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C H A P T E R  2  

Complexity in Social Worlds 

I adore simple pleasures. They are the last refuge of the 
complex. 

—Oscar Wilde, The Picture of Dorian Gray 

When a distinguished but elderly scientist states that 
something is possible, he is almost certainly right. When he 
states that something is impossible, he is very probably 
wrong. 

—Arthur C. Clarke, Report on Planet Three 

We are surrounded by complicated social worlds. These worlds are 
composed of multitudes of incommensurate elements, which often make 
them hard to navigate and, ultimately, difficult to understand. We would, 
however, like to make a distinction between complicated worlds and 
complex ones. In a complicated world, the various elements that make up 
the system maintain a degree of independence from one another. Thus, 
removing one such element (which reduces the level of complication) 
does not fundamentally alter the system’s behavior apart from that which 
directly resulted from the piece that was removed. Complexity arises 
when the dependencies among the elements become important. In such a 
system, removing one such element destroys system behavior to an extent 
that goes well beyond what is embodied by the particular element that is 
removed. 

Complexity is a deep property of a system, whereas complication is 
not. A complex system dies when an element is removed, but complicated 
ones continue to live on, albeit slightly compromised. Removing a seat 
from a car makes it less complicated; removing the timing belt makes it 
less complex (and useless). Complicated worlds are reducible, whereas 
complex ones are not. 

While complex systems can be fragile, they can also exhibit an unusual 
degree of robustness to less radical changes in their component parts. 
The behavior of many complex systems emerges from the activities of 
lower-level components. Typically, this emergence is the result of a very 
powerful organizing force that can overcome a variety of changes to the 
lower-level components. In a garden, if we eliminate an insect the vacated 
niche will often be filled by another species and the ecosystem will 
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continue to function; in a market, we can introduce new kinds of traders 
and remove old traders, yet the system typically maintains its ability to 
set sensible prices. Of course, if we are too extreme in such changes, say, 
by eliminating a keystone species in the garden or all but one seller in the 
market, then the system’s behavior as we know it collapses. 

When a scientist faces a complicated world, traditional tools that rely 
on reducing the system to its atomic elements allow us to gain insight. 
Unfortunately, using these same tools to understand complex worlds 
fails, because it becomes impossible to reduce the system without killing 
it. The ability to collect and pin to a board all of the insects that live in 
the garden does little to lend insight into the ecosystem contained therein. 

The innate features of many social systems tend to produce complexity. 
Social agents, whether they are bees or people or robots, find themselves 
enmeshed in a web of connections with one another and, through a 
variety of adaptive processes, they must successfully navigate through 
their world. Social agents interact with one another via connections. 
These connections can be relatively simple and stable, such as those 
that bind together a family, or complicated and ever changing, such as 
those that link traders in a marketplace. Social agents are also capable of 
change via thoughtful, but not necessarily brilliant, deliberations about 
the worlds they inhabit. Social agents must continually make choices, 
either by direct cognition or a reliance on stored (but not immutable) 
heuristics, about their actions. These themes of connections and change 
are ever present in all social worlds. 

The remarkable thing about social worlds is how quickly such con
nections and change can lead to complexity. Social agents must predict 
and react to the actions and predictions of other agents. The various 
connections inherent in social systems exacerbate these actions as agents 
become closely coupled to one another. The result of such a system is that 
agent interactions become highly nonlinear, the system becomes difficult 
to decompose, and complexity ensues. 

2.1 The Standing Ovation Problem 

To begin our exploration of complex adaptive social systems we consider 
a very simple social phenomenon: standing ovations (Schelling, 1978; 
Miller and Page, 2004). Standing ovations, in which waves of audience 
members stand to acknowledge a particularly moving performance, 
appear to arise spontaneously.1 Although in the grand scheme of things 

1There are circumstances, such as the annual State of the Union address before the U.S. 
Congress, where such behavior is a bit more orchestrated. 
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standing ovations may not seem all that important, they do have some 
important parallels in the real world that we will discuss later. Moreover, 
they provide a convenient starting point from which to explore some key 
issues in modeling complex social systems. 

Suppose we want to construct a model of a standing ovation. There is 
no set method or means by which to do so. To model such a phenomenon 
we could employ a variety of mathematical, computational, or even 
literary devices. The actual choice of modeling approach depends on 
our whims, needs, and even social pressure emanating from professional 
fields. 

Regardless of the approach, the quest of any model is to ease thinking 
while still retaining some ability to illuminate reality. 

A typical mathematical model of a standing ovation might take the 
following tack. Assume an audience of N people, each of whom receives 
a signal that depends on the actual quality of the performance, q. Let  
si (q) give the signal received by person i . We might further specify the 
signal process by, say, assuming a functional form such as si (q) = q + εi , 
where εi is a normally distributed random variable with a mean of zero 
and standard deviation of σ . To close the model, we might hypothesize 
that in response to the signal, each person stands if and only if si (q) > T, 
where T is some critical threshold above which people are so moved by 
the performance that they stand up and applaud. 

Given this simple mathematical model, how much of reality can we 
illuminate? The model could be used to make predictions about how 
many people would stand. We could tie this prediction to key features of 
the model; thus, we can link the elements like the quality (q) of the per
formance, the standing threshold (T), and even the standard deviation of 
the signal (σ ) to the likelihood of an initial ovation of a given size. Given 
the current form of the model, that is about the extent of what we can 
predict. These predictions do provide some illumination on reality, but 
they fail to illuminate some of the key elements that make this problem 
so interesting in the first place (like the waves of subsequent standing). 

