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CHAPTER ONE

Newtonian Physics: Geometric Viewpoint

Geometry postulates the solution of these problems from mechanics and teaches the use of the
problems thus solved. And geometry can boast that with so few principles obtained from other fields,
it can do so much.

ISAAC NEWTON, 1687

1.1 Introduction

111 The Geometric Viewpoint on the Laws of Physics

In this book, we adopt a different viewpoint on the laws of physics than that in many
elementary and intermediate texts. In most textbooks, physical laws are expressed in
terms of quantities (locations in space, momenta of particles, etc.) that are measured in
some coordinate system. For example, Newtonian vectorial quantities are expressed as
triplets of numbers [e.g., p = (py, py, p;) = (1,9, —4)], representing the components
of a particle’s momentum on the axes of a Cartesian coordinate system; and tensors
are expressed as arrays of numbers (e.g.,

Ixx Ixy Ixz
I=| 1, I,, I, (1.1)
sz Izy Izz

for the moment of inertia tensor).

By contrast, in this book we express all physical quantities and laws in geometric
forms, i.e., in forms that are independent of any coordinate system or basis vectors.
For example, a particle’s velocity v and the electric and magnetic fields E and B that
it encounters will be vectors described as arrows that live in the 3-dimensional, flat
Euclidean space of everyday experience.! They require no coordinate system or basis
vectors for their existence or description—though often coordinates will be useful. In
other words, v represents the vector itself and is not just shorthand for an ordered list
of numbers.

1. Thisinterpretation of a vector is close to the ideas of Newton and Faraday. Lagrange, Hamilton, Maxwell,
and many others saw vectors in terms of Cartesian components. The vector notation was streamlined by
Gibbs, Heaviside, and others, but the underlying coordinate system was still implicit, and v was usually
regarded as shorthand for (v,, vy, V).
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BOX1.1. READERS' GUIDE

* This chapter is a foundation for almost all of this book.

* Many readers already know the material in this chapter, but from
a viewpoint different from our geometric one. Such readers will be
able to understand almost all of Parts II-VI of this book without
learning our viewpoint. Nevertheless, that geometric viewpoint has
such power that we encourage them to learn it by browsing this
chapter and focusing especially on Secs. 1.1.1, 1.2, 1.3, 1.5, 1.7, and
1.8.

* The stress tensor, introduced and discussed in Sec. 1.9, plays an
important role in kinetic theory (Chap. 3) and a crucial role in
elasticity (Part IV), fluid dynamics (Part V), and plasma physics
(Part VI).

* Theintegral and differential conservation laws derived and discussed
in Secs. 1.8 and 1.9 play major roles throughout this book.

o The Box labeled EZ1 is advanced material (Track Two) that can be
skipped in a time-limited course or on a first reading of this book.

We insist that the Newtonian laws of physics all obey a Geometric Principle: they are
all geometric relationships among geometric objects (primarily scalars, vectors, and
tensors), expressible without the aid of any coordinates or bases. An example is the
Lorentz forcelawmdv/dt = q(E + v x B)—a (coordinate-free) relationship between
the geometric (coordinate-independent) vectors v, E, and B and the particle’s scalar
mass m and charge g. As another example, a body’s moment of inertia tensor I can
be viewed as a vector-valued linear function of vectors (a coordinate-independent,
basis-independent geometric object). Insert into the tensor I the body’s angular ve-
locity vector 2, and you get out the body’s angular momentum vector: ] = 1(2). No
coordinates or basis vectors are needed for this law of physics, nor is any description
of as a matrix-like entity with components /;; required. Components are secondary;
they only exist after one has chosen a set of basis vectors. Components (we claim)
are an impediment to a clear and deep understanding of the laws of classical physics.
The coordinate-free, component-free description is deeper, and—once one becomes
accustomed to it—much more clear and understandable.?

2. This philosophy is also appropriate for quantum mechanics (see Box 1.2) and, especially, quantum field
theory, where it is the invariance of the description under gauge and other symmetry operations that
is the powerful principle. However, its implementation there is less direct, simply because the spaces in
which these symmetries lie are more abstract and harder to conceptualize.
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By adopting this geometric viewpoint, we gain great conceptual power and often
also computational power. For example, when we ignore experiment and simply ask
what forms the laws of physics can possibly take (what forms are allowed by the
requirement that the laws be geometric), we shall find that there is remarkably little
freedom. Coordinate independence and basis independence strongly constrain the
laws of physics.?

This power, together with the elegance of the geometric formulation, suggests that
in some deep sense, Natures physical laws are geometric and have nothing whatsoever
to do with coordinates or components or vector bases.

11.2 Purposes of This Chapter

The principal purpose of this foundational chapter is to teach the reader this geometric
viewpoint.

The mathematical foundation for our geometric viewpoint is differential geometry
(also called “tensor analysis” by physicists). Differential geometry can be thought of as
an extension of the vector analysis with which all readers should be familiar. A second
purpose of this chapter is to develop key parts of differential geometry in a simple form
well adapted to Newtonian physics.

11.3 Overview of This Chapter

In this chapter, we lay the geometric foundations for the Newtonian laws of physics in
flat Euclidean space. We begin in Sec. 1.2 by introducing some foundational geometric
concepts: points, scalars, vectors, inner products of vectors, and the distance between
points. Then in Sec. 1.3, we introduce the concept of a tensor as a linear function
of vectors, and we develop a number of geometric tools: the tools of coordinate-free
tensor algebra. In Sec. 1.4, we illustrate our tensor-algebra tools by using them to
describe—without any coordinate system—the kinematics of a charged point particle
that moves through Euclidean space, driven by electric and magnetic forces.

In Sec. 1.5, we introduce, for the first time, Cartesian coordinate systems and their
basis vectors, and also the components of vectors and tensors on those basis vectors;
and we explore how to express geometric relationships in the language of components.
In Sec. 1.6, we deduce how the components of vectors and tensors transform when
one rotates the chosen Cartesian coordinate axes. (These are the transformation laws
that most physics textbooks use to define vectors and tensors.)

In Sec. 1.7, we introduce directional derivatives and gradients of vectors and ten-
sors, thereby moving from tensor algebra to true differential geometry (in Euclidean
space). We also introduce the Levi-Civita tensor and use it to define curls and cross

3. Examples are the equation of elastodynamics (12.4b) and the Navier-Stokes equation of fluid mechanics
(13.69), which are both dictated by momentum conservation plus the form of the stress tensor [Egs.
(11.18), (13.43), and (13.68)]—forms that are dictated by the irreducible tensorial parts (Box 11.2) of
the strain and rate of strain.
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products, and we learn how to use index gymnastics to derive, quickly, formulas for
multiple cross products. In Sec. 1.8, we use the Levi-Civita tensor to define vectorial
areas, scalar volumes, and integration over surfaces. These concepts then enable us to
formulate, in geometric, coordinate-free ways, integral and differential conservation
laws. In Sec. 1.9, we discuss, in particular, the law of momentum conservation, formu-
lating it in a geometric way with the aid of a geometric object called the stress tensor.
As important examples, we use this geometric conservation law to derive and discuss
the equations of Newtonian fluid dynamics, and the interaction between a charged
medium and an electromagnetic field. We conclude in Sec. 1.10 with some concepts
from special relativity that we shall need in our discussions of Newtonian physics.

1.2 Foundational Concepts

In this section, we sketch the foundational concepts of Newtonian physics without
using any coordinate system or basis vectors. This is the geometric viewpoint that we
advocate.

The arena for the Newtonian laws of physics is a spacetime composed of the
familiar 3-dimensional Euclidean space of everyday experience (which we call 3-
space) and a universal time #. We denote points (locations) in 3-space by capital script
letters, such as P and Q. These points and the 3-space in which they live require no
coordinates for their definition.

A scalar is a single number. We are most interested in scalars that directly represent
physical quantities (e.g., temperature 7). As such, they are real numbers, and when
they are functions of location P in space [e.g., T (P)], we call them scalar fields.
However, sometimes we will work with complex numbers—most importantly in
quantum mechanics, but also in various Fourier representations of classical physics.

A vector in Euclidean 3-space can be thought of as a straight arrow (or more
formally a directed line segment) that reaches from one point, P, to another, Q (e.g.,
the arrow Ax in Fig. 1.1a). Equivalently, Ax can be thought of as a direction at P and
a number, the vector’s length. Sometimes we shall select one point O in 3-space as an
“origin” and identify all other points, say, Q and P, by their vectorial separations xo
and xp from that origin.

