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3 Stellar Physics 

In this chapter, we obtain a physical understanding of main-sequence stars and of their 
properties, as outlined in the previous chapter. The Sun is the nearest and best-studied 

star, and its properties provide useful standards to which other stars can be compared. 
For reference, let us summarize the measured parameters of the Sun. The Earth–Sun 

distance is 

d� = 1.5 × 108 km = 1 AU. (3.1) 

The mass of the Sun is 

M� = 2.0 × 1033 g. (3.2) 

The radius of the Sun is 

r� = 7.0 × 1010 cm. (3.3) 

Using the mass and the radius, we can find the mean density of the Sun, 

M� 3 × 2 × 1033 g
ρ̄ = 4 πR3 

= 
4π × (7 × 1010 cm)3 

= 1.4 g cm−3. (3.4) 
3 � 

The Sun’s mean density is thus not too different from that of liquid water. The bolometric 

Solar luminosity is 

L� = 3.8 × 1033 erg s−1. (3.5) 

When divided by 4πd2 �, this gives the Solar flux above the Earth’s atmosphere, sometimes 

called the solar constant: 

f� = 1.4 × 106 erg s−1 cm−2 = 1.4 kW m−2. (3.6) 

The effective surface temperature is 

TE� = 5800 K. (3.7) 
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From Wien’s law (Eq. 2.16), the typical energy of a solar photon is then 1.4 eV. When the 

energy flux is divided by this photon energy, the photon flux is 

f�,ph ≈ 
1.4 × 106 erg s−1 cm−2 

= 6.3 × 1017 s−1 cm−2 (3.8)
1.4 eV × 1.6 × 10−12 erg eV−1 

(where we have converted between energy units using 1 eV = 1.6 × 10−12 erg). 
From radioactive dating of Solar System bodies, the Sun’s age is about 

t� = 4.5 × 109 yr. (3.9) 

Finally, from a solution of the stellar models that we will develop, the central density and 

temperature of the Sun are 

ρc = 150 g cm−3, (3.10) 

Tc = 15 × 106K. (3.11) 

3.1 Hydrostatic Equilibrium and the Virial Theorem 

A star is a sphere of gas that is held together by its self gravity, and is balanced against 
collapse by pressure gradients. To see this, let us calculate the free-fall timescale of the 

Sun, i.e., the time it would take to collapse to a point, if there were no pressure support. 
Consider a mass element dm at rest in the Sun at a radius r0. Its potential energy is 

GM(r0)dm 
dU = −  , (3.12) 

r0 

where M(r0) is the mass interior to r0. From conservation of energy, the velocity of the 

element as it falls toward the center is 

1 
� 

dr 
�2 GM(r0) GM(r0)= − , (3.13)

2 dt r r0 

where we have assumed that the amount of (also-falling) mass interior to r0 remains 

constant. Separating the variables and integrating, we find 

� � 0 � � ��−1/2τff 1 1 
τff = dt = − 2GM(r0) − dr 

0 r0 
r r0 

� 3 �1/2 � 1 � �1/2 

= r0 x 
dx. (3.14) 

2GM(r0) 0 1 − x 

The definite integral on the right equals π/2, and the ratio M(r0)/r0
3, up to a factor 4π/3, 

is the mean density ρ̄, so  

� �1/23π 
τff = . (3.15)

32Gρ̄
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Figure 3.1 Hydrostatic equilibrium. The gravitational force Fgr on a mass element 
of cross-sectional area A is balanced by the force AdP due to the pressure difference 
between the top and the bottom of the mass element. 

For the parameters of the Sun, we obtain 

� �1/23π 
τff � = = 1800 s. (3.16)

32 × 6.7 × 10−8 cgs × 1.4 g cm−3 

Thus, without pressure support, the Sun would collapse to a point within half an hour. 
This has not happened because the Sun is in hydrostatic equilibrium. Consider now a 

small, cylinder-shaped mass element inside a star, with A the area of the cylinder’s base, 
and dr its height (see Fig. 3.1). If there is a pressure difference dP between the top of the 

cylinder and its bottom, this will lead to a net force Adp on the mass element, in addition 

to the force of gravity toward the center. Equilibrium will exist if 

GM(r)dm − 
r2 

− AdP = 0. (3.17) 

But 

dm = ρ(r)Adr , (3.18) 

which leads us to the first equation of stellar structure, the equation of hydrostatic equi
librium: 

dP(r) GM(r)ρ(r)= −  . (3.19)
dr r2 

Naturally, the pressure gradient is negative, because to counteract gravity, the pressure 

must decrease outward (i.e., with increasing radius.) 
This simple equation, combined with some thermodynamics, can already provide 

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate from 

r = 0 to  r∗, the outer radius of the star: 

r∗ 
3 dP r∗ GM(r)ρ(r)4πr2dr 

4πr dr = − . (3.20) 
0 dr 0 r 
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The right-hand side, in the form we have written it, is seen to be the energy that would 

be gained in constructing the star from the inside out, bringing from infinity shell by 

shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the gravitational potential 
self-energy of the star, Egr. On the left side, integration by parts gives 

r∗ 
r∗[P(r)4πr3] − 3 

� 
P(r)4πr2dr . (3.21)0 

0 

We will define the surface of the star as the radius at which the pressure goes to zero. The 

first term is therefore zero. The second term is seen to be −3 times the volume-averaged 

pressure, P̄, up to division by the volume V of the star. Equating the two sides, we 

obtain 

P̄ = −  
1 Egr 

. (3.22)
3 V 

In words, the mean pressure in a star equals minus one-third of its gravitational energy 

density. Equation 3.22 is one form of the so-called virial theorem for a gravitationally bound 

system. 
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-atomic, 

nonrelativistic, ideal gas of N identical particles.1 At every point in the star the gas equation 

of state is 

PV = NkT , (3.23) 

and its thermal energy is 

Eth = 3
2 NkT . (3.24) 

Thus, 

2 Eth
P = , (3.25)

3 V 

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both sides 

by 4πr2 and integrating over the volume of the star, we find that 

¯ = 2 E tot (3.26)PV 3 th , 

with E tot the total thermal energy of the star. Substituting from Eq. 3.22, we obtain th 

Egr
E tot = −  , (3.27)th 2 

1 Classical means that the typical separations between particles are larger than the de Broglie wavelengths of 
the particles, λ = h/p, where p is the momentum. Nonrelativistic means that the particle velocities obey v � c . An  
ideal gas is defined as a gas in which particles experience only short-range (compared to their typical separations) 
interactions with each other—billiard balls on a pool table are the usual analog. 
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which is another form of the virial theorem. Equation 3.22 says that when a star contracts 

and loses energy, i.e., its gravitational self-energy becomes more negative, then its thermal 
energy rises. This means that stars have negative heat capacity—their temperatures rise 

when they lose energy. As we will see, this remarkable fact is at the crux of all of stellar 
evolution. 

A third form of the virial theorem is obtained by considering the total energy of a star, 
both gravitational and thermal, 

= E tot = −E tot Egr
E total th + Egr th = . (3.28)

2 

Thus, the total energy of a star that is composed of a classical, nonrelativistic, ideal gas 

is negative, meaning the star is bound. (To see what happens in the case of a relativistic 

gas, solve Problem 1.) Since all stars constantly radiate away their energy (and hence 

Etotal becomes more negative), they are doomed to collapse (Egr becomes more negative), 
eventually. We will see in chapter 4 that an exception to this occurs when the stellar gas 

moves from the classical to the quantum regime. 
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature inside a 

star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for a choice of ρ(r). 
For example, for a constant density profile, ρ = const., 

r∗ GM(r)ρ(r)4πr2dr r∗ G 43 
π r3ρ24πr2dr 3 GM∗ 

2 

Egr = − = − = −  . (3.29) 
0 r 0 r 5 r∗ 

A density profile, ρ(r), that falls with radius will give a somewhat more negative value of Egr. 
Taking a characteristic Egr ∼ −GM2/r , we find that the mean pressure in the Sun is 

1 GM2 GM2 

P̄� ∼ � = � ≈ 1015 dyne cm−2 = 109atm. (3.30)
3 4 πr3 4πr4


3 �r� �


To find a typical temperature, which we will call the virial temperature, let us assume 

again a classical nonrelativistic ideal gas, with particles of mean mass m̄. Equation 3.27 

then applies, and 

3 1 GM2 1 GM�Nm̄
NkTvir ∼ � = . (3.31)

2 2 r� 2 r� 

The mass of an electron is negligibly small, only ≈1/2000 compared to the mass of a proton. 
For an ionized hydrogen gas, consisting of an equal number of protons and electrons, the 

mean mass m̄, 

me + mp mH 
m̄ = = , (3.32)

2 2 

is therefore close to one-half the mass of the proton or exactly one-half of the hydrogen 

atom, mH = 1.7 × 10−24 g. The typical thermal energy is then 
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GM�mH 6.7 × 10−8 cgs × 2 × 1033 g × 1.7 × 10−24 g
kTvir ∼ = 

6r� 6 × 7 × 1010 cm 

= 5.4 × 10−10 erg = 0.34 keV. (3.33) 

With k = 1.4 × 10−16 erg K−1 = 8.6 × 10−5 eV K−1, this gives a virial temperature of about 
4 × 106 K. As we will see, at temperatures of this order of magnitude, nuclear reactions 

can take place, and thus replenish the thermal energy that the star radiates away, halting 

the gravitational collapse (if only temporarily). 
Of course, in reality, just like P(r), the density ρ(r) and the temperature T (r) are also 

functions of radius and they grow toward the center of a star. To find them, we need to 

define additional equations. We will see that the equation of hydrostatic equilibrium is 

one of four coupled differential equations that determine stellar structure. 

