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1
The Single-Person
Decision Problem

Imagine yourself in the morning, all dressed up and ready to have breakfast. You
might be lucky enough to live in a nice undergraduate dormitory with access to

an impressive cafeteria, in which case you have a large variety of foods from which
to choose. Or you might be a less-fortunate graduate student, whose studio cupboard
offers the dull options of two half-empty cereal boxes. Either way you face the same
problem: what should you have for breakfast?

This trivial yet ubiquitous situation is an example of a decision problem. Decision
problems confront us daily, as individuals and as groups (such as firms and other
organizations). Examples include a division manager in a firm choosing whether or not
to embark on a new research and development project; a congressional representative
deciding whether or not to vote for a bill; an undergraduate student deciding on a
major; a baseball pitcher contemplating what kind of pitch to deliver; or a lost group
of hikers confused about which direction to take. The list is endless.

Some decision problems are trivial, such as choosing your breakfast. For example,
if Apple Jacks and Bran Flakes are the only cereals in your cupboard, and if you hate
Bran Flakes (they belong to your roommate), then your decision is obvious: eat the
Apple Jacks. In contrast, a manager’s choice of whether or not to embark on a risky
research and development project or a lawmaker’s decision on a bill are more complex
decision problems.

This chapter develops a language that will be useful in laying out rigorous foun-
dations to support many of the ideas underlying strategic interaction in games. The
language will be formal, having the benefit of being able to represent a host of dif-
ferent problems and provide a set of tools that will lend structure to the way in which
we think about decision problems. The formalities are a vehicle that will help make
ideas precise and clear, yet in no way will they overwhelm our ability and intent to
keep the more practical aspect of our problems at the forefront of the analysis.

In developing this formal language, we will be forced to specify a set of assump-
tions about the behavior of decision makers or players. These assumptions will, at
times, seem both acceptable and innocuous. At other times, however, the assump-
tions will be almost offensive in that they will require a significant leap of faith. Still,
as the analysis unfolds, we will see the conclusions that derive from the assumptions
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4 . Chapter 1 The Single-Person Decision Problem

that we make, and we will come to appreciate how sensitive the conclusions are to
these assumptions.

As with any theoretical framework, the value of our conclusions will be only as
good as the sensibility of our assumptions. There is a famous saying in computer
science—“garbage in, garbage out”—meaning that if invalid data are entered into
a system, the resulting output will also be invalid. Although originally applied to
computer software, this statement holds true more generally, being applicable, for
example, to decision-making theories like the one developed herein. Hence we will at
times challenge our assumptions with facts and question the validity of our analysis.
Nevertheless we will argue in favor of the framework developed here as a useful
benchmark.

1.1 Actions, Outcomes, and Preferences

Consider the examples described earlier: choosing a breakfast, deciding about a
research project, or voting on a bill. These problems all share a similar structure:
an individual, or player, faces a situation in which he has to choose one of several
alternatives. Each choice will result in some outcome, and the consequences of
that outcome will be borne by the player himself (and sometimes other players
too).

For the player to approach this problem in an intelligent way, he must be aware
of three fundamental features of the problem: What are his possible choices? What
is the result of each of those choices? How will each result affect his well-being?
Understanding these three aspects of a problem will help the player choose his best
action. This simple observation offers us a first working definition that will apply to
any decision problem:

The Decision Problem A decision problem consists of three features:

1. Actions are all the alternatives from which the player can choose.

2. Outcomes are the possible consequences that can result from any of the
actions.

3. Preferences describe how the player ranks the set of possible outcomes, from
most desired to least desired. The preference relation �∼ describes the player’s
preferences, and the notation x �∼ y means “x is at least as good as y.”

To make things simple, let’s begin with our rather trivial decision problem of
choosing between Apple Jacks and Bran Flakes. We can define the set of actions as
A = {a, b}, where a denotes the choice of Apple Jacks and b denotes the choice of
Bran Flakes.1 In this simple example our actions are practically synonymous with the
outcomes, yet to make the distinction clear we will denote the set of outcomes by
X = {x, y}, where x denotes eating Apple Jacks (the consequence of choosing Apple
Jacks) and y denotes eating Bran Flakes.

1. More on the concept of a set and the appropriate notation can be found in Section 19.1 of the
mathematical appendix.
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1.1 Actions, Outcomes, and Preferences . 5

1.1.1 Preference Relations

Turning to the less familiar notion of a preference relation, imagine that you prefer
eating Apple Jacks to Bran Flakes. Then we will write x �∼ y, which should be read as
“x is at least as good as y.” If instead you prefer Bran Flakes, then we will write y �∼ x,
which should be read as “y is at least as good as x.” Thus our preference relation is
just a shorthand way to express the player’s ranking of the possible outcomes.

We follow the common tradition in economics and decision theory by expressing
preferences as a “weak” ranking. That is, the statement “x is at least as good as y” is
consistent with x being better than y or equally as good as y. To distinguish between
these two scenarios we will use the strict preference relation, x � y, for “x is strictly
better than y,” and the indifference relation, x ∼ y, for “x and y are equally good.”

It need not be the case that actions are synonymous with outcome, as in the case
of choosing your breakfast cereal. For example, imagine that you are in a bar with a
drunken friend. Your actions can be to let him drive home or to order him a cab. The
outcome of letting him drive is a certain accident (he’s really drunk), and the outcome
of ordering him a cab is arriving safely at home. Hence for this decision problem your
actions are physically different from the outcomes.

In these examples the action set is finite, but in some cases one might have
infinitely many actions from which to choose. Furthermore there may be infinitely
many outcomes that can result from the actions chosen. A simple example can be
illustrated by me offering you a two-gallon bottle of water to quench your thirst. You
can choose how much to drink and return the remainder to me. In this case your action
set can be described as the interval A = [0, 2]: you can choose any action a as long
as it belongs to the interval [0, 2], which we can write in two ways: 0 ≤ a ≤ 2 or
a ∈ [0, 2].2 If we equate outcomes with actions in this example then X = [0, 2] as
well. Finally it need not be the case that more is better. If you are thirsty then drinking
a pint may be better than drinking nothing. However, drinking a gallon may cause
you to have a stomachache, and you may therefore prefer a pint to a gallon.

Before proceeding with a useful way to represent a player’s preferences over var-
ious outcomes, it is important to stress that we will make two important assumptions
about the player’s ability to think through the decision problem.3 First, we require the
player to be able to rank any two outcomes from the set of outcomes. To put this more
formally:

The Completeness Axiom The preference relation �∼ is complete: any two outcomes
x, y ∈ X can be ranked by the preference relation, so that either x �∼ y or y �∼ x.

At some level the completeness axiom is quite innocuous. If I show you two foods,
you should be able to rank them according to how much you like them (including being
indifferent if they are equally tasty and nutritious). If I offer you two cars, you should
be able to rank them according to how much you enjoy driving them, their safety

2. The notation symbol ∈ means “belongs to.” Hence “x, y ∈ X” means “elements x and y belong to
the set X.” If you are unfamiliar with sets and these kinds of descriptions please refer to Section 19.1
of the mathematical appendix.
3. These assumptions are referred to as “axioms,” following the language used in the seminal book
by von Neumann and Morgenstern (1944) that laid many of the foundations for both decision theory
and game theory.
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6 . Chapter 1 The Single-Person Decision Problem

specifications, and so forth. If I offer you two investment portfolios, you should be
able to rank them according to the extent to which you are willing to balance risk and
return. In other words, the completeness axiom does not let you be indecisive between
any two outcomes.4

The second assumption we make guarantees that a player can rank all of the out-
comes. To do this we introduce a rather mild consistency condition called transitivity:

The Transitivity Axiom The preference relation �∼ is transitive: for any three out-
comes x, y, z ∈ X, if x �∼ y and y �∼ z then x �∼ z.

Faced with several outcomes, completeness guarantees that any two can be ranked,
and transitivity guarantees that there will be no contradictions in the ranking, which
could create an indecisive cycle. To observe a violation of the transitivity axiom,
consider a player who strictly prefers Apple Jacks to Bran Flakes, a � b, Bran
Flakes to Cheerios, b � c, and Cheerios to Apple Jacks, c � a. When faced with
any two boxes of cereal, say A = {a, b}, he has no problem choosing his preferred
cereal a. What happens, however, when he is presented with all three alternatives,
A = {a, b, c}? The poor guy will be unable to decide which of the three to choose,
because for any given box of cereal, there is another box that he prefers. Therefore,
by requiring that the player have complete and transitive preferences, we basically
guarantee that among any set of outcomes, he will always have at least one best
outcome that is as good as or better than any other outcome in that set.

To foreshadow what will be our premise for decision making, a preference relation
that is complete and transitive is called a rational preference relation. We will be
concerned only with players who have such rational preferences, for without such
preferences we can offer neither predictive nor prescriptive insights.

