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2 
INFORMATION DEFINITION

C
ataclysmic events are rare in the development of applied mathematics, but the 
theory of information published by Claude E. Shannon deserves to be cataloged 
as such an occurrence. The theory was immediately recognized as so elegant, so 

surprising, so practical, and so universal in its application that it almost immediately 
changed the course of modern technology. Yet, unlike many other technological revo­
lutions, the theory relied on no equipment, no detailed experiments, and no patents, for 
it was deduced from pure mathematical reasoning. Upon its publication, researchers 
and students applied it to all sorts of areas, and today it remains a central concept 
in information technology, providing a foundation for many information-processing 
procedures, a performance benchmark for information systems, and guidance for how 
to improve performance. 

Shannon developed his theory in response to a vexing problem faced for years at 
the Bell Telephone Laboratories, where he was employed. Imagine that one wishes 
to send a long message consisting of zeros and ones by means of electrical pulses 
over a telephone line. Due to inevitable line disturbances, there is a chance that an 
intended zero will be received as a one, and likewise that a one will be received as a 
zero. There will be errors in communication. Engineers sought ways to reduce those 
errors to improve reliability. 

A standard approach to this problem was to repeat the message. For example, if 
an intended zero is sent three times in succession and the disturbance level is not too 
great, it is likely that at least two out of the three zeros will be received correctly. 
Hence, the recipient will probably deduce the correct message by counting as zero 
a received pattern of either two or three zeros out of the three transmissions. The 
analogous majority-voting procedure would be applied to the interpretation of ones. 

However, there is some chance with this repetition method that in a sequence of, 
say three zeros, two or more might be corrupted and received as ones. Thus, although 
repeating a digit three times reduces the chance of errors, it does not reduce that 
chance to zero. 

Reliability can be further improved, of course, by repeating each message symbol 
several times. A hundred-fold repetition is likely to lead to an extremely small chance 
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of error when a majority vote between zeros and ones is used by the receiver to decide 
on the likely symbol. But such repetition carries with it a huge cost in terms of trans­
mission rate. As reliability is increased by greater repetition, the rate at which message 
symbols are sent decreases. Thus high reliability entails a low rate of transmission. In 
the limit of perfect reliability, the rate of transmission goes to zero, for it would take 
forever to send just a single message symbol, repeated an infinite number of times. 

Shannon’s brilliant theory showed that for a given level of disturbance, there is, 
in fact, an associated rate of transmission that can be achieved with arbitrarily good 
reliability. 

Achievement of Shannon’s promised rate requires coding that is much more sophis­
ticated than simply repeating each symbol a number of times. Several symbols must 
be coded as a group and redundancy incorporated into that group. 

The general idea can be understood by thinking of sending an English sentence. If 
one sends a single letter, say T, there is a chance that it will be corrupted in transmission 
and received as, say R. The T might have to be sent many times before it is received 
and interpreted as T with high reliability. 

Instead, suppose that the T is part of the intended word message THIS. If that 
word is sent, there is again a chance that the T will be corrupted and received as R. 
However, if the other three letters are received correctly, the recipient would realize 
that RHIS is not a valid English word, and could deduce that the R should be a T. This 
explanation is not complete, but the rough idea is there. Namely, by sending blocks 
(or words) of symbols, new avenues for error correction become available. 

2.1 A Measure of Information 

Messages that are unusual and not easily predicted carry more information than those 
that are deemed likely even before they are received. That is the key idea of Shannon’s 
measure of information. 

For example, the message, “It is sunny in California today” normally embod­
ies little information, because (as everyone knows) it is nearly always sunny in 
California. On the other hand, the message, “It is cloudy in California” represents 
significant information, since (as everyone knows) that is a rare occurrence. 

As another example, if I verify that my watch is working, that is less 
information than if I find that it is not working. 

Information is quantified by considering the probabilities of various 
possible messages. A message with low probability represents more 
information than one with high probability. For example, since cloudy 

weather in California has low probability, the message that it 
is cloudy represents a good deal of information. 
Once the probability p of a message is specified, the associated 

information can be defined. 

Information definition. The information associated with a message of probability 
p is 

I = log (1/p) ≡ −log p, (2.1) 

where log stands for logarithm. 
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Any base can be used for the logarithm (such as the base e of the natural logarithms, 
base 10, or base 2). Different bases simply give different units to the information 
measure. 

Notice that if p is small, 1/p is large and hence the information I will be large. 
This is in accord with the general notion that a report of an unlikely event provides 
more information than a report of a likely event. 