Given this, we might want to amend the model to shed a bit more light 
on the subject at hand. It is probably the case that people respond to the 
behavior of others in such situations. Therefore, we can add a parameter 
α that gives the percentage of people who must stand for others to ignore 
their initial signals and decide to stand up regardless. In some fields, like 
economics, we might even delve a bit deeper into the notion of α and 
see if we can tie it to some first principles, for example, perhaps people 
realize that their signals of the performance are imperfect and thus they 
update them using the information gathered by observing the behavior 
of others. We will avoid such complications here and just assume that α 
exists for whatever reason. 
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Our elaborated model provides some new insights into the world. If 
the initial group of people standing exceeds α percent, then everyone 
will rise; if it falls short of this value, then the standing ovation will 
remain at its initial level. Again, we can tie the elements of the model to 
a prediction about the world. By knowing the likelihood of various-sized 
initial ovations, we can predict (given an α) the likelihood of everyone 
else joining the ovation. 

As clean and elegant as the mathematical model may be, it still leaves 
us wanting some more illumination. For example, we know that real 
ovations do not behave in the extreme way predicted by the model; 
rather, they often exhibit gradual waves of participation and also form 
noticeable spatial patterns across the auditorium. In the model’s current 
form, too much space exists in between what it illuminates and what we 
want to know about the real world. 

To capture this additional illumination, we might extend the mathe
matical model even further by using ideas from complex systems. This 
approach may require us to model using a different substrate, most 
likely indirect computation rather than direct mathematics, but for the 
moment this choice is less important than the directions we wish to take 
the modeling. The first elaboration we could undertake is to place each 
person in a seat in the auditorium, rather than assuming that they attend 
the theater on the head of a pin. Furthermore, we might want to assume 
that people have connections to one another, that is, that people arrive 
and sit with acquaintances (see figure 2.1).2 

Once we allow people to sit in a space and locate next to friends, 
the driving forces of the model begin to change. For example, the initial 
assumption of independent signals is now suspect. It is likely that people 
seated in one part of the theater (or “side of the aisle”) receive a different 
set of signals than others. Locations not only determine physical factors, 
such as which other patrons someone can see, but also may reflect a 
priori preferences for the performance that is about to begin. Similarly, in 
an audience composed of friends and strangers, people may differentially 
weight the signals sent by their friends, either because of peer pressure or 
because the friendships were initially forged based on common traits. 

Assuming that individuals now have locations and friends introduces 
an important new source of heterogeneity. In the mathematical model, 
the only heterogeneity came from the different draws of εi . Now, even  
“identical” individuals begin to behave in quite different ways, depending 
on where, and with whom, they are seated. 

2We once had a group of economics graduate students model the standing ovation. Not 
one of them allowed the possibility of people attending the theater with acquaintances. We 
hope this is more a reflection of how economists are trained than of how they live. 
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Figure 2.1. Two views of modeling the standing ovation. In its simplest 
form, the model requires that everyone shares the same seat in the auditorium 
(left), while the more elaborate model (right) allows space, friendship 
connections, and physical factors like vision to play a vital role in the system. 
While the simple model might rely on traditional tools like formal mathematics 
and statistics, the more elaborate model may require new techniques like 
computational models using agent-based objects to be fully realized. 

The dynamics of the model also becomes more complicated. In 
the original model, we had an initial decision to stand, followed by 
a second decision based on how many people stood initially. After this 
second decision, the model reached an equilibrium where either the 
original group remained standing or everyone was up on their feet. 
The new model embodies a much more elaborate (and likely realistic) 
dynamics. In general, it will not be the case that the model attains an 
equilibrium after the first two rounds of updating. Typically, the first 
round of standing will induce others to stand, and this action will cause 
others to react; in this way, the system will display cascades of behavior 
that may not settle down anytime soon. 

These two modeling approaches illuminate the world in very different 
ways. In the first model either fewer than α percent stand or everyone 
does; in the second it is possible to have any percentage of people left 
standing. In the first model the outcome is determined after two periods; 
in the second cascades of behavior wash over the auditorium and often 
reverberate for many periods. In the first model everyone’s influence 
is equal; in the second influence depends on friendships and even seat 
location. Oddly, the people in the front have the most visual influence 
on others yet also have the least visual information, whereas those in 
the back with the most information have the least influence (think of the 
former as celebrities and the latter as academics). 
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The second model provides a number of new analytic possibilities. Do 
performances that attract more groups lead to more ovations? How does 
changing the design of the theater by, say, adding balconies, influence 
ovations? If you want to start an ovation, where should you place your 
shills? If people are seated based on their preferences for the performance, 
say, left or right side of the aisle or more expensive seats up front, do you 
see different patterns of ovations? 

Although standing ovations per se are not the most pressing of social 
problems, they are related to a large class of important behaviors that 
is tied to social contagion. In these worlds, people get tied to, and 
are influenced by, other people. Thus, to understand the dynamics of 
a disease epidemic, we need to know not only how the disease spreads 
when one person contacts another but also the patterns that determine 
who contacts whom over time. Such contagion phenomena drive a 
variety of important social processes, ranging from crime to academic 
performance to involvement in terrorist organizations. 

2.2 What’s the Buzz? 

Heterogeneity is often a key driving force in social worlds. In the 
Standing Ovation problem, the heterogeneity that arose from where 
people sat and with whom they associated resulted in a model rich 
in behavioral possibilities. If heterogeneity is a key feature of complex 
systems, then traditional social science tools—with their emphases on 
average behavior being representative of the whole—may be incomplete 
or even misleading. 

In many social scenarios, differences nicely cancel one another out. 
For example, consider tracking the behavior of a swarm of bees. If you 
observe any one bee in the swarm its behavior is pretty erratic, making an 
exact prediction of that bee’s next location nearly impossible; however, 
keep your eye on the center of the swarm—the average—and you can 
detect a fairly predictable pattern. In such worlds, assuming behavior 
embodied by a single representative bee who averages out the flight paths 
of all of the bees within the swarm both simplifies and improves our 
ability to predict the future. 