Remark As noted by the Marquis de Condorcet in 1785, it is possible to have a group
of rational individual players who, when put together to make decisions as a group,
will become an “irrational” group. For example, imagine three roommates, called
players 1, 2, and 3, who have to choose one box of cereal for their apartment kitchen.
Player 1’s preferences are given by a �1 c �1 b, player 2’s are given by c �2 b �2 a,

and player 3’s are given by b �3 a �3 c. Imagine that our three players make choices
in a democratic way and use majority voting to reach a decision. What will be the
resulting preferences of the group, �G? When faced with the pair a and c, players
1 and 3 will vote for Apple Jacks, hence a �G c. When faced with the pair c and
b, players 1 and 2 will vote for Cheerios, hence c �G b. When faced with the pair
a and b, players 2 and 3 will vote for Bran Flakes, hence b �G a. As a result,
our three rational players will not be able to reach a conclusive decision using the
group preferences that result from majority voting! This type of group indecisiveness
resulting from majority voting is often referred to as the Condorcet Paradox.Because
we will not be analyzing group decisions, it is not something we will confront, but it
is useful to be mindful of such phenomena, in which imposing individual rationality
does not imply “group rationality.”

4. In other words, this axiom prohibits the kind of problem referred to as “Buridan’s ass.” One version
describes a situation in which an ass is placed between two identical stacks of hay, assuming that the
ass will always go to whichever stack is closer. However, since the stacks are both the same distance
from the ass, it will not be able to choose between them and will die of hunger.
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1.1 Actions, Outcomes, and Preferences . 7

1.1.2 Payoff Functions

When we restrict attention to players with rational preferences, not only do we get
players who behave in a consistent and appealing way, but as an added bonus we
can replace the preference relation with a much friendlier, and more operational,
apparatus. Consider the following simple example. Imagine that you open a lemonade
stand on your neighborhood corner. You have three possible actions: choose low-
quality lemons (l), which imply a cost of $10 and a revenue from sales of $15; choose
medium-quality lemons (m), which imply a cost of $15 and a revenue from sales of
$25; or choose high-quality lemons (h), which imply a cost of $28 and a revenue from
sales of $35. Thus the action set is A = {l, m, h}, and the outcome set is given by net
profits and is X = {5, 10, 7}, where the action l yields a profit of $5, the action m yields
a profit of $10, and the action h yields a profit of $7. Assuming that obtaining higher
profits is strictly better, we have 10 � 7 � 5. Hence you should choose alternative m

and make a profit of $10.
Notice that we took a rather obvious profit-maximizing problem and fit it into

our framework for a decision problem. We derived the preference relation that is
consistent with maximizing profit, the objective of any for-profit business. Arguably
it would be more natural and probably easier to comprehend the problem if we looked
at the actions and their associated profits. In particular we can define the profit
function in the obvious way: every action a ∈ A yields a profit π(a). Then, instead of
considering a preference relation over profit outcomes, we can just look at the profit
from each action directly and choose an action that maximizes profits. In other words,
we can use the profit function to evaluate actions and outcomes.

As this simple example demonstrates, a profit function is a more direct way for a
player to rank his actions. The question then is, can we find similar ways to approach
decision problems that are not about profits? It turns out that we can do exactly that if
we have players with rational preferences, and to do that we define a payoff function.5

Definition 1.1 A payoff function u : X → R represents the preference relation �∼ if
for any pair x, y ∈ X, u(x) ≥ u(y) if and only if x �∼ y.

To put the definition into words, we say that the preference relation �∼ is represented
by the payoff function u : X → R that assigns to each outcome in X a real number, if
and only if the function assigns a higher value to higher-ranked outcomes.

It is important to notice that representing preferences with payoff functions is
convenient, but that payoff values by themselves have no meaning whatsoever. Payoff
is an ordinal construct: it is used to order the alternatives from most to least desirable.
For example, if I like Apple Jacks more than Bran Flakes, then I can construct
the payoff function u(.) so that u(a) = 5 and u(b) = 3. I can also use a different
payoff function ũ(.) that represents the same preferences as follows: ũ(a) = 100 and
ũ(b) = −237. Just as Fahrenheit and Celsius are two different ways to describe hotter
and colder temperatures, there are many ways to represent preferences with payoff
functions.

Using payoff functions instead of preferences will allow us to operationalize a
theory of how decision makers with rational preferences ought to behave, and how
they often will behave. They will choose actions that maximize a payoff function that

5. Recall that a function relates each of its inputs to exactly one output. For more on this see
Section 19.2 of the mathematical appendix.
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8 . Chapter 1 The Single-Person Decision Problem

represents their preferences. One last question we need to ask is whether we know
for sure that this method will work: is it true that players will surely have a payoff
function representing their preferences? One case is easy and worth going through
briefly. In what follows, we provide a formal proposition and a formal, yet fairly easy
to follow, proof.

Proposition 1.1 If the set of outcomes X is finite then any rational preference relation
over X can be represented by a payoff function.

Proof The proof is by construction. Because the preference relation is complete and
transitive, we can find a least-preferred outcome x ∈ X such that all other outcomes
y ∈ X are at least as good as x, that is, y �∼ x for all other y ∈ X. Now define the
“worst outcome equivalence set,” denoted X1, to include x and any other outcome for
which the player is indifferent between it and x. Then, from the remaining elements of
X\X1,

6 define the “second worst outcome equivalence set,” X2, and continue in this
fashion until the “best outcome equivalence set,” Xn, is created. Because X is finite
and �∼ is rational, such a finite collection of n equivalence sets exists. Now consider
n arbitrary values un > un−1 > . . . > u2 > u1, and assign payoffs according to the
function defined by: for any x ∈ Xk, u(x) = uk. This payoff function represents �∼.
Hence we have proved that such a function exists.

This proposition is useful: for many realistic situations, we can create payoff
functions that work in a similar way as profit functions, giving the player a useful
tool to see which actions are best and which ought to be avoided. We will not explore
this issue further, but payoff representations exist in many other cases that include
infinitely many outcomes. The treatment of such cases is beyond the scope of this
textbook, but you are welcome to explore one of the many texts that offer a more
complete treatment of the topic, which is referred to under the title “representation
theorems.” (See, e.g., Kreps [1990a, pp. 18–37, and 1988] for an in-depth treatment
of this topic.)

As we have seen so far, the formal structure of a decision problem offers a coherent
framework for analysis. For decades, however, teachers, students, and practitioners
have instead used the intuitive and graphically simple tool of decision trees.

Imagine that, in addition to Apple Jacks (a) and Bran Flakes (b), your breakfast
options include a muffin (m) and a scone (s). Your preferences are given as s �
a � m � b. (Recall that we now consider preferences over outcomes as directly over
actions.) Consider the following payoff representation: v(s) = 4, v(a) = 3, v(m) = 2,
and v(b) = 1. We can write down the corresponding decision tree, which is depicted
in Figure 1.1.

To read this simple decision tree, notice that the player resides at the “root” of
the tree on the left, and that the tree then branches off, each branch representing a
possible action. In the example of choosing breakfast, each action results in a final
payoff, and these payoffs are written to correspond to each of the action branches.
Our rational decision maker will look down the tree, consider the payoff from each
branch, and choose the branch with the highest payoff.

The node at which the player has to make a choice is called a decision node. The
nodes at the end of the tree where payoffs are attached are called terminal nodes. As

6. The notation A\B means “the elements that are in A but are not in B,” or sometimes “the set A

less the set B.”
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1.2 The Rational Choice Paradigm . 9

s

b

m

a

2

1

Player

3

4

FIGURE 1.1 A simple breakfast decision tree.

the next chapter demonstrates, the structure of a decision tree will become slightly
more involved and useful to capture more complex decision problems. We will return
to similar trees in Chapter 7, where we consider the strategic interaction between
many possible players, which is the main focus of this book.

1.2 The Rational Choice Paradigm

We now introduce Homo economicus or “economic man.” Homo economicus is
“rational” in that he chooses actions that maximize his well-being as defined by
his payoff function over the resulting outcomes.7 The assumption that the player is
rational lies at the foundation of what is known as the rational choice paradigm.
Rational choice theory asserts that when a decision maker is choosing between
potential actions he will be guided by rationality to choose his best action. This can
be assumed to be true for individual human behavior, as well as for the behavior of
other entities, such as corporations, committees, or nation-states.

It is important to note, however, that by adopting the paradigm of rational choice
theory we are imposing some implicit assumptions, which we now make explicit.

Rational Choice Assumptions The player fully understands the decision problem by
knowing:

1. all possible actions, A;

2. all possible outcomes, X;

3. exactly how each action affects which outcome will materialize; and

4. his rational preferences (payoffs) over outcomes.

