughter has to assume that

she knows Father’s desires well enough to figure out his best response, from

his own point of view, to each of her possible saving levels. She also has to

assume that Father will actually make his best response. Here this second

assumption becomes hard to justify. To justify it, she needs to assume both

that Father is able to figure out his best response, and that he is willing to do
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so. Recall from our discussion of the Centipede Game that it may not even be

rational for Father to use a complicated rational analysis to figure out what

to do.

Finally, let’s consider the Centipede Game. Would a rational player in

the Centipede Game (Section 1.8) really defect at his first opportunity, as

is required by backward induction? We examine this question under the

assumption that the payoffs in the Centipede Game are exactly as given in

Figure 1.10, that both players know these payoffs, and that both players are

rational. The assumption that players know the payoffs and are rational moti-

vates backward induction. The issue now is whether the assumption that

players know the payoffs and are rational requires them to use the moves

recommended by backward induction.

By a rational player, we mean one whose preferences are consistent enough

to be represented by a payoff function; who attempts to discern the facts

about the world; who forms beliefs about the world consistent with the facts

he has discerned; and who acts on the basis of his beliefs to best achieve his

preferred outcomes.

With this “definition” of a rational player in mind, let us consider the first

few steps of backward induction in the Centipede Game.

1. If the node labeled (100,99) in Figure 1.10 is reached, Jeff will see that

if he defects, his payoff is 101, and if he cooperates, his payoff is 100. Since

Jeff is rational, he defects.

2. If the node labeled (99,99) in Figure 1.10 is reached, Mutt will see that

if he defects, his payoff is 101. If he cooperates, the node labeled (100,99) is

reached. If Mutt believes that Jeff is rational, then he sees that Jeff will defect

at that node, leaving Mutt with a payoff of only 98. Since Mutt is rational, he

defects.

3. If the node labeled (99,98) in Figure 1.10 is reached, Jeff will see that

if he defects, his payoff is 100. If he cooperates, the node labeled (99,99)
is reached. If Jeff believes that Mutt believes that Jeff is rational, and if

Jeff believes that Mutt is rational, then Jeff concludes that Mutt will act as

described in step 2. This would leave Jeff with a payoff of 97. Since Jeff is

rational, he defects.

4. You probably see that this is getting complicated fast, but let’s do one

more step. If the node labeled (98,98) (not shown in Figure 1.10) is reached,

Mutt will see that if he defects, his payoff is 100. If he cooperates, the node

labeled (99,98) is reached. If Mutt believes that Jeff believes that Mutt believes

that Jeff is rational, and if Mutt believes that Jeff believes that Mutt is rational,

and if Mutt believes that Jeff is rational, then Mutt concludes that Jeff will act

as described in step 3. This would leave Mutt with a payoff of 97. Since Mutt

is rational, he defects.
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You can see that by the time we get back to the root node in Figure 1.10, at

step 196 in this process, Mutt must hold many complicated beliefs to justify

using backward induction to choose his move! (At the kth step in this process,

the player who chooses must hold k − 1 separate beliefs about the other

player, the most complicated of which requires k−1 uses of word “believes”

to state.) The question is whether a rational player, “who attempts to discern

the facts about the world, who forms beliefs about the world consistent with

the facts he has discerned,” is required to hold such complicated beliefs.

Now suppose that Mutt decides, for whatever reason, to cooperate at his

first turn. Then Jeff can conclude that Mutt did not hold the complicated

beliefs that would induce him to defect at his first turn. If Jeff believes that

at Mutt’s second turn, he will hold the (slightly less complicated) beliefs that

would induce him to defect then, then Jeff should defect at his own first turn.

Clearly, rationality does not require Jeff to believe this. Thus a rational Jeff

may well decide to cooperate at his first turn.

In this way, rational players may well cooperate through many stages of

the Centipede Game. More generally, rationality does not require players to

follow the strategy dictated by a long backward induction.