The Euclidean distance Ao between two points P and Q in 3-space can be mea-
sured with a ruler and so, of course, requires no coordinate system for its definition.
(If one does have a Cartesian coordinate system, then Ao can be computed by the Py-
thagorean formula, a precursor to the invariant interval of flat spacetime; Sec. 2.2.3.)
This distance Ao is also the length | Ax| of the vector Ax that reaches from P to O,
and the square of that length is denoted

|Ax]? = (Ax)? = (Ao)>. 12)

Of particular importance is the case when P and Q are neighboring points and
Ax is a differential (infinitesimal) quantity dx. This infinitesimal displacement is a
more fundamental physical quantity than the finite Ax. To create a finite vector out
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() (b)

FIGURE 11 (a) A Euclidean 3-space diagram depicting two points P and Q,
their respective vectorial separations xp and x¢ from the (arbitrarily chosen)
origin O, and the vector Ax = xg — Xp connecting them. (b) A curve P(1)
generated by laying out a sequence of infinitesimal vectors, tail-to-tip.

of infinitesimal vectors, one has to add several infinitesimal vectors head to tail, head
to tail, and so on, and then take a limit. This involves translating a vector from one
point to the next. There is no ambiguity about doing this in flat Euclidean space using
the geometric notion of parallelism.* This simple property of Euclidean space enables
us to add (and subtract) vectors at a point. We attach the tail of a second vector to the
head of the first vector and then construct the sum as the vector from the tail of the
first to the head of the second, or vice versa, as should be quite familiar. The point is
that we do not need to add the Cartesian components to sum vectors.

We can also rotate vectors about their tails by pointing them along a different
direction in space. Such a rotation can be specified by two angles. The space that is
defined by all possible changes of length and direction at a point is called that point’s
tangent space. Again, we generally view the rotation as being that of a physical vector
in space, and not, as it is often useful to imagine, the rotation of some coordinate
system’s basis vectors, with the chosen vector itself kept fixed.

We can also construct a path through space by laying down a sequence of infinites-
imal dxs, tail to head, one after another. The resulting path is a curve to which these
dxs are tangent (Fig. 1.1b). The curve can be denoted P (1), with A a parameter along
the curve and P()) the point on the curve whose parameter value is A, or x(1) where
x is the vector separation of P from the arbitrary origin O. The infinitesimal vectors
that map the curve out are dx = (dP/dA) dx = (dx/d}\) dA, and dP/d) = dx/d )\
is the tangent vector to the curve.

If the curve followed is that of a particle, and the parameter X is time ¢, then we
have defined the velocity v = dx/dt. In effect we are multiplying the vector dx by the
scalar 1/dt and taking the limit. Performing this operation at every point P in the
space occupied by a fluid defines the fluid’s velocity field v(x). Multiplying a particle’s
velocity v by its scalar mass gives its momentum p = mv. Similarly, the difference dv

4. The statement that there is just one choice of line parallel to a given line, through a point not lying on
the line, is the famous fifth axiom of Euclid.
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of two velocity measurements during a time interval d¢, multiplied by 1/dt, generates
the particle’s acceleration a = dv/dt. Multiplying by the particle’s mass gives the force
F = ma that produced the acceleration; dividing an electrically produced force by the
particle’s charge g gives the electric field E = F/g. And so on.

We can define inner products [see Eq. (1.4a) below] and cross products [Eq.
(1.22a)] of pairs of vectors at the same point geometrically; then using those vectors
we can define, for example, the rate that work is done by a force and a particle’s angular
momentum about a point.

These two products can be expressed geometrically as follows. If we allow the two
vectors to define a parallelogram, then their cross product is the vector orthogonal
to the parallelogram with length equal to the parallelogram’s area. If we first rotate
one vector through a right angle in a plane containing the other, and then define the
parallelogram, its area is the vectors’ inner product.

We can also define spatial derivatives. We associate the difference of a scalar
between two points separated by dx at the same time with a gradient and, likewise,
go on to define the scalar divergence and the vector curl. The freedom to translate
vectors from one point to the next also underlies the association of a single vector
(e.g., momentum) with a group of particles or an extended body. One simply adds all
the individual momenta, taking a limit when necessary.

In this fashion (which should be familiar to the reader and will be elucidated,
formalized, and generalized below), we can construct all the standard scalars and
vectors of Newtonian physics. What is important is that these physical quantities
require no coordinate system for their definition. They are geometric (coordinate-
independent) objects residing in Euclidean 3-space at a particular time.

It is a fundamental (though often ignored) principle of physics that the Newtonian
physical laws are all expressible as geometric relationships among these types of geometric
objects, and these relationships do not depend on any coordinate system or orientation
of axes, nor on any reference frame (i.e., on any purported velocity of the Euclidean
space in which the measurements are made).” We call this the Geometric Principle for
the laws of physics, and we use it throughout this book. It is the Newtonian analog of
Einstein’s Principle of Relativity (Sec. 2.2.2).

1.3 Tensor Algebra without a Coordinate System

In preparation for developing our geometric view of physical laws, we now intro-
duce, in a coordinate-free way, some fundamental concepts of differential geometry:
tensors, the inner product, the metric tensor, the tensor product, and contraction of
tensors.

We have already defined a vector A as a straight arrow from one point, say P, in our
space to another, say Q. Because our space is flat, there is a unique and obvious way to

5. By changing the velocity of Euclidean space, one adds a constant velocity to all particles, but this leaves
the laws (e.g., Newton’s F = ma) unchanged.
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FIGURE1.2 A rank-3 tensor T.

transport such an arrow from one location to another, keeping its length and direction
unchanged.5 Accordingly, we shall regard vectors as unchanged by such transport.
This enables us to ignore the issue of where in space a vector actually resides; it is
completely determined by its direction and its length.

A rank-n tensor T is, by definition, a real-valued linear function of n vectors.”
Pictorially we regard T as a box (Fig. 1.2) with n slots in its top, into which are inserted
n vectors, and one slot in its end, which prints out a single real number: the value that
the tensor T has when evaluated as a function of the n inserted vectors. Notationally
we denote the tensor by a boldfaced sans-serif character T:

T(_’ L —1 _)

(1.3a)

N\ 7 slots in which to put the vectors.

This definition of a tensor is very different (and far simpler) than the one found in
most standard physics textbooks (e.g., Marion and Thornton, 1995; Jackson, 1999;
Griffiths, 1999). There, a tensor is an array of numbers that transform in a particular
way under rotations. We shall learn the connection between these definitions in
Sec. 1.6 below.

To illustrate this approach, if T is a rank-3 tensor (has 3 slots) as in Fig. 1.2, then
its value on the vectors A, B, C is denoted T(A, B, C). Linearity of this function can
be expressed as

T(eE + fF, B, C) =¢T(E, B, C) + fT(F, B, C), (1.3b)

where e and f are real numbers, and similarly for the second and third slots.

We have already defined the squared length (A)? = A% of a vector A as the squared
distance between the points at its tail and its tip. The inner product (also called the
dot product) A - B of two vectors is defined in terms of this squared length by

_1 2 A w2
A-B=4[(A+B) (A B)]. (14a)

In Euclidean space, this is the standard inner product, familiar from elementary
geometry and discussed above in terms of the area of a parallelogram.

6. This is not so in curved spaces, as we shall see in Sec. 24.3.4.
7. Thisisadifferent use of the word rank than for a matrix, whose rank is its number of linearly independent
rows or columns.

1.3 Tensor Algebra without a Coordinate System
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One can show that the inner product (1.4a) is a real-valued linear function of each
of its vectors. Therefore, we can regard it as a tensor of rank 2. When so regarded, the
inner product is denoted g(__, _ ) and is called the metric tensor. In other words, the
metric tensor g is that linear function of two vectors whose value is given by

g(A,B)=A-B. (1.4b)

Notice that, because A - B =B - A, the metric tensor is symmetric in its two slots—
one gets the same real number independently of the order in which one inserts the
two vectors into the slots:

9(A, B) =g(B, A). (1.4¢)

With the aid of the inner product, we can regard any vector A as a tensor of rank
one: the real number that is produced when an arbitrary vector C is inserted into A’s
single slot is

AC)=A-C (1.4d)

In Newtonian physics, we rarely meet tensors of rank higher than two. However,
second-rank tensors appear frequently—often in roles where one sticks a single vector
into the second slot and leaves the first slot empty, thereby producing a single-slotted
entity, a vector. An example that we met in Sec. 1.1.1 is a rigid body’s moment-of-
inertiatensorI(__, _ ), which gives us the body’s angular momentum J(_ ) =1(__, )
when its angular velocity € is inserted into its second slot.® Another example is the
stress tensor of a solid, a fluid, a plasma, or a field (Sec. 1.9 below).

From three vectors A, B, C, we can construct a tensor, their tensor product (also
called outer product in contradistinction to the inner product A - B), defined as
follows:

A®BQ®C(E,F,G) =AE)BF)CG) =A-E)B-F)(C-G). (1.5a)

Here the first expression is the notation for the value of the new tensor, A ® B® C
evaluated on the three vectors E, F, G; the middle expression is the ordinary product
of three real numbers, the value of A on E, the value of B on F, and the value of C
on G; and the third expression is that same product with the three numbers rewritten
as scalar products. Similar definitions can be given (and should be obvious) for the
tensor product of any number of vectors, and of any two or more tensors of any rank;
for example, if T has rank 2 and S has rank 3, then

T®S(E,F, G, H,J)=T(E, F)S(G, H,J). (1.5b)
One last geometric (i.e., frame-independent) concept we shall need is contraction.
We illustrate this concept first by a simple example, then give the general definition.