Perhaps at a first glance this set of assumptions may seem a bit demanding, and
further contemplation may make you feel that it is impossible to satisfy for most
decision problems. Still, it is a benchmark for a world in which decision problems are
completely understood by the player, in which case he can approach the problems
in a systematic and structured way. If we let go of any of these four knowledge

7. A naive application of the Homo economicus model assumes that our player knows what is best for
his long-term well-being and can be relied upon to always make the right decision for himself. We
take this naive approach throughout the book, though we will sometimes question how appropriate
this approach is.
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10 . Chapter 1 The Single-Person Decision Problem

requirements then we cannot impose the notion of rational choice. If (1) is unknown
then the player may be unaware of his best course of action. If (2) or (3) are unknown
then he may not correctly foresee the actual consequences of his actions. Finally if
(4) is unknown then he may incorrectly perceive the effect of his choice’s consequence
on his well-being.

To operationalize this paradigm of rationality we must choose among actions,
yet we have defined preferences—and payoffs—over outcomes and not actions. It
would be useful, therefore, if we could define preferences—and payoffs—over actions
instead of outcomes. In the simple examples of choosing a cereal or how much water
to drink, actions and outcomes were synonymous, yet this need not always be the
case. Consider the situation of letting your friend drive drunk, in which the actions
and outcomes are not the same. Still each action led to one and only one outcome:
letting him drive leads to an accident, and getting him a cab leads to safe arrival.
Hence, even though preferences and payoff were defined over outcomes, this one-
to-one correspondence, or function, between actions and outcomes means that we
can consider the preferences and payoffs to be over actions, and we can use this
correspondence between actions and outcomes to define the payoff over actions as
follows: if x(a) is the outcome resulting from action a, then the payoff from action a

is given by v(a) = u(x(a)), the payoff from x(a). We will therefore use the notation
v(a) to represent the payoff from action a.8 Now we can precisely define a rational
player as follows:

Definition 1.2 A player facing a decision problem with a payoff function v(.) over
actions is rational if he chooses an action a ∈ A that maximizes his payoff. That is,
a∗ ∈ A is chosen if and only if v(a∗) ≥ v(a) for all a ∈ A.

We now have a formal definition of Homo economicus: a player who has rational
preferences and is rational in that he understands all the aspects of his decision
problem and always chooses an option that yields him the highest payoff from the
set of possible actions.

So far we have seen some simple examples with finite action sets. Consider instead
an example with a continuous action space, which requires some calculus. Imagine
that you’re at a party and are considering engaging in social drinking. Given your
physique, you’d prefer some wine, both for taste and for the relaxed feeling it gives
you, but too much will make you sick. There is a one-liter bottle of wine, so your action
set is A = [0, 1], where a ∈ A is how much you choose to drink. Your preferences are
represented by the following payoff function over actions: v(a) = 2a − 4a2, which
is depicted in Figure 1.2. As you can see, some wine is better than no wine (0.1 liter
gives you some positive payoff, while drinking nothing gives you zero), but drinking
a whole bottle will be worse than not drinking at all (v(1) = −2). How much should
you drink? Your maximization problem is

max
a∈[0,1]

2a − 4a2.

Taking the derivative of this function and equating it to zero to find the solution, we
obtain that 2 − 8a = 0, or a = 0.25, which is a bit more than two normal glasses of

8. To be precise, let x : A → X be the function that maps actions into outcomes, and let the payoff
function over outcomes be u : X → R. Define the payoff over actions as the composite function
v = u ◦ x : A → R, where v(a) = u(x(a)).
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1.4 Exercises . 11
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FIGURE 1.2 The payoff from drinking wine.

wine.9 Thus, by considering how much wine to drink as a decision problem, you were
able to find your optimal action.

1.3 Summary

. A simple decision problem has three components: actions, outcomes, and
preferences over outcomes.

. A rational player has complete and transitive preferences over outcomes and
hence can always identify a best alternative from among his possible actions.
These preferences can be represented by a payoff (or profit) function over
outcomes and the corresponding payoffs over actions.

. A rational player chooses the action that gives him the highest possible payoff
from the possible set of actions at his disposal. Hence by maximizing his
payoff function over his set of alternative actions, a rational player will choose
his optimal decision.

. A decision tree is a simple graphic representation for decision problems.

1.4 Exercises

1.1 Your Decision: Think of a simple decision you face regularly and formalize
it as a decision problem, carefully listing the actions and outcomes without
the preference relation. Then assign payoffs to the outcomes and draw the
decision tree.

1.2 Going to the Movies: There are two movie theaters in your neighborhood:
Cineclass, which is located one mile from your home, and Cineblast, located
three miles from your home. Each is showing three films. Cineclass is showing
Casablanca, Gone with the Wind, and Dr. Strangelove, while Cineblast is
showing The Matrix, Blade Runner, and Aliens. Your problem is to decide
which movie to go to.

9. To be precise, we must also make sure that first, the second derivative is negative for the solution
a = 0.25 to be a local maximum, and second, the value of v(a) is not greater at the two boundaries
a = 0 and a = 1. For more on maximizing the value of a function, see Section 19.3 of the mathematical
appendix.
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12 . Chapter 1 The Single-Person Decision Problem

a. Draw a decision tree that represents this problem without assigning
payoff values.

b. Imagine that you don’t care about distance and that your preferences
for movies are alphabetic (i.e., you like Aliens the most and The Matrix
the least). Using payoff values 1 through 6 complete the decision tree
you drew in part (1). Which option would you choose?

c. Now imagine that your car is in the shop and that the cost of walking
each mile is equal to one unit of payoff. Update the payoffs in the
decision tree. Would your choice change?

1.3 Fruit or Candy: A banana costs $0.50 and a piece of candy costs $0.25
at the local cafeteria. You have $1.25 in your pocket and you value money.
The money-equivalent value (payoff ) you get from eating your first banana is
$1.20, and that of each additional banana is half the previous one (the second
banana gives you a value of $0.60, the third $0.30, and so on). Similarly the
payoff you get from eating your first piece of candy is $0.40, and that of each
additional piece is half the previous one ($0.20, $0.10, and so on). Your value
from eating bananas is not affected by how many pieces of candy you eat and
vice versa.

a. What is the set of possible actions you can take given your budget of
$1.25?

b. Draw the decision tree that is associated with this decision problem.
c. Should you spend all your money at the cafeteria? Justify your answer

with a rational choice argument.
d. Now imagine that the price of a piece of candy increases to $0.30. How

many possible actions do you have? Does your answer to (c) change?

1.4 Alcohol Consumption: Recall the example in which you needed to choose
how much to drink. Imagine that your payoff function is given by θa − 4a2,
where θ is a parameter that depends on your physique. Every person may have
a different value of θ , and it is known that in the population (1) the smallest θ

is 0.2; (2) the largest θ is 6; and (3) larger people have higher θs than smaller
people.

a. Can you find an amount that no person should drink?
b. How much should you drink if your θ = 1? If θ = 4?
c. Show that in general smaller people should drink less than larger

people.
d. Should any person drink more than one 1-liter bottle of wine?

1.5 Buying a Car: You plan on buying a used car. You have $12,000, and you are
not eligible for any loans. The prices of available cars on the lot are given as
follows:

Make, model, and year Price

Toyota Corolla 2002 $9,350

Toyota Camry 2001 10,500

Buick LeSabre 2001 8,825

Honda Civic 2000 9,215

Subaru Impreza 2000 9,690
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1.4 Exercises . 13

For any given year,you prefer a Camry to an Impreza, an Impreza to a Corolla,
a Corolla to a Civic, and a Civic to a LeSabre. For any given year, you are
willing to pay up to $999 to move from any given car to the next preferred
one. For example, if the price of a Corolla is $z, then you are willing to
buy it rather than a Civic if the Civic costs more than $(z − 999), but you
would prefer to buy the Civic if it costs less than this amount. Similarly you
prefer the Civic at $z to a Corolla that costs more than $(z + 1000), but
you prefer the Corolla if it costs less. For any given car, you are willing to
move to a model a year older if it is cheaper by at least $500. For example, if
the price of a 2003 Civic is $z, then you are willing to buy it rather than a 2002
Civic if the 2002 Civic costs more than $(z − 500), but you would prefer to
buy the 2002 Civic if it costs less than this amount.

a. What is your set of possible alternatives?
b. What is your preference relation between the alternatives in (a) above?
c. Draw a decision tree and assign payoffs to the terminal nodes associ-

ated with the possible alternatives. What would you choose?
d. Can you draw a decision tree with different payoffs that represents the

same problem?