2.2.1 Stay Cool 

While differences can cancel out, making the average a good predictor 
of the whole, this is not always the case. In complex systems we often 
see differences interacting with one another, resulting in behavior that 
deviates remarkably from the average. 
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To see why, we can return to our bees. Genetic diversity in bees 
produces a collective benefit that plays a critical function in maintaining 
hive temperature (Fischer, 2004). For honey bees to reproduce and grow, 
they must maintain the temperature of their hive in a fairly narrow range 
via some unusual behavioral mechanisms. When the hive gets too cold, 
bees huddle together, buzz their wings, and heat it up. When the hive gets 
too hot, bees spread out, fan their wings, and cool things down. 

Each individual bee’s temperature thresholds for huddling and fanning 
are tied to a genetically linked trait. Thus, genetically similar bees all feel 
a chill at the same temperature and begin to huddle; similarly, they also 
overheat at the same temperature and spread out and fan in response. 

Hives that lack genetic diversity in this trait experience unusually 
large fluctuations in internal temperatures. In these hives, when the 
temperature passes the cold threshold, all the bees become too cold at 
the same time and huddle together. This causes a rapid rise in temperature 
and soon the hive overheats, causing all the bees to scatter in an 
over ambitious attempt to bring down the temperature. Like a house 
with a primitive thermostat, the hive experiences large fluctuations of 
temperature as it continually over- and undershoots its ideals. 

Hives with genetic diversity produce much more stable internal 
temperatures. As the temperature drops, only a few bees react and 
huddle together, slowly bringing up the temperature. If the temperature 
continues to fall, a few more bees join into the mass to help out. A 
similar effect happens when the hive begins to overheat. This moderate 
and escalating response prevents wild swings in temperature. Thus, the 
genetic diversity of the bees leads to relatively stable temperatures that 
ultimately improve the health of the hive. 

In this example, considering the average behavior of the bees is very 
misleading. The hive that lacked genetic diversity—essentially a hive of 
averages—behaves in a very different way than the diverse hive. Here, 
average behavior leads to wide temperature fluctuations whereas hetero
geneous behavior leads to stability. To understand this phenomenon, we 
need to view the hive as a complex adaptive system and not as a collection 
of individual bees whose differences cancel out one another. 

2.2.2 Attack of the Killer Bees 

We next wish to consider a model of bees attacking a threat to the 
hive.3 Some bees go through a maturation stage in which they guard the 

3This is a simplified version of models of human rioting constructed by Grannoveter 
(1978) and Lohmann (1993). Unlike the previous example, the direct applicability to bees 
is more speculative on our part. 
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entrances to the hive for a short period of time. When a threat is sensed, 
the guard bees initiate a defensive response (from flight, to oriented flight, 
to stinging) and also release chemical pheromones into the air that serve 
to recruit other bees into the defense. 

To model such behavior, assume that there are one hundred bees 
numbered 1 through 100. We assume that each bee has a response 
threshold, Ri , that gives the number of pheromones required to be in 
the air before bee i joins the fray (and also releases its pheromone). 
Thus, a bee with Ri = 5 will join in once five other bees have done 
so. Finally, we assume that when a threat to the hive first emerges, 
R bees initiate the defensive response (to avoid some unnecessary 
complications, let these bees be separate from the one hundred bees we 
are watching). Note that defensive behavior is decentralized in a beehive: 
it is initiated by the sentry activities of the individual guard bees and per
petuated by each of the remaining bees based only on local pheromone 
sensing. 

We consider two cases. In the first case, we have a homogeneous hive 
with Ri = 50.5 for all i . In the second case, we allow for heterogeneity 
and let Ri = i for all i . Thus, in this latter case each bee has a different 
response threshold ranging from one to one hundred. Given these two 
worlds, what will happen? 

In the homogeneous case, we know that a full-scale attack occurs if 
and only if R > 50. That is, if more than fifty bees are in the initial 
wave, then all of the remaining one hundred will join in; otherwise the 
remaining bees stay put. In the heterogeneous case, a full-scale attack 
ensues for any R ≥ 1. This latter result is easy to see, because once at 
least one bee attacks, then the bee with threshold equal to one will join 
the fray, and this will trigger the bee with the next highest threshold to 
join in, and so on. 

Again, notice how average behavior is misleading. The average thresh
old of the heterogeneous hive is identical to that of the homogeneous 
hive, yet the behaviors of the two hives could not be more different. 
It is relatively difficult to get the homogeneous hive to react, while the 
heterogeneous one is on a hair trigger. Without explicitly incorporating 
the diversity of thresholds, it is difficult to make any kind of accurate 
prediction of how a given hive will behave. 

2.2.3 Averaging Out Average Behavior 

Note that the two systems we have explored, regulating temperature and 
providing defense, have very different behaviors linked to heterogeneity. 
In the temperature system, heterogeneity leads to stability. That is, 
increased heterogeneity improves the ability of the system to stabilize 
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on a given temperature. In the defense system, however, heterogeneity 
induces instability, with the system likely to experience wild fluctuations 
in response to minute stimuli. 

The difference of response between the two systems is due to feedback. 
In the temperature system, heterogeneity introduces a negative feedback 
loop into the system: when one bee takes action, it makes the other bees 
less likely to act. In the defense system, we have a positive feedback 
loop: when one bee takes action, it makes the other bees more likely 
to act. 

2.3 A Tale of Two Cities 

To explore further the modeling of complexity, we consider a simple 
world composed of two towns, each of which has three citizens. 
Furthermore, we assume that each town has to make a choice about 
an important public issue: whether to serve its citizens red or green chile 
at its annual picnic. Citizens possess preferences over chile and strongly 
prefer one type over the other.4 To make the analysis interesting, we 
assume that two of the citizens in each town prefer green to red chile 
while the remaining person prefers the opposite. 