Backward induction is required by an assumption called Common Know-

ledge of Rationality: the players are rational; each player believes that the

other players are rational; each player believes that the other players believe

that the other players are rational; and so on, for as many steps as are required

by the game under discussion. In any particular situation, this assumption

may hold, but the assumption that players are rational does not by itself

imply Common Knowledge of Rationality.

We shall return to the question of players’ beliefs in Section 8.2.

1.14 Problems

1.14.1 Congress vs. the President. Congress is working on a homeland

security spending bill. Congress wants the bill to include $10 million for each

member’s district for “important projects.” The President wants the bill to

include $100 million to upgrade her airplane, Air Force One, to the latest

model, Air Force One Extreme. The President can sign or veto any bill that

Congress passes.

Congress’s payoffs are 1 if it passes a bill (voters like to see Congress

take action), 2 if the President signs a bill that contains money for important

projects, and−1 if the President signs a bill that contains money for Air Force

One Extreme. Payoffs are added; for example, if the President signs a bill that

contains money for both, Congress’s total payoff is 1+ 2+ (−1) = 2.
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The President’s payoffs are −1 if she signs a bill that contains money for

important projects, and 2 if she signs a bill that contains money for Air Force

One Extreme. Her payoffs are also added.

The game tree in Figure 1.13 illustrates the situation. In the tree, C =
Congress, P = President; n = no bill passed, i = important projects passed,

a = Air Force One Extreme passed, b = both passed; s = President signs the

bill, v = President vetoes the bill. The first payoff is Congress’s, the second

is the President’s.

C

(0, 0)
P P P

(1, 0)(3, –1) (0, 2) (1, 0) (2, 1) (1, 0)

n

i a

b

s s sv v v

Figure 1.13. Congress vs. the President.

(1) Use backward induction to predict what will happen.

(2) Suppose the Constitution were changed so that the President could veto

parts of bills she doesn’t like but still sign the rest. Draw the new tree and

use backward induction to predict what will happen. (The only change

in the game is that if Congress passes a bill containing both important

projects and Air Force One Extreme, the President will have four choices:

sign, veto, sign important projects but veto Air Force One Extreme, sign

Air Force One Extreme but veto important projects.)

1.14.2 Battle of the Chain Stores. Sub Station has the only sub restau-

rant in Town A and the only sub restaurant in Town B. The sub market in

each town yields a profit of $100K per year. Rival Sub Machine is considering

opening a restaurant in Town A in year 1. If it does, the two stores will split

the profit from the sub market there. However, Sub Machine will have to pay

setup costs for its new store. These costs are $25K in a store’s first year.

Sub Station fears that if Sub Machine is able to make a profit in Town A,

it will open a store in Town B the following year. Sub Station is considering

a price war: if Sub Machine opens a store in either town, it will lower prices

in that town, forcing Sub Machine to do the same, to the point where profits

from the sub market in that town drop to 0.
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The game tree in Figure 1.14 is one way to represent the situation. It takes

into account net profits from Towns A and B in years 1 and 2, and it assumes

that if Sub Machine loses money in A, it will not open a store in B.

SM

SS

don’t open store in A

price war in A no price war in A

price war in B no price war in B

open store in A

don’t open store in B open store in B

(0, 400K)

(–25K, 200K)
SM

SS

(50K, 200K)

(75K, 300K)

(100K, 250K)

Figure 1.14. SM is Sub Machine, SS is Sub Station. Sub Machine’s
profits are listed first, Sub Station’s profits are second.

The entry (100K,250K) in the game tree comes about as follows. If there

are no price wars, Sub Machine makes net profits of $25K in Town A in year

1, $50K in Town A in year 2, and $25K in Town B in year 2, for a total of

$100K. Sub Station makes profits of $50K in Town A in year 1, $50K in Town

A in year 2, $100K in Town B in year 1, and $50K in Town B in year 2, for a

total of $250K.