3.2 Mass Continuity 

In the hydrostatic equilibrium equation (Eq. 3.19), we have M(r) and ρ(r), which are easily 

related to each other: 

dM(r) = ρ(r)4πr2dr , (3.34) 

or 

dM(r) 2= 4πr ρ(r). (3.35)
dr 

Although this is, in essence, merely the definition of density, in the context of stellar 
structure this equation is often referred to as the equation of mass continuity or the 

equation of mass conservation. 

3.3 Radiative Energy Transport 

The radial gradient in P(r) that supports a star is produced by a gradient in ρ(r) and T (r). 
In much of the volume of most stars, T (r) is determined by the rate at which radiative 

energy flows in and out through every radius, i.e., the luminosity L(r). To find the equation 

that determines T (r), we need to study some of the basics of radiative transfer, the passage 

of radiation through matter. In some of the volume of some stars, the energy transport 
mechanism that dominates is convection, rather than radiative transport. We discuss con
vection is section 3.12. Energy transport by means of conduction plays a role only in dense 

stellar remnants—white dwarfs and neutron stars—which are discussed in chapter 4. 
Photons in stars can be absorbed or scattered out of a beam via interactions with 

molecules, with atoms (either neutral or ions), and with electrons. If a photon traverses a 
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Figure 3.2 A volume element in a field of targets as viewed in perspective (left). 
The target number density is n, and each target presents a cross section σ . From 
the base of the cylindrical volume, ndx targets per unit area are seen in projection 
(right). A straight line along the length of the volume will therefore intercept, on 
average, nσdx targets. 

path dx filled with “targets” with a number density n (i.e., the number of targets per unit 
volume), then the projected number of targets per unit area lying in the path of the photon 

is ndx (see Fig. 3.2). If each target poses an effective cross section2 σ for absorption or 
scattering, then the fraction of the area covered by targets is σndx. Thus, the number of 
targets that will typically be intersected by a straight line traversing the path dx, or, in other 
words, the number of interactions the photon undergoes, will be 

# of interactions = nσdx. (3.36) 

Equation 3.36 defines the concept of cross section. (Cross section can be defined equiva
lently as the ratio between the interaction rate per target particle and the incoming flux of 
projectiles.) Setting the left-hand side equal to 1, the typical distance a photon will travel 
between interactions is called the mean free path: 

1 
l = . (3.37) 

nσ 

More generally, the stellar matter will consist of a variety of absorbers and scatterers, each 

with its own density ni and cross section σi. Thus, 

1 1 
l = � ≡ , (3.38) 

niσi ρκ 

where we have used the fact that all the particle densities will be proportional to the mass 

density ρ, to define the opacity κ . The opacity obviously has cgs units of cm2 g−1, and will 
depend on the local density, temperature, and element abundance. 

We will return later to the various processes that produce opacity. However, to get 
an idea of the magnitude of the scattering process, let us consider one of the important 
interactions—Thomson scattering of photons on free electrons (see Fig. 3.3). 

2 The cross section of a particle, which has units of area, quantifies the degree to which the particle is liable 
to take part in a particular interaction (e.g., a collision or a reaction) with some other particle. 
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Figure 3.3 Thomson scattering of a photon on a free electron. 

The Thomson cross section is 

8π
� 

e2 �2 

σT = = 6.7 × 10−25 cm2. (3.39)
3 mec2 

It is independent of temperature and photon energy.3 In the hot interiors of stars, the gas is 

fully ionized and therefore free electrons are abundant. If we approximate, for simplicity, 
that the gas is all hydrogen, then there is one electron per atom of mass mH , and 

ρ 
ne ≈ . (3.40) 

mH 

The mean free path for electron scattering is then 

1 mH 1.7 × 10−24 g
les = ≈ ≈ ≈ 2 cm, (3.41) 

neσT ρ σT 1.4 g cm−3 × 6.7 × 10−25 cm2 

where we have used the mean mass density of the Sun calculated previously. In reality, 
the density of the Sun is higher than average in regions where electron scattering is the 

dominant source of opacity, while in other regions other processes, apart from electron 

scattering, are important. As a result, the actual typical photon mean free path is even 

smaller, and is l ≈ 1 mm. 
Thus, photons can travel only a tiny distance inside the Sun before being scattered 

or absorbed and reemitted in a new direction. Since the new direction is random, the 

emergence of photons from the Sun is necessarily a random walk process. The vector D 

describing the change in position of a photon after N steps, each described by a vector li 
having length l and random orientation (see Fig. 3.4), is 

D = l1 + l2 + l3 + · · · + lN . (3.42) 

The square of the linear distance covered is 

D2 = |l1|2 + |l2|2 + · · · + |lN |2 + 2(l1 · l2 + l1 · l3 + · · ·  ), (3.43) 

and its expectation value is 

〈D2〉 = Nl2. (3.44) 

3 Note the inverse square dependence of the Thomson cross section on the electron mass. For this reason, 
protons and nuclei, which are much heavier, are much less effective photon scatterers. Similarly, the relevant 
mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons pose a very small 
Thomson scattering cross section. 
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Figure 3.4 The net advance of a photon performing a random walk consisting of N 
steps, each decribed by a vector li , is the vector D. 

The expectation value of the term in parentheses in Eq. 3.43 is zero because it is a sum 

over many vector dot products, each with a random angle, and hence with both positive 

and negative cosines contributing equally. The linear distance covered in a random walk 

is therefore 
√ 〈D2〉1/2 = D = N l. (3.45) 

To gain some intuition, it is instructive to calculate how long it takes a photon to travel 
from the center of the Sun, where most of the energy is produced, to the surface.4 From 

Eq. 3.45, traveling a distance r� will require N = r�2 /l2 steps in the random walk. Each 

step requires a time l/c. Thus, the total time for the photon to emerge from the Sun is 

l r� 
2 r� 

2 (7 × 1010 cm)2 

τrw ≈ = = 
c l2 lc 10−1 cm × 3 × 1010 cm s−1 

= 1.6 × 1012 s = 52, 000 yr. (3.46) 

Thus, if the nuclear reactions powering the Sun were to suddenly switch off, we would 

not notice5 anything unusual for 50,000 years. 
With this background, we can now derive the equation that relates the temperature 

profile, T (r), to the flow of radiative energy through a star. The small mean free path of 
photons inside the Sun and the very numerous scatterings, absorptions, and reemissions 

every photon undergoes reaffirms that locally, every volume element inside the Sun radi
ates as a blackbody to a very good approximation. However, there is a net flow of radiation 

energy outwards, meaning there is some small anisotropy (a preferred direction), and 

4 In reality, of course, it is not the same photon that travels this path. In every interaction, the photon can 
transfer energy to the particle it scatters on, or distribute its original energy among several photons that emerge 
from the interaction. Hence, the photon energy is strongly “degraded” during the passage through the Sun. 