8. Actually, it doesn’t matter which slot, since I is symmetric.
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From two vectors A and B we can construct the tensor product A ® B (a second-
rank tensor), and we can also construct the scalar product A - B (a real number, i.e., a
scalar, also known as a rank-0 tensor). The process of contraction is the construction
of A-Bfrom A ® B:

contraction(A ® B) = A - B. (1.6a)

One can show fairly easily using component techniques (Sec. 1.5 below) that any
second-rank tensor T can be expressed as a sum of tensor products of vectors, T =
A®B+ C®D+....Correspondingly, it is natural to define the contraction of T
to be contraction(T) = A-B+ C-D + . ... Note that this contraction process lowers
the rank of the tensor by two, from 2 to 0. Similarly, for a tensor of rank n one can
construct a tensor of rank n — 2 by contraction, but in this case one must specify
which slots are to be contracted. For example, if T is a third-rank tensor, expressible
asT=A®B®C+EQ®F®G+..., then the contraction of T on its first and third
slots is the rank-1 tensor (vector)

1&3contraction(AQBR CH+EQRQFRG+..)0=A- OB+ E - GQF+....
(1.6b)

Unfortunately, there is no simple index-free notation for contraction in common use.

All the concepts developed in this section (vector, tensor, metric tensor, inner
product, tensor product, and contraction of a tensor) can be carried over, with no
change whatsoever, into any vector space’ that is endowed with a concept of squared
length—for example, to the 4-dimensional spacetime of special relativity (next
chapter).

1.4 Particle Kinetics and Lorentz Force in Geometric Language

In this section, we illustrate our geometric viewpoint by formulating Newton’s laws
of motion for particles.

In Newtonian physics, a classical particle moves through Euclidean 3-space as
universal time 7 passes. At time ¢ it is located at some point x(¢) (its position). The
function x(¢) represents a curve in 3-space, the particle’s trajectory. The particle’s
velocity v(t) is the time derivative of its position, its momentum p(t) is the product of
its mass m and velocity, its acceleration a(t) is the time derivative of its velocity, and
its kinetic energy E(t) is half its mass times velocity squared:
dv _ d’x

dx
v =— PO =mv@), al)=—-

1
p = ﬁ, E(t) = Emvz. (1.7a)

9. Or, more precisely, any vector space over the real numbers. If the vector space’s scalars are complex
numbers, as in quantum mechanics, then slight changes are needed.

1.4 Particle Kinetics and Lorentz Force in Geometric Language
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Since points in 3-space are geometric objects (defined independently of any coordi-
nate system), so also are the trajectory x(z), the velocity, the momentum, the acceler-
ation, and the energy. (Physically, of course, the velocity has an ambiguity; it depends
on one’s standard of rest.)

Newton’s second law of motion states that the particle’s momentum can change
only if a force F acts on it, and that its change is given by

dp/dt =ma=F. (1.7b)

If the force is produced by an electric field E and magnetic field B, then this law of
motion in SI units takes the familiar Lorentz-force form

dp/dt =q(E+v x B). (1.7¢)

(Here we have used the vector cross product, with which the reader should be familiar,
and which will be discussed formally in Sec. 1.7.)

The laws of motion (1.7) are geometric relationships among geometric objects.
Let us illustrate this using something very familiar, planetary motion. Consider a
light planet orbiting a heavy star. If there were no gravitational force, the planet
would continue in a straight line with constant velocity v and speed v = |v|, sweeping
out area A at a rate dA/dt =rv,/2, where r is the radius, and v, is the tangential
speed. Elementary geometry equates this to the constant vb/2, where b is the impact
parameter—the smallest separation from the star. Now add a gravitational force F and
let it cause a small radial impulse. A second application of geometry showed Newton
that the product rv,/2 is unchanged to first order in the impulse, and he recovered
Kepler’s second law (dA/dt = const) without introducing coordinates.!”

Contrast this approach with one relying on coordinates. For example, one in-
troduces an (r, ¢) coordinate system, constructs a lagrangian and observes that the
coordinate ¢ is ignorable; then the Euler-Lagrange equations immediately imply the
conservation of angular momentum, which is equivalent to Kepler’s second law. So,
which of these two approaches is preferable? The answer is surely “both!” Newton
wrote the Principia in the language of geometry at least partly for a reason that remains
valid today: it brought him a quick understanding of fundamental laws of physics.
Lagrange followed his coordinate-based path to the function that bears his name,
because he wanted to solve problems in celestial mechanics that would not yield to

10. Continuing in this vein, when the force is inverse square, as it is for gravity and electrostatics, we can
use Kepler’s second law to argue that when the orbit turns through a succession of equal angles d6,
its successive changes in velocity dv = adt (with a the gravitational acceleration) all have the same
magnitude |dv| and have the same angles d6 from one to another. So, if we trace the head of the velocity
vector in velocity space, it follows a circle. The circle is not centered on zero velocity when the eccentricity
is nonzero but there exists a reference frame in which the speed of the planet is constant. This graphical
representation is known as a hodograph, and similar geometrical approaches are used in fluid mechanics.
For Richard Feynman’s masterful presentation of these ideas to first-year undergraduates, see Goodstein
and Goodstein (1996).
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Newton’s approach. So it is today. Geometry and analysis are both indispensible. In the
domain of classical physics, the geometry is of greater importance in deriving and un-
derstanding fundamental laws and has arguably been underappreciated; coordinates
hold sway when we apply these laws to solve real problems. Today, both old and new
laws of physics are commonly expressed geometrically, using lagrangians, hamiltoni-
ans, and actions, for example Hamilton’s action principle § [ Ldt = 0 where L is the
coordinate-independent lagrangian. Indeed, being able to do this without introducing
coordinates is a powerful guide to deriving these laws and a tool for comprehending
their implications.

A comment is needed on the famous connection between symmetry and conserva-
tion laws. In our example above, angular momentum conservation followed from axial
symmetry which was embodied in the lagrangian’s independence of the angle ¢; but
we also deduced it geometrically. This is usually the case in classical physics; typically,
we do not need to introduce a specific coordinate system to understand symmetry
and to express the associated conservation laws. However, symmetries are sometimes
well hidden, for example with a nutating top, and coordinate transformations are then
usually the best approach to uncover them.

Often in classical physics, real-world factors invalidate or complicate Lagrange’s
and Hamilton’s coordinate-based analytical dynamics, and so one is driven to geo-
metric considerations. As an example, consider a spherical marble rolling on a flat
horizontal table. The analytical dynamics approach is to express the height of the
marble’s center of mass and the angle of its rotation as constraints and align the basis
vectors so there is a single horizontal coordinate defined by the initial condition. It is
then deduced that linear and angular momenta are conserved. Of course that result
is trivial and just as easily gotten without this formalism. However, this model is also
used for many idealized problems where the outcome is far from obvious and the ap-
proach is brilliantly effective. But consider the real world in which tables are warped
and bumpy, marbles are ellipsoidal and scratched, air imposes a resistance, and wood
and glass comprise polymers that attract one another. And so on. When one includes
these factors, it is to geometry that one quickly turns to understand the real marble’s
actual dynamics. Even ignoring these effects and just asking what happens when the
marble rolls off the edge of a table introduces a nonholonomic constraint, and figuring
out where it lands and how fast it is spinning are best addressed not by the methods of
Lagrange and Hamilton, but instead by considering the geometry of the gravitational
and reaction forces. In the following chapters, we shall encounter many examples
where we have to deal with messy complications like these.

symmetry and
conservation laws

Exercise 1.1 Practice: Energy Change for Charged Particle
Without introducing any coordinates or basis vectors, show that when a particle with
charge g interacts with electric and magnetic fields, its kinetic energy changes at a rate

dE/dt =q v -E. (1.8)

1.4 Particle Kinetics and Lorentz Force in Geometric Language
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Exercise 1.2 Practice: Particle Moving in a Circular Orbit

Consider a particle moving in a circle with uniform speed v = |v| and uniform
magnitude a = [a| of acceleration. Without introducing any coordinates or basis
vectors, do the following.

(a) Atany moment of time, let n = v/v be the unit vector pointing along the velocity,
and let s denote distance that the particle travels in its orbit. By drawing a picture,
show that dn/ds is a unit vector that points to the center of the particle’s circular
orbit, divided by the radius of the orbit.

(b) Show that the vector (not unit vector) pointing from the particle’s location to the
center of its orbit is (v/a)?a.