(1) Explain the entry (50K,200K) in the game tree.

(2) Use backward induction to figure out what Sub Machine and Sub Station

should do.

(3) How might Sub Station try to obtain a better outcome by using a threat?

1.14.3 Kidnapping. A criminal kidnaps a child and demands a ransom

r > 0. The value to the parents of the child’s return is v > 0. If the kidnapper

frees the child, he incurs a cost f > 0. If he kills the child, he incurs a cost

k > 0. These costs include the feelings of the kidnapper in each case, the

likelihood of being caught in each case, the severity of punishment in each

case, and whatever else is relevant. We assume v > r . The parents choose
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first whether to pay the ransom or not, then the kidnapper decides whether

to free the child or kill the child. The game tree is shown in Figure 1.15.

Parents

Kidnapper Kidnapper

pay don’t pay

free kill free kill

(v – r, r – f ) (–r, r – k) (v, –f ) (0, k)

Figure 1.15. Kidnapping. The parents’ payoff is given first.

(1) Explain the payoffs.

(2) Suppose k > f . Use backward induction to show that the parents should

not pay the ransom.

(3) Suppose f > k. Use backward induction to show that the parents should

not pay the ransom.

(4) Suppose k > f . Find a threat the kidnapper can make to try to get the

parents to pay the ransom.

(5) Suppose f > k. Find a promise the kidnapper can make to try to get the

parents to pay the ransom.

(6) Suppose f > k, and the parents will incur a guilt cost g if they don’t pay

the ransom and the child is killed. How large must g be to get the parents

to pay the ransom?

1.14.4 The White House Tapes. On March 1, 1974, a grand jury indicted

seven former aides to U.S. President Richard Nixon for attempting to cover

up White House involvement in a burglary of Democratic National Com-

mittee headquarters at the Watergate complex in Washington. On April 18,

the judge in the case, John Sirica, issued a subpoena for tapes of President

Nixon’s conversations with the defendants. The President’s attorney, James

St. Clair, attempted to delay responding to the subpoena. The prosecutor,

Leon Jaworski, then used an unusual procedure to appeal directly to the

Supreme Court and request that the Court order the President to supply the

tapes. The Court heard oral arguments on July 8, and the justices met on

July 9 to decide the case.

One justice, William Rehnquist, withdrew from the case, probably because

he had worked in President Nixon’s Justice Department. Of the remaining

eight justices, six quickly agreed to uphold the prosecutor’s request. Two
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justices, Warren Burger and Harry Blackmun, were reluctant to uphold the

prosecutor’s request, because they thought his direct appeal to the Supreme

Court was improper.

Also on July 9, President Nixon’s attorney said that the President had “not

yet decided” whether he would supply the tapes if the Supreme Court ordered

him to. This statement was probably intended to pressure the Court into

backing down. At minimum, it was probably intended to encourage some

justices to vote against upholding the prosecutor’s request. If the vote was

split, the President could argue that it was not sufficiently definitive for a

matter of this magnitude. Jaworski believed that in the event of a split vote,

the President would “go on television and tell the people that the presidency

should not be impaired by a divided Court.”

We model this situation as a two-player game. Player 1 is Justices Burger

and Blackmun, whom we assume will vote together; we therefore treat them

as one player. Player 2 is President Nixon.

First, Justices Burger and Blackmun decide how to vote. If they vote to

uphold the prosecutor’s request, the result is an 8-0 Supreme Court decision

in favor of the prosecutor. If they vote to reject the prosecutor’s request, the

result is a 6-2 Supreme Court decision in favor of the prosecutor.

After the Supreme Court has rendered its decision, President Nixon decides

whether to comply by supplying the tapes or to defy the decision. President

Nixon’s preferences are as follows:

• Best outcome (payoff 4): 6-2 decision, President defies the decision.

• Second-best outcome (payoff 3): 6-2 decision, President supplies the tapes.