Though stark, this scenario builds from an extensive literature in 
the social sciences on the allocation of public goods and services to 
citizens (Samuelson, 1954; Tiebout, 1956). Public goods and services 
flow across all members of society without exclusion or diminution once 
offered. Moreover, as we will see, the model also touches on even deeper 
issues surrounding the decentralized sorting of agents within a complex 
adaptive system. 

Before we can explore the behavior of the model, we need to define 
two further elements. The first is how does a town, given a set of citizens, 
select what chile to offer. The second is how do citizens react to the 
choices of the towns. 

A town could use several mechanisms to decide what type of chile to 
offer. It could employ a dictator, flip a coin, or implement some other 
political process, such as majority rule. For the moment, we will assume 
that each town uses majority rule. Given this scenario, majority rule 
implies that each town will always offer green chile (two votes to one). 
Note that this outcome is not ideal, as one citizen in each town always 
ends up consuming her less-preferred meal (see figure 2.2). 

4For those who enjoy both, New Mexican restaurants offer the option of ordering your 
chile “Christmas.” 
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Town A Town B 

Figure 2.2. A symmetric Tiebout world. Here two towns each have three 
citizens, two of whom prefer green to red chile. Both towns currently offer green 
chile at their annual picnic. Given this scenario, the system is at an equilibrium, 
even though two of the citizens are not getting their favorite chile. 

Now, suppose we give our citizens some mobility, that is, any citizen is 
free to switch towns if she so desires. We assume that citizens will move 
only if the alternative town is offering a better meal. If each town is 
serving green chile, no citizen has any incentive to relocate and everyone 
stays put. 

Yet, something should be done. The current situation possesses a tragic 
symmetry that prevents the red chile lovers from every realizing their 
favored outcome since they are always the minority in either town. To 
improve this situation, we must find a way to break the symmetry. 

One way to break the symmetry is to introduce some randomness into 
the system. For example, we could have one citizen randomly decide to 
move to the other town for whatever reason. If this citizen is a red chile 
lover, then the town she vacated is left with two green chile lovers and 
her new town now has two people who like red and two who like green 
chile. Instead, if the citizen that relocates is a green chile lover, then the 
vacated town is left with one of each type, while the other town now has 
three green and one red chile lover. Notice that regardless of who moves, 
we are always left with one town that is strongly green chile and one that 
has equal numbers of each type. 

Given this situation, we would expect that eventually the town with a 
split vote will offer red instead of green chile. Once this occurs, we now 
have one town offering red and one offering green chile. The symmetry 
is now broken, and the citizens in each town can immediately re-sort 
themselves and self-select the town that perfectly meets their chile needs. 
This leaves one town offering green chile populated by four green chile 
lovers and one town offering red chile with two red chile lovers, and all 
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Town A Town B 

Figure 2.3. Broken symmetry in the Tiebout world. Once the two towns offer 
different types of chile—perhaps due to noise in the political system—the 
citizens will immediately re-sort themselves. The system again attains an 
equilibrium, though in this case each citizen now gets her favorite type of chile. 
Note that this new equilibrium is much more robust to minor perturbations 
than the former one. 

of the citizens would be worse off if they moved (see figure 2.3). This 
latter configuration is quite stable to random moves of individuals, as a 
single citizen moving will not alter the majority in either town. 

An alternative way to break the symmetry is to alter slightly the 
behavioral rules that control our citizens. Suppose that agents are willing 
to relocate if they can at least maintain their level of happiness (rather 
than improve it). Such a change in behavior allows for what biologists 
call neutral mutations, that is, movements in the underlying structure that 
do not directly impact outcomes. Even though neutral mutations do not 
have an immediate effect, they can lead to better outcomes eventually by 
changing what is possible. In the initial case, any of the citizens is willing 
to move since both towns offer the same type of chile. Regardless of 
who moves, one town is always left with a split vote, and the symmetry 
breaking we saw previously is again possible. 

The system demonstrates some key features of complex adaptive 
social systems. First, we have a web of connections that, in this case, 
results from citizens linking to one another by being resident in a given 
town. Second, we see change induced by choices made by all of the 
different types of agents in the system. Citizens must decide where to 
move, and towns must decide what type of chile to offer. Moreover, 
the system as a whole must “decide” how to sort the citizens among 
the towns, although this latter “choice” is not a conscious calculation 
of the system per se, but rather an implicit computation resulting from 
the decentralized choices made by each citizen and town. The model also 
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demonstrates how a social system can get locked into an inferior outcome 
and how, with the introduction of noise or different behavioral rules, 
it can break out of such outcomes and reconfigure itself into a better 
arrangement. 

The model also incorporates other key themes in complex adaptive 
social systems: equilibria, dynamics, adaptation, and the power of 
decentralized interactions to organize a system. The system has multiple 
equilibria, some of which are inferior to others. The key dynamics that 
occur in the model are the choice dynamics of each town induced by 
the voting system and the movement dynamics of each citizen implied 
by her preferences and each town’s offerings. Note that these dynamics 
imply that towns adapt to citizens, while citizens also adapt to towns. 
Finally, we see how the system’s dynamics result in local, decentralized 
behaviors that ultimately organize the citizens so that their preferences 
align with other citizens and each town’s offerings align with its 
residents. 

2.3.1 Adding Complexity 

While our model gives us some useful intuitions and insights, it is also 
(quite intentionally) very limited. Like all good models, it was designed 
to be just sufficient to tell a story that could be understood easily yet 
have enough substance to provide some insights into broader issues. 
Moving beyond the limitations of this model is going to require some 
compromises—namely, if we want to expand the potential for insights, 
we will likely need to complicate the model and, perhaps, muddy the 
analytic waters. 

