
C H A P T E R 0
• • • • • • • • • • • • •

Introduction: Building a Computing Toolbox

Nomatter howmuch time you spend in the field or at the bench, most of your
research is done when sitting in front of a computer. Yet, the typical curricu-
lum of a biology PhD does not include much training on how to use these
machines. It is assumed that students will figure things out by themselves,
unless they join a laboratory devoted to computational biology—in which
case they will likely be trained by other members of the group in the labora-
tory’s (often idiosyncratic) selection of software tools. But for the vastmajority
of academic biologists, these skills are learned the hard way—through painful
trial and error, or during long sessions sitting with the one student in the
program who is “good with computers.”

This state of affairs is at odds with the enormous growth in the size and
complexity of data sets, as well as the level of sophistication of the statistical
and mathematical analysis that goes into a modern scientific publication in
biology. If, once upon a time, coming up with an original idea and collecting
great data meant having most of the project ready, today the data and ideas
are but the beginning of a long process, culminating in publication.

The goal of this book is to build a basic computational toolbox for biolo-
gists, useful both for those doing laboratory and field work, and for those with
a computational focus. We explore a variety of tools and show how they can
be integrated to construct complex pipelines for automating data collection,
storage, analysis, visualization, and the preparation of manuscripts ready for
submission.

These tools are quite disparate and can be thought of as LEGO® bricks,
that can be combined in new and creative ways. Once you have added a new
tool to your toolbox, the potential for new research is greatly expanded. Not
only will you be able to complete your tasks in amore organized, efficient, and
reproducible way, but you will attempt answering new questions that would
have been impossible to tackle otherwise.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



2 ● Chapter 0

0.1 The Philosophy

Fundamentally, this book is a manifesto for a certain approach to computing
in biology. Here are the main points we want to emphasize:

Automation

Doing science involves repeating the same tasks several times. For example,
you might need to repeat an analysis when new data are added, or if the same
analysis needs to be carried out on separate data sets, or again if the reviewers
ask you to change this or that part of the analysis to make sure that the results
are robust.

In all of these cases you would like to automate the processing of the data,
such that the data organization and analysis and the production of figures and
statistical results can be repeated without any effort. Throughout the book, we
keep automation at the center of our approach.

Reproducibility

Science should be reproducible, and much discussion and attention goes into
carefully documenting empirical experiments so that they can be repeated.
In theory, reproducing statistical analysis or simulations should be much eas-
ier, provided that the data and parameters are available. Yet, this is rarely
the case—especially when the processing of the data involves clicking one’s
way through a graphical interface without documenting all the steps. In
order to make it easy to reproduce your results, your computational work
should be

readable: Your analysis should be easy to read and understand. This involves writing
good code and documenting what you are doing. The best way to proceed is to
think of your favorite reader: yourself, six months from now. When you receive
feedback from the reviewers, and you have to modify the analysis, will you be able
to understand precisely what you did, how, and why? Note that there is no way to
email yourself in the past to ask for clarifications.

organized: Keeping the project tidy and well organized is a struggle, but you don’t
want to open your project directory only to find that there are 16 versions of the
same program, all with slight—and undocumented—variations!

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Introduction: Building a Computing Toolbox ● 3

self-contained: Ideally, you want all of your data, code, and results in the same place,
without dependencies on other files or code that are not in the same location.
In this way, it is easy to share your work with others, or to work on your projects
from different computers.

Openness

Science is a worldwide endeavor. If you use costly, proprietary software, the
chances are that researchers in less fortunate situations cannot reproduce your
results or use your methods to analyze their data. Throughout the book, we
focus on free software:1 not only is the software free in the sense that it costs
nothing, but free alsomeans that you have the freedom to run, copy, distribute,
study, change, and improve the software.

Simplicity

Try to keep your analysis as simple as possible. Sometimes, “readable” and
“clever” are at odds, meaning that a single line of code processing data in 14
different ways at oncemight be genius, but seldom is it going to be readable. In
such cases, we tend to side with readability and simplicity—even if this means
writing three additional lines of code. We also advocate the use of plain text
whenever possible, as text is portable to all computer architectures and will
be readable decades from now.

Correctness

Your analysis should be correct. This means that programming in science is
very different from programming in other areas. For example, bugs (errors
in the code) are something the software industry has learned to manage and
live with—if your application unexpectedly closes or if your word processor
sometimes goes awry, it is surely annoying, but unless you are selling pace-
makers this is not going to be a threat. In science, it is essential that your code
does solely what it is meant to do: otherwise your results might be unjustified.
This strong emphasis on correctness is peculiar to science, and therefore you

1. gnu.org/philosophy/free-sw.html.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

http://gnu.org/philosophy/free-sw.html


4 ● Chapter 0

will not find all of thematerial we present in a typical programming textbook.
We explore basic techniques meant to ensure that your code is correct and we
encourage you to rewrite the same analysis in (very) different programming
languages, forcing you to solve the problem in different ways; if all programs
yield exactly the same results, then they are probably correct.