1.6 Fruit Trees: You have room for up to two fruit-bearing trees in your garden.
The fruit trees that can grow in your garden are either apple, orange, or pear.
The cost of maintenance is $100 for an apple tree, $70 for an orange tree, and
$120 for a pear tree. Your food bill will be reduced by $130 for each apple tree
you plant, by $145 for each pear tree you plant, and by $90 for each orange tree
you plant. You care only about your total expenditure in making any planting
decisions.

a. What is the set of possible actions and related outcomes?
b. What is the payoff of each action/outcome?
c. Draw the associated decision tree. What will a rational player choose?
d. Now imagine that the reduction in your food bill is half for the second

tree of the same kind. (You like variety.) That is, the first apple tree
still reduces your food bill by $130, but if you plant two apple trees
your food bill will be reduced by $130 + $65 = $195, and similarly
for pear and orange trees. What will a rational player choose now?

1.7 City Parks: A city’s mayor has to decide how much money to spend on parks
and recreation. City codes restrict this spending to no more than 5% of the
budget, and the yearly budget of the city is $20,000,000. The mayor wants to
please his constituents, who have diminishing returns from parks. The money-
equivalent benefit from spending $c on parks is v(c) = √

400c − 1
80c.

a. What is the action set for the city’s mayor?
b. How much should the mayor spend?
c. The movie An Inconvenient Truth has shifted public opinion, and

now people are more willing to pay for parks. The new preferences
of the people are given by v(c) = √

1600c − 1
80c. What now is the

action set for the mayor, and how much spending should he choose to
cater to his constituents?
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2
Introducing Uncertainty

and Time

Now that we have a coherent and precise language to describe decision problems,
we move on to be more realistic about the complexity of many such problems.

The cereal example was fine to illustrate a simple decision problem and to get used
to our formal language, but it is certainly not very interesting.

Consider a division manager who has to decide on whether a research and devel-
opment (R&D) project is worthwhile. What will happen if he does not go ahead with
it? Maybe over time his main product will become obsolete and outdated, and the
profitability of his division will no longer be sustainable. Then again, maybe profits
will still continue to flow in. What happens of he does go ahead with the project? It
may lead to vast improvements in the product line and offer the prospect of sustained
growth. Or perhaps the research will fail and no new products will emerge, leaving
behind only a hefty bill for the expensive R&D endeavor. In other words, both actions
have uncertainty over what outcomes will materialize, implying that the choice of a
best action is not as obvious as in the cereal example.

How should the player approach this more complex problem? As you can imagine,
using language like “maybe this will happen, or maybe that will happen” is not
very useful for a rational player who is trying to put some structure on his decision
problem. We must introduce a method through which the player can compare un-
certain consequences in a meaningful way. For this approach, we will use the concept
of stochastic (random) outcomes and probabilities, and we will describe a framework
within which payoffs are defined over random outcomes.

2.1 Risk, Nature, and Random Outcomes

Put yourself in the shoes of our division manager who is deciding whether or not
to embark on the R&D project. Denote his actions as g for going ahead or s for
keeping the status quo, so that A = {g, s}. To make the problem as simple as possible,
imagine that there are only two final outcomes: his product line is successful, which is
equivalent to a profit of 10 (choose your denomination), or his product line is obsolete,
which is equivalent to a profit of 0, so that X = {0, 10}. However, as already explained,
there is no one-to-one correspondence here between actions and outcomes. Instead

14
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2.1 Risk, Nature, and Random Outcomes . 15

there is uncertainty about which outcome will prevail, and the uncertainty is tied to
the choice made by the player, the division manager.

In order to capture this uncertainty in a precise way, we will use the well-
understood notion of randomness, or risk, as described by a random variable. Use of
random variables is the common way to precisely and consistently describe random
prospects in mathematics and statistics. We will not use the most formal mathematical
representation of a random variable but instead present it in its most useful depiction
for the problems we will address. Section 19.4 of the mathematical appendix has a
short introduction to random variables that you can refer to if this notion is completely
new to you. Be sure to make yourself familiar with the concept: it will accompany us
closely throughout this book.

2.1.1 Finite Outcomes and Simple Lotteries

Continuing with the R&D example, imagine that a successful product line is more
likely to be created if the player chooses to go ahead with the R&D project, while
it is less likely to be created if he does not. More precisely, the odds are 3 to 1 that
success happens if g is chosen, while the odds are only 50-50 if s is chosen. Using the
language of probabilities, we have the following description of outcomes following
actions: If the player chooses g then the probability of a payoff of 10 is 0.75 and
the probability of a payoff of 0 is 0.25. If, however, the player chooses s then the
probability of a payoff of 10 is 0.5, as is the probability of a payoff of 0.

We can therefore think of the player as if he is choosing between two lotteries. A
lottery is exactly described by a random payoff. For example, the state lottery offers
each player either several million dollars or zero, and the likelihood of getting zero
is extremely high. In our example, the choice of g is like choosing a lottery that pays
zero with probability 0.25 and pays 10 with probability 0.75. The choice of s is like
choosing a lottery that pays either zero or 10, each with an equal probability of 0.5.

It is useful to think of these lotteries as choices of another player that we will call
“Nature.” The probabilities of outcomes that Nature chooses depend on the actions
chosen by our decision-making player. In other words, Nature chooses a probability
distribution over the outcomes, and the probability distribution is conditional on the
action chosen by our decision-making player.

We can utilize a decision tree to describe the player’s decision problem that
includes uncertainty. The R&D example is described in Figure 2.1. First the player
takes an action, either g or s. Then, conditional on the action chosen by the player,
Nature (denoted by N ) will choose a probability distribution over the outcomes 10 and
0. The branches of the player are denoted by his actions, and the branches of Nature’s

10N

g

s

0.75

0.25

0.5

0.5N

0

10

0

Player

FIGURE 2.1 The R&D decision problem.
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16 . Chapter 2 Introducing Uncertainty and Time

choices are denoted by their corresponding probabilities, which are conditional on
the choice made by the player.

We now introduce a definition that generalizes the kind of randomness that was
demonstrated by the R&D example. Consider a decision problem with n possible
outcomes, X = {x1, x2, . . . , xn}.
Definition 2.1 A simple lottery over outcomes X = {x1, x2, . . . , xn} is defined as
a probability distribution p = (p(x1), p(x2), . . . , p(xn)), where p(xk) ≥ 0 is the
probability that xk occurs and

∑n
k=1 p(xk) = 1.

By the definition of a probability distribution over elements in X, the probability
of each outcome cannot be a negative number, and the sum of all probabilities over
all outcomes must add up to 1. In our R&D example, following a choice of g, the
lottery that Nature chooses is p(10) = 0.75 and p(0) = 0.25. Similarly, following a
choice of s, the lottery that Nature chooses is p(10) = p(0) = 0.5.

Remark To be precise, the lottery that Nature chooses is conditional on the action
taken by the player. Hence, given an action a ∈ A, the conditional probability that
xk ∈ X occurs is given by p(xk|a), where p(xk|a) ≥ 0, and

∑n
k=1 p(xk|a) = 1 for all

a ∈ A.

Note that our trivial decision problem of choosing a cereal can be considered as a
decision problem in which the probability over outcomes after any choice is equal to
1 for some outcome and 0 for all other outcomes. We call such a lottery a degenerate
lottery. You can now see that decision problems with no randomness are just a very
special case of those with randomness. Thus we have enriched our language to include
more complex decision problems while encompassing everything we have developed
earlier.

2.1.2 Simple versus Compound Lotteries

Arguably a player should care only about the probabilities of the various final out-
comes that are a consequence of his actions. It seems that the exact way in which
randomness unfolds over time should not be consequential to a player’s well-being,
but that only distributions over final outcomes should matter.

To understand this concept better, imagine that we make the R&D decision
problem a bit more complicated. As before, if the player chooses not to embark on
the R&D project (s) then the product line is successful with probability 0.5. If he
chooses to go ahead with R&D (g) then two further stages will unfold. First, it will
be determined whether the R&D effort was successful or not. Second, the outcome
of the R&D phase will determine the likelihood of the product line’s success. If the
R&D effort is a failure then the success of the product is as likely as if no R&D had
been performed; that is, the product line succeeds with probability 0.5. If the R&D
effort is a success, however, then the probability of a successful product line jumps
to 0.9. To complete the data for this example, we assume that R&D succeeds with
probability 0.625 and fails with probability 0.375.

In this modified version of our R&D problem we have Nature moving once after
the choice s and twice in a row after the choice g: once through the outcome of the
R&D phase and then through the determination of the product line’s success. This
new decision problem is depicted in Figure 2.2.
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2.1 Risk, Nature, and Random Outcomes . 17
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FIGURE 2.2 The modified R&D decision problem.

It seems like the two decision problems in Figures 2.1 and 2.2 are of different
natures (no pun intended). Then again, let’s consider what a decision problem ought
to be about: actions, distributions over outcomes, and preferences. It is apparent
that the player’s choice of s in both Figure 2.1 and Figure 2.2 leads to the same
distribution over outcomes. What about the choice of g? In Figure 2.2 this is followed
by two random stages. However, the outcomes are still either 10 or 0. What are the
probabilities of each outcome?