For example, suppose we wish to explore more fully Tiebout’s (1956) 
concept of “voting with your feet.” That is, can we characterize better the 
ability of social systems to sort citizens dynamically among towns? The 
simplifications in the preceding model were rather drastic; we had two 
towns, six citizens, a single issue (choice of chile), and a single mechanism 
to determine what each town offered (majority rule). If we wish to go 
beyond any of these constraints, we will quickly start to run into trouble 
in pursuing the thought experiment framework used previously. 

In economics, formal modeling usually proceeds by developing math
ematical models derived from first principles. This approach, when well 
practiced, results in very clean and stark models that yield key insights. 
Unfortunately, while such a framework imposes a useful discipline on 
the modeling, it also can be quite limiting. The formal mathematical 
approach works best for static, homogeneous, equilibrating worlds. Even 
in our very simple example, we are beginning to violate these desiderata. 
Thus, if we want to investigate richer, more dynamic worlds, we need 
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to pursue other modeling approaches. The trade-off, of course, is that 
we must weigh the potential to generate new insights against the cost of 
having less exacting analytics. 

One promising alternative approach is the development of 
computation-based models. In the Tiebout system, through computation 
we can allow multiple towns and citizens, as well as more elaborate 
preference and choice mechanisms. Thus, we can consider a world in 
which each town must make binary choices over multiple issues, such 
as whether to, say, serve red or green chile at the annual picnic, allow 
smoking in public places, and set taxes either high or low. Once we 
admit multiple issues, our citizens will need to have more complicated 
preference structures to account for the more elaborate set of choices. 
This will imply that, instead of just two types of citizens, we now have a 
much more heterogeneous population. Finally, instead of using majority 
rule as the sole means by which a town chooses its offerings, we can 
admit a variety of other possible social choice mechanisms. For example, 
towns might use a form of democratic referenda where, like simple 
majority rule, citizens get to vote on each issue and the majority wins; or 
perhaps the towns could rely on political parties that develop platforms 
(positions on each possible choice) and then vie for the votes of the 
populace. 

Rather than fully pursuing the detailed version of the model we 
just outlined (interested readers should see Kollman, Miller, and Page, 
1997), here we provide just an overview. Using computation, we can 
explore a world with multiple issues, citizens, towns, choices, and choice 
mechanisms. For example, consider a model where each town must make 
binary decisions across eleven issues. Each citizen has a preference for 
each issue that takes the form of a (randomly drawn) weight that is 
summed across all of the choices in a town’s platform to determine the 
citizen’s overall happiness. Of particular interest at the moment is the 
effectiveness of different public choice mechanisms in allocating citizens 
to towns and towns to platforms. 

We will allow towns to use a variety of choice mechanisms to 
determine what they will offer. At one extreme we can employ democratic 
referenda (essentially majority rule on an issue-by-issue basis), while at 
the other we will consider a party-based political processes whereby 
political parties propose platforms and then compete with one another 
for votes. In this latter mechanism, we can consider worlds with two 
or more parties, either where the winning party takes all in direct 
competition (that is, the winning party’s platform is what the town offers) 
or where, in a system of proportional representation, the final platform 
offered by the town is a blend, weighted by votes, of each individual 
party’s platform. 
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Again, we impose a simple dynamic on the system: the citizens in 
a town, mediated by the choice mechanism, determine what the town 
will offer across the eleven issues and, once that is determined, citizens 
look around and move to their favorite town based on their own 
preferences and each town’s current offerings. We iterate this process 
multiple times and ultimately investigate the final match of citizens to 
towns and towns to issues. For the moment, we judge each mecha
nism only by its effectiveness at maximizing the overall happiness of 
the citizens after a fixed amount of time. Thus, a good outcome will have 
citizens with similar preferences living in the same town, and that town 
offering a platform that aligns well with the preferences of its, relatively 
homogeneous, residents. 

To get our bearings, first consider the case of a world with only a 
single town. In such a world the dynamic implied by citizens moving 
from town to town is nullified, and the only dynamic element of the 
model is that arising from the town altering its offerings via the choice 
mechanism. Thus, the best outcome will depend on the ability of the 
choice mechanism to come up with a platform that closely matches 
the preferences of the population. We find that, under these conditions, 
democratic referenda lead to the best outcome, followed by two political 
parties competing under direct competition, then multiple parties with 
proportional representation, and finally more than two parties using 
direct competition. Under democratic referenda, the system immediately 
locks into the median position of the voters on each issue; under the 
other mechanisms, party competition can result in the town’s platform 
changing from period to period and not necessarily achieving the median 
on any one issue. Under the preference structure of our model, the median 
voter position on each issue will typically maximize the overall welfare of 
a fixed group of citizens confined to a single town. Therefore, democratic 
referenda are the best mechanisms for maximizing social welfare in a 
world consisting of only a single town. 

Oddly, when we allow additional towns into the system, democratic 
referenda no longer lead to the highest social welfare. In fact, the 
effectiveness of the different choice mechanisms is completely reversed, 
and democratic referenda become the worst possible institution rather 
than the best. (See figure 2.4.) 

Why does this happen? Fortunately, computational models are quite 
amenable to exploring such questions; in essence, we have a laboratory 
on the desktop and can systematically propose, test, and eliminate key 
hypotheses to understand better the outcomes we are observing. 