1.5 Component Representation of Tensor Algebra

In the Euclidean 3-space of Newtonian physics, there is a unique set of orthonormal
basis vectors {e,, e, e,} = {e,, e,, e;} associated with any Cartesian coordinate system
{x,y, z} = {x!, x%, x3} = {x}, x,, x3}. (In Cartesian coordinates in Euclidean space,
we usually place indices down, but occasionally we place them up. It doesn’t matter.
By definition, in Cartesian coordinates a quantity is the same whether its index is
down or up.) The basis vector e; points along the x; coordinate direction, which is
orthogonal to all the other coordinate directions, and it has unit length (Fig. 1.3), so

ej -ek=5jk, (1.9a)

where §; is the Kronecker delta.
Any vector A in 3-space can be expanded in terms of this basis:

A= AJe] (1.9b)

Here and throughout this book, we adopt the Einstein summation convention: repeated
indices (in this case j) are to be summed (in this 3-space case over j = 1, 2, 3), unless
otherwise instructed. By virtue of the orthonormality of the basis, the components
A of A can be computed as the scalar product

(1.9¢)

[The proof of this is straightforward: A - e; = (Arer) - €; = A(e; - €;) = Ay =
Ajl

Any tensor, say, the third-rank tensor T(__, _, ), can be expanded in terms of
tensor products of the basis vectors:

T= Y}jkei (9] ej (9] €. (1.9d)

Chapter 1. Newtonian Physics: Geometric Viewpoint
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€ ¥

FIGURE1.3 The orthonormal basis vectors
e; associated with a Euclidean coordi-
nate system in Euclidean 3-space.

The components 7;; of T can be computed from T and the basis vectors by the
generalization of Eq. (1.9¢):

Tijk =T(e;s €, €). (1.9¢)

[This equation can be derived using the orthonormality of the basis in the same way
as Eq. (1.9c) was derived.] As an important example, the components of the metric
tensor are g;; = g(e;, €;) = e€; - €, = J j; [Where the first equality is the method (1.9¢)
of computing tensor components, the second is the definition (1.4b) of the metric, and
the third is the orthonormality relation (1.9a)]:

gk =081 (1.9)

The components of a tensor product [e.g., T(__, _,_ ) ®S(__,_ )] areeasilyde-
duced by inserting the basis vectors into the slots [Eq. (1.9¢)]; they are T(e;, e i) ®
S(e;, e,,) = TSy [cf. Eq. (1.5a)]. In words, the components of a tensor product are
equal to the ordinary arithmetic product of the components of the individual tensors.

In component notation, the inner product of two vectors and the value of a tensor
when vectors are inserted into its slots are given by

A‘B:A]BJ, T(A, B, C):T'l]kAlBjCk’ (19g)

as one can easily show using previous equations. Finally, the contraction of a tensor
[say, the fourth-rank tensor R(__, _, _,_ )] on two of its slots (say, the first and
third) has components that are easily computed from the tensor’s own components:

components of [1&3contraction of R] = R; ;- (1.9h)

Note that R; j;

thus is the component of a second-rank tensor, as it must be if it is to represent the

« is summed on the i index, so it has only two free indices, j and k, and

contraction of a fourth-rank tensor.

1.5.1 Slot-Naming Index Notation

We now pause in our development of the component version of tensor algebra to
introduce a very important new viewpoint.

1.5 Component Representation of Tensor Algebra
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BOX1.2. VECTORS AND TENSORS IN QUANTUM THEORY 12

The laws of quantum theory, like all other laws of Nature, can be expressed as
geometric relationships among geometric objects. Most of quantum theory’s
geometric objects, like those of classical theory, are vectors and tensors: the
quantum state |) of a physical system (e.g., a particle in a harmonic-oscillator
potential) is a Hilbert-space vector—a generalization of a Euclidean-space
vector A. There is an inner product, denoted (¢|y), between any two states
|¢) and |y), analogous to B - A; but B - A is a real number, whereas (¢|y) is
a complex number (and we add and subtract quantum states with complex-
number coefficients). The Hermitian operators that represent observables
(e.g., the hamiltonian H for the particle in the potential) are two-slotted
(second-rank), complex-valued functions of vectors; (| H|¥) is the complex
number that one gets when one inserts ¢ and ¥ into the first and second
slots of H. Just as, in Euclidean space, we get a new vector (first-rank tensor)
T(__, A) when we insert the vector A into the second slot of T, so in quantum
theory we get a new vector (physical state) H |v/) (the result of letting H “act
on” |¥)) when we insert |y) into the second slot of H. In these senses, we can
regard T as a linear map of Euclidean vectors into Euclidean vectors and H as
a linear map of states (Hilbert-space vectors) into states.

For the electron in the hydrogen atom, we can introduce a set of
orthonormal basis vectors {|1), |2), |3), ...}, that is, the atom’s energy
eigenstates, with (m|n) =§,,,. But by contrast with Newtonian physics,
where we only need three basis vectors (because our Euclidean space is 3-
dimensional), for the particle in a harmonic-oscillator potential, we need an
infinite number of basis vectors (since the Hilbert space of all states is infinite-
dimensional). In the particle’s quantum-state basis, any observable (e.g., the
particle’s position X or momentum p) has components computed by inserting
the basis vectors into its two slots: x,,,, = (m|x|n), and p,,,, = (m|p|n). In this
basis, the operator & p (which maps states into states) has components x j py,,
(a matrix product), and the noncommutation of position and momentum
[X, p] =ih (an important physical law) is expressible in terms of components

as X jx Pim — P jkXkm = 118 jy.

Consider the rank-2 tensor F(__, ). We can define a new tensor G(__, ) to be
the same as F, but with the slots interchanged: i.e., for any two vectors A and B, it is
true that G(A, B) = F(B, A). We need a simple, compact way to indicate that F and
G are equal except for an interchange of slots. The best way is to give the slots names,
say a and b—i.e., to rewrite F(__, _ )asF(__,, _ ,) or more conveniently as F,;, and
then to write the relationship between G and F as G,;, = F,,,. “NO!” some readers

Chapter 1. Newtonian Physics: Geometric Viewpoint
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might object. This notation is indistinguishable from our notation for components on
a particular basis. “GOOD!” a more astute reader will exclaim. The relation G ,;, = F,,
in a particular basis is a true statement if and only if “G = F with slots interchanged”
is true, so why not use the same notation to symbolize both? In fact, we shall do
this. We ask our readers to look at any “index equation,” such as G, = Fy,,, like they
would look at an Escher drawing: momentarily think of it as a relationship between
components of tensors in a specific basis; then do a quick mind-flip and regard it quite
differently, as a relationship between geometric, basis-independent tensors with the
indices playing the roles of slot names. This mind-flip approach to tensor algebra will
pay substantial dividends.

As an example of the power of this slot-naming index notation, consider the con-
traction of the first and third slots of a third-rank tensor T. In any basis the components
of 1&3contraction(T) are T;,; cf. Eq. (1.9h). Correspondingly, in slot-naming index
notation we denote 1&3contraction(T) by the simple expression 7,,,. We can think
of the first and third slots as annihilating each other by the contraction, leaving free
only the second slot (named b) and therefore producing a rank-1 tensor (a vector).

We should caution that the phrase “slot-naming index notation” is unconventional.
You are unlikely to find it in any other textbooks. However, we like it. It says precisely
what we want it to say.

1.5.2 Particle Kinetics in Index Notation

As an example of slot-naming index notation, we can rewrite the equations of particle
kinetics (1.7) as follows:

dxi dvi dle'
T PTG T e
1 dp;
E= Emvjvj, % =q(E; + €j3v;By). (1.10)

(In the last equation €; j is the so-called Levi-Civita tensor, which is used to produce
the cross product; we shall learn about it in Sec. 1.7. And note that the scalar energy
E must not be confused with the electric field vector E;.)

Equations (1.10) can be viewed in either of two ways: (i) as the basis-independent
geometric laws v = dx/dt, p =mv,a =dv/dt = d’x/dt*, E = %mvz, and dp/dt =
q(E + v x B) written in slot-naming index notation; or (ii) as equations for the
components of v, p, a, E, and B in some particular Cartesian coordinate system.

slot-naming index notation

1.5.2

Exercise 1.3 Derivation: Component Manipulation Rules
Derive the component manipulation rules (1.9g) and (1.9h).

Exercise 1.4 Example and Practice: Numerics of Component Manipulations
The third-rank tensor S(__, _, _ ) and vectors A and B have as their only nonzero
components Sjy3 = Sy3; =353, =41, A;=3, Bj=4, B, =5 What are the

1.5 Component Representation of Tensor Algebra
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components of the vector C = S(A, B, _ ), thevector D =S(A, _, B), and the tensor
W=AQ®B?

[Partial solution: In component notation, C; = S;;;A; B, where (of course) we
sum over the repeated indices i and j. This tells us that C; = S,3;A, B3, because
Sy31 is the only component of S whose last index is a 1; this in turn implies that
C, =0, since A, = 0. Similarly, C, = S5,,A43B; = 0 (because A; = 0). Finally, C; =
S12341B, = +1 x 3 x 5= 15. Also, in component notation W;; = A;B;, so W;; =
A x Bj=3x4=12, and W, = A; x B, =3 x 5=15. Here the x stands for
numerical multiplication, not the vector cross product.]