• Third-best outcome (payoff 2): 8-0 decision, President supplies the tapes.

• Worst outcome (payoff 1): 8-0 decision, President defies the decision.

Explanation: The President’s best outcome is a divided decision that he can

defy while claiming the decision is not really definitive. His worst outcome is

an 8-0 decision that he then defies; this would probably result in immediate

impeachment. As for the two intermediate outcomes, the President is better

off with the weaker vote, which should give him some wiggle room.

Justices Burger and Blackmun’s preferences are as follows:

• Best outcome (payoff 4): 6-2 decision, President supplies the tapes.

• Second-best outcome (payoff 3): 8-0 decision, President supplies the tapes.

• Third-best outcome (payoff 2): 8-0 decision, President defies the decision.

• Worst outcome (payoff 1): 6-2 decision, President defies the decision.

Explanation: In their best outcome, Burger and Blackmun get to vote their

honest legal opinion that the prosecutor’s direct appeal to the Court was

wrong, but a Constitutional crisis is averted, because the President complies
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anyway. In their second-best outcome, they vote dishonestly, but they suc-

ceed in averting a major Constitutional crisis. In their third-best outcome,

the crisis occurs, but because of the strong 8-0 vote, it will probably quickly

end. In the worst outcome, the crisis occurs, and because of the weak vote,

it may drag out. In addition, in the last outcome, the President may succeed

in establishing the principle that a 6-2 Court decision need not be followed,

which no member of the Court wants.

(1) Draw a game tree and use backward induction to predict what happened.

(2) Can you think of a plausible way that President Nixon might have gotten

a better outcome?

(What actually happened: the Court ruled 8-0 in favor of the prosecutor on

July 24. On July 30, President Nixon surrendered the tapes. In early August, a

previously unknown tape recorded a few days after the break-in was released.

It documented President Nixon and his aide Robert Haldeman formulating a

plan to block investigations by having the CIA claim to the FBI (falsely) that

national security was involved. On August 9, President Nixon resigned.)

1.14.5 Three Pirates. Three pirates must divide 100 gold doubloons.

The doubloons cannot be cut into pieces. Pirate A is the strongest, followed

by Pirate B, followed by Pirate C. Because of ancient pirate tradition, the coins

are divided in the following manner. First Pirate A proposes a division of the

coins. The three pirates then vote on whether to accept the proposed division.

If the proposal gets a majority vote, it is accepted, and the game is over. If

the proposal fails to get a majority vote, Pirate A is executed.

It is then Pirate B’s turn to propose a division of the coins between the

two remaining pirates. The same rules apply, with one exception: if the vote

is a tie (which can happen this time, because the number of pirates is now

even), Pirate B, being the strongest remaining pirate, gets an additional vote

to break the tie.

Use backward induction to figure out what Pirate A should propose. You

don’t have to draw a game tree if you don’t want to, but you do have to explain

your thinking so that your instructor can follow it.

1.14.6 Grocery Store and Gas Station 1. In a certain town, there are two

stores, a grocery store and a gas station. The grocery store charges p1 dollars

per pound for food, and the gas station charges p2 dollars per gallon for gas.

The grocery store sells q1 pounds of food per week, and the gas station sells

q2 gallons of gas per week. The quantities q1 and q2 are related to the prices
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p1 and p2 as follows:

q1 = 10− 2p1 − p2,

q2 = 10− p1 − 2p2.

Thus, if the price of food or gas rises, less of both is sold.

Let π1 be the revenue of the grocery store and π2 be the revenue of the

gas station. Both depend on the two stores’ choices of p1 and p2:

π1(p1, p2) = q1p1 = (10− 2p1 − p2)p1 = 10p1 − 2p2
1 − p1p2,

π2(p1, p2) = q2p2 = (10− p1 − 2p2)p2 = 10p2 − p1p2 − 2p2
2.