5 In fact, even then, nothing dramatic would happen. As we will see in section 3.9, a slow contraction of the 
Sun would begin, with a timescale of ∼107 yr. Over ∼105 yr, the solar radius would only shrink by ∼1%, which 
is small but discernible. 
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Figure 3.5 Radiative diffusion of energy between volume shells in a star, driven by 
the gradient in the thermal energy density. 

implying there is a higher energy density, at smaller radii than at larger radii. The net 
flow of radiation energy through a mass shell at radius r , per unit time, is just L(r) (see 

Fig. 3.5). This must equal the excess energy in the shell, compared to a shell at larger 
radius, divided by the time it takes this excess energy to flow across the shell’s width �r . 
The excess energy density is �u, which multiplied by the shell’s volume gives the total 
excess energy of the shell, 4πr2�r�u. The time for the photons to cross the shell in a 

random walk is (�r)2/lc. Thus, 

4πr2�r�u �u 
L(r) ≈ −  = −4πr2lc . (3.47)

(�r)2/lc �r 

A more rigorous derivation of this equation adds a factor 1/3 on the right-hand side, 
which comes about from an integration of cos2 θ over a solid angle (see the derivation of 
the equation of radiation pressure, Eq. 3.74, below). Including this factor and replacing 

the differences with differentials, we obtain 

L(r) cl du = −  . (3.48)
4πr2 3 dr 

Note that this is, in effect, a diffusion equation, describing the outward flow of energy. The 

left-hand side is the energy flux. On the right-hand side, du/dr is the gradient in energy 

density, and −cl/3 is a diffusion coefficient that sets the proportionality relating the energy 

flow and the energy density gradient. The opacity, as reflected in the mean free path l, 
controls the flow of radiation through the star. For low opacity (large l), the flow will be 

relatively unobstructed, and hence the luminosity will be high, and vice versa. 
Since at every radius the energy density is close to that of blackbody radiation, then 

(Eq. 2.9) 

u = aT 4, (3.49) 

and 

du 

dr 
= 

du 

dT 

dT 

dr 
= 4aT 3 dT 

dr 
. (3.50) 

Substituting in Eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of radiative 

energy transport, 
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dT (r) 3L(r)κ(r)ρ(r)= −  . (3.51)
dr 4πr24acT 3(r) 

From Eqs. 3.48 and 3.49, together with an estimate of the mean free path, we can make 

an order-of-magnitude prediction of the Sun’s luminosity. Approximating −du/dr with 

∼u/r� = aT 4/r�, we have 

cl aT 4 

L� ∼ 4πr� 
2 . (3.52)

3 r� 

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33 

an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a typical 
temperature and taking l = 0.1 cm, we find 

L� ∼ 
4π 

7 × 1010 cm × 3 × 1010 cm s−1 × 10−1 × 7.6 × 10−15 cgs × (4 × 106 K)4 

3 
= 2 × 1033 ergs−1, (3.53) 

in reasonable agreement with the observed solar luminosity, L� = 3.8 × 1033 ergs−1. (We 

have abbreviated above the units of the radiation constant, a, as cgs.) The above estimate 

can also be used to argue that, based on its observed luminosity, the Sun must be composed 

primarily of ionized hydrogen. If the Sun were composed of, say, ionized carbon, the mean 

particle mass would be m̄ ≈ 12mH /7 ≈ 2mH , rather than mH /2. Equation 3.33 would then 

give a virial temperature that is 4 times as high, resulting in a luminosity prediction in 

Eq. 3.52 that is too high by two orders of magnitude. 

3.4 Energy Conservation 

We will see that the luminosity of a star is produced by nuclear reactions, with output 
energies that depend on the local conditions (density and temperature) and hence on 

r . Let us define ε(r) as the power produced per unit mass of stellar material. Energy 

conservation means that the addition to a star’s luminosity due to the energy production 

in a thin shell at radius r is 

dL = εdm = ερ4πr2dr , (3.54) 

or 

dL(r) 2= 4πr ρ(r)ε(r), (3.55)
dr 

which is the equation of energy conservation. 
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3.5 The Equations of Stellar Structure 

We have derived four coupled first-order differential equations describing stellar structure. 
Let us rewrite them here: 

dP(r) 

dr 
= −  

GM(r)ρ(r) 

r2 
, (3.56) 

dM(r) 

dr 
= 4πr2ρ(r), (3.57) 

dT (r) 

dr 
= −  

3L(r)κ(r)ρ(r) 

4πr24acT (r)3 
, (3.58) 

dL(r) 

dr 
= 4πr2ρ(r)ε(r). (3.59) 

We can define four boundary conditions for these equations, for example, 

M(r = 0) = 0, (3.60) 

L(r = 0) = 0, (3.61) 

P(r = r∗) = 0, (3.62) 

M(r = r∗) = M∗, (3.63) 

where M∗ is the total mass of the star. (In reality, at the radius r∗ of the photosphere of 
the star, P does not really go completely to zero, nor do T and ρ, and more sophisticated 

boundary conditions are required, which account for the processes in the photosphere.) 
To these four differential equations we need to add three equations connecting the pres

sure, the opacity, and the energy production rate of the gas with its density, temperature, 
and composition: 

P = P(ρ, T , composition), (3.64) 

κ = κ(ρ, T , composition), (3.65) 

ε = ε(ρ, T , composition). (3.66) 

P(ρ, T ) is usually called the equation of state. Each of these three functions will depend 

on the composition through the element abundances and the ionization states of each 

element in the gas. It is common in astronomy to parametrize the mass abundances of 
hydrogen, helium, and the heavier elements (the latter are often referred to collectively by 

the term “metals”) as 

ρH ρHe ρmetals
X ≡ , Y ≡ , Z ≡ . (3.67)

ρ ρ ρ 

We have thus ended up with seven coupled equations defining the seven unknown 

functions: P(r), M(r), ρ(r), T (r), κ(r), L(r), and ε(r). As there are four boundary conditions 
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for the four first-order differential equations, if there is a solution, it is unique. This is 

usually expressed in the form of the Vogt-Russell conjecture, which states that the properties 

and evolution of an isolated star are fully determined by its initial mass and its chemical 
abundances. These determine the star’s observable parameters: its surface temperature, 
radius, and luminosity. Two variables that we have neglected in this treatment, and that 
have minor influence on stellar structure, are stellar rotation and magnetic fields. To 

proceed, we need to define the three functions, P, κ , and ε. 

3.6 The Equation of State 

Different equations of state P(ρ, T , X , Y , Z) apply for different ranges of gas density, tem
perature, and abundance. Under the conditions in most normal stars, the equation of state 

of a classical, nonrelativistic, ideal gas, provides a good description. Consider, for example, 
such a gas, composed of three different kinds of particles, each with its own mass mi and 

density ni. The mean particle mass will be 

n1m1 + n2m2 + n3m3 ρ 
m̄ = = . (3.68) 

n1 + n2 + n3 n 

The gas pressure will then be 

ρ 
Pg = nkT = kT . (3.69) 

m̄

The mean mass will depend on the chemical abundance and ionization state of the gas. 
As we have already seen, for completely ionized pure hydrogen, 

m̄ = 
mH , (3.70)
2 

and therefore m̄/mH = 0.5. 
More generally, the number densities of hydrogen, helium, or an element of atomic 

mass number A (i.e., an element with a total of A protons and neutrons in each atomic 

nucleus) will be 

X ρ Y ρ ZAρ 
nH = , nHe = , nA = , (3.71) 

mH 4mH AmH 

where ZA is the mass abundance of an element of atomic mass number A. Complete 

ionization of hydrogen results in two particles (an electron and a proton); of helium, three 

particles (two electrons and a nucleus); and of an atom with atomic number Z (i.e., with 

Z protons or electrons), Z + 1 particles, which for heavy enough atoms is always close to 

A/2. Thus, for an ionized gas we will have 

� A 
� �

ρ 3 1 
n = 2nH + 3nHe + nA = 2X + Y + Z

2 mH 4 2 
ρ 

�
Y 

�
= 3X + + 1 , (3.72)

2mH 2 
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody 
intensity B strikes the wall of a container at an angle θ to its perpendicular. The 
projected area of the beam, dA, is increased by 1/cos θ , and therefore the power 
reaching the wall per unit area is decreased to B cos θ . Since a photon’s momen
tum, p, is its energy divided by c, the momentum flux in the beam is B/c. Every 
reflection of a photon transfers twice its perpendicular component of momentum, 
and therefore the momentum transfer per unit time and per unit area, i.e., the 
pressure, is 2B cos2 θ/c. The total pressure is obtained by integrating over all angles 
of the beams that approach the wall. 

where we have used the fact that X + Y + Z = 1. Thus, 

m̄ ρ 2 = = (3.73) 
mH nmH 1 + 3X + 0.5Y 

for a totally ionized gas. For solar abundances, X = 0.71, Y = 0.27, Z = 0.02, and therefore 

m̄/mH = 0.61. In the central regions of the Sun, about half of the hydrogen has already 

been converted into helium by nuclear reactions, and as a result X = 0.34, Y = 0.64, and 

Z = 0.02, giving m̄/mH = 0.85. 
In addition to the kinetic gas pressure, the photons in a star exert radiation pressure. 