Exercise 1.5 Practice: Meaning of Slot-Naming Index Notation

(a) The following expressions and equations are written in slot-naming index nota-
tion. Convert them to geometric, index-free notation: A; B, A; Bj;, S;jx = Sji»
AiB; = A;B;g;;.

(b) The following expressions are written in geometric, index-free notation. Convert
them to slot-naming index notation: T(__, _ , A), T(_,S(B, _), _).

1.6 Orthogonal Transformations of Bases

Consider two different Cartesian coordinate systems {x, y, z} = {x}, x,, x3}, and
{x, ¥, 2} = {x1, x3, x3}. Denote by {e;} and {e;} the corresponding bases. It is possible
to expand the basis vectors of one basis in terms of those of the other. We denote the
expansion coefficients by the letter R and write

e, =¢e;R;;, e; =¢R

iR (1.11)

ip:
The quantities Rj; and R;; are not the components of a tensor; rather, they are the
elements of transformation matrices

Ry Ri; Ry Rii Rj3 Rgj
[Rpil=| Rz Rz Ry |»  [Rpl=| Ryi Ryp Ryz | (L12a)
R31 Rz Ry Ryi Ry Ry

(Here and throughout this book we use square brackets to denote matrices.) These
two matrices must be the inverse of each other, since one takes us from the barred basis
to the unbarred, and the other in the reverse direction, from unbarred to barred:

Ri;R;

RjiRig =354 ipRpj = 8ij- (L.12b)

The orthonormality requirement for the two bases implies that §;; =, -e; =

J
(eﬁRﬁZ) . (eéRq]) = Rl;qu](eﬁ . eq) = RﬁlR@Sﬁé = RﬁlRﬁ] This says that the

transpose of [R ;] is its inverse—which we have already denoted by [Rip]:

[R;;] = inverse ([Rj;]) = transpose ([R;]). (1.12¢)

Chapter 1. Newtonian Physics: Geometric Viewpoint
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This property implies that the transformation matrix is orthogonal, so the transfor-
mation is a reflection or a rotation (see, e.g., Goldstein, Poole, and Safko, 2002). Thus
(as should be obvious and familiar), the bases associated with any two Euclidean co-
ordinate systems are related by a reflection or rotation, and the matrices (1.12a) are
called rotation matrices. Note that Eq. (1.12¢) does not say that [Rz-p] is a symmetric
matrix. In fact, most rotation matrices are not symmetric [see, e.g., Eq. (1.14)].

The fact that a vector A is a geometric, basis-independent object implies that
A=Aje;=Ai(e;R;) = (RjpiA)e; = Aje;:

A; =R;A;, andsimilarly, A; = RizAj; (1.13a)
and correspondingly for the components of a tensor:
T[_M?f - R[_)qu_ijkT'ijk’ T;]k - Ripch}kaTﬁ(;f‘ (1.13b)

It is instructive to compare the transformation law (1.13a) for the components of
a vector with Egs. (1.11) for the bases. To make these laws look natural, we have
placed the transformation matrix on the left in the former and on the right in the
latter. In Minkowski spacetime (Chap. 2), the placement of indices, up or down, will
automatically tell us the order.

If we choose the origins of our two coordinate systems to coincide, then the vector
x reaching from the common origin to some point P, whose coordinates are x j and x >
has components equal to those coordinates; and as a result, the coordinates themselves
obey the same transformation law as any other vector:

Xl; = Rﬁix,-, X, = R,-pxﬁ. (1.13¢)

The product of two rotation matrices [R;;R ;] is another rotation matrix [R;5],
which transforms the Cartesian bases ez to e;. Under this product rule, the rotation
matrices form a mathematical group: the rotation group, whose group representations
play an important role in quantum theory.

orthogonal transformation
and rotation

rotation group

Exercise 1.6 **Example and Practice: Rotation in x-y Plane
Consider two Cartesian coordinate systems rotated with respect to each other in the
x-y plane as shown in Fig. 1.4.

(a) Show that the rotation matrix that takes the barred basis vectors to the unbarred
basis vectors is

cos¢p sing 0
ﬁi] =| —sin¢ cos¢p 0 |, (1.14)
0 0 1

(R

and show that the inverse of this rotation matrix is, indeed, its transpose, as it
must be if this is to represent a rotation.
(b) Verify that the two coordinate systems are related by Eq. (1.13c).

1.6 Orthogonal Transformations of Bases
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FIGURE 1.4 Two Cartesian coordinate systems {x, y, z} and

{X, ¥, z} and their basis vectors in Euclidean space, rotated
by an angle ¢ relative to each other in the x-y plane. The z- and
z-axes point out of the paper or screen and are not shown.

Let A; be the components of the electromagnetic vector potential that lies in
the x-y plane, so that A, = 0. The two nonzero components A, and A, can be
regarded as describing the two polarizations of an electromagnetic wave propa-
gating in the z direction. Show that Az +iA; = (A, +iA y)e_"‘P. One can show
(cf. Sec. 27.3.3) that the factor e~'? implies that the quantum particle associ-
ated with the wave—the photon—has spin one [i.e., spin angular momentum
h = (PlancK’s constant) /27 ].

Let h j; be the components of a symmetric tensor that is trace-free (its contraction
h ;; vanishes) and is confined to the x-y plane (so /1, = hy, = 0 for all k). Then
the only nonzero components of this tensor are h,, = —h,, and hy, = hy,.
As we shall see in Sec. 27.3.1, this tensor can be regarded as describing the
two polarizations of a gravitational wave propagating in the z direction. Show
that hgg +ihgy = (hy, + ihxy)e_Zi‘f’. The factor e =% implies that the quantum
particle associated with the gravitational wave (the graviton) has spin two (spin
angular momentum 2A); cf. Eq. (27.31) and Sec. 27.3.3.

1.7

Differentiation of Scalars, Vectors, and Tensors; Cross Product and Curl

Consider a tensor field T(P) in Euclidean 3-space and a vector A. We define the

directional derivative of T along A by the obvious limiting procedure

1
VAT= lirr%) —[T(xp + €A) — T(xp)] (1.15a)
e—0 ¢

and similarly for the directional derivative of a vector field B(P) and a scalar field

¥ (P). [Here we have denoted points, e.g., P, by the vector xp that reaches from some

Chapter 1. Newtonian Physics: Geometric Viewpoint
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arbitrary origin to the point, and T(xp) denotes the field’s dependence on location in
space; T’s slots and dependence on what goes into the slots are suppressed; and the
units of € are chosen to ensure that €A has the same units as xp. There is no other
appearance of vectors in this chapter.] In definition (1.15a), the quantity in square
brackets is simply the difference between two linear functions of vectors (two tensors),
so the quantity on the left-hand side is also a tensor with the same rank as T.

It should not be hard to convince oneself that this directional derivative V, T of any
tensor field T is linear in the vector A along which one differentiates. Correspondingly,
if Thasrankn (n slots), then there is another tensor field, denoted VT, with rankn + 1,
such that

VAT=VT(_,_,_,A). (1.15b)

Here on the right-hand side the first n slots (3 in the case shown) are left empty, and
A is put into the last slot (the “differentiation slot”). The quantity VT is called the
gradient of T. In slot-naming index notation, it is conventional to denote this gradient
by T,4¢.4> where in general the number of indices preceding the semicolon is the rank
of T. Using this notation, the directional derivative of T along A reads [cf. Eq. (1.15b)]
Tabc; Jj A J*

It is not hard to show that in any Cartesian coordinate system, the components of
the gradient are nothing but the partial derivatives of the components of the original

tensor, which we denote by a comma:

0 Tabc

abc;j = 9x - = dgpe, - (1.15¢)
J

Inanon-Cartesian basis (e.g., the spherical and cylindrical bases often used in electro-
magnetic theory), the components of the gradient typically are not obtained by simple
partial differentiation [Eq. (1.15¢) fails] because of turning and/or length changes of
the basis vectors as we go from one location to another. In Sec. 11.8, we shall learn
how to deal with this by using objects called connection coefficients. Until then, we
confine ourselves to Cartesian bases, so subscript semicolons and subscript commas
(partial derivatives) can be used interchangeably.

Because the gradient and the directional derivative are defined by the same stan-
dard limiting process as one uses when defining elementary derivatives, they obey the
standard (Leibniz) rule for differentiating products:

VAB®T=(V,S) ®T+S® V,T,

or (Sachde);jAj = (Sab;jAj)Tcde + Sab(Tcde;jAj); (1.16a)
and
VAT = (VaNDT+ VAT, or (fTupe),jA; = (fjADTape + [ TapejA-
(1.16b)

1.7 Differentiation of Scalars, Vectors, and Tensors; Cross Product and Curl
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In an orthonormal basis these relations should be obvious: they follow from the
Leibniz rule for partial derivatives.