We interpret this as a game with two players, the grocery store (Player 1)

and the gas station (Player 2). The payoff to each player is its revenue.

Allowp1 andp2 to be any real numbers, even negative numbers or numbers

that produce negative values for q1 and q2.

Suppose the grocery store chooses its price p1 first, and then the gas sta-

tion, knowing p1, chooses its price p2.

(1) If the grocery store uses backward induction to choose p1, what price will

it choose?

(2) What will be the corresponding p2, and what will be the revenue of each

store?

Partial answer to help keep you on the right track: p1 = 21
7 .

1.14.7 Grocery Store and Gas Station 2. We now change the problem

a little. First we change the formulas for q1 and q2 to the following more

reasonable formulas, which say that when prices get too high, the quantities

sold become 0, not negative numbers:

q1 =
⎧⎨
⎩10− 2p1 − p2 if 2p1 + p2 < 10,

0 if 2p1 + p2 � 10,

q2 =
⎧⎨
⎩10− p1 − 2p2 if p1 + 2p2 < 10,

0 if p1 + 2p2 � 10.

Next we make some reasonable restrictions on the prices. First we assume

p1 � 0 and p2 � 0.

Now we note that if p1 � 0 and p2 > 5, then q2 becomes 0. The gas station

wouldn’t want this, so we assume

p2 � 5.
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Finally, we note that if p2 � 0 and p1 > 5, then q1 becomes 0. The grocery

store wouldn’t want this, so we assume

p1 � 5.

The formulas for π1 and π2 are now a little different, because the formulas

for q1 and q2 have changed. The payoffs are now only defined for 0 � p1 � 5

and 0 � p2 � 5, and are given by

π1(p1, p2) = q1p1 =
⎧⎨
⎩10p1 − 2p2

1 − p1p2 if 2p1 + p2 < 10,

0 if 2p1 + p2 � 10,

π2(p1, p2) = q2p2 =
⎧⎨
⎩10p2 − p1p2 − 2p2

2 if p1 + 2p2 < 10,

0 if p1 + 2p2 � 10.

We still assume that the grocery store chooses its price p1 first, and then

the gas station, knowing p1, chooses its price p2.

(1) Explain the formulas above for the payoffs.

(2) For a fixed p1 between 0 and 5, graph the function π2(p1, p2), which is

a function of p2 defined for 0 � p2 � 5. Answer: should be partly an

upside-down parabola and partly a horizontal line. Make sure you give a

formula for the point at which the graph changes from one to the other.

(3) By referring to the graph you just drew and using calculus, find the gas

station’s best-response function p2 = b(p1), which should be defined for

0 � p1 � 5. Answer: b(p1) = (10− p1)/4.

(4) You are now ready to find p1 by backward induction. From your formula

for π1 you should be able to see that

π1(p1, b(p1)) =
⎧⎨
⎩
(
10− 2p1 − b(p1)

)
p1 if 2p1 + b(p1) < 10,

0 if 2p1 + b(p1) � 10.

Use the formula for b(p1) from part (3) to show that 2p1 + b(p1) < 10 if

0 � p1 < 42
7 , and 2p1 + b(p1) � 10 if 42

7 � p1 � 5.

(5) Graph the function π1(p1, b(p1)), 0 � p1 � 5. (Again, it is partly an

upside-down parabola and partly a horizontal line.)

(6) By referring to the graph you just drew and using calculus, find where

π1(p1, b(p1)) is maximum.

1.14.8 Tax Rate. Government chooses a tax rate x, 0 < x < 1. Citizens

then choose a level of effort y to devote to making money. The resulting level

of economic activity a, in trillions of dollars, is

a = 4y − 4xy −y2.
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Explanation: The term 4y expresses the idea that economic activity should

be proportional to effort. There are two correction terms. The term −4xy
expresses the idea that when the tax rate is high, much effort goes into avoid-

ing taxes, not into economic activity. The term −y2 expresses the idea that

too much effort is counterproductive.