To develop some needed intuition, consider the following. If we are 
interested in maximizing the overall happiness of our citizens with 
multiple towns, we must achieve two ends. First, we need to sort 
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Figure 2.4. Results of a computational Tiebout model. As we increase the 
number of towns in the system, the effectiveness of the different choice 
mechanisms in achieving high social welfare completely reverses. 

the citizens among the available towns so that citizens with similar 
preferences reside in the same town. Without such a sorting, the social 
welfare generated by each town will be compromised given the diversity 
of wants. Second, each town must choose across the issues so as to 
maximize the happiness of its residents. As noted, democratic referenda 
are very effective at deriving a stable platform of choices that maximizes 
happiness for a given town. Given this observation, the failure of 
democratic referenda with multiple towns must be related to their 
inability to sort adequately the citizens among the towns. 

A deeper investigation into the dynamics of the system confirms that 
the mechanisms other than democratic referenda result in far more 
initial movement of the citizens among the towns. Democratic referenda 
tend to stabilize the system quickly, freezing the citizens and platforms 
in place after only a few iterations. That is, after only a few rounds 
each town is offering a fixed platform, and no citizen wants to move. 
The other mechanisms are much more dynamic, in the sense that the 
platforms of each town keep changing during the early periods and 
the citizens tend to migrate much more often. Eventually, even these 
latter systems settle down to a state with little platform change and few 
migrations. 

Earlier we saw how noise in the system allows it to break out 
of inferior sortings and to lock into superior ones. Of course, noise 
alone is not sufficient to guarantee a quality sorting of the citizens— 
to achieve high levels of social welfare, you need the noise to result in 
relatively homogeneous groups of citizens in each town and each town 
implementing platforms that approach something akin to the median 
issue positions across the local voters. 

In fact, the choice mechanisms that work best in our more complicated 
model have a subtle, but key, property. These mechanisms tend to 
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introduce noise into the system when the local citizens’ preferences are 
heterogeneous and to reduce this noise as the citizens become more 
homogeneous. Thus, if the citizens in a given town have very different 
preferences from one another, the more successful mechanisms will 
tend to induce more sorting. As the local citizens become more and 
more similar, these same mechanisms tend to converge on something 
approaching the median position on each issue. The notion that good 
political mechanisms should have such an inherent design is somewhat 
intuitive: if everyone in a district wants the same thing, the mechanism 
should deliver it; if, on the other hand, there is a diversity of wants, then 
the political process should jump around among the various options. 

This “natural” annealing process turns out to be a very effective 
way to promote the decentralized sorting of citizens among towns. To 
achieve the highest social welfare, we need homogeneous collections 
of citizens in each town receiving roughly the median policy of the 
local residents. When the overall sorting of the system is poor, that 
is, when the mix of citizens in each town tends to be heterogeneous 
rather than homogeneous, then we should introduce a lot of noise into 
the platforms. Such noise will induce some citizens to migrate, and this 
migration will often cascade across other towns and result in a fairly 
large-scale resorting of the citizens. However, as the citizens become 
better sorted, that is, as each town becomes more homogeneous, the 
choice mechanisms should “cool” (anneal) the system by stabilizing on 
platforms that closely match the relatively homogeneous preferences of 
each town’s citizens. 

The notion of annealing to improve the structure of decentralized 
systems was first recognized a few thousand years ago in early metal
working. Heating metal tends to disrupt the alignment of (add noise 
to) the individual atoms contained in a metal; then, by slowly cooling 
the metal, the atoms can align better with one another, resulting in a 
more coherent structure. Kirkpatrick, Gelatt, and Vecchi (1983), based 
on some ideas from Metropolis et al. (1953), suggested that “simulated” 
annealing could be used as an effective nonlinear optimization technique. 
Thus, the Tiebout model shows how different institutions (here, public 
choice mechanisms) can become natural annealing devices that ultimately 
result in a decentralized complex adaptive social system seeking out 
global social optima. 

By pursuing the more elaborate computational model, we achieved a 
number of useful ends. First, we were able to investigate some important 
new questions, such as the impact of citizen heterogeneity, multiple 
towns, and differing choice mechanisms on the ability of a system to 
achieve high social welfare. Second, the more elaborate model provided 
some new insights into how such systems behave, the most important 
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being the idea that well-structured noise can jolt a system out of inferior 
equilibria and lead it toward superior ones, and that choice mechanisms 
can be designed to introduce such noise in a decentralized way. This 
intuition is contrary to our usual way of thinking about such problems. 
Noise is usually considered to be a disruptive force in social systems, 
resulting in perturbations away from desirable equilibria rather than a 
means by which to attain them. 

The complex-systems approach also allows us to explore the system’s 
robustness. The system autonomously responds to all kinds of changes. 
We can randomly change the preference profiles for some of the citizens, 
introduce or remove issues, and so on. In each case, the system will 
adapt to these changes by presenting new platforms and inducing new 
migrations. Depending on the rate of change, we may see the system 
slowly moving through a sequence of equilibria or find ourselves with a 
world constantly in flux. 

Although we have focused our discussion on a political system allo
cating public goods, the basic ideas embodied in the model are much 
broader. Decentralized sorting arises across a variety of domains. For 
example, workers seek jobs, traders match with trading partners, individ
uals form social groups and clubs, and industries sort out standards and 
geographic locations. All of these scenarios could be cast as decentralized 
sorting problems similar to the one just discussed. Moreover, we could 
use the ideas developed here to formulate new kinds of decentralized 
sorting algorithms that could be used to, say, sort computer users across 
resources (like servers) or on-line communities (like bulletin boards or 
tagging). 

The Tiebout world we have explored is a nice example of a much 
broader quest. There is nothing that is unique about the Tiebout world 
in terms of its complexity. Like most social systems, it displays some 
dynamics, heterogeneity, and agent interactions that, even in vastly 
simplified models, can easily introduce complexity. Even a little bit 
of complexity implies that the conventional tools we often employ to 
investigate the world will be limited in their ability to yield insights and 
prescriptions. We are not claiming that these more conventional tools 
are useless; indeed, they are an important complement in any quest 
to understand the world.5 The computational approach pursued here 
provided a number of new directions and insights that both enhanced, 
and was enhanced by, more conventional techniques. 