There are two ways that 10 can be obtained after the choice of g: First, with
probability 0.625 the R&D project succeeds, and then with probability 0.9 the payoff
10 will be obtained. Hence the probability of “R&D success followed by 10” is equal
to 0.625 × 0.9 = 0.5625. Second, with probability 0.375 the R&D project fails, and
then with probability 0.5 the payoff 10 will be obtained. Hence the probability of
“R&D failure followed by 10” is equal to 0.375 × 0.5 = 0.1875. Thus if the player
chooses g then the probability of obtaining 10 is just the sum of the probabilities
of these two exclusive events, which equals 0.5625 + 0.1875 = 0.75. It follows that
if the player chooses g then the probability of obtaining a payoff of 0 is 0.25, the
complement of the probability of obtaining 10 (you should check this).

What then is the difference between the two decision problems? The first, simpler,
R&D problem has a simple lottery following the choice of g. The second, more
complex, problem has a simple lottery over simple lotteries following the choice of g.
We call such lotteries over lotteries compound lotteries. Despite this difference, we
impose on the player a rather natural sense of rationality. In his eyes the two decision
problems are the same: he has the same set of actions, each one resulting in the same
probability distributions over final outcomes. This innocuous assumption will make
it easier for the player to evaluate and compare the benefits from different lotteries
over outcomes.

2.1.3 Lotteries over Continuous Outcomes

Before moving on to describe how the player will evaluate lotteries over outcomes,
we will go a step further to describe random variables, or lotteries, over continuous-
outcome sets. To start, consider the following example. You are growing 10 tomato
vines in your backyard, and your crop, measured in pounds, will depend on two inputs.
The first is how much you water your garden per day and the second is the weather.
Your action set can be any amount of water up to 50 gallons (50 gallons will completely
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18 . Chapter 2 Introducing Uncertainty and Time

flood your backyard), so that A ∈ [0, 50], and your outcome set can be any amount
of crop that 10 vines can yield, which is surely no more than 100 pounds, hence
X = [0, 100]. Temperatures vary daily, and they vary continuously. This implies that
your final yield, given any amount of water, will also vary continuously.

In this case we will describe the uncertainty not with a discrete probability, as we
did for the R&D case, but instead with a cumulative distribution function (CDF)
defined as follows:1

Definition 2.2 A simple lottery over an interval X = [x, x] is given by a cumulative
distribution function F : X → [0, 1], where F (̂x) = Pr{x ≤ x̂} is the probability that
the outcome is less than or equal to x̂.

For those of you who have seen continuous random variables, this is not new. If
you have not, Section 19.4 of the mathematical appendix may fill in some of the gaps.2

The basic idea is simple. Because we have infinitely many possible outcomes, it is
somewhat meaningless to talk about the probability of growing a certain exact weight
of tomatoes. In fact it is correct to say that the probability of producing any particular
predefined weight is zero. However, it is meaningful to talk about the probability of
being below a certain weight x, which is given by the CDF F(x), or similarly the
probability of being above a certain weight x, which is given by the complement
1 − F(x).

Remark Just as in the case of finite outcomes, we wish to consider the case in which
the distribution over outcomes is conditional on the action taken. Hence, to be precise,
we need to use the notation F(x|a).

Now that we have concluded with a description of what randomness is, we can
move along to see how our decision-making player evaluates random outcomes.

2.2 Evaluating Random Outcomes

From now on we will consider the choice of an action a ∈ A as the choice of a lottery
over the outcomes in X. If the decision problem does not involve any randomness,
then these lotteries are degenerate. This implies that we can stick to our notation
of defining a decision problem by the three components of actions, outcomes, and
preferences. The novelty is that each action is a lottery over outcomes.

The next natural question is: how will a player faced with the R&D problem
in Figure 2.1 choose between his options of going forward or staying the course?
Upon reflection, you may have already reached a conclusion. Despite the fact that his
different choices lead to different lotteries, it seems that the two lotteries that follow
g and s are easy to compare. Both have the same set of outcomes, a profit of 10 or
a profit of 0. The choice g has a higher chance at getting the profit of 10, and hence
we would expect anyone in their right mind to choose g. This implicitly assumes,
however, that there are no costs to launching the R&D project.

1. The definition considers the outcome set to be a finite interval X = [x, x]. We can use the same
definition for any subset of the real numbers, including the real line (−∞, ∞). An example of a
lottery over the real line is the normal “bell-shape” distribution.
2. You are encouraged to learn this material since it will be useful, but one can continue through
most of Parts I–III of this book without this knowledge.
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FIGURE 2.3 The R&D problem with costs.

Let’s consider a less obvious revision of the R&D problem, and imagine that there
is a real cost of pursuing the R&D project equivalent to 1. Hence the outcome of
success yields a profit of 9 instead of 10, and the outcome of failure yields a profit
of −1 instead of 0. This new problem is depicted in Figure 2.3. Now the comparison
is not as obvious: is it better to have a coin toss between 10 and 0, or to have a good
shot at 9, with some risk of losing 1?

2.2.1 Expected Payoff: The Finite Case

To our advantage, there is a well-developed methodology for evaluating how much
a lottery is worth for a player, how different lotteries compare to each other, and
how lotteries compare to “sure” payoffs (degenerate lotteries). This methodology,
called “expected utility theory,” was first developed by John von Neumann and Oskar
Morgenstern (1944), two of the founding fathers of game theory, and explored further
by Leonard Savage (1951). It turns out that there are some important assumptions that
make this method of evaluation valid. (The foundations that validate expected payoff
theory are beyond the scope of this text, and are rather technical in nature.)3

The intuitive idea is about averages. It is common for us to think of our actions
as sometimes putting us ahead and sometimes dealing us a blow. But if on average
things turn out on the positive side, then we view our actions as pretty good because
the gains will more than make up for the losses. We want to take this idea, with its
intuitive appeal, and use it in a precise way to tackle a single decision problem. To do
this we introduce the following definition:

Definition 2.3 Let u(x) be the player’s payoff function over outcomes in X =
{x1, x2, . . . , xn}, and let p = (p1, p2, . . . , pn) be a lottery over X such that pk =
Pr{x = xk}. Then we define the player’s expected payoff from the lottery p as

E[u(x)|p] =
n∑

k=1

pku(xk) = p1u(x1) + p2u(x2) + . . . + pnu(xn).

The idea of an expected payoff is naturally related to the intuitive idea of averages:
if we interpret a lottery as a list of “weights” on payoff values, so that numbers that
appear with higher probability have more weight, then the expected payoff of a lottery
is nothing other than the weighted average of payoffs for each realization of the lottery.

3. The key idea was introduced by von Neumann and Morgenstern (1944) and is based on the
“Independence Axiom.” A nice treatment of the subject appears in Kreps (1990a, Chapter 3).
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20 . Chapter 2 Introducing Uncertainty and Time

That is, payoffs that are more likely to occur receive higher weight while payoffs that
are less likely to occur receive lower weight.

Using the definition of expected payoff we can revisit the R&D problem in Figure
2.3. First assume that the payoff to the player is equal to his profit, so that u(x) = x.
By choosing g, the expected payoff to the player is

v(g) = E[u(x)|g] = 0.75 × 9 + 0.25 × (−1) = 6.5.

In contrast, by choosing s his expected payoff is

v(s) = E[u(x)|s] = 0.5 × 10 + 0.5 × 0 = 5.

Hence his best action using expected profits as a measure of preferences over actions
is to choose g. You should be able to see easily that in the original R&D game in
Figure 2.1 the expected payoff from s is still 5, while the expected payoff from g is
7.5, so that g was also his best choice, as we intuitively argued earlier.

Notice that we continue to use our notation v(a) to define the expected payoff
of an action given the distribution over outcomes that the action causes. This is a
convention that we will use throughout this book, because the object of our analysis
is what a player should do, and this notation implies that his ranking should be over
his actions.

2.2.2 Expected Payoff: The Continuous Case

Consider the case in which the outcomes can be any one of a continuum of values
distributed on some interval X. The definition of expected utility will be analogous,
as follows:

Definition 2.4 Let u(x) be the player’s payoff function over outcomes in the interval
X = [x, x]with a lottery given by the cumulative distribution F(x), with density f (x).
Then we define the player’s expected payoff as4

E[u(x)] =
∫ x

x

u(x)f (x)dx.

To see an example with continuous actions and outcomes, recall the tomato
growing problem in Section 2.1.3, in which your choice is how much water to use in
the set A = [0, 50] and the outcome is the weight of your crop that will result in the
set X = [0, 100]. Imagine that given a choice of water a ∈ A, the distribution over
outcomes is uniform over the quantity support [0, 2a]. (Alternatively the distribution
of x conditional on a is given by x|a ∼ U [0, 2a].) For example, if you use 10 gallons
of water, the output will be uniformly distributed over the weight interval [0, 20],
with the cumulative distribution function given by F(x|a = 10) = x

20 for 0 ≤ x ≤ 20,

4. More generally, if there are continuous distributions that do not have a density because F(.) is not
differentiable, then the expected utility is given by

E[u(x)] =
∫

x∈X

u(x)dF (x).