Let us digress briefly, and derive the equation of state for this kind of pressure. Consider 
photons inside a blackbody radiator with an intensity given by the Planck function, Iν = Bν , 
which, when integrated over wavelength, we denoted as B. As illustrated in Fig. 3.6, the 

energy arriving at the surface of the radiator per unit time, per unit area, at some angle 

θ to the perpendicular to the surface, is B cos θ , because the area of the beam, when 

projected onto the wall of the radiator, is increased by 1/cos θ . Now, consider the photons 

in the beam, which strike the fully reflective surface of the radiator at the angle θ . Every 

photon of energy E has momentum p = E/c. When reflected, it transmits to the surface 

a momentum �p = (2E/c) cos θ . Therefore, there is a second factor of cos θ that must 
be applied to the incoming beam. The rate of momentum tranfer per unit area will be 

obtained by integrating over all angles at which the photons hit the surface. But, the rate 

of momentum transfer (i.e., the force) per unit area is, by definition, the pressure. Thus, 

F dp/dt 2 
� π 

2 4π 1 
P = = = B cos θ sin θdθdφ = B = u, (3.74) 

A A c π/2 3c 3 

where in the last equality we have used the previously found relation (Eq. 2.4) between 

intensity and energy density. Note that the derivation above applies not only to photons, 
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits 
bremsstrahlung, or “free–free” radiation. Right: In the inverse process of free–free 
absorption, a photon is absorbed by a free electron. The process is possible only if 
a neighboring ion, which can share some of the photon’s momentum, is present. 

but to any particles with an isotropic velocity distribution, and with kinetic energies large 

compared to their rest-mass energies, so that the relation p ≈ E/c (which is exact for 
photons) is a good approximation. Thus, the equation of state in which the radiation 

pressure equals one-third of the thermal energy density holds for any ultrarelativistic gas. 
Returning to the case of the pressure due to a thermal photon gas inside a star, we can 

write 

Prad = 3
1 u = 3

1 aT 4, (3.75) 

which under some circumstances can become important or dominant (see Problems 2 

and 3). The full equation of state for normal stars will therefore be 

P = Pg + Prad = 
ρkT + 

1 
aT 4. (3.76) 

m̄ 3 

We will see in chapter 4 that the conditions in white dwarfs and in neutron stars dictate 

equations of state that are very different from this form. 

3.7 Opacity 

Like the equation of state, the opacity, κ , at every radius in the star will depend on the 

density, the temperature, and the chemical composition at that radius. We have already 

mentioned one important source of opacity, Thomson scattering of photons off free elec
trons. Let us now calculate correctly the electron density for an ionized gas of arbitrary 

abundance (rather than pure hydrogen, as before): 

� A ρ 
�

2 1 
� 

ρ 
ne = nH + 2nHe + nA = X + Y + Z = (1 + X ), (3.77)

2 mH 4 2 2mH 

where we have again assumed that the number of electrons in an atom of mass number 
A is A/2. Therefore, 

κes = 
ne

ρ

σT = 
2

σ

m
T

H 
(1 + X ) = (1 + X ) 0.2 cm2 g−1. (3.78) 
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In regions of a star with relatively low temperatures, such that some or all of the elec
trons are still bound to their atoms, three additional processes that are important sources of 
opacity are bound–bound, bound–free (also called photoionization), and free–free absorp
tion. In bound–bound and bound–free absorption, which we have already discussed in the 

context of photospheric absorption features, an atom or ion is excited to a higher energy 

level, or ionized to a higher degree of ionization, by absorbing a photon. Free–free absorp
tion is the inverse process of free–free emission, often called bremsstrahlung (“braking 

radiation” in German). In free–free emission (see Fig. 3.7), a free electron is accelerated 

by the electric potential of an ion, and as a result radiates. Thus, in free–free absorption, a 

photon is absorbed by a free electron and an ion, which share the photon’s momentum and 

energy. All three processes depend on photon wavelength, in addition to gas temperature, 
density, and composition. 

When averaged over all wavelengths, the mean opacity due to both bound–free absorption 

and free–free absorption behave approximately as 
ρ 

κ̄bf ,ff ∼ 
T 3.5 

, (3.79) 

which is called a Kramers opacity law. This behavior holds only over limited ranges in 

temperature and density. For example, free–free absorption actually increases with temper
ature at low temperature and density, with the increase in free electron density. Similarly, 
bound–free opacity cuts off at high temperatures at which the atoms are fully ionized. 
Additional sources of opacity, significant especially in low-mass stars, are molecules and 

H− ions.6 

3.8 Scaling Relations on the Main Sequence 

From the equations we have derived so far, we can already deduce and understand the 

observed functional forms of the mass–luminosity relation, L ∼ Mα , and the effective-
temperature–luminosity relation, L ∼ TE 

8, that are observed for main sequence stars. Let us 

assume, for simplicity, that the functions P(r), M(r), ρ(r), and T (r) are roughly power laws, 
i.e., P(r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can immediately write the first three differential 
equations (Eqs. 3.56, 3.57, and 3.58) as scaling relations, 

Mρ 
P ∼ , (3.80) 

r 

M ∼ r3ρ, (3.81) 

and 

T 4r 
L ∼ (3.82)

κρ 

6 The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen atom. 
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(just as, instead of solving a differential equation, say, df /dx = x4, we can write directly 

f ∼ x5). For moderately massive stars, the pressure will be dominated by the kinetic gas 

pressure, and the opacity by electron scattering. Therefore, 

P ∼ ρT (3.83) 

and (Eq. 3.78) 

κ = const. (3.84) 

Equating 3.80 and 3.83, we find 

M 
T ∼ (3.85) 

r 

(which is basically just the virial theorem again, for a nonrelativistic, classical, ideal gas— 

Eq. 3.27). Substituting this into 3.82, and using 3.81 to express r3ρ, we find  

L ∼ M3, (3.86) 

as observed for main-sequence stars more massive than the Sun. 
Equation 3.85 also suggests that r ∼ M on the main sequence. To see this, consider a 

star that is forming from a mass M that is contracting under its own gravity and heating 

up (star formation is discussed in some detail in chapter 5). The contraction will stop, 
and an equilibrium will be set up, once the density and the temperature in the core 

are high enough for the onset of nuclear reactions. We will see that the nuclear power 
density depends mainly on temperature. Thus, for any initial mass, r will stop shrinking 

when a particular core temperature is reached. Therefore, the internal temperature T is 

comparable in all main-sequence stars (i.e, it is weakly dependent on mass, and hence 

approximately constant), and 

r ∼ M. (3.87) 

Detailed models confirm that the core temperature varies only by a factor ≈4 over a range 

of ∼100 in mass on the main sequence. With r ∼ M, we see from Eq. 3.81 that the density 

of a star decreases as M−2, so that more massive stars will have low density, and low-mass 

stars will have high density. 
Proceeding to low-mass stars, the high density means there is a dominant role for 

bound–free and free–free opacity, 

ρ 
κ ∼ 

T 3.5 
. (3.88) 

Since T ∼ const., r ∼ M, and ρ ∼ M−2, then κ ∼ ρ ∼ M−2, and Eq. 3.82 gives 

T 4r r 
L ∼ ∼ ∼ M5, (3.89)

κρ ρ2 

as seen in low-mass stars. 
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For the most massive stars, the low gas density will make radiation pressure dominant 
in the equation of state (see Problem 3), 

P ∼ T 4, (3.90) 

and electron scattering, with κ = const., will again be the main source of opacity. Equating 

with 3.80 and substituting for T 4 in Eq. 3.82, we find 

L ∼ M, (3.91) 

a flattening of the mass–luminosity relationship that is, in fact, observed for the most 
massive stars. 

Finally, we can also reproduce the functional dependence of the main sequence in the 

H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for moderately massive 

stars. Let us then take an intermediate slope, L ∼ M4, as representative. Since r ∼ M, then 

L M4 

σ TE 
4 = ∼ ∼ M2 ∼ L1/2, (3.92)

4πr∗ 
2 M2 

so 

L ∼ TE 
8, (3.93) 

as observed. 
We have thus seen that the mass vs. luminosity relation and the surface-temperature 

vs. luminosity relation of main-sequence stars are simply consequences of the different 
sources of pressure and opacity in stars of different masses, and of the fact that the onset 
of nuclear hydrogen burning keeps the core temperatures of all main-sequence stars in a 

narrow range. The latter fact is elucidated below. 