Science as Software Development

There is a striking parallel between the process of developing software and
that of producing science. In fact, we believe that basic tools adopted by soft-
ware developers (such as version control) can naturally be adapted to the
world of research. We want to build software pipelines that turn ideas and
data into published work; the development of such a pipeline has important
milestones, which parallel those of software development: one can think of
a manuscript as a “beta version” of a paper, and even treat the comments of
the reviewers as bugs in the project which we need to fix before releasing our
product! The development of these pipelines is another central piece of our
approach.

0.2 The Structure of the Book

The book is composed of 10 semi-independent chapters:

Chapter 1: Unix
We introduce the Unix command line and show how it can be used to
automate repetitive tasks and “massage” your data prior to analysis.

Chapter 2: Version control
Version control is a way to keep your scientific projects tidily organized,
collaborate on science, and have the whole history of each project at your
fingertips. We introduce this topic using Git.

Chapter 3: Basic programming
We start programming, using Python as an example. We cover the basics:
from assignments and data structures to the reading and writing of files.

Chapter 4: Writing good code
When we write code for science, it has to be correct. We show how to
organize your code in an effective way, and introduce debugging, unit
testing, and profiling, again using Python.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Introduction: Building a Computing Toolbox ● 5

Chapter 5: Regular expressions
When working with text, we often need to find snippets of text matching a
certain “pattern.” Regular expressions allow you to describe to a computer
what you are looking for. We show how to use the Python module re to
extract information from text.

Chapter 6: Scientific computing
Modern programming languages offer specific libraries and packages for
performing statistics, simulations, and implementing mathematical models.
We briefly cover these tools using Python. In addition, we introduce
Biopython, which facilitates programming for molecular biology.

Chapter 7: Scientific typesetting
We introduce LATEX for scientific typesetting of manuscripts, theses, and
books.

Chapter 8: Statistical computing
We introduce the statistical software R, which is fully programmable and for
which thousands of packages written by scientists for scientists are available.

Chapter 9: Data wrangling and visualization
We introduce the tidyverse, a set of R packages that allow you to write
pipelines for the organization and analysis of large data sets. We also show
how to produce beautiful figures using ggplot2.

Chapter 10: Relational Databases
We present relational databases and sqlite3 for storing and working
efficiently with large amounts of data.

Clearly, there is no way to teach these computational tools in 10 brief
chapters. In fact, in your library you will find several thick books devoted to
each and every one of the tools we are going to explore. Similarly, becoming
a proficient programmer cannot be accomplished by reading a few pages, but
rather it requires hundreds of hours of practice. So why try to cover so much
material instead of concentrating on a few basic tools?

The idea is to provide a structured guide to help jump-start your learning
process for each of these tools. This means that we emphasize breadth over
depth (a very unusual thing to do in academia!) and that success strongly
depends on your willingness to practice by trying your hand at the exer-
cises and embedding these tools in your daily work. Our goal is to showcase
each tool by first explaining what the tool is and why you should mas-
ter it. This allows you to make an informed decision on whether to invest
your time in learning how to use it. We then guide you through some basic

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



6 ● Chapter 0

features and give you a step-by-step explanation of several simple examples.
Once you have worked through these examples, the learning curve will
appear less steep, allowing you to find your own path toward mastering the
material.

0.2.1 How to Read the Book

We have written the book such that it can be read in the traditional way: start
from the first page and work your way toward the end. However, we have
striven to provide a modular structure, so that you can decide to skip some
chapters, focus on only a few, or use the book as a quick reference.

In particular, the chapters on Unix (ch. 1), version control (ch. 2), LATEX
(ch. 7), and databases (ch. 10) can be read quite independently: you will
sometimes find references to other chapters, but in practice there are no
prerequisites. Also, you can decide to skip any of these chapters (though
we love each of these tools!) without affecting the reading of the rest of the
book.

We present programming in Python (chs. 3–6) and then again in R
(chs. 8–9). While we go into more detail when explaining basic concepts in
Python, you should be able to understand all of the Rmaterial without having
read any of the other chapters. Similarly, if you do not plan to use R, you can
skip these chapters without impacting the rest of the book.