This topic is covered further in Section 19.4 of the mathematical appendix.
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2.2 Evaluating Random Outcomes . 21

and F(x|a = 10) = 1 for all x > 20. More generally the cumulative distribution func-
tion is given by F(x|a) = x

2a
for 0 ≤ x ≤ 2a, and F(x|a) = 1 for all x > 2a. The

density is given by f (x|a) = 1
2a

for 0 ≤ x ≤ 2a, and f (x|a) = 0 for all x > 2a. Thus
if your payoff from quantity x is given by u(x) then your expected payoff from any
choice a ∈ A is given by

v(a) = E[u(x)|a] =
∫ 2a

0
u(x)f (x|a)dx = 1

2a

∫ 2a

0
u(x)dx.

Given a specific function to replace u(.) we can compute v(a) for any a ∈ [0, 50]. As
a concrete example, let u(x) = 18

√
x. Then we have

v(a) = 1

2a

∫ 2a

0
18x

1
2 dx = 9

a

[
2

3
x

3
2

∣∣∣∣2a

0
= 6

a
(2a)

3
2 = 12

√
2a.

2.2.3 Caveat: It’s Not Just the Order Anymore

Recall that when we introduced the idea of payoffs in Section 1.1.2, we argued that
any payoff function that preserves the order of outcomes as ranked by the preference
relation �∼ will be a valid representation for the preference relation �∼. It turns out that
this statement is no longer true when we step into the realm of expected payoff theory
as a paradigm for evaluating random outcomes.

Looking back at the R&D problem in Figure 2.3, we took a leap when we equated
the player’s payoff with profit. This step may seem innocuous: it is pretty reasonable
to assume that, other things being equal, a rational player will prefer more money to
less. Hence for the player in the R&D problem we have 10 � 9 � 0 � −1, a preference
relation that is indeed captured by our imposed payoff function where u(x) = x.

What would happen if payoffs were not equated with profits? Consider a different
payoff function to represent these preferences. In fact, consider only a slight modi-
fication as follows: u(10) = 10, u(9) = 9, u(0) = 0, and u(−1) = −8. The order of
outcomes is unchanged, but what happens to the expected payoffs? E[u(s)] = 5 is
unchanged, but now

v(g) = E[u(x)|g] = 0.75 × 9 + 0.25 × (−8) = 4.75.

Thus even though the order of preferences has not changed, the player would now
prefer to choose s instead of g, just because of the different payoff number we assigned
to the profit outcome of −1.

The reason behind this reversal of choice has important consequences. When we
choose to use expected payoff then the intensity of preferences matters—something
that is beyond the notion of simple order. We can see this from our intuitive description
of expected payoff. Recall that we used the intuitive notion of “weights”: payoffs that
appear with higher probability have more weight in the expected payoff function. But
then, if we change the number value of the payoff of some outcome without changing
its order in the payoff representation, we are effectively changing its weight in the
expected payoff representation.

This argument shows that, unlike payoff over certain outcomes, which is meant to
represent ordinal preferences �∼, the expected payoff representation involves a cardi-
nal ranking, in which values matter just as much as order. At some level this implies
that we are making assumptions that are not as innocuous about decision making
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22 . Chapter 2 Introducing Uncertainty and Time

when we extend our rational choice model to include preferences over lotteries and
choices among lotteries. Nevertheless we will follow this prescription as a benchmark
for putting structure on decision problems with uncertainty. We now briefly explore
some implications of the intensity of preferences in evaluating random outcomes.

2.2.4 Risk Attitudes

Any discussion of the evaluation of uncertain outcomes would be incomplete without
addressing a player’s attitudes toward risk. By treating the value of outcomes as
“payoffs” and by invoking the expected payoff criterion to evaluate lotteries, we
have effectively circumvented the need to discuss risk, because by assumption all
that people care about is their expected payoff.

To illustrate the role of risk attitudes, it will be useful to distinguish between
monetary rewards and their associated payoff values. Imagine that a player faces
a lottery with three monetary outcomes: x1 = $4, x2 = $9, and x3 = $16 with the
associated probabilities p1, p2, and p3. If the player’s payoff function over money x

is given by some function u(x) then his expected payoff is

E[u(x)|p] =
3∑

k=1

pku(xk) = p1u(x1) + p2u(x2) + p3u(x3).

Now consider two different lotteries: p′ = (p′
1, p′

2, p′
3) =

(
7

12 , 0, 5
12

)
and p′′ =

(p′′
1, p′′

2, p′′
3) = (0, 1, 0). That is, the lottery p′ randomizes between $4 and $16 with

probabilities 7
12 and 5

12 , respectively, while the lottery p′′ picks $9 for sure. Which
lottery should the player prefer? The obvious answer will depend on the expected
payoff of each lottery. If 7

12u(4) + 5
12u(16) > u(9), then p′ will be preferred to p′′,

and vice versa. This answer, by itself, tells us nothing about risk, but taken together
with the special way in which p′ and p′′ relate to each other, it tells us a lot about the
player’s risk attitudes.

The lotteries p′ and p′′ were purposely constructed so that the average payoff of
p′ is equal to the sure payoff from p′′: 7

12 × 4 + 5
12 × 16 = 9. Hence, on average,both

lotteries offer the player the same amount of money, but one is a sure thing while the
other is uncertain. If the player chooses p′ instead of p′′, he faces the risk of getting
$5 less, but he also has the chance of getting $7 more. How then do his choices imply
something about his attitude toward risk?

Imagine that the player is indifferent between the two lotteries, implying that
7

12u(4) + 5
12u(16) = u(9). In this case we say that the player is risk neutral, because

replacing a sure thing with an uncertain lottery that has the same expected monetary
payout has no effect on his well-being. More precisely we say that a player is risk
neutral if he is willing to exchange any sure payout with any lottery that promises the
same expected monetary payout.

Alternatively the player may prefer not to be exposed to risk for the same expected
payout, so that 7

12u(4) + 5
12u(16) < u(9). In this case we say that the player is risk

averse. More precisely a player is risk averse if he is not willing to exchange a sure
payout with any (nondegenerate) lottery that promises the same expected monetary
payout. Finally a player is risk loving if the opposite is true: he strictly prefers any
lottery that promises the same expected monetary payout.

Remark Interestingly risk attitudes are related to the fact that the payoff repre-
sentation of preferences matters above and beyond the rank order of outcomes, as
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discussed in Section 2.2.3. To see this imagine that u(x) = x. This immediately
implies that the player is risk neutral: 7

12u(4) + 5
12u(16) = 9 = u(9). In addition

it is obvious from u(.) that the preference ranking is $16 � $9 � $4. Now imag-
ine that we use a different payoff representation for the same preference ranking:
u(x) = √

x. Despite the fact that the ordinal ranking is preserved, we now have
7

12u(4) + 5
12u(16) = 17

6 < 3 = u(9). Hence a player with this modified payoff func-
tion, which preserves the ranking among the outcomes, will exhibit different risk
attitudes.

2.2.5 The St. Petersburg Paradox

Some trace the first discussion of risk aversion to the St. Petersburg Paradox, so named
in Daniel Bernoulli’s original presentation of the problem and his solution, published
in 1738 in the Commentaries of the Imperial Academy of Science of Saint Petersburg.
The decision problem goes as follows.

You pay a fixed fee to participate in a game of chance. A “fair” coin (each side has
an equal chance of landing up) will be tossed repeatedly until a “tails” first appears,
ending the game. The “pot” starts at $1 and is doubled every time a “head” appears.
You win whatever is in the pot after the game ends. Thus you win $1 if a tail appears
on the first toss, $2 if it appears on the second, $4 if it appears on the third, and so on.
In short, you win 2k−1 dollars if the coin is tossed k times until the first tail appears. (In
the original introduction, this game was set in a hypothetical casino in St. Petersburg,
hence the name of the paradox.)

The probability that the first “tail” occurs on the kth toss is equal to the probability
of the “head” appearing k − 1 times in a row and the “tail” appearing once. The
probability of this event is

( 1
2

)k
, because at any given toss the probability of any side

coming up is 1
2 . We now calculate the expected monetary value of this lottery, which

takes expectations over the possible events as follows: You win $1 with probability
1
2 ; $2 with probability 1

4 ; $4 with probability 1
8 , and so on. The expected value of this

lottery is

∞∑
k=1

1

2k
× 2k−1 =

∞∑
k=1

1

2
= ∞.

Thus the expected monetary value of this lottery is infinity! The reason is that
even though large sums are very unlikely, when these events happen they are huge.
For example, the probability that you will win more than $1 million is less than one
in 500,000!