3.9 Nuclear Energy Production 

The last function we still need to describe is the power density ε(ρ, T , X , Y , Z). To see 

that the energy source behind ε must be nuclear burning, we consider the alternatives. 
Suppose that the source of the Sun’s energy were gravitational, i.e., that the Sun had 

radiated until now the potential energy liberated by contracting from infinity to its present 
radius. From the virial theorem, we saw that the thermal energy resulting from such a 

contraction is minus one-half the gravitational energy, 

Egr = −2Eth. (3.94) 

Therefore, the thermal energy that results from the contraction, and which the Sun can 

radiate is 

1 GM2 

Eth ∼ � . (3.95)
2 r� 

To see how long the Sun could shine at its present luminosity with this energy source, 
we divide this energy by the solar luminosity. This gives the so-called Kelvin-Helmholtz 

timescale, 
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1 GM2 1 6.7 × 10−8 cgs × (2 × 1033 g)2 

τkh ∼ � = 
2 r� L� 2 × 7 × 1010 cm × 3.8 × 1033 erg s−1 

= 5 × 1014 s = 1.6 × 107 yr. (3.96) 

The geological record shows that the Earth and Moon have existed for over 4 billion years, 
and that the Sun has been shining with about the same luminosity during all of this period. 
A similar calculation shows that chemical reactions (e.g., if the Sun were producing energy 

by combining hydrogen and oxygen into water) are also not viable for producing the solar 
luminosity for so long. 

A viable energy source for the Sun and other main-sequence stars is nuclear fusion 

of hydrogen into helium. Most of the nuclear energy of the Sun comes from a chain of 
reactions called the p-p chain. The first step is the reaction 

p + p → d + e+ + νe, (3.97) 

where d designates a deuteron, composed of a proton and a neutron. As we will see in 

section 3.10, the timescale for this process inside the Sun is 1010 yr. The timescale is so 

long mainly because the reaction proceeds via the weak interaction (as is evidenced by the 

emission of a neutrino). The positron, the deuteron, and the neutrino share an energy of 
0.425 MeV. Once the reaction occurs, the positron quickly annihilates with an electron, 
producing two 0.511-MeV γ -ray photons. The neutrino, having a weak interaction with 

matter, escapes the Sun and carries off its energy, which has a mean of 0.26 MeV. The 

remaining kinetic energy and photons quickly thermalize by means of frequent matter– 

matter and matter–photon collisions. Typically, within 1 s, the deuteron will merge with 

another proton to form 3He: 

p + d → 3He + γ , (3.98) 

with a total energy release (kinetic + the γ -ray photon) of 5.49 MeV. Finally, on a timescale 

of 300,000 years, we have 

3He + 3He → 4He + p + p, (3.99) 

with a kinetic energy release of 12.86 MeV. Every time this three-step chain occurs twice, 
four protons are converted into a 4He nucleus, two neutrinos, photons, and kinetic energy. 
The total energy released per 4He nucleus is thus 

(4 × 0.511 + 2 × 0.425 + 2 × 5.49 + 12.86) MeV = 26.73 MeV. (3.100) 

Deducting the 2 × 0.511 MeV from the annihilation of two preexisting electrons, we find 

that this is just the rest-mass difference between four free protons and a 4He nucleus: 

[m(4p) − m(4He)]c2 = 25.71 MeV = 0.7% m(4p)c2. (3.101) 

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The time for 
the Sun to radiate away just 10% of the energy available from this source is 
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0.1 × 0.007 × M�c2 

τnuc = 
L� 

0.1 × 0.007 × 2 × 1033 g × (3 × 1010 cm s−1)2 

= 
3.8 × 1033 erg s−1 

= 3.3 × 1017 s = 1010 yr. (3.102) 

In other words, in terms of energy budget, hydrogen fusion can easily produce the solar 
luminosity over the age of the Solar System. 

Next, we need to see if the conditions in the Sun are suitable for these reactions to 

actually take place. Consider two nuclei with atomic numbers (i.e., number of protons 

per nucleus) ZA and ZB. The strong interaction produces a short-range attractive force 

between the nuclei on scales smaller than 

r0 ≈ 1.4 × 10−13 cm. (3.103) 

The strong interaction goes to zero at larger distances, and the Coulomb repulsion between 

the nuclei takes over. The Coulomb energy barrier is 

ZAZBe2 

Ecoul = , (3.104) 
r 

which at r0 is of order 

Ecoul(r0) ≈ ZAZB MeV. (3.105) 

Figure 3.8 shows schematically the combined nuclear (strong) and electrostatic (Coulomb) 
potential. In the reference frame of one of the nuclei, the other nucleus, with kinetic energy 

E, can classically approach only to a distance 

ZAZBe2 

r1 = , (3.106)
E 

where it will be repelled away. At a typical internal stellar temperature of 107 K, the kinetic 

energy of a nucleus is 1.5kT ∼ 1 keV. The characteristic kinetic energy is thus of order 10−3 

of the energy required to overcome the Coulomb barrier. Typical nuclei will approach each 

other only to a separation r1 ∼ 10−10 cm, 1000 times larger than the distance at which the 

strong nuclear binding force operates. Perhaps those nuclei that are in the high-energy tail 
of the Maxwell-Boltzmann distribution can overcome the barrier? The fraction of nuclei 
with such energies is 

e−E/kT ≈ e−1000 ≈ 10−434. (3.107) 

The number of protons in the Sun is 

Np ≈ 
M� = 

2 × 1033 g ≈ 1057. (3.108) 
mH 1.7 × 10−24 g 

Thus, there is not a single nucleus in the Sun (or, for that matter, in all the stars in the 

observable Universe) with the kinetic energy required classically to overcome the Coulomb 

barrier and undergo nuclear fusion with another nucleus. 
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Figure 3.8 Schematic illustration of the potential energy V (r) between two nuclei 
as a function of separation r . For two protons, the Coulomb repulsion reaches a 
maximum, with V (r) ∼ 1 MeV at r = r0, at which point the short-range nuclear 
force sets in and binds the nuclei (negative potential energy). Two nuclei with 
relative kinetic energy of ∼1 keV, typical for the temperatures in stellar interiors, 
can classically approach each other only to within a separation r1, 1000 times greater 
than r0. The dashed rectangle is a rectangular barrier of height 〈V (r)〉 ≈ 3E/2, which 
we use to approximate the Coulomb barrier in our calculation of the probability for 
quantum tunneling through the potential. 

Fortunately, quantum tunneling through the barrier allows nuclear reactions to take 

place after all. To see this, let us describe this two-body problem by means of the time-
independent Schrödinger equation, for a wave function � in a spherically symmetric 

potential V (r): 

h−2 

∇2� = [V (r) − E]�, (3.109)
2µ 

where the reduced mass of the two nuclei, of masses mA and mB, is  

µ ≡ 
mAmB . (3.110) 

mA + mB 

In our case, the potential is 

ZAZBe2 

V (r) = , (3.111) 
r 

and E is the kinetic energy. Let us obtain an order-of-magnitude solution to the Schrödinger 
equation. By our definition of r1, the radius of closest classical approach, we have V (r1) = E. 
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We can then write V (r) = Er1/r , and the mean, volume-averaged, height of the potential 
between r1 and r0 � r1 is 

r1 4πr2V (r)dr 3r0〈V (r)〉 =  

�
� ≈ E. (3.112)r1 4πr2dr 2 

r0 

Approximating V (r) with a constant function of this height (a “rectangular barrier”), the 

radial component of the Schrödinger equation becomes 

h−2 1 d2(r�) E ≈ �, (3.113)
2µ r dr2 2 

which has a solution 
√ 

eβr µE 
� = A , β = − 

. (3.114) 
r h

(The second independent solution of the equation, with an amplitude that rises with 

decreasing radius, is unphysical.) The wave function amplitude, squared, is proportional 
to the probability density for a particle to be at a given location. Multiplying the ratio of the 

probability densities by the ratio of the volume elements, 4πr0
2dr and 4πr1

2dr , thus gives 

the probability that a nucleus will tunnel from r1 to within r0 � r1 of the other nucleus: 

√ |�(r0)|2 r0
2 

= 
e2βr0 

≈ e−2βr1 = exp 

�
− 

2 µE ZAZBe2 �
|�(r1)|2 r2 e2βr1 h− E1 

= exp 

�
− 

2
√ 

µZAZBe2 √ 
1 
� 

. (3.115)−h E 

A full solution of the Schrödinger equation gives the same answer, but with an additional √ 
factor π/ 2 in the exponential. If we recall the definition of the fine-structure constant, 

e2 1 
α = − ≈ , (3.116)

hc 137

and define an energy 

EG = (παZAZB)22µc2, (3.117) 

then the probability of penetrating the Coulomb barrier simplifies to the function 

√ 
g(E) = e− EG /E . (3.118) 

EG is called the Gamow energy and g(E) is called the Gamow factor. For two protons, 

EG =
�

π 
1 × 1 × 1

�2 

2
1 

mpc
2 ≈ 500 keV. (3.119)

137 2 

(It is convenient to remember that the rest energy of a proton, mpc2, is 0.94 GeV.) 
Thus, for the typical kinetic energy of particles in the Sun’s core, E ∼ 1 keV, we find 
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g(E) ∼ e−22 ∼ 10−10. While this probability, for a given pair or protons, is still small, it is 

considerably larger than the classical probability we found in Eq. 3.107. 