5In the example presented, the investigation of the system first began with the more 
elaborate computational model. Based on that experience, we were able to develop the 
thought experiment with which we opened this section. 
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2.4 New Directions 

The notion that real social systems often result in complex worlds is 
nothing new. More than two hundred years ago Adam Smith described 
a world where the self-interested social behavior of butchers, brewers, 
bakers, and the like resulted in the emergence of a well-defined order. 
While social science has been able to develop tools that can help us 
decipher some parts of this system, we have yet to understand fully 
the inner workings of the world around us. Unfortunately, we are at 
the mercy of a world characterized by change and connections, and thus 
our ability to make sense of our world is often undermined by the same 
characteristics that make it so fascinating and important. 

The application of computational models to the understanding of 
complex adaptive social systems opens up new frontiers for exploration. 
The usual bounds imposed by our typical tools, such as a need to keep 
the entire model mathematically tractable, are easily surmounted using 
computational modeling, and we can let our imagination and interests 
drive our work rather than our traditional tools. Computational models 
allow us to consider rich environments with greater fidelity than existing 
techniques permit, ultimately enlarging the set of questions that we can 
productively explore. They allow us to keep a broad perspective on the 
multiple, interconnecting factors that are needed to understand social life 
fully. Finally, they give us a way to grow worlds from the ground up and, 
in so doing, provide a viable means by which to explore the origins of 
social worlds. 

As we move into new territory, new insights begin to spill forth. 
Sometimes these insights are strong enough to stand on their own; at 
other times, they provide enough of a purchase on the problem that we 
can employ time-tested older techniques to help us verify and illuminate 
the newly acquired insights. On occasion, of course, computational 
models leave us with a jumbled mess that may be of no help whatsoever, 
though, with apologies to Tennyson, ’tis better to have explored and lost 
than never to have explored at all. 

Social science has failed to answer, or simply ignored, some important 
questions. Sometimes important questions fall through the cracks, either 
because they are considered to be in the domain of other fields (which 
may or may not be true) or because they lie on the boundaries between 
two fields and subsequently get lost in both. More often than not, though, 
questions are just too hard and therefore either get ignored or (via 
some convoluted reasoning) are considered unimportant. The difficulty 
of answering any particular scientific question is often tied to the tools 
we have at hand. A given set of tools quickly sorts problems into those 
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we could possibly answer and those we perceive as too difficult to ever 
sort out. As tools change, so does the set of available questions. 

Throughout this book, we pursue the exploration of complex systems 
using a variety of tools. We often emphasize the use of computational 
models as a primary means for exploring these worlds for a number 
of reasons. First, such tools are naturally suited to these problems, as 
they easily embrace systems characterized by dynamics, heterogeneity, 
and interacting components. Second, these tools are relatively new to the 
practice of social science, so we take this as an opportunity to help clarify 
their nature, to avoid misunderstandings, and generally to advance their 
use. Finally, given various trends in terms of the speed and ease of use 
of computation and diminishing returns with other tools, we feel that 
computation will become a predominant means by which to explore the 
world, and ultimately it will become a hallmark of twenty-first-century 
science. 

2.5 Complex Social Worlds Redux 

We see complicated social worlds all around us. That being said, is 
there something more to this complication? In traditional social science, 
the usual proposition is that by reducing complicated systems to their 
constituent parts, and fully understanding each part, we will then be 
able to understand the world. While it sounds obvious, is this really 
correct? Is it the case that understanding the parts of the world will 
give us insight into the whole? If parts are really independent from 
one another, then even when we aggregate them we should be able to 
predict and understand such “complicated” systems. As the parts begin 
to connect with one another and interact more, however, the scientific 
underpinnings of this approach begin to fail, and we move from the realm 
of complication to complexity, and reduction no longer gives us insight 
into construction. 

2.5.1 Questioning Complexity 

Thus, a very basic question we must consider is how complex, versus 
complicated, are social worlds. We suspect that the types of connections 
and interactions inherent in social agents often result in a complex 
system. Agents in social systems typically interact in highly nonlinear 
ways. Of course, there are examples, such as when people call one 
another during the course of a normal day, where agent behavior aggre
gates in ways that are easily described via simply statistical processes. 
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Nonetheless, a lot of social behavior, especially with adaptive agents, 
generates much more complex patterns of interaction. Sometimes this 
is an inevitable feature of the nature of social agents as they actively 
seek connections with one another and alter their behavior in ways that 
imply couplings among previously disparate parts of the system. Other 
times, this is a consequence of the goal-oriented behavior of social agents. 
Like bees regulating the temperature of the hive, we turn away from 
crowded restaurants and highways, smoothing demand. We exploit the 
profit opportunities arising from patterns generated by a stock market 
and, in so doing, dissipate their very existence. Like bees defending the 
hive, we respond to signals in the media and market, creating booms, 
busts, and fads. 

If social worlds are truly complex, then we might need to recast our 
various attempts at understanding, predicting, and manipulating their 
behavior. In some cases, this recasting may require a radical revision of 
the various approaches that we traditionally employ to meet these ends. 
At the very least, we need to find ways to separate easily complex systems 
from merely complicated ones. Can simple tests determine a system’s 
complexity? We would like to understand what features of a system move 
it from simple to complex or vice versa. If we ultimately want to control 
such systems, we either need to eliminate such forces or embrace them by 
productively shaping the complexity of a system to achieve our desired 
ends. 