When Bernoulli presented this example, it was very clear that no reasonable person
would pay more than a few dollars to play this lottery. So the question is: where is the
paradox? Bernoulli suggested a few answers, one being that of decreasing marginal
payoff for money, or a concave payoff function over money, which is basically risk
aversion. He correctly anticipated that the value of this lottery should not be measured
in its expected monetary value, but instead in the monetary value of its expected
payoff.

Throughout the rest of this book we will make no more references to risk pref-
erences but instead assume that every player’s preferences can be represented using
expected payoffs. For a more in-depth exposition of attitudes toward risk, see Chap-
ter 3 in Kreps (1990a) and Chapter 6 in Mas-Colell et al. (1995).
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24 . Chapter 2 Introducing Uncertainty and Time

2.3 Rational Decision Making with Uncertainty

2.3.1 Rationality Revisited

We defined a rational player as one who chooses an action that maximizes his payoff
among the set of all possible actions. Recall that the four rational choice assumptions
in Section 1.2 included a requirement that the player know “exactly how each action
affects which outcome will materialize.”

For this knowledge to be meaningful and to guarantee that the player is correctly
perceiving the decision problem when outcomes can be stochastic, it must be the
case that he fully understands how each action translates into a lottery over the set
of possible outcomes. In other words, the player knows that by choosing actions he
is choosing lotteries, and he knows exactly what the probability of each outcome is,
conditional on his choice of an action.

Understanding the requirements for rational decision making under uncertainty,
together with the adoption of expected payoff as a means of evaluating random
outcomes, offers a natural way to define rationality for decision problems with random
outcomes:

Definition 2.5 A player facing a decision problem with a payoff function u(.) over
outcomes is rational if he chooses an action a ∈ A that maximizes his expected payoff.
That is, a∗ ∈ A is chosen if and only if v(a∗) = E[u(x)|a∗] ≥ E[u(x)|a] = v(a) for
all a ∈ A.

That is, the player, who understands the stochastic consequences of each of his
actions, will choose an action that offers him the highest expected payoff. In the R&D
problems described in Figures 2.1 and 2.3 the choice that maximizes expected payoff
was to go ahead with the project and choose g.

2.3.2 Maximizing Expected Payoffs

As another illustration of maximizing expected payoff with a finite set of actions
and outcomes, consider the following example. Imagine that you have been working
after college and now face the decision of whether or not to get an MBA at a
prestigious institution. The cost of getting the MBA is 10. (Again, you can decide
on the denomination, but rest assured that this sum includes the income lost over the
course of the two years you will be studying!) Your future value is your stream of
income, which depends on the strength of the labor market for the next decade. If the
labor market is strong then your income value from having an MBA is 32, while your
income value from your current status is 12. If the labor market is average then your
income value from having an MBA is 16, while your income value from your current
status is 8. If the labor market is weak then your income value from having an MBA is
12, while your income value from your current status is 4. After spending some time
researching the topic, you learn that the labor market will be strong with probability
0.25, average with probability 0.5, and weak with probability 0.25. Should you get
the MBA?

This decision problem is depicted in Figure 2.4. Notice that following the decision
of whether or not to get an MBA, we subtract the cost of the degree from the income
benefit in each of the three states of nature. To solve this decision problem we first
evaluate the expected payoff from each action. We have
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FIGURE 2.4 The MBA degree decision problem.

v(Get MBA) = 0.25 × 22 + 0.5 × 6 + 0.25 × 2 = 9

v(Don’t get MBA) = 0.25 × 12 + 0.5 × 8 + 0.25 × 4 = 8.

Thus we conclude that, given the parameters of the problem, it is worth getting the
MBA.

To illustrate the maximization of expected payoffs when there is a continuous
set of actions and outcomes, consider the following example, which builds on the
tomato growing problem from Section 2.2.2, with A = [0, 50], X = [0, 100] and the
distribution of x conditional on a is uniform given by x|a ∼ U [0, 2a]. We showed in
the example in Section 2.2.2 that if the player’s payoff from quantity x is given by
u(x) then his expected payoff from any choice a ∈ A is given by

v(a) = E[u(x)|a] = 1

2a

∫ 2a

0
u(x)dx.

To account for the cost of water, assume that choosing a ∈ A imposes a payoff cost of
2a (you can think of 2 being the cost of a gallon of water). Also assume that the payoff
value from quantity x is given by the function u(x) = 18

√
x. (The square root function

implies that the added value of every extra unit is less than the added value of the
previous unit because this function is concave.) Then the player wishes to maximize
his expected net payoff. This will be obtained by choosing the amount of water a that
maximizes the difference between the expected benefit from choosing some a ∈ A

(given by E[18
√

x|a]) and the actual cost of 2a. Thus the player’s mathematical
representation of the decision problem is given by

max
a∈[0,50]

1

2a

∫ 2a

0
18

√
xdx − 2a.

Solving for the integral, this is equivalent to maximizing the objective function
12

√
2a − 2a. Differentiating this gives us the first-order condition for finding an

optimum, which is

12√
2a

− 2 = 0,
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26 . Chapter 2 Introducing Uncertainty and Time

resulting in the solution a = 18, the quantity of water that maximizes the player’s net
expected payoff.5 Plugging this back into the objective function yields the expected
net payoff of 12

√
2 × 18 − 2 × 18 = 36.

2.4 Decisions over Time

The setup we have used up to now fits practically any decision problem in which you
need to choose an action that has consequences for your well-being. Notice, however,
that the approach we have used has a timeless, static structure. Our decision problems
have shared the feature that you have to make a choice, after which some outcome
will materialize and the payoff will be obtained. Many decision problems, however,
are more involved; they require some decisions to follow others, and the sequencing
of the decision making is imposed by the problem at hand.

2.4.1 Backward Induction

Once again, let’s consider a modification of the R&D problem described in Figure 2.2,
with a slight twist. Imagine that after the stage at which Nature first randomizes
over whether or not the R&D project succeeds, the player faces another decision
of whether to engage in a marketing campaign (m) or do nothing (d). The campaign
can be launched only if the R&D project was executed. The marketing campaign will
double the profits if the new product line is a success but not if it is a failure, and the
campaign costs 6. The resulting modified decision problem is presented in Figure 2.5.
For example, if the R&D effort succeeds and the marketing campaign is launched then
profits from the product line will be 20 (double the original 10 in Figure 2.2), but the
cost of the campaign, equal to 6, must be accounted for. This explains the payoff of
20 − 6 = 14.

Now the question of whether the player should choose g or s is not as simple as
before, because it may depend on what he will do later, after the fate of the R&D
project is determined by Nature. Our assumption that the player is rational has some
strong implications: he will be rational at every stage at which he faces a decision. At
the beginning of the problem the player knows that he will act optimally to maximize
his expected payoff at later stages, hence he can predict what he will do there.

This logic is the simple idea behind the optimization procedure known as dynamic
programming or backward induction. To explain this procedure it is useful to
separate the player’s decision nodes into separate groups as follows: Group 1 will
include all the nodes after which no more decision nodes exist, so that only Nature or
final payoffs follow such nodes. For example, in Figure 2.5 Group 1 would include
both decision nodes at which the player must decide between m and d. Then define
Group 2 nodes as follows: a node k will belong to Group 2 if and only if the only
decision nodes that follow any action at node k are decision nodes of Group 1. Define
higher-order groups similarly.

Now consider all the nodes in Group 1 and figure out the optimal action of
the player at each of these nodes. Once this is done we can compute the expected
payoff from optimizing at that node, and that will be the value of the decision node.

5. We also need to check the second-order condition, that the second derivative of the objective
function is negative at the proposed candidate. This is indeed the case, since the second derivative

of the objective function is −12(2a)
3
2 , which is always negative (the objective function is concave).
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FIGURE 2.5 The R&D problem with a marketing phase.

Effectively we can throw away all the branches that follow the decision nodes of
Group 1 and, assuming rationality, associate these nodes with the expected payoff
from acting optimally. We can continue this process “backward” through the tree
until we cover all the decision nodes of the player.

We can use the decision problem in Figure 2.5 to illustrate this procedure. First,
we can compute the expected payoff of the player from choices m and d at the node
after it has been determined by Nature that the R&D project was a success. We have

E[u(x)|R&D succeeds and m] = 0.9 × (20 − 6) + 0.1 × (−6) = 12

E[u(x)|R&D succeeds and d] = 0.9 × 10 + 0.1 × 0 = 9,

which implies that at this node the player will choose m in anticipation of an expected
payoff of 12. Now consider his same choice problem at the node after it has been
determined by Nature that the R&D project was a failure. We have

E[u(x)|R&D fails and m] = 0.5 × (20 − 6) + 0.5 × (−6) = 4

E[u(x)|R&D fails and d] = 0.5 × 10 + 0.5 × 0 = 5,

which implies that at this node the player will choose D in anticipation of an expected
payoff of 5.