Because the components g,;, of the metric tensor are constant in any Cartesian
coordinate system, Eq. (1.15c) (which is valid in such coordinates) guarantees that
9ap;j = 0; i.e., the metric has vanishing gradient:

Vg=0, or g,,;=0. (1.17)

From the gradient of any vector or tensor we can construct several other important
derivatives by contracting on slots:

1. Since the gradient VA of a vector field A has two slots, VA(__, _ ), we can
contract its slots on each other to obtain a scalar field. That scalar field is the
divergence of A and is denoted

V . A = (contraction of VA) = A (1.18)

aa*

2. Similarly, if T is a tensor field of rank 3, then T, is its divergence on its
third slot, and 7., is its divergence on its second slot.

3. By taking the double gradient and then contracting on the two gradient slots
we obtain, from any tensor field T, a new tensor field with the same rank,

VT=(V-IT, or Ty (1.19)

Here and henceforth, all indices following a semicolon (or comma) represent
gradients (or partial derivatives): T,5c;i; = Tapesjsj> Tabe, jk = 82Tabc/8xj 0xy.
The operator V? is called the laplacian.

The metric tensor is a fundamental property of the space in which it lives; it
embodies the inner product and hence the space’s notion of distance. In addition to
the metric, there is one (and only one) other fundamental tensor that describes a piece
of Euclidean space’s geometry: the Levi-Civita tensor €, which embodies the space’s
notion of volume.

In a Euclidean space with dimension 7, the Levi-Civita tensor € is a completely
antisymmetric tensor with rank n (with n slots). A parallelepiped whose edges are the
nvectors A, B, ..., Fis said to have the volume

volume = €(A, B, ..., F). (1.20)

(We justify this definition in Sec. 1.8.) Notice that this volume can be positive or
negative, and if we exchange the order of the parallelepiped’s legs, the volume’s sign
changes: €(B, A, ..., F) = —€(A, B, ..., F) by antisymmetry of €.

It is easy to see (Ex. 1.7) that (i) the volume vanishes unless the legs are all linearly
independent, (ii) once the volume has been specified for one parallelepiped (one
set of linearly independent legs), it is thereby determined for all parallelepipeds,
and therefore, (iii) we require only one number plus antisymmetry to determine €
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fully. If the chosen parallelepiped has legs that are orthonormal (all are orthogonal
to one another and all have unit length—properties determined by the metric g),
then it must have unit volume, or more precisely volume £1. This is a compatibility
relation between g and e. It is easy to see (Ex. 1.7) that (iv) € is fully determined by its
antisymmetry, compatibility with the metric, and a single sign: the choice of which
parallelepipeds have positive volume and which have negative. It is conventional
in Euclidean 3-space to give right-handed parallelepipeds positive volume and left-
handed ones negative volume: €(A, B, C) is positive if, when we place our right thumb
along C and the fingers of our right hand along A, then bend our fingers, they sweep
toward B and not —B.

These considerations dictate that in a right-handed orthonormal basis of Eu-
clidean 3-space, the only nonzero components of € are

€123 =1L
+1 ifa, b, cis an even permutation of 1, 2, 3

€wc =1 —1 ifa, b, cisan odd permutation of 1, 2, 3 (1.21)
0 ifa, b, c are not all different;

and in a left-handed orthonormal basis, the signs of these components are reversed.
The Levi-Civita tensor is used to define the cross product and the curl:

A xB=¢€(_,A,B); inslot-namingindex notation, €;;3A;By;  (1.22a)

V x A = (the vector field whose slot-naming index form is €;; A;;). (1.22b)

[Equation (1.22b) is an example of an expression that is complicated if stated in index-
free notation; it says that V x A is the double contraction of the rank-5 tensor € ® VA
on its second and fifth slots, and on its third and fourth slots.]

Although Eqs. (1.22a) and (1.22b) look like complicated ways to deal with concepts
that most readers regard as familiar and elementary, they have great power. The power
comes from the following property of the Levi-Civita tensor in Euclidean 3-space
[readily derivable from its components (1.21)]:

€ imExim = 0 = 86,8] — 8,5} (1.23)

Here § ,’( is the Kronecker delta. Examine the 4-index delta function 52’1 carefully; it says
that either the indices above and below each other must be the same (i =k and j =)
with a + sign, or the diagonally related indices must be the same (i =/ and j = k) with
a — sign. [We have put the indicesij of 8;{? up solely to facilitate remembering this rule.
Recall (first paragraph of Sec. 1.5) that in Euclidean space and Cartesian coordinates,
it does not matter whether indices are up or down.] With the aid of Eq. (1.23) and the
index-notation expressions for the cross product and curl, one can quickly and easily
derive a wide variety of useful vector identities; see the very important Ex. 1.8.

1.7 Differentiation of Scalars, Vectors, and Tensors; Cross Product and Curl
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EARRCEE Exercise 1.7 Derivation: Properties of the Levi-Civita Tensor

1.8

26

From its complete antisymmetry, derive the four properties of the Levi-Civita tensor,
in n-dimensional Euclidean space, that are claimed in the text following Eq. (1.20).

Exercise 1.8 **Example and Practice: Vectorial Identities for the Cross Product

and Curl

Here is an example of how to use index notation to derive a vector identity for the dou-
ble cross product A x (B x C): in index notation this quantity is €;; A j (€7, B;Cyp)-
By permuting the indices on the second € and then invoking Eq. (1.23), we can write
this as €; 1€, A B;C,,, = SETAj B;C,,. By then invoking the meaning of the 4-index
delta function [Eq. (1.23)], we bring this into the form A;B;C; — A;B;C;, which
is the slot-naming index-notation form of (A - C)B — (A - B)C. Thus, it must be that
A x (Bx C)=(A-C)B— (A:B)C. Use similar techniques to evaluate the following
quantities.

(a) Vx (V xA).

(b) (A xB)-(C x D).

(¢) (A xB) x (C x D).

Exercise 1.9 **Example and Practice: Levi-Civita Tensor in 2-Dimensional
Euclidean Space
In Euclidean 2-space, let {e;, e,} be an orthonormal basis with positive volume.

(a) Show that the components of € in this basis are
612=+1, €= —1, 6112622=0. (1.24a)
(b) Show that

€ik€jk = ;- (1.24b)

1.8 Volumes, Integration, and Integral Conservation Laws

In Cartesian coordinates of 2-dimensional Euclidean space, the basis vectors are
orthonormal, so (with a conventional choice of sign) the components of the Levi-
Civita tensor are given by Egs. (1.24a). Correspondingly, the area (i.e., 2-dimensional
volume) of a parallelogram whose sides are A and B is

A, B
2-volume = €(A, B) = ¢,,A,B, = A|B, — A, B; = det |: ! Bl ] , (125
2 by

a relation that should be familiar from elementary geometry. Equally familiar should
be the following expression for the 3-dimensional volume of a parallelepiped with legs
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A, B, and C [which follows from the components (1.21) of the Levi-Civita tensor]:

A B G
3-volume =€(A,B,C) =¢€;;;A;B;C, =A-(BxC)=det | A, B, C, |. (126
A3 By G

Our formal definition (1.20) of volume is justified because it gives rise to these familiar
equations.

Equations (1.25) and (1.26) are foundations from which one can derive the usual
formulas dA = dx dy and dV = dx dy dz for the area and volume of elementary
surface and volume elements with Cartesian side lengths dx, dy, and dz (Ex. 1.10).

In Euclidean 3-space, we define the vectorial surface area of a 2-dimensional
parallelogram with legs A and B to be

Y=AxB=¢€( ,A,B). (1.27)

This vectorial surface area has a magnitude equal to the area of the parallelogram
and a direction perpendicular to it. Notice that this surface area €(__, A, B) can be
thought of as an object that is waiting for us to insert a third leg, C, so as to compute
a 3-volume €(C, A, B)—the volume of the parallelepiped with legs C, A, and B.

A parallelogram’s surface has two faces (two sides), called the positive face and the
negative face. If the vector C sticks out of the positive face, then X(C) = €(C, A, B) is
positive; if C sticks out of the negative face, then X(C) is negative.

1.8.1 Gauss's and Stokes’ Theorems

Such vectorial surface areas are the foundation for surface integrals in 3-dimensional
space and for the familiar Gauss’s theorem,

(V-A)dV =/ A-dX (1.28a)

Vs IV

(where V5 is a compact 3-dimensional region, and 9V; is its closed 2-dimensional
boundary) and Stokes’ theorem,

/VxA-dZ:/ A -dl (1.28b)
v, ,

(where V), is a compact 2-dimensional region, 3V, is the 1-dimensional closed curve

that bounds it, and the last integral is a line integral around that curve); see, e.g.,
Arfken, Weber, and Harris (2013).