3.10 Nuclear Reaction Rates 

Even if tunneling occurs, and two nuclei are within the strong force’s interaction range, 
the probability of a nuclear reaction will still depend on a nuclear cross section, which will 
generally depend inversely on the kinetic energy. Thus, the total cross section for a nuclear 
reaction involving ingredient nuclei A and B is 

σAB(E) = 
S0 

e−√ 
EG/E , (3.120)

E 

where S0 is a constant, or a weak function of energy, with units of [area]×[energy]. S0 for a 

given nuclear reaction is generally derived from accelerator experiments, or is calculated 

theoretically. 
The number of reactions per nucleus A as it traverses a distance dx in a field with a 

density nB of “target” nuclei B is 

dNA = nBσABdx. (3.121) 

If we divide both sides by dt, then the number of reactions per nucleus A per unit time is 

dNA = nBσABvAB, (3.122)
dt 

where vAB is the relative velocity between the nuclei. 
From Eq. 3.122, we can proceed to find the power density function, ε(ρ, T , X , Y , Z), 

needed to solve the equations of stellar structure. Multiplying by the density nA of nuclei 
A will give the number of reactions per unit time and per unit volume, i.e., the reaction 

rate per unit volume, 

RAB = nAnBσABvAB. (3.123) 

If every reaction releases an energy Q , multiplying by Q gives the power per unit volume. 
Dividing by ρ then gives the power per unit mass, rather than per unit volume: 

ε = nAnBσABvABQ/ρ. (3.124) 

Recalling that 

ρXA ρXB 
nA = , nB = , (3.125)

AAmH ABmH 

with XA and XB symbolizing the mass abundances, and AA and AB the atomic mass 

numbers of the two nucleus types, ε can be expressed as 

ρXAXB 
ε = 2 σABvABQ . (3.126) 

mHAAAB 
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In reality, the nuclei in a gas will have a distribution of velocities, so every velocity has 

some probability of occurring. Hence, ε can be obtained by averaging vABσAB over all 
velocities, with each velocity weighted by its probability, P(vAB): 

ρXAXB 
ε = 2 〈σABvAB〉Q , (3.127) 

mHAAAB 

with 
� ∞ 

〈σABvAB〉 = σABvABP(vAB)dvAB. (3.128) 
0 

A classical nonrelativistic gas will have a distribution of velocities described by the Maxwell-
Boltzmann distribution. The relative velocities of nuclei A and B will also follow a Maxwell-
Boltzmann distribution, 

� � � 2 �
P(v )dv = 4π

µ 3/2 
v 2exp −µv 

dv , (3.129)
2πkT 2kT 

but with a mass represented by the reduced mass of the particles, µ. For brevity, we have 

omitted here the subscript AB from the velocities. 
Inserting 3.120 and 3.129 into 3.128, and changing the integration variable from velocity 

to kinetic energy using E = 1
2 µv 2, dE = µv dv , we obtain 

〈σv 〉 =
� 

8 
�1/2 S0 

� ∞ 

e−E/kT e−√ 
EG/EdE. (3.130)

πµ (kT )3/2
0 

The integrand in this expression, 

√ 
f (E) = e−E/kT e− EG /E , (3.131) 

is composed of the product of two exponential functions, one (from the Boltzmann 

distribution) falling with energy, and the other (due to the Gamow factor embodying 

the Coulomb repulsion) rising with energy. Obviously, f (E) will have a narrow maximum 

at some energy E0, at which most of the reactions take place (see Fig. 3.9). The maximum 

of f (E) is easily found by taking its derivative and equating to zero. It is at 

E0 =
� 

kT 
�2/3 

E1/3. (3.132)
2 G 

A Taylor expansion of f (E) around E0 shows f (E) can be approximated by a Gaussian with 

a width parameter (i.e., the “σ ”, or standard deviation, of the Gaussian e−x2/2σ 2
) of  

� = 
3

2
1

1

/

/

2

6 

EG 
1/6(kT )5/6. (3.133) 

The value of the integral can therefore be approximated well with the area of the Gaussian,√ 
2π f (E0)� (see Problem 7). Replacing in 3.127, we obtain the final expression for the 

power density due to a given nuclear reaction, 
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Figure 3.9 The Boltzmann probability distribution, P(E), the Gamow factor, g(E), and their 
product, f (E). P(E) is shown for kT = 1 keV, g(E) is for the case of two protons, with 
EG = 500 keV, and both g(E) and f (E) have been scaled up by large factors for display pur
poses. The rarity of protons with large kinetic energies, as described by P(E), combined with 
the Coulomb barrier, embodied by g(E), limit the protons taking part in nuclear reactions 
to those with energies near E0, where f (E) peaks. f (E) can be approximated as a Gaussian 
centered at E0 (E0 ≈ 5 keV for the case shown), with width parameter �. 

25/3 
√ 

2 E1/6 
� � �1/3

�
ρXAXB G EG 

ε = √ 2 √ QS0 exp −3 . (3.134)
3 mHAAAB µ (kT )2/3 4kT 

Equation 3.134 can tell us, for example, the luminosity produced by the p-p chain in 

the Sun. For a rough estimate, let us take for the mass density in the core of the Sun the 

central density, ρ = 150 g cm−3. As already noted in Section 3.6, in the central regions 

of the Sun, some of the hydrogen has already been converted into helium by nuclear 
reactions. Let us assume a typical hydrogen abundance of X = 0.5, which we can use 

for XA and XB. The first step in the p-p chain, the p + p → d + e+ + νe reaction, is by 

far the slowest of the three steps in the chain, and it is therefore the bottleneck that sets 

the rate of the entire p-p process. The constant S0 for this reaction is calculated theoret
ically to be ≈4 × 10−46 cm2 keV, which is characteristic of weak interactions. For Q , let 
us take the entire thermal energy release of each p-p chain completion, since once the 

first step occurs, on a timescale of 1010 yr, the following two reactions, with timescales 

of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that every 

completion of the chain produces 26.73 MeV of energy and two neutrinos. Subtracting 

the 0.52 MeV carried off, on average, by the two neutrinos, the thermal energy released 

per p-p chain completion is Q = 26.2 MeV. As already noted, EG = 500 keV for two pro
tons, and the typical core temperature is kT = 1 keV. The atomic mass numbers are, of 
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course, AA = AB = 1, and the reduced mass is µ = mp/2. Finally, since we are consider
ing a reaction between identical particles (i.e., protons on protons) we need to divide the 

collision rate by 2, to avoid double counting. With these numbers, Eq. 3.134 gives a power 
density of 

ε = 10 erg s−1 g−1. (3.135) 

Multiplying this by the mass of the core of the Sun, say, 0.2M� = 4 × 1032 g, gives a 

luminosity of ∼4 × 1033 erg s−1, in good agreement with the observed solar luminosity of 
3.8 × 1033 erg s−1. 

Reviewing the derivation of Eqs. 3.122–3.134, we see that we can also recover the reaction 

rate per nucleus, dNA/dt, by dividing back from ε a factor (XAQ )/(mHAA). For the p + p 

reaction, this gives a rate of 1.6 × 10−18 s−1 per proton. The reciprocal of this rate is the 

typical time a proton has to wait until it reacts with another proton, and indeed equals 

τpp ∼ 6 × 1017 s ∼ 2 × 1010 yr, (3.136) 

as asserted above. Thus, we have shown that hydrogen fusion provides an energy source 

that can power the observed luminosity of the Sun over the known age of the Solar System, 
about 5 billion years, not only in terms of energy budget (Eq. 3.102) but also in terms of 
the energy generation rate. Furthermore, we see that the timescale to deplete the hydrogen 

fuel in the solar core is of order 10 billion years. 
The total power density at a point in a star with a given temperature, density, and 

abundance will be the sum of the power densities due to all the possible nuclear reactions, 
each described by 3.134. Because of the exponential term in 3.134, there will be a strong 

preference for reactions between species with low atomic number, and hence small EG. 
For example, compare the reactions 

p + d → 3He + γ (EG = 0.66 MeV) (3.137) 

and 

p + 12C → 13N + γ (EG = 35.5 MeV), (3.138) 

which have comparable nuclear cross sections S0 (both reactions follow the same process 

of adding a proton to a nucleus and emitting a photon). At a typical kinetic energy of 1 keV, 
if the abundances of deuterium and carbon nuclei were comparable, the ratio between the 

rates would be 

R(p12C) ∼ exp 

�
−3

35.51/3 − 0.661/3 � 

∼ e−46 ∼ 10−20. (3.139)R(pd) (4 × 0.001)1/3 

Furthermore, the higher the Gamow energy, the more strongly will the reaction rate 

depend on temperature. For example, a first-order Taylor expansion of Eq. 3.134 around 