Imposing these rational decisions in the Group 1 nodes allows us to rewrite the
decision tree as a simpler tree that already folds in the optimal decisions of the player
at the Group 1 nodes. This “reduced” decision tree is depicted in Figure 2.6. The
player’s choice at the beginning of the tree is now easy to analyze. Taking into account
his optimal actions after the R&D project’s fate is determined, his expected payoff
from choosing g is

v(g) = 0.625 × 12 + 0.375 × 5 = 9.375.
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FIGURE 2.6 The marketing staged reduction of the R&D problem.

Because his expected payoff from choosing s is 5, it is clear that, anticipating his
future decisions, his first decision should be to choose g.

2.4.2 Discounting Future Payoffs

In the R&D example as we have analyzed it so far, a player treated his costs and
benefits equally. That is, even though the costs of the R&D project were incurred at
the beginning, and the benefits came some (unspecified) time later, a dollar “today”
was worth a dollar “tomorrow.” However, this is often not the way current and future
payments are evaluated. The convention in decision analysis is to discount future
payoffs so that a dollar tomorrow is worth less than a dollar today.

For those who have had some experience with finance, the motivation for dis-
counting future financial payoffs is simple. Imagine that you can invest money today
in an interest-bearing savings account that yields 2% interest a year. If you invest $100
today then you can receive $100 × 1.02 = $102 in a year, $100 × (1.02)2 = $104.04
in two years, and similarly $100 × (1.02)t in t years. As we can see, any amount today
will be worth more and more in nominal terms as we move further into the future. As
a consequence, the opposite should be true: any amount $x that is expected in t years
will be worth $v = x

(1.02)t
today precisely because we need only to invest $v today in

order to get $x in t years. More generally, if the interest rate is r% per period, then any
amount $x that is received in t periods is discounted and is worth only x

(1+r)t
today.

Another motivation for discounting future payoffs is uncertainty over the future
coupled with expected future values. Most people are quite certain that they will be
alive and well a year from today. That said, there is always that small chance that
one’s future may be cut short due to illness or accident. (This is the reason that life
insurance companies use actuarial tables.) Imagine that a player assesses that with
probability δ ∈ (0, 1) he will be alive and well in one period (a year, a month, and
so forth), while with probability 1 − δ he will not. This implies that if he is offered
a payoff of x in one period then his expected utility is v = δx + (1 − δ)0 = δx < x.
Similarly, if he is promised a payoff of x in t periods, then he would be willing to
trade that promise for a payoff of v = δtx today.

More generally, if a player expects to receive a stream of payments x1, x2, . . . , xT

over the periods t = 1, 2, . . . , T , and he evaluates payments with the utility function
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FIGURE 2.7 The R&D decision problem with discounting.

u(x) in every period, then in the first period t = 1 his discounted sum of future payoffs
is defined by

v(x1, x2, . . . , xT ) = u(x1) + δu(x2) + . . . + δT −1u(xT ) =
T∑

t=1

δt−1u(xt).

The reason that discounting future payoffs is important is that changes in the
discount rate will change the way decisions today are traded off against future payoffs.
Consider the simple R&D problem. A successful product line, worth 10 in one period,
will occur with probability 0.75 if the player chooses g, while only with probability
0.5 if he chooses s. The cost today of the R&D project is 1. If future payoffs are
discounted at a rate of δ, then the problem is described by the decision tree depicted
in Figure 2.7.

The expected payoffs for the player from choosing g or s are given by

v(g) = E[u(x)|g] = 0.75 × (10δ − 1) + 0.25 × (−1) = 7.5δ − 1

and

v(s) = E[u(x)|s] = 0.5 × 10δ + 0.5 × 0 = 5δ.

It is easy to see that the optimal decision will depend on the discount factor δ. In
particular the player will choose to go ahead with the R&D development if and only
if 7.5δ − 1 > 5δ, or δ > 0.4. The intuition is quite straightforward: the cost of the
investment equal to 1 is borne today, and hence evaluated at a value of 1 regardless of
the discount factor δ. Future payoffs, however, are discounted at the rate of δ. Hence
as δ gets smaller the value of the future benefits from R&D decreases, while the value
of today’s costs remains the same, and once δ drops below the critical value of 0.4
the costs are no longer covered by the added benefits.

2.5 Applications

2.5.1 The Value of Information

When decisions lead to stochastic outcomes, our rational player chooses his action to
maximize his expected payoff so that on average he is making the right choice. If the
player actually knew the choice of Nature ahead of time then he might have chosen
something else. Recall the example in Section 2.3.2, the decision of whether or not
to get an MBA, which is depicted in Figure 2.4. As our previous analysis indicated,
the expected payoff from getting an MBA is 9, while the expected payoff from not
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getting an MBA is only 8. Hence our rational decision maker will leave his job and
go back to school, making what is, on average, the right choice.

Now imagine that an all-knowing oracle appears before the player the moment
before he is about to resign from his job and says, “I know what the state of the labor
market will be and I can tell you for a price.” If you are the player, the questions that
you need to answer are, first, is this information valuable, and second, how much is
it worth?

It is quite easy to answer the first question: the information is valuable if it may
cause you to change the decision you would have made without it. Looking at the
decision problem, the answer is clear: If you learn that the labor market is strong then
you will not change your decision. In contrast, if you learn that the labor market is
weak then you would rather forgo the MBA program because it gives you a payoff of
2 while staying at your current job gives you a payoff of 4. The same decision would
be made if you learn that the labor market is average in its strength. Hence it is quite
clear that the oracle has what may be considered valuable information.

Now to our second question: how much is this information worth? This question is
also not too hard to answer by considering the decision problem the player would face
after the oracle’s announcement. In particular we can calculate the expected payoff
that the player anticipated before making a decision without the advice of the oracle
and compare it to the expected payoff the player anticipated before making a decision
with the oracle’s advice. The difference is clearly due to the oracle’s information, and
this will be our measure of the value of the information.

We concluded that the choice the player would have made without the oracle’s
advice was to get an MBA, and that the expected payoff of this choice was 9, which is
the expected value of the decision problem depicted in Figure 2.4. With the oracle’s
advice, though, the player can make a decision after learning the state of the labor
market. How does this affect his expected payoff? The correct way to calculate this
is to maintain the probability distribution over the three states of Nature, but to take
into account that the player will make different choices that depend on the state of
Nature, unlike the case in which he has to make a choice that applies to all states of
Nature.

This new decision problem is shown in Figure 2.8, and as we argued, the player
will condition his behavior on the oracle’s advice. In particular the labor market will
be strong with probability 0.25, and in this case the player will get an MBA and will
have a payoff of 22. The labor market will be average with probability 0.5, and in this
case the player will not get an MBA and will have a payoff of 8. Finally the labor
market will be weak with probability 0.25, and in this case the player will not get an
MBA and will have a payoff of 4. This implies that, before hearing the oracle’s advice,
with the anticipation of using the oracle’s advice, the player will have an expected
payoff of

E[u] = 0.25 × 22 + 0.5 × 8 + 0.25 × 4 = 10.5.

Thus we can conclude that with the oracle’s advice the expected payoff to the
player is 10.5, which is 1.5 more than his expected payoff without the oracle’s advice.
This answers our second question: the oracle’s information is worth 1.5 to the player.

In general when a decision maker is faced with the option of whether or not to
acquire information and how much to pay for it, then by comparing the decision
problem with the added information to the decision problem without the additional
information, the player will be able to calculate the value of the information. Of
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FIGURE 2.8 The MBA decision problem with the oracle’s information.

course, this approach assumes that the player knows exactly what kind of information
he can receive, how each piece of information will affect his payoffs, and what are the
probabilities that each event will happen. Despite relying on a very demanding set of
assumptions, this approach is valuable in offering a framework for decision making
and valuing information.

2.5.2 Discounted Future Consumption

Usually we receive income or monetary gifts every so often, but we need to consume
over several periods of time in between these income events. For example, you may
receive a paycheck every month, but after paying your monthly costs, like rent and
utilities, you need to buy groceries every week. If you spend too much during the
first week, you may go hungry toward the end of the month. This kind of problem is
known as choosing consumption over time.

Imagine a player who has $K today that need to be consumed over the next two
periods, t = 1, 2. The utility over consuming $x in any period is given by the concave
utility function u(x), with u′(x) > 0 and u′′(x) < 0. At period t = 1, the player values
his utility from consuming x2 in period t = 2 at the discounted value of δu(x2), so
that at period t = 1 the player maximizes his present value of utility given by

max
x1

u(x1) + δu(K − x1),

and the player’s first-order condition is therefore6

u′(x1) = δu′(K − x1). (2.1)

6. Because u(.) is concave, the second-order condition (that the second derivative be zero) is satisfied