This mathematics is illustrated by the integral and differential conservation laws
for electric charge and for particles: The total charge and the total number of particles
inside a 3-dimensional region of space V; are fV3 p.dV and fV3 ndV, where p, is
the charge density and n the number density of particles. The rates that charge and
particles flow out of V5 are the integrals of the current density j and the particle flux
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vector S over its boundary dV;. Therefore, the integral laws of charge conservation and
particle conservation are

i/,@dV—{—/ j-dX=0, 4 ndV—l—/ S$-d¥=0.| (129
dr Jy, YA dt Jy, Vs

Pull the time derivative inside each volume integral (where it becomes a partial

derivative), and apply Gauss’s law to each surface integral; the results are || v, (90, /01 +
V -j)dV = 0 and similarly for particles. The only way these equations can be true for
all choices of V; is for the integrands to vanish:

dp. /0t +V -j=0, In/dt+V-$=0. (1.30)

These are the differential conservation laws for charge and for particles. They have a
standard, universal form: the time derivative of the density of a quantity plus the
divergence of its flux vanishes.

Note that the integral conservation laws (1.29) and the differential conservation
laws (1.30) require no coordinate system or basis for their description, and no coordi-
nate system or basis was used in deriving the differential laws from the integral laws.
This is an example of the fundamental principle that the Newtonian physical laws are
all expressible as geometric relationships among geometric objects.

EXERCISES
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Exercise 1.10 Derivation and Practice: Volume Elements in Cartesian Coordinates
Use Egs. (1.25) and (1.26) to derive the usual formulas d A = dxdy anddV =dxdyd:z
for the 2-dimensional and 3-dimensional integration elements, respectively, in right-
handed Cartesian coordinates. [Hint: Use as the edges of the integration volumes
dx e, dy e, anddze,.]

Exercise 1.11 Example and Practice: Integral of a Vector Field over a Sphere

Integrate the vector field A = ze, over a sphere with radius a, centered at the origin

of the Cartesian coordinate system (i.e., compute [ A - dX). Hints:

(a) Introduce spherical polar coordinates on the sphere, and construct the vectorial
integration element d ¥ from the two legs ad® e; and a sin 6d¢ e;. Here e; and
e, are unit-length vectors along the 6 and ¢ directions. (Here as in Sec. 1.6 and
throughout this book, we use accents on indices to indicate which basis the index
is associated with: hats here for the spherical orthonormal basis, bars in Sec. 1.6
for the barred Cartesian basis.) Explain the factors adf and a sin 6d¢ in the
definitions of the legs. Show that

dX=¢€(_, e e(z;)ot2 sin 0d0d¢. (1.31)

(b) Using z = a cos 6 and e, = cos fe; — sin fe; on the sphere (where e; is the unit
vector pointing in the radial direction), show that

A-dX=acos’ 0 e(e;, e, e;) a® sin 0dOdé.
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(c) Explain why €(e;, e, 3(13) =1
(d) Perform theintegral [ A - dX over the sphere’s surface to obtain your final answer

(47 /3)a>. This, of course, is the volume of the sphere. Explain pictorially why this
had to be the answer.

Exercise 1.12 Example: Faradays Law of Induction

One of Maxwell’s equations says that V x E = —0B/d¢ (in SI units), where E and
B are the electric and magnetic fields. This is a geometric relationship between ge-
ometric objects; it requires no coordinates or basis for its statement. By integrating
this equation over a 2-dimensional surface V, with boundary curve 9, and applying
Stokes” theorem, derive Faraday’s law of induction—again, a geometric relationship
between geometric objects.

1.9 The Stress Tensor and Momentum Conservation

Press your hands together in the y-z plane and feel the force that one hand exerts
on the other across a tiny area A—say, one square millimeter of your hands” palms
(Fig. 1.5). That force, of course, is a vector F. It has a normal component (along the
x direction). It also has a tangential component: if you try to slide your hands past
each other, you feel a component of force along their surface, a “shear” force in the
y and z directions. Not only is the force F vectorial; so is the 2-surface across which
it acts, ¥ = A e,. (Here e, is the unit vector orthogonal to the tiny area A, and we
have chosen the negative side of the surface to be the —x side and the positive side to
be +x. With this choice, the force F is that which the negative hand, on the —x side,
exerts on the positive hand.)

Now, it should be obvious that the force F is a linear function of our chosen surface
Y. Therefore, there must be a tensor, the stress tensor, that reports the force to us when
we insert the surface into its second slot:

FIGURE 1.5 Hands, pressed
together, exert a force on
each other.
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Newton’s law of action and reaction tells us that the force that the positive hand
exerts on the negative hand must be equal and opposite to that which the negative
hand exerts on the positive. This shows up trivially in Eq. (1.32): by changing the sign
of X, one reverses which hand is regarded as negative and which positive, and since
T is linear in %, one also reverses the sign of the force.

The definition (1.32) of the stress tensor gives rise to the following physical mean-
ing of its components:

T, = ( J component of force per unit area )
Jk=

across a surface perpendicular to e;,

Jj component of momentum that crosses a unit (1.33)
= | area that is perpendicular to e, per unit time,

with the crossing being from —x; to +x;

The stresses inside a table with a heavy weight on it are described by the stress
tensor T, as are the stresses in a flowing fluid or plasma, in the electromagnetic field,
and in any other physical medium. Accordingly, we shall use the stress tensor as an
important mathematical tool in our study of force balance in kinetic theory (Chap.
3), elasticity (Part IV), fluid dynamics (Part V), and plasma physics (Part VI).

Itis not obvious from its definition, but the stress tensor T is always symmetric in its
two slots. To see this, consider a small cube with side L in any medium (or field) (Fig.
1.6). The medium outside the cube exerts forces, and hence also torques, on the cube’s
faces. The z-component of the torque is produced by the shear forces on the front and
back faces and on the left and right. As shown in the figure, the shear forces on the front
and back faces have magnitudes T)CyL2 and point in opposite directions, so they exert
identical torques on the cube, N, = TxyL2 (L/2) (where L/2 is the distance of each
face from the cube’s center). Similarly, the shear forces on the left and right faces have
magnitudes 7, L?and point in opposite directions, thereby exerting identical torques
on the cube, N, = -7, «L*(L/2). Adding the torques from all four faces and equating
them to the rate of change of angular momentum, é pL>dS2,/dt (where p is the mass
density, £ pL® is the cube’s moment of inertia, and Q, is the z component of its angular
velocity), we obtain (7}, — Tyx)L3 = % pL>d2,/dt. Now, let the cube’s edge length
become arbitrarily small, L — 0. If 7\, — T}, does not vanish, then the cube will be
set into rotation with an infinitely large angular acceleration, d2,/dt oc 1/L? — oco—
an obviously unphysical behavior. Therefore, 7}, = T, and similarly for all other
components: the stress tensor is always symmetric under interchange of its two slots.

1.9.1 Examples: Electromagnetic Field and Perfect Fluid

Two examples will make the concept of the stress tensor more concrete.

* Electromagnetic field: See Ex. 1.14.

* Perfect fluid: A perfect fluid is a medium that can exert an isotropic pressure
P but no shear stresses, so the only nonzero components of its stress tensor
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FIGURE 1.6 The shear forces exerted on the left, right, front, and
back faces of a vanishingly small cube of side length L. The
resulting torque about the z direction will set the cube into
rotation with an arbitrarily large angular acceleration unless the
stress tensor is symmetric.

in a Cartesian basis are T, = T,, = T,, = P. (Examples of nearly perfect
fluids are air and water, but not molasses.) We can summarize this property
by T;; = P§;; or equivalently, since §;; are the components of the Euclidean
metric, 7;; = Pg;;. The frame-independent version of this is

T= Pg or, in slot-naming index notation, 7; i=Pg;. (1.34)

Note that, as always, the formula in slot-naming index notation looks iden-
tical to the formula 7;; = Pg;; for the components in our chosen Cartesian
coordinate system. To check Eq. (1.34), consider a 2-surface £ = An with
area A oriented perpendicular to some arbitrary unit vector n. The vecto-
rial force that the fluid exerts across X is, in index notation, F i =Tu% =
PgjAn; = P Anj (i.e. itis a normal force with magnitude equal to the fluid
pressure P times the surface area A). This is what it should be.

1.9.2 Conservation of Momentum

The stress tensor plays a central role in the Newtonian law of momentum conservation
because (by definition) the force acting across a surface is the same as the rate of flow of
momentum, per unit area, across the surface: the stress tensor is the flux of momentum.

Consider the 3-dimensional region of space V; used above in formulating the
integral laws of charge and particle conservation (1.29). The total momentum in V;
is st GdV, where G is the momentum density. This quantity changes as a result
of momentum flowing into and out of V;. The net rate at which momentum flows
outward is the integral of the stress tensor over the surface 9V; of V;. Therefore, by

1.9 The Stress Tensor and Momentum Conservation
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analogy with charge and particle conservation (1.29), the integral law of momentum
conservation says

i GdV+/ T-dX=0. (1.35)
dr Jy, Vs

By pulling the time derivative inside the volume integral (where it becomes a
partial derivative) and applying the vectorial version of Gauss’s law to the surface
integral, we obtain fv3(8G/ dt + V- T)dV = 0. This can be true for all choices of
V; only if the integrand vanishes:

0G ;
E+V-T:0, or J

Y T + Tjk;k =0. (1.36)

(Because T is symmetric, it does not matter which of its slots the divergence acts on.)
This is the differential law of momentum conservation. It has the standard form for
any local conservation law: the time derivative of the density of some quantity (here
momentum), plus the divergence of the flux of that quantity (here the momentum
flux is the stress tensor), is zero. We shall make extensive use of this Newtonian law
of momentum conservation in Part IV (elasticity), Part V (fluid dynamics), and Part
VI (plasma physics).