The government’s payoff is the taxes it collects, computed as tax rate x
times level of economic activity a:

π1(x,y) = xa = x(4y − 4xy −y2).

The citizens’ payoff is the part of economic activity that they keep after taxes:

π2(x,y) = a− xa = (1− x)a = (1− x)(4y − 4xy −y2).

We regard this as a two-player game. Player 1 is the government. Player 2 is

the citizens. Player 1 chooses the tax rate x, then Player 2 observes x and

chooses y . The payoffs are given above.

Use backward induction to find the tax rate x that maximizes the govern-

ment’s payoff.

1.14.9 Continuous Ultimatum Game with Inequality Aversion. Play-

ers 1 and 2 must divide some Good Stuff. Player 1 offers Player 2 a fraction

y , 0 � y � 1, of the Good Stuff. If Player 2 accepts the offer, she gets the

fraction y of Good Stuff, and Player 1 gets the remaining fraction x = 1−y .

If Player 2 rejects the offer, both players get nothing.

In this game, Player 1 has an interval of possible strategies. We can describe

this interval as 0 � x � 1, where x is the fraction Player 1 keeps, or as

0 � y � 1, where y is the fraction Player 1 offers to Player 2. In contrast,

Player 2’s strategy is a plan, for each y that she might be offered, whether to

accept or reject.

The players’ payoffs are partly objective (their fraction of the Good Stuff)

and partly subjective. Both players are inequality averse: they don’t like an

unequal division. However, each player feels that an inequality favoring the

other player is worse than inequality favoring herself. Their payoffs are as

follows:

u1(x,y) = x −
⎧⎨
⎩α1(y − x) if y � x,
β1(x −y) if y < x,

u2(x,y) = y −
⎧⎨
⎩α2(x −y) if x � y,
β2(y − x) if x < y,

with 0 < β1 < α1 and 0 < β2 < α2. Thus Player 1’s payoff is the fraction x
of Good Stuff that she gets, minus a correction for inequality. The correction
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is proportional to the difference between the two allocations. If Player 2 gets

more (y > x), the difference is multiplied by the bigger numberα1; if Player 2

gets less (y < x), the difference is multiplied by the smaller number β1.

Player 2’s payoff function is similar.

If Player 1’s offer is rejected, both players receive 0 payoff.

We assume that Player 2 will accept offers that make her payoff positive

or zero. Player 1 wants to make an offer that (a) Player 2 will accept, and (b)

that leaves Player 1 with the largest possible payoff.

Since y = 1−x and x = 1−y , we simplify the payoff functions as follows:

u1(x) = x −
⎧⎨
⎩α1(1− 2x) if x � 1

2 ,

β1(2x − 1) if x > 1
2 ,

u2(y) = y −
⎧⎨
⎩α2(1− 2y) if y � 1

2 ,

β2(2y − 1) if y > 1
2 .

(1) Graph Player 1’s payoff function on the interval 0 � x � 1 assuming

β1 > 1
2 . The graph consists of two line segments that meet at the point(1

2 ,
1
2

)
. Your graph should clearly indicate the points with x-coordinates

0 and 1.

(2) Explain briefly: If β1 > 1
2 , then Player 1 offers Player 2 half of the Good

Stuff, and Player 2 accepts.

(3) Graph Player 1’s payoff function on the interval 0 � x � 1 assuming

β1 < 1
2 .

(4) Graph Player 2’s payoff function on the interval 0 � y � 1 assuming

β2 < 1. Use your graph to explain the following statement: When β2 � 1,

Player 2 will accept any offer y � y∗ with y∗ = α2/(1+ 2α2).
(5) If β1 < 1

2 and β2 � 1, what fraction of the Good Stuff should Player 1 offer

to Player 2?

(6) If β1 < 1
2 and β2 > 1, what fraction of the Good Stuff should Player 1 offer

to Player 2?
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