0.2.2 Exercises and Further Reading

In each chapter, upon completion of the material you will be ready to start
working on the “Exercises” section. One of the main features of this book is
that exercises are based on real biological data taken from published papers.
As such, these are not silly little exercises, but rather examples of the chal-
lenges you will overcome when doing research. We have seen that some
students find this level of difficulty frustrating. It is entirely normal, however,
to have no idea how to solve a problem at first. Whenever you feel that frus-
tration is blocking your creativity and efficiency, take a short break. When
you return, try breaking the problem into smaller steps, or start from a blank
slate and attempt an entirely different approach. If you keep chipping away
at the exercise, then little by little you will make sense of what the problem
entails and—finally—you will find a way to crack it. Learning how to enjoy
problem solving and to take pride in a job well done are some of the main
characteristics of a good scientist.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Introduction: Building a Computing Toolbox ● 7

For example, we are fond of this quote from Andrew Wiles (who proved
the famous Fermat’s last theorem, which baffled mathematicians for cen-
turies): “You enter the first room of the mansion and it’s completely dark. You
stumble around bumping into the furniture but gradually you learn where
each piece of furniture is. Finally, after six months or so, you find the light
switch, you turn it on, and suddenly it’s all illuminated.”2 Hopefully, it will
take you less than six months to crack the exercises!

Note that there isn’t “a” way to solve a problem, but rather a multitude
of (roughly) equivalent ways to do so. Each and every approach is perfect,
provided that the results are correct and that the solution is found in a rea-
sonable amount of time. Thus, we encourage you to consult our solutions
to the exercises only once you have solved them: Did we come up with the
same idea? What are the advantages and disadvantages of these approaches?
Even if you did not solve the task entirely, you have likely learned a lot more
while trying, compared to reading through the solutions upon hitting the first
stumbling block. To provide a further stepping stone between having no idea
where to start and a complete solution, we provide a pseudocode solution
of each exercise online: the individual steps of the solution are described in
English, but no code is provided. This will give you an idea how to approach
the problem, but youwill need to come upwith the code. From there, it is only
a short way to tackling your very own research questions. You can find the
complete solutions and the pseudocode at computingskillsforbiologists.com/
exercises.

When solving the exercises, the internet is your friend. Finding help
online is by no means considered “cheating.” On the contrary, if you find
yourself exploring additional resources, you are doing exactly the right thing!
As with research, anything goes, as long as you can solve your problem (and
give credit where credit is due). Consulting the many comprehensive online
forums gives you a sense of how widespread these computational tools are.
Keep in mind that the people finding clever answers to your questions also
started from a blank slate at some point in their career. Moreover, seeing that
somebody else asked exactly your question should further convince you that
you are on the right track.

Last but not least, the “Reading” section of each chapter contains refer-
ences to books, tutorials, and online resources to further the knowledge of
the material. If the chapter is an appetizer, meant to whet your appetite for
knowledge, the actual meal is contained in the reading list. This book is a
road map that equips you with sufficient knowledge to choose the appropri-
ate tool for each task, and take the guesswork out of “Where should I start

2. computingskillsforbiologists.com/provingfermat.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

http://computingskillsforbiologists.com/{\penalty -\@M }exercises
http://computingskillsforbiologists.com/provingfermat


8 ● Chapter 0

my learning journey?” However, only by reading more on the topic and by
introducing these tools into your daily research work will you be able to truly
master these skills, and make the most of your computer.

We conclude with the sales pitch we use to present the class that inspired
this book. If you are a graduate student and you read the material, you
work your way through all the exercises, constantly striving to further your
knowledge of these topics by introducing them into your daily work, then you
will shave sixmonths off your PhD—and not any six months, but rather those
spent wrestling with the data, repeating tedious tasks, and trying to convince
the computer to be reasonable and spit out your thesis. All things considered,
this book aims to make you a happier, more productive, and more creative
scientist. Happy computing!

0.3 Use in the Classroom

We have been teaching the material covered in this book, in the graduate
class Introduction to Scientific Computing for Biologists, at the University of
Chicago since 2012. The enrollment has been about 30 students per year. We
found the material appropriate for junior graduate students as well as senior
undergraduates with some research experience.

The University of Chicago runs on a quarter system, allowing for 10 lec-
tures of three hours each. Typically, each chapter is covered by a single lecture,
with “Version Control” (ch. 2) and “Scientific Typesetting” (ch. 7) each tak-
ing about an hour and a half, and “Writing GoodCode” (ch. 4) and “Statistical
Computing” (ch. 8) taking more than one lecture each.

In all cases, we taught students who had computers available in class,
either by teaching in a computer lab, or by asking students to bring their per-
sonal laptops. Rather than using slides, the instructor lecturedwhile typing all
the code contained in the book during the class. This makes for a very inter-
active class, in which all students type all of the code too—making sure that
they understand what they are doing. Clearly, this also means that the pace
is slowed down every time a student has included a typo in their commands,
or cannot access their programs. To ease this problem, having teaching assis-
tants for the class helps immensely. Students can raise their hand, or stick
a red post-it on their computer to signal a problem. The teaching assistant
can immediately help the student and interrupt the class in case the prob-
lem is shared by multiple students—signaling the need for a more general
explanation.