T = 1.5 × 107 K, the central temperature of the Sun, shows that the p + p → d + e+ + νe 

rate depends on temperature approximately as T 4, while the p + 12C → 13N + γ rate goes 

like T 18 (see Problem 8). The steep positive temperature dependence of nuclear reac
tions, combined with the virial theorem, means that nuclear reactions serve as a natural 
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“thermostat” that keeps stars stable. Suppose, for example, that the temperature inside 

a star rises. This will increase the rate of nuclear reactions, leading to an increase in 

luminosity. Due to opacity, this additional energy will not directly escape from the star, 
resulting in a temporary increase in total energy. Since 

Etot = 2
1 Egr = −Eth, (3.140) 

the gravitational energy Egr will grow (i.e., become less negative), meaning the star will 
expand, and Eth will become smaller, meaning the temperature will be reduced again. 
This explains why main-sequence stars of very different masses have comparable core 

temperatures. 
The thermostatic behavior controls also the long-term evolution of stars. Eventually, 

when the dominant nuclear fuel runs out, the power density ε will drop. The star will then 

contract, Eth will increase, and T will rise until a new nuclear reaction, involving nuclei of 
higher atomic number, can become effective. 

A key prediction of the picture we have outlined, in which the energy of the Sun derives 

from the p-p chain, is that there will be a constant flux of neutrinos coming out of the Sun. 
As opposed to the photons, the weak interaction of the neutrinos with matter guarantees 

that they can escape the core of the Sun almost unobstructed.7 As calculated above, the 

thermal energy released per p-p chain completion is 26.2 MeV. The neutrino number flux 

on Earth should therefore be twice the solar energy flux divided by 26.2 MeV: 

fneutrino = 
2f� = 

2 × 1.4 × 106 erg s−1 cm−2 

= 6.7 × 1010 s−1 cm−2. (3.141)
26.2 MeV 26.2 × 1.6 × 10−6 erg 

This huge particle flux goes mostly unhindered through our bodies and through the entire 

Earth, and is extremely difficult to detect. Experiments to measure the solar neutrino flux 

began in the 1960s, and have consistently indicated a deficit in the flux of electron neutrinos 

arriving from the Sun. It now appears most likely that the total neutrino flux from the Sun 

is actually very close to the predictions of solar models. The observed deficit is the result 
of previously unknown flavor oscillations, in which some of the original electron neutrinos 

turn into other types of neutrinos enroute from the Sun to the Earth. 
We note, for completeness, that apart from the particular p-p chain described in 

Eqs. 3.97–3.99, which is the main nuclear reaction sequence in the Sun, other nuclear 
reactions occur, and produce neutrinos that are detectable on Earth (see Problem 9). In 

stars more massive than the Sun, hydrogen is converted to helium also via a different 
sequence of reactions, called the CNO cycle. In the CNO cycle, the trace amounts of car
bon, nitrogen, and oxygen in the gas serve as catalysts in the hydrogen-to-helium burning, 
without any additional C, N, or O being synthesized. The main branch of the CNO cycle 

actually begins with reaction 3.138, 

p + 12C → 13N + γ . (3.142) 

7 Typical cross sections for scattering of neutrinos on matter are of order 10−43 cm2, 1018 times smaller than 
the Thomson cross section for photons. Scaling from Eq. 3.41, the mean free path for neutrinos in the Sun is 
∼1018 cm, 107 times greater than the solar radius. 

http:3.97�3.99
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This is followed by 

13N → 13C + e+ + νe, (3.143) 

p + 13C → 14N + γ , (3.144) 

p + 14N → 15O + γ . (3.145) 
15O → 15N + e+ + νe, (3.146) 

and finally 

p + 15N → 12C + 4He. (3.147) 

Although we noted that reaction 3.142 is slower by 20 orders of magnitude than the p-p 

chain’s p + d → 3He + γ , the p + d reaction can take place only after overcoming the 

p + p bottleneck, which has a timescale 18 orders of magnitude longer than p + d. The 

lack of such a bottleneck for the p + 12C reaction is further compensated by this reaction’s 

strong dependence on temperature. Although core temperature varies only weakly with 

stellar mass, the slightly higher core temperatures in more massive stars are enough to 

make the CNO cycle the dominant hydrogen-burning mechanism in main-sequence stars 

of mass 1.2M� and higher. 

3.11 Solution of the Equations of Stellar Structure 

We have now derived the four differential equations and the three additional functions that, 
together with boundary conditions, define uniquely the equilibrium properties of a star of 
a given mass and composition. Along the way, we already deduced many of the observed 

properties of main-sequence stars. “Solving” this system of coupled equations means 

finding the functions P(r), T (r), and ρ(r), which are the ones that are usually considered 

to describe the structure of the star. Unfortunately, there is no analytic solution to the 

equations, unless some unrealistic assumptions are made (see, e.g., Problems 4 and 5). 
Nevertheless, a numerical solution can be obtained straightforwardly, and is the most 
reasonable way to proceed anyway, given the complicated nature of the functions P, κ , 
and ε when all relevant processes are included. In a numerical solution, the differentials 

in the equations are replaced by differences. Then, an example of one possible calculation 

scheme is one in which the radial structure of a star is followed shell by shell, going either 
outward from the center or inward from the surface. 

3.12 Convection 

Under certain conditions, the main means of energy transport in some regions of a star 
is convection, rather than radiative transport. Convection occurs when a volume element 
of material that is displaced from its equilibrium position, rather than returning to the 

original position, continues moving in the displacement direction. For example, if the 
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Figure 3.10 A mass element (lower circle) inside a star undergoes a small displace
ment dr to a higher position (upper circle), and expands adiabatically to match the 
new surrounding pressure P + dP. If, after the expansion, the density inside the 
element, ρ + δρ, is larger than the surrounding density ρ + dρ, the element will 
sink back to its former equilibrium position. If, on the other hand, the density inside 
the volume is lower than that of the surroundings, the mass element will be buoyed 
up, and convection ensues. 

displacement is upward to a region of lower density, and after the displacement the density 

of the volume element is lower than that of its new surroundings, the element will continue 

to be buoyed upward. When convection sets in, it is very efficient at transporting heat, and 

becomes the dominant transport mechanism. 
To see what are the conditions for the onset of convection, consider a volume element 

of gas at equilibrium radius r inside a star , where the temperature, pressure, and density 

are T , P, and ρ, respectively (see Fig. 3.10). Now let us displace the element to a radius 

r + dr , where the parameters of the surroundings are T + dT , P + dP, and ρ + dρ. Since 

the gas in the star obeys 

P 
ρ ∝ , (3.148)

T 

taking the logarithmic derivative gives 

dρ dP dT = − . (3.149)
ρ P T 

To simplify the problem, we will assume that, at its new location, the volume element 
expands adiabatically (i.e., without exchanging heat with its new surroundings, so dQ = 0, 
and therefore the entropy, defined as dS = dQ/T , remains constant). The element expands 

until its pressure matches the surrounding pressure, and reaches new parameters T + δT , 
ρ + δρ, and P + δP = P + dP, where we have identified the small changes inside the 

element with a “δ” rather than a “d.” Since we approximate the expansion of the element 
to be adiabatic, it obeys an equation of state 

P ∝ ργ , (3.150) 
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where the adiabatic index, γ , is the usual ratio of heat capacities at constant pressure and 

constant volume. Taking again the logarithmic derivative, we obtain 

δρ 1 δP = . (3.151)
ρ γ P 

The element will continue to float up, rather than falling back to equilibrium, if after the 

expansion its density is lower than that of the the surroundings, i.e., 

ρ + δρ < ρ + dρ, (3.152) 

or simply 

δρ < dρ, (3.153) 

(recall that both δρ and dρ are negative), or dividing both sides by ρ, 

δρ dρ 
< . (3.154)

ρ ρ 

Substituting from Eqs. 3.149 and 3.151, the condition for convection becomes 

1 δP dP dT 
< − . (3.155)

γ P P T 

Recalling that δP = dP, this becomes 

dT γ − 1 dP 
< , (3.156)

T γ P 

or upon division by dr , 

dT γ − 1 T dP 
< . (3.157)

dr γ P dr 

Since the radial temperature and pressure gradients are both negative, the condition for 
convection is that the temperature profile must fall fast enough with increasing radius, 
i.e., convection sets in when 

dT γ − 1 T dP 
> . (3.158)

dr γ P dr 

For a nonrelativistic gas without internal degrees of freedom (e.g., ionized hydrogen), 
γ = 5/3. As the number of internal degrees of freedom increases, γ becomes smaller, 
making convection possible even if |dT/dr| is small. This can occur when the gas is 

made of atoms, which can be excited or ionized, or of molecules that have rotational and 

vibrational degrees of freedom and can be dissociated. Convection therefore occurs in 

some cool regions of stars, where atoms and molecules exist. This applies to the outer 
layers of intermediate-mass main-sequence stars and red giants, and to large ranges in 

radius in low-mass stars. Another range of applicability of convection is in the cores of 
massive stars. The Sun is convective in the outer 28% of its radius. 

Once convection sets in, it mixes material at different radii and thus works toward 

equilibrating temperatures, i.e., lowering the absolute value of the temperature gradient 
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|dT/dr|. Therefore, convection can be implemented into stellar structure computations by 

testing, at every radius, if the convection condition has been met. If it has, convection will 
bring the temperature gradient back to its critical value, and therefore the radiative energy 

transport equation (3.51) can be replaced by Eq. 3.158, but with an equality sign: 

dT γ − 1 T (r) dP = .	 (3.159)
dr γ P(r) dr 

Problems 

1.	 In Eqs. 3.23–3.28, we saw that, for a star composed of a classical, nonrelativistic, ideal 
gas, Etotal th + Egr th = Etot = −Etot, and therefore the star is bound. Repeat the derivation, 
but for a classical relativistic gas of particles. Recall (Eq. 3.75) that the equation of state 

of a relativistic gas is P = 1 Eth/V. Show that, in this case, Egr = Etot, and therefore 3	 th 

= EtotEtotal th + Egr = 0, i.e., the star is marginally bound. As a result, stars dominated by 
radiation pressure are unstable. 

2. The pressure inside a normal star is given by (Eq. 3.76) 

P = Pg + Prad = 
ρkT + 

1 
aT 4. 

m̄ 3 

Using parameters appropriate to the Sun, show that throughout the Sun, including the 

core, where the internal temperature is about 107 K, the kinetic pressure dominates. 

3.	 Because of the destabilizing influence of radiation pressure (see Problem 1), the most 
massive stars that can form are those in which the radiation pressure and the nonrela
tivistic kinetic pressure are approximately equal. Estimate the mass of the most massive 

stars, as follows. 
a. Assume that the gravitational binding energy of a star of mass M and radius R is 

|Egr| ∼ GM2/R. Use the virial theorem (Eq. 3.22), 

P̄ = −  
1 Egr 

,
3	 V 

to show that 

P ∼
� 

4π 
�1/3 

GM2/3ρ4/3,
34 

where ρ is the typical density. 
b. Show that if the radiation pressure, Prad = 13 aT 4, equals the kinetic pressure, then the 

total pressure is 

� 
3 
�1/3 � 

kρ 
�4/3


P = 2 .

a m̄

http:3.23�3.28
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c. Equate the expressions for the pressure in (a) and (b), to obtain an expression for 
the maximal mass of a star. Find its value, in solar masses, assuming a fully ionized 

hydrogen composition. 
Answer: M = 110M�. 

4.	 Consider a hypothetical star of radius R, with density ρ that is constant, i.e., independent 
of radius. The star is composed of a classical, nonrelativistic, ideal gas of fully ionized 

hydrogen. 
a. Solve the equations of stellar structure for the pressure profile, P(r), with the boundary 

condition P(R) = 0. 
Answer: P(r) = (2π/3)Gρ2(R2 − r 2). 

b. Find the temperature profile, T(r). 
c. Assume that the nuclear energy production rate depends on temperature as ε ∼ T 4. 

(This is the approximate dependence of the rate for the p-p chain at the temperature 

in the core of the Sun.) At what radius does ε decrease to 0.1 of its central value, and 

what fraction of the star’s volume is included within this radius? 

5.	 Suppose a star of total mass M and radius R has a density profile ρ = ρc(1 − r/R), 
where ρc is the central density. 
a. Find M(r). 
b. Express the total mass M in terms of R and ρc. 
c. Solve for the pressure profile, P(r), with the boundary condition P(R) = 0.


Answer:


2R2 

� 
5 2 � r �2 7 � r �3 1 � r �4

�
P(r) = πGρc − + − . 

36 3 R 9 R 4 R 

6. Consider a star of mass M = 10M�, composed entirely of fully ionized 12C. Its core 

temperature is Tc = 6 × 108 K (compared to Tc,� = 1.5 × 107 K for the Sun). 
a. What is the mean particle mass m̄, in units of mH?


Answer: 12/7.

b. Use the classical ideal gas law, the dimensional relation between mass, density, and 

radius, and the virial theorem to find the scaling of the stellar radius r∗ with total 
mass M, mean particle mass m̄, and core temperature Tc. Using the values of these 

parameters for the Sun, derive the radius of the star. 
Answer: 0.86r�. 

c. If the luminosity of the star is L = 107L�, what is the effective surface temperature? 
d. Suppose the star produces energy via the reaction 

12C + 12C → 24Mg. 

The atomic weight of 12C is 12, and that of 24Mg is 23.985. (The atomic weight of a


nucleus is defined as the ratio of its mass to 1/12 the mass of a 12C nucleus). What

fraction of the star’s mass can be converted into thermal energy?

Answer: 6.3 × 10−4.
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e. How much time does it take for the star to use up 10% of its carbon?

Answer: 950 yr.


7. We saw that the nuclear reaction rate in a star depends on �	 ∞ 

〈σ v 〉 ∝ f (E)dE, 
0 

where 
√ 

f (E) ≡ e−E/kT e− EG/E , 

and EG is the Gamow energy (Eq. 3.131). 
a. By taking the derivative of f (E) and equating to zero, show that f(E) has a maximum 

at 

E0 

� 

2 

�2/3 

G 

kT 
E1/3 = . 

b. Perform a Taylor expansion, to second order, of f (E) around E0, to approximate f (E) 
with a Gaussian. Show that the width parameter (i.e., the “σ ”) of the Gaussian is 

21/6 

� = 
31/2 

EG 
1/6(kT )5/6. 

Hint: Take the logarithm of f (E), before Taylor expanding, and then exponentiate again 

the Taylor expansion. 
c. Show that �	 ∞ √ 

f (E)dE = 2π f (E0)�. 
0 

8.	 Show that the dependence on temperature of the nuclear power density (Eq. 3.134) at a 

temperature T near T0 can be approximated as a power law, ε ∝ Tβ , where 

EG 2 
β = − . 

4kT0 3 

Evaluate β at T0 = 1.5 × 107 K, for the reactions p + p → d + e+ + νe and p +12C → 
13N + γ . 
Hint: From Eq. 3.134, find ln ε, and calculate d(ln ε)/d(ln T)| . This is the first-order T0 

coefficient in a Taylor expansion of ln ε as a function of ln T (a pure power law relation 

between ε and T would obey ln ε = const. + βln T). 

9. We saw (Eq. 3.141) that, on Earth, the number flux of solar neutrinos from the p-p chain is 

2f� 2 × 1.4 × 106 erg s−1 cm−2


fneutrino = =

26.2 MeV 26.2 × 1.6 × 10−6 erg 

= 6.7 × 1010 s−1 cm−2. 

Other nuclear reactions in the Sun supplement this neutrino flux with a small additional 
flux of higher-energy neutrinos. A neutrino detector in Japan, named SuperKamiokande, 
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consists of a tank of 50 kton of water, surrounded by photomultiplier tubes. The tubes 

detect the flash of Cerenkov radiation emitted by a recoiling electron when a high-energy 
neutrino scatters on it. 
a. How many electrons are there in the water of the detector? 
b. Calculate the detection rate for neutrino scattering, in events per day, if 10−6 of the 

solar neutrinos have a high enough energy to be detected by this experiment, and 

each electron poses a scattering cross section σ = 10−43 cm2. 
Hint: Consider the density of neutrino targets “seen” by an individual electron, with 

a relative velocity of c between the neutrinos and the electron, to obtain the rate at 
which one electron interacts with the incoming neutrinos, and multiply by the total 
number of electrons, from (a), to obtain the rate in the entire detector. 
Answers: 1.6 × 1034 electrons; 9 events per day. 