Another important question is how robust are social systems. Take a 
typical organization, whether it be a local bar or a multinational corpo
ration. More often than not, the essential culture of that organization 
retains a remarkable amount of consistency over long periods of time, 
even though the underlying cast of characters is constantly changing and 
new outside forces are continually introduced. We see a similar effect 
in the human body: typical cells are replaced on scales of months, yet 
individuals retain a very consistent and coherent form across decades. 
Despite a wide variety of both internal and external forces, somehow 
the decentralized system controlling the trillions of ever changing cells in 
your body allows you to be easily recognized by someone you have not 
seen in twenty years. What is it that allows these systems to sustain such 
productive, aggregate patterns through so much change? 

Our modeling of social agents tends toward extremes: we either 
consider worlds composed of remarkably prescient and skilled agents 
or worlds populated by morons. Yet, we know that real agents exist 
somewhere in between these two extremes. How can we best explore 
this middle ground? A key issue in exploring this new territory is figuring 
out the commonalities among adaptive agents. While it is easy to specify 
behavior at the extremes, as we move into the middle ground, we are 
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suddenly surrounded by a vast zoo of curious adaptive creatures. If we 
are stuck having to study every creature individually, it will be difficult 
to make much progress, so our underlying hope is that we can find some 
way to distill this marvelous collection of behaviors down to just a few 
prototypical ones. Once this is done, we can begin to make progress on 
a science of adaptive behaviors. 

We know that adaptive agents alter the world in which they live. What 
we do not know is how much agent sophistication is required to do so 
effectively and what other conditions are necessary for this to happen. 
In general, the link between agent sophistication and system outcome 
is poorly understood. Theoretical work in economics suggests that 
optimizing agents out for their own benefit can, without intention, lead 
a market system toward efficiency under the right conditions. Moreover, 
experimental and computational work suggests that such outcomes are 
possible even with nonoptimizing agents. Ultimately, it would be nice 
to have a full characterization of the interplay between adaptation and 
optimality in social systems. 

Another realm where we have a limited understanding is the role 
of heterogeneity in systems. We know that in, say, ecological systems 
homogeneity can be problematic. For example, using a few genetic lines 
of corn maximizes short-term output but subjects the entire crop to a high 
risk of destruction if an appropriate disease vector arises. Homogeneity in 
social systems may have similar effects. A homogeneous group of agents 
in, say, a market might result in a well-functioning institution most of 
the time, but leave the possibility that these behaviors could synchronize 
in such a way that on occasion the market will crash. By introducing an 
ecology of heterogeneous traders, such fluctuations might be mitigated. 
Perhaps heterogeneity is an important means by which to improve the 
robustness of systems. If so, does this work via complexifying the system 
or via some other mechanism? 

The idea of social niche construction is also important. Agents, by 
their activities, can often alter the world they inhabit and, by so doing, 
form new niches. For example, the development of membranes early 
in the history of life on Earth allowed various biological components 
to bind together and isolate themselves from the external world. This 
fundamentally altered their local environment creating new opportunities 
for interacting with the world. Similarly, the formation of merchant 
guilds, corporations, and political organizations fundamentally altered 
both the internal world faced by agents and the external world in which 
these new entities operated. We would like to know when and how agents 
construct such niches. 

The role of control on social worlds is also of interest. The ability to 
direct the global behavior of a system via local control is perhaps one 
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of the most impressive, yet mysterious, features of many social systems. 
In the natural world, tens of thousands of swarm-raiding army ants 
can form cohesive fronts fifty feet across and six feet deep that can 
sweep through the forest for prey. This entire operation is controlled via 
locally deposited chemical signals. At a grander scale, a vast decentralized 
systems of human markets of all types orchestrate the activities of 
billions of individuals across the span of continents and centuries. Fully 
understanding how such decentralized systems can so effectively organize 
global behavior is an enduring mystery of social science. We do have 
some hints about how this can happen. For example, adding noise to 
the system (as we saw in our Tiebout model) may actually enhance 
the ability of a system to find superior outcomes. We also know that 
some simple heuristics that arise in some contexts, such as the notion 
that in a market new offers must better existing ones, result in powerful 
driving forces that enhance the ability of the system to form useful global 
patterns. 

Every social agent receives information about the world, processes it, 
and acts. For example, in our Tiebout model, the behavior of the citizens 
was very straightforward (get information about the offerings of the 
various towns, process this via your preferences, and act by moving to 
your favorite town), while that of each town was a bit more elaborate 
(get information about the preferences of the citizens across the issues, 
process this via either exact or adaptive mechanisms to develop a new 
platform, and act by implementing this platform). 

Traditional economic modeling tends to have a fairly narrow view 
of the issues that arise in acquiring information, processing it, and 
acting. In these models, agents tend to have access to all available 
information, process it with good fidelity and exacting logic directed 
toward optimization, and act accordingly. Where traditional economics 
gains its power is that these restrictions make for relatively easily 
modeling across a broad spectrum of social activity. Notwithstanding 
the apparent success of this approach in some domains, one wonders 
whether such a restricted view of these three elements is appropriate. 
While clearly these restrictions give us leverage from which to generate 
insights across a variety of social realms, we also know that in many 
cases the core tenets driving the approach are misplaced (though it is 
still an open issue whether this matters in the end). For example, the 
recent wave of work in behavioral economics is based on the notion that 
the processing of information by humans may take place in ways that 
dramatically diverge from the traditional view. 

Much of the work we discuss throughout this book relaxes the 
traditional assumptions about information acquisition, processing, and 
acting. We want to consider models in which information is selectively 
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acquired across restricted channels of communication. We want to look 
at agents that process information via adaptive mechanisms or restricted 
rules rather than exacting logic. We want to explore models in which 
actions are often limited and localized. How do all of these factors 
embody social complexity and what does this mean for the practice of 
social science? 