To allow the class to run smoothly, each student should prepare their
computer in advance.We typically circulate each chapter a week in advance of
class, encouraging the students to (a) install the software needed for the class

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Introduction: Building a Computing Toolbox ● 9

and (b) read the material beforehand. Teaching assistants also offer weekly
office hours to help with the installation of software, or to discuss thematerial
and the exercises in small groups.

The “intermezzos” that are interspersed in each chapter function very
well as small in-class exercises, allowing the students to solidify their knowl-
edge, as well as highlighting potential problems with their understanding of
the material.

We encourage the students to work in groups on the exercises at the end
of each chapter, and review the solutions at the beginning of the following
class. While this can cause some difficulties in grading, we believe that work-
ing in groups is essential to overcome the challenge of the exercises, making
the students more productive, and allowing less experienced students to learn
from their peers. Publishing a blog where each group posts their solutions
reinforces the esprit de corps, creating a healthy competition between the
groups, and further instilling in the students a sense of pride for a job well
done. We also encouraged students to constructively comment on the differ-
ent approaches of other groups and discuss the challenges they’ve faced while
solving the exercises.

Another characteristic of our class has been the emphasis on the practi-
cal value of the material. For example, we ask each student to produce a final
project in which they take a boring, time-consuming task in their laboratory
(e.g., analysis of batches of data produced by laboratorymachines, calibration
of methods, other repetitive computational tasks) and completely automate
it. The student then shows their work to their labmates and scientific advisor,
and writes a short description of the program, along with the documenta-
tion necessary to use it. The goal of the final project is simply to show the
student that mastering this material can save them a lot of time—even when
accounting for the strenuous process of writing their first programs.

Wehave also experimentedwith a “flipped classroom” setting, withmixed
results. In this case, the students read thematerial at their own pace, andwork
through all the small exercises contained in the chapter. The lecture is then
devoted to working on the exercises at the end of each chapter. The lecturer
guides the discussion on the strategies that can be employed to solve the prob-
lem, sketching pseudocode on the board, and eventually producing a fully
fledged code on the computer. We have observed that, while this approach is
very rewarding for students with some prior experience in programming, it
is much less engaging for novices, who feel lost and out of touch with the rest
of the class. Probably, this would work much better if the class size were small
(less than 10 students).

Finally, we have found that leading by example serves as powerfulmotiva-
tion to students. We have always shown that we use the tools covered here for
our own research. A well-placed anecdote on Git saving the day, or showing

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



10 ● Chapter 0

how all the tables in a paperwere automatically generatedwith a few lines of R,
can go a longway toward convincing the students that their work studying the
material will pay off over a lifetime.

0.4 Formatting of the Book

You will find all commands and the names of packages typeset in a fixed-width
font. User-provided [INPUT] is capitalized and set between square brackets.
To execute the commands, you do not need to reproduce such formatting.
Within explanatory text, technical terms are presented in italics.

Throughout the book, we provide many code examples, enclosed in
gray boxes and typeset using fixed-width fonts. All code examples are also
provided on the companion website computingskillsforbiologists.com—but
we encourage you to type all the code in by yourself: while this might feel
slow and inefficient, the learning effect is stronger compared to simply copy-
ing and pasting, and only inspecting the result. Within the code examples,
language-specific commands are highlighted in bold.

Within the code boxes, we try to keep lines short. When we cannot avoid
a line that is longer than the width of the page we use the symbol� to indicate
that what follows should be typed in the same line as the rest.

0.5 Setup

Before you can start computing, you need to set up the environment, and
download the data and the code.

What You Need

A computer: All the software we present here is free and can be installed with a few
commands in Linux Ubuntu or Apple’s OS X; we strive to provide guidance for
Windows users. There are no specific hardware requirements. All the tools require
relatively little memory and space on your hard drive.

Software: Each chapter requires installing specific software. We have collected
detailed instructions guiding you through the installation of each tool at
computingskillsforbiologists.com/setup.

A text editor: While working through the chapters, youwill write a lot of code.Much
will be written in the integrated development environments (IDEs) Jupyter and
RStudio. Sometimes, however, you will need to write code in a text editor. We

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

http://computingskillsforbiologists.com
http://computingskillsforbiologists.com/setup


Introduction: Building a Computing Toolbox ● 11

encourage you to keep working with your favorite editor, if you already have one.
If not, please choose an editor that can support syntax highlighting for Python, R,
and LATEX. There are many options to choose from, depending on your architecture
and needs.3

Initial Setup

You can find instructions for the initial setup on our website at computing
skillsforbiologists.com/setup. We have bundled all the data, code, exercises,
and solutions in a single download. We strongly recommend that you save
this directory in your home directory (see section 1.3.2).

3. computingskillsforbiologists.com/texteditors.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

http://computing{\penalty -\@M }skillsforbiologists.com/setup
http://computingskillsforbiologists.com/texteditors