Logarithms to the base 2 are used most often in information theory, and then the 
units of information are bits. If  p = 1/2, then I = − log2 (1/2) = log2 2 = 1 bit. As 
an example, if I flip a coin and tell you the outcome is heads, I have transmitted one 
bit of information because the probability of heads is one-half. 

The measure of information in equation (2.1) was originally proposed by 
R.V.L. Hartley, who used base-10 logarithms, and when that base is used, it is cus­
tomary to call the units of information Hartleys. 

It is easy to transform from one base to another through the relation1 

logb x = loga x/loga b. (2.2) 

In particular, when using base-2 logarithms, it is convenient to use log2 x = ln x/ ln 2, 
where ln denotes logarithms to the base e. Since ln 2 = .693, we can write log2 x = 
ln x/.693. 

Since base 2 is used most of the time in information theory, the explicit reference 
to the base is usually omitted and one simply writes log x for log2 x. (However, one 
must be careful, since most general purpose calculators and references use log x to 
mean log10 x.) 

Additivity of Information 

Suppose I flip a coin twice, and the result is heads on the first flip and tails on the 
second. If I transmit this fact to you, how much information have I sent? There are, of 
course, four equally likely possibilities for the outcome of the two flips, namely HH, 
HT, TH, and TT. The particular outcome HT has probability 1/4, so the information 
content of that message (using base-2 logarithms) is I = log[1/(1/4)] =  log 4 = 
2 bits. This is also the sum of the information that would be transmitted by reporting 
the outcome of each flip separately—one bit each. Hence the information of the 
compound message is the sum of the information in the two individual messages. 

The additive property is true in general for independent events. 

Additive Property. If event A has probability pA and event B has probability pB and 
these are independent in the sense that one is not influenced by the other, then the 
probability of the joint event A and B is pApB. The corresponding information is 

IAB = −log pApB = −log pA − log pB = IA + IB. 

We might receive the message that it is sunny in California and John won the 
bowling tournament. The information content of this compound message is the sum 

1To prove the relation, we write blogb x = aloga x . Taking the loga of both sides yields ( logb x) loga b = 
loga x. Hence logb x = loga x/loga b. 
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of the information that it is sunny and the information that John won the bowling 
tournament, assuming that the weather does not affect the tournament and vice versa. 

Strong support for the definition of information as the logarithm of 1/p is given by 
the additive property. Indeed, the definition seems quite intuitive, but its importance 
will later become even more apparent. 

2.2 The Definition of Entropy 

We know how to measure the information of a particular message or event, such as 
the report that the weather is sunny, or that a coin flip was heads. Information is 
associated with knowledge of an event that has occurred. Entropy is a measure of 
information that we expect to receive in the future. It is the average information taken 
with respect to all possible outcomes. 

Suppose, for example, that there are two possible events (such as sunny or cloudy 
weather). The first will occur with probability p and the second with probability 
1 − p. If the first event occurs, a message conveying that fact will have an amount of 
information equal to I1 = −log p. Likewise, if the second occurs, the corresponding 
information will be I2 = −log (1 − p). On average, event 1 occurs with probability 
p, and event 2 occurs with probability 1 − p. Hence, the average information is 
pI1 + (1 −p)I2. This average information is the entropy of the two event possibilities. 
This leads to the following definition. 

Entropy definition. For two events with probabilities p and 1 − p, respectively, the 
entropy is 

H(p) = −p log p − (1 − p) log (1 − p). (2.3) 

Entropy has the same units as information, so when information is measured in 
bits (using base-2 logarithms), entropy is also measured in bits. 

Example 2.1 (Weather). As a specific weather example, suppose that weather in 
California is either sunny or cloudy with probabilities 7/8 and 1/8, respectively. The 
entropy of this source of information is the average information of sunny and cloudy 
days. Hence 

H = − (7/8) log (7/8) − (1/8) log (1/8) 
1 = −  [7 log 7 − 7 log 8 − log 8] 
8 
1 = −  [7 × 2.81 − 7 × 3 − 3]
8 
1 1 = −  [19.65 − 21 − 3] =  [4.349] = .54 bits. 
8 8 

(In this calculation log 8 is 3 because 23 = 8. The log of 7 is found from log27 = 
ln 7/ln2 = 1.459/.693 = 2.81.) 

The entropy of two events is characterized by the probability p of one of the events 
since the other event must have probability 1−p. The function H( p) given by equation 
(2.3) is plotted as a function of p in figure 2.1. 
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FIGURE 2.1 Entropy H(p) as a function of p. Entropy is symmetric about the point 1/2, 
where it attains a maximum of 1 bit. Entropy is 0 if p is zero or one. 

If p is either zero or one, the event outcome is completely determined. The entropy 
is zero since if the outcome is certain, no information is conveyed by a report of what 
occurred. 

Entropy is symmetric about the point p = 1/2 because p and 1 − p can be inter­
changed. That is, it makes no difference whether the labels of the two events are 
interchanged with event 1 being called event 2 and vice versa. 

Finally, entropy is maximized at p = 1/2, where its value is 1 bit. This is the 
entropy of a single coin flip having a 50-50 chance of being heads or tails. A 50-50 
chance represents the greatest uncertainty for two events, and hence the greatest 
entropy. 

We may verify that H( p) achieves a maximum at p = 1/2 by a simple application 
of calculus. A maximum occurs at the point where the derivative of H( p) is zero. It 
is easiest to use logarithms to the base e and divide by ln 2. Thus, in terms of bits, we 
may write 

H( p) = −[p ln p + (1 − p) ln  (1  − p)]/(ln 2). 

Then, since the derivative of ln p is 1/p, setting the derivative of H( p) to zero yields 

0 = 
dH( p) = −  ln p + p − ln (1 − p) − 

1 − p 
ln 2 

dp p 1 − p 

= −ln p + ln (1 − p) / ln 2. 

This implies that ln p = ln (1 − p), and this in turn implies p = 1 − p or, finally, 
p = 1/2. 
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2.3 Information Sources 

An information source or simply a source is defined to consist of the possible 
(mutually exclusive) events that might occur together with their probabilities; and 
the definition of entropy is easily extended to sources with several possible events. 
Suppose there are n possible events in a source, with the i-th event having probability 
pi (for i = 1, 2, . . . , n). None of the probabilities are negative and they must sum to 1. 
The information of the message that event i occurred is Ii = log (1/pi). The entropy 
is the average information of these. 

Entropy of an n-event source. The entropy of an n-event source with probabilities 
p1, p2, . . . , pn is 

H= p1 log (1/p1) + p2 log (1/p2) + · · · + pn log (1/pn) (2.4) 

= − [p1 log p1 + p2 log p2 + · · · + pn log pn]. 
This function is sometimes denoted H( p1, p2, . . . , pn). 

The following example illustrates the straightforward calculation of entropy. 

Example 2.2 (Three-event source). Suppose there are three events with probabil­
ities 1/2, 1/4, 1/4. The corresponding entropy is 

H(1/2, 1/4, 1/4) = (1/2) log 2 + (1/4) log 4 + (1/4) log 4 

= 1/2 + (1/4) × 2 + (1/4) × 2 

= 3/2. 

The basic properties of entropy exhibited by figure 2.1 for the case of two events 
generalize to properties of entropy for n events. 

Two properties of entropy. 

1. (Nonnegativity) H( p1, p2, . . . , pn) ≥ 0. 
Since 0 ≤ pi ≤ 1, each log pi ≤ 0. Hence −pilog pi ≥ 0 for each i, which 
means H ≥ 0. 

2.	 H( p1, p2, . . . , pn) ≤ log n. 
As in the case with n = 2, the maximum of H occurs when all probabilities 
are equal, with pi = 1/n for each i. Hence H ≤ i

n 
=1 (1/n)log n = log n. 

Example 2.3 (20 questions). The popular parlor game of 20 questions illustrates 
one facet of entropy. One person selects an object and tells another only whether the 
object is classified as animal, vegetable, or mineral. The other person may then ask 
up to 20 questions, which are answered either yes or no, to determine the object. 

Clearly two possible objects, say A and B, can be distinguished with a single 
question, such as “Is it A?” (although if the answer is no, the question “Is it B?” must 
be asked to complete the game even though the answer is already known). One of four 
objects can be determined with two questions. In general one out of 2n objects can be 
determined with n questions. The strategy for determining the one object from 2n is of 
course to repeatedly divide in half the group of objects remaining under consideration. 
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If we suppose that the 2n objects are equally likely (each with probability 1/2n), 
the entropy of this source is the sum of 2n terms 

1 1 1 
log 2n + log 2n + · · · +  log 2n = log 2n = n. 

2n 2n 2n 

Thus the number of questions to determine the object is equal to the entropy of the 
source. 

This is true only when the number of objects is a power of 2, in which case the 
entropy is an integer. For other cases, the entropy figure must be increased to the 
nearest integer to obtain the number of required questions to assure success. 

As an interesting calculation, we note that 220 = 1,048,576, which is the number 
of objects that can be distinguished with 20 questions (although only 219 can be 
definitely distinguished and stated as a final question). 

2.4 Source Combinations 

Entropy is additive in the same way that information itself is additive. Specifically, 
the entropy of two or more independent sources is equal to the sum of the entropies of 
the individual sources. For example, the entropy of two coin flips is twice the entropy 
of a single flip. The entropy of the California weather report and the report of John’s 
performance in the bowling tournament is the sum of entropies of the two events 
separately. However, the entropy of the combination of weather conditions (sunny 
or cloudy) and outside temperature (warm or cool) is not the sum of the individual 
entropies because weather condition and temperature are not independent—sunny 
weather is likely to imply warm temperature, for example. Additivity of information 
depends on the two sources being independent. 

Mathematically, two sources S and T are independent if the probability of each 
pair (s, t) with s ∈ S, t ∈ T is pst = pspt , where ps and pt are the probabilities of 
s and t, respectively. Additivity follows from the property of logarithms; namely, 
log pspt = log ps + log pt . 

Formally, the product of two sources S and T is denoted (S, T ) and consists of 
all possible pairs (s, t) of events, one from S and one from T . We mentioned earlier 
the example of the source made up of California weather and John’s bowling record, 
a product source of four events. 

Additive property of entropy. If the sources S and T are independent, then the 
entropy H(S, T ) of the product source (S, T ) satisfies 

H(S, T ) = H(S) + H(T ). 

The proof of the property is obtained by simplifying the expression for the com­
bined entropy. Suppose that the probability of an event s in S is ps and the probability 
of an event t in T is pt . Then an event (s, t) in (S, T ) has probability pspt . The entropy 
of the product source is 

H(S, T ) = −  pspt log pspt = −  pspt [log ps + log pt]
s∈S,t∈T s∈S,t∈T � � � � � � � � 

= −  pt ps log ps − ps pt log pt = H(S) + H(T ). 
t∈T s∈S s∈S t∈T 
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It is always true, even if S and T are not independent, that H(S, T ) ≤ H(S) + H(T ). 
For example if two channels of TV both reported the California weather, the entropy 
would be equal to just one of them, not two. Proof of the general inequality is given 
in chapter 5, where conditional entropy is discussed. 

An important special case where independence holds is when the product source is 
the result of independent repetitions of a single source—like two flips of a coin, or two 
unrelated days of weather reports. If the original source is denoted by S, the product 
source, consisting of independent pairs of events from S, is denoted S2. Likewise 
we can consider a source that is the product of any number n of independent events 
from S and denote this source by Sn. For example, if S is derived from the heads and 
tails of a coin flip, then S3 consists of three independent coin flips. We easily find the 
following result. 

Entropy of Sn . When independent samples are taken from a source S with entropy 
H(S), the entropy of the resulting source Sn is 

H(Sn) = nH(S). 

Mixture of Sources 

Two or more sources can be mixed according to fixed probabilities. Let the indepen­
dent sources S1 and S2 have entropies H1 and H2, respectively. They can be mixed 
with probabilities p and 1 − p by selecting a symbol from S1 with probability p or 
a symbol from S2 with probability 1 − p. For example S1 might be a coin, and S2 a 
six-sided die. The mixed source would with probability p flip the coin to obtain Heads 
or Tails or otherwise (with probability 1 − p) throw the die to obtain 1, 2, 3, 4, 5, or 
6. The resulting source has possible symbols Heads, Tails, 1, 2, 3, 4, 5, 6. In general, 
if S1 is chosen, then a specific item is selected from it according to the probabilities 
of items in S1; likewise for S2 if it is chosen. 

Mixture entropy. The entropy of the source obtained by mixing the independent 
sources S1 and S2 according to probabilities p and 1 − p, respectively, is 

H = pH1 + (1 − p)H2 + H( p), 

where H1 is the entropy of S1 and H2 is the entropy of S2. 

For example, if each source has only a single element so that H1 = H2 = 0, the 
resulting entropy is not zero, but rather H( p). (See exercise 5.) For the coin and 
die example, if p = 2

1 , then � � � 1 �1 1 
H = 1 + log 6 + H = 2 + log 3. 

2 2 2 

2.5 Bits as a Measure 

The bit is a unit of measure frequently used in the information sciences. However, 
it has at least two slightly different meanings. In its most common use, a bit is a 
measure of the actual number of binary digits used in a representation. For example, 
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the expression 010111 is six bits long. If information is represented another way, as for 
example, by decimal digits or by letters of the alphabet, these can be measured in bits 
by using the conversion factor of log2 10 = 3.32 and log2 26 = 4.7. Thus the string 
457832 consists of 6 × 3.32 = 19.92 bits. In general anything that has n possibilities 
is commonly said to have log2 n bits. Conversely, k bits can represent a total of 2k 

things. This usage does not directly reflect information or entropy. For instance, the 
expression 010001 representing the California weather report for six specific days, 
with 0 for sunny and 1 for cloudy, contains far less than six bits of information. 
Likewise, the entropy of six days of weather (the average of the information over any 
six days) is less than six bits. In general, the direct measure of bits as they occur as 
symbols matches the entropy measure only if all symbols occur equally likely and 
are mutually independent. 

Neither the raw combinatorial measure of bits nor the entropy measure says any­
thing about the usefulness of the information being measured in bits. A string of 1,000 
bits recording the weather at the South Pole may be of no value to me, and it may 
have low entropy, but it is still 1,000 bits from a combinatorial viewpoint. 

TABLE 2.1 A bit is a very small unit of measure relative to most information sources, and hence 
Terms Defining Large it is convenient to have larger-scale units as well. In many cases the byte is taken as a 
Numbers of Bits. reference, where one byte equals eight bits. Common terms for large numbers of bits 

are shown in table 2.1. 
byte = 8 bits Some of these are huge numbers representing enormous quantities of information. 

kilobyte = 103 bytes To provide a concrete comparison, two and a half kilobytes is roughly one page of 
megabyte = 106 bytes text; a megabyte is about the equivalent of a 400-page book. A gigabyte is equivalent 

gigabyte = 109 bytes 
terabyte = 1012 bytes 

to a short movie at TV quality. 

petabyte = 1015 bytes 
A popular unit is the LOC, representing 20 terabytes, which is roughly the contents 

exabyte = 1018 bytes 
of the U.S. Library of Congress when converted to digital form. 

zettabyte = 1021 bytes Information (at least in combinatorial bits) is being created at an enormous rate. 

yottabyte = 1024 bytes It is estimated that during one year the information created and stored is on the order 
of one exabyte. Of this total, printed materials account for only about .003 percent. 

Although human-generated and recorded information is vast, it is small compared 
to that in nature. The DNA of an amoeba contains about 109 bits of information. 
Human DNA potentially holds about one exabyte. 

Our interest is primarily in human-generated information. This information is 
stored, manipulated, transported by various means, and absorbed by the human mind. 
Information theory helps us do this efficiently. 

2.6 About Claude E. Shannon 

Claude Elwood Shannon was born in 1915 in Petoskey, Michigan. He attended the 
University of Michigan, where he obtained the degrees of both bachelor of science 
of electrical engineering and bachelor of science in mathematics. He then attended 
the Massachusetts Institute of Technology and obtained the S.M. degree in electrical 
engineering and the degree of doctor of philosophy in mathematics in 1940 (both at 
the same time). 

His master’s thesis was extremely innovative and important. Some have called it 
the most important master’s thesis ever written in the area of digital circuit design. 
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Basically, he showed how to systematize the design of complex circuits by the use of 
Boolean algebra. For this work he was awarded the Alfred Noble Prize, an engineering 
award given to young authors. 

His Ph.D. dissertation was no less novel. In it he showed how to depict genetic 
information with mathematical structures. His methods enabled calculations and con­
clusions that had not been possible previously. However, the paper describing his 
work was never published, and Shannon was too busy with new ideas to continue to 
pursue it. 

Shortly after graduation from MIT, Shannon joined Bell Telephone Laboratories, 
where he worked for 15 years. It was here that he developed his theory of communi­
cation, carried out his study of the structure of the English language, and developed 
his theory of encryption. These theories are presented within the chapters of this text. 
The profound impact of this work on the field of information science is illustrated by 
the many applications and extensions of it that we shall highlight. 

Shannon was somewhat shy, but he was also playful; and he was as creative in play 
as in technical work. It was not unusual to see him riding a unicycle in the hallways of 
Bell Labs. Juggling was one of his primary hobbies, and he was quite accomplished at 
it. He wrote a paper on the scientific aspects of juggling and built automatic juggling 
machines (one using a stream of air to propel objects upward). He also wrote papers 
on game-playing machines of various types, including one on chess. 

Shannon’s Approach to Problem Solving 

Shannon’s playful hobbies and his technical work shared the common attribute of 
reducing issues to their simple essence. He discussed this approach to problem solving 
in a talk that he gave in 1953: 

The first one [method] I might speak about is simplification. Suppose that you 
are given a problem to solve, I don’t care what kind of problem—a machine 
to design, or a physical theory to develop, or a mathematical theorem to 
prove or something of that kind—probably a very powerful approach to this 
is to attempt to eliminate everything from the problem except the essentials; 
that is, cut it down to size. Almost every problem that you come across is 
befuddled with all kinds of extraneous data of one sort or another; and if you 
can bring this problem down into the main issues, you can see more clearly 
what you are trying to do and perhaps find a solution. Now in so doing you 
may have stripped away the problem you’re after. You may have simplified 
it to the point that it doesn’t even resemble the problem that you started with; 
but very often if you can solve this simple problem, you can add refinements 
to the solution of this until you get back to the solution of the one you started 
with. 

Shannon’s approach of abstraction to an essence should become clear as we study 
his contributions throughout this text. His work is a testament to the power of the 
method. 
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2.7 EXERCISES 
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D
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FIGURE 2.2 A decom-
position of a source into 
two sources. 

1. (Four-event source) Consider a source with four events having probabilities 1/5, 1/5, 1/5, 2/5. 
(a) What is the information in bits conveyed by a report that the first event occurred? 
(b) What is the entropy of the source? 

2. (Change of base) What is the general formula for entropy Hb(S) using base-b logarithms in 
terms of entropy Ha(S) using base-a logarithms? 

3. (A counterfeit coin*) A certain counterfeit half-dollar has a probability p of being heads 
and 1 − p of being tails, where p �= 1/2. John flips the coin and tells Jane the outcome. 

(a) What is the entropy associated with the statement that John makes to Jane? 
(b) On the next flip, Jane realizes that there is a probability q that after the flip John 

will reverse the coin before reporting the (altered) outcome. Is the new entropy of 
John’s statement less than, equal to, or greater than that of part (a)? Prove your 
answer. This says something about the effect of mixing two sources. 

4. (Maximum entropy) Show explicitly that the maximum possible entropy of a source of 
n events is log n bits and is attained when the events have equal probabilities. 

5. (Source mixing) Prof. Babble is writing a mathematical paper that is a combination 
of English and mathematics. The entropy per symbol of his English is HE and the entropy 
of his mathematics (using mathematical symbols) is HM . His paper consists of a fraction λ 

of English letters and a fraction 1 − λ of mathematical symbols. 
(a) Show that the per-symbol entropy of his paper is 

HP = λHE + (1 − λ)HM + H(λ). 

(b) The professor is proud of the fact that he mixes English and mathematics in such 
a way that his papers have maximum per-symbol entropy. Find the value of λ that 
he uses. 

6. (Playing cards) 
(a) What is the amount of information in bits transmitted by announcing the name of 

a chosen card from a deck of 52 playing cards? 
(b) What is the total number of ways that a deck can be ordered? Hint: Find the 

logarithm of the number first. 
(c) What is the entropy in bits of a source consisting of a random deck of cards? 

7. (Amoeba smarts) The DNA string of an amoeba holds roughly 109 bits of information. This 
tells the amoeba how to make its enzymes and indeed how to carry out all other functions 
for its life. If this information were translated into a written instruction manual for amoebas, 
about how many volumes would be required? 

8. (Tree combination) Consider the three-event source with labels A, B, C and corresponding 
probabilities 1/2, 1/4, 1/4. By introducing an intermediate event D, this source can be 
constructed from the tree shown in figure 2.2. Let S be the source with events A and D and 
let P be the source with events B and C as seen from D (that is, the source P occurs only if 
D occurs). 

Find the entropy of the original source in terms of the entropies of S and P. Compare 
with the direct calculation of the entropy of the original source. 
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2.8 Bibliography 

The classic paper on information theory is Shannon’s original paper of 1949 [1]. 
Two basic textbook references are [2] and [3]. Quantitative estimates of the amount 
of data in various media are presented in [4]. An interesting study of the role of 
information theory in the study of biological systems is the book [5]. Shannon’s vast 
collected works and a brief biography are found in [6]. A good survey of his work 
and philosophy is in the final project paper [7]. Shannon’s talk on creativity was 
published in [8]. 
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