EXERCISES
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Exercise 1.13 **Example: Equations of Motion for a Perfect Fluid

(a) Consider a perfect fluid with density p, pressure P, and velocity v that vary in
time and space. Explain why the fluid’s momentum density is G = pv, and explain
why its momentum flux (stress tensor) is

T=Pg+ pv®v, orinslot-naming index notation, T;; = Pg;; + pv;v;.

(1.37a)
(b) Explain why the law of mass conservation for this fluid is
0
P y. (pv) = 0. (1.37b)
or
(c) Explain why the derivative operator
d 0
—=—4+v-V (1.37¢)
dt 0t

describes the rate of change as measured by somebody who moves locally with
the fluid (i.e., with velocity v). This is sometimes called the fluid’s advective time
derivative or convective time derivative or material derivative.
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(d) Show that the fluid’s law of mass conservation (1.37b) can be rewritten as
1d
~4P_ _y.y, (1.37d)
p dt

which says that the divergence of the fluid’s velocity field is minus the fractional
rate of change of its density, as measured in the fluid’s local rest frame.

(e) Show that the differential law of momentum conservation (1.36) for the fluid can

be written as
dv_ VP
dr o
This is called the fluid’s Euler equation. Explain why this Euler equation is New-

(1.37¢)

ton’s second law of motion, F = ma, written on a per unit mass basis.

In Part V of this book, we use Egs. (1.37) to study the dynamical behaviors of fluids.
For many applications, the Euler equation will need to be augmented by the force per
unit mass exerted by the fluid’s internal viscosity.

Exercise 1.14 **Problem: Electromagnetic Stress Tensor

(a) An electric field E exerts (in SI units) a pressure €,E*/2 orthogonal to itself and
a tension of this same magnitude along itself. Similarly, a magnetic field B exerts
a pressure B?/2u, = €,c*B?/2 orthogonal to itself and a tension of this same
magnitude along itself. Verify that the following stress tensor embodies these
stresses:

T= %0 [(E2 + B9 —2EQE+ B ® B)]. (1.38)

(b) Consider an electromagnetic field interacting with a material that has a
charge density p, and a current density j. Compute the divergence of the electro-
magnetic stress tensor (1.38) and evaluate the derivatives using Maxwell’s
equations. Show that the result is the negative of the force density that the
electromagnetic field exerts on the material. Use momentum conservation to
explain why this has to be so.

1.10 Geometrized Units and Relativistic Particles for Newtonian Readers

Readers who are skipping the relativistic parts of this book will need to know two
important pieces of relativity: (i) geometrized units and (ii) the relativistic energy and
momentum of a moving particle.

1101 Geometrized Units

The speed of light is independent of one’s reference frame (i.e., independent of how
fast one moves). This is a fundamental tenet of special relativity, and in the era before
1983, when the meter and the second were defined independently, it was tested and

110 Geometrized Units and Relativistic Particles for Newtonian Readers
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confirmed experimentally with very high precision. By 1983, this constancy had
become so universally accepted that it was used to redefine the meter (which is hard
to measure precisely) in terms of the second (which is much easier to measure with
modern technology).!! The meter is now related to the second in such a way that the
speed of light is precisely ¢ = 299,792,458 m s~ (i.e., 1 meter is the distance traveled
by light in 1/299,792,458 seconds). Because of this constancy of the light speed, it is
permissible when studying special relativity to set ¢ to unity. Doing so is equivalent
to the relationship

€=2.99792458 x 108 ms =1 (1.39)
between seconds and centimeters; i.e., equivalent to
1s=2.99792458 x 10% m. (1.39b)

We refer to units in which ¢ = 1as geometrized units, and we adopt them through-
out this book when dealing with relativistic physics, since they make equations look
much simpler. Occasionally it will be useful to restore the factors of ¢ to an equation,
thereby converting it to ordinary (SI or cgs) units. This restoration is achieved easily
using dimensional considerations. For example, the equivalence of mass m and rela-
tivistic energy £ is written in geometrized units as £ = m. In ST units £ has dimensions
of joule = kg m? s=2, while m has dimensions of kg, so to make £ = m dimensionally
22

correct we must multiply the right side by a power of ¢ that has dimensions m*s™

(i.e., by c); thereby we obtain £ = mc?.

110.2 Energy and Momentum of a Moving Particle

A particle with rest mass m, moving with velocity v = dx/dt and speed v = |v|, hasa
relativistic energy £ (including its rest mass), relativistic kinetic energy E (excluding
its rest mass), and relativistic momentum p given by

m__ = n =FE+m p=&v= my
Vi—? o 1= )

so| & =/m?+ p>.

In the low-velocity (Newtonian) limit, the energy E with rest mass removed (kinetic

E =

(1.40)

energy) and the momentum p take their familiar Newtonian forms:

2

1
Whenv<«c=1, E — Emv and p — mv. (1.41)

11. The second is defined as the duration of 9,192,631,770 periods of the radiation produced by a certain
hyperfine transition in the ground state of a 133Cs atom that is at rest in empty space. Today (2016)
all fundamental physical units except mass units (e.g., the kilogram) are defined similarly in terms of
fundamental constants of Nature.
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A particle with zero rest mass (a photon or a graviton)!? always moves with the speed
oflight v = ¢ = 1, and like other particles it has momentum p = £v, so the magnitude
of its momentum is equal to its energy: |p| = Ev=Ec = €.

When particles interact (e.g., in chemical reactions, nuclear reactions, and
elementary-particle collisions) the sum of the particle energies £ is conserved, as
is the sum of the particle momenta p.

For further details and explanations, see Chap. 2.

Exercise 1.15 Practice: Geometrized Units
Convert the following equations from the geometrized units in which they are written
to SI units.

(a) The “Planck time” 7p expressed in terms of Newton’s gravitation constant G and
Planck’s reduced constant %, tp = +/Gh. What is the numerical value of 7p in
seconds? in meters?

(b) The energy £ = 2m obtained from the annihilation of an electron and a positron,
each with rest mass m.

(¢c) The Lorentz force law mdv/dt = e(E 4+ v x B).

(d) The expression p = hwn for the momentum p of a photon in terms of its angular
frequency w and direction n of propagation.

How tall are you, in seconds? How old are you, in meters?

Bibliographic Note

Most of the concepts developed in this chapter are treated, though from rather dif-
ferent viewpoints, in intermediate and advanced textbooks on classical mechanics
or electrodynamics, such as Marion and Thornton (1995); Jackson (1999); Griffiths
(1999); Goldstein, Poole, and Safko (2002).

Landau and Lifshitz’s (1976) advanced text Mechanics is famous for its concise
and precise formulations; it lays heavy emphasis on symmetry principles and their
implications. A similar approach is followed in the next volume in their Course of
Theoretical Physics series, The Classical Theory of Fields (Landau and Lifshitz, 1975),
which is rooted in special relativity and goes on to cover general relativity. We refer
to other volumes in this remarkable series in subsequent chapters.

The three-volume Feynman Lectures on Physics (Feynman, Leighton, and Sands,
2013) had a big influence on several generations of physicists, and even more so on
their teachers. Both of us (Blandford and Thorne) are immensely indebted to Richard
Feynman for shaping our own approaches to physics. His insights on the foundations

12. We do not know for sure that photons and gravitons are massless, but the laws of physics as currently
understood require them to be massless, and there are tight experimental limits on their rest masses.
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of classical physics and its relationship to quantum mechanics, and on calculational
techniques, are as relevant today as in 1963, when his course was first delivered.

The geometric viewpoint on the laws of physics, which we present and advocate
in this chapter, is not common (but it should be because of its great power). For ex-
ample, the vast majority of mechanics and electrodynamics textbooks, including all
those listed above, define a tensor as a matrix-like entity whose components trans-
form under rotations in the manner described by Eq. (1.13b). This is a complicated
definition that hides the great simplicity of a tensor as nothing more than a linear
function of vectors; it obscures thinking about tensors geometrically, without the aid
of any coordinate system or basis.

The geometric viewpoint comes to the physics community from mathematicians,
largely by way of relativity theory. By now, most relativity textbooks espouse it. See the
Bibliographic Note to Chap. 2. Fortunately, this viewpoint is gradually seeping into
the nonrelativistic physics curriculum (e.g., Kleppner and Kolenkow, 2013). We hope
this chapter will accelerate that seepage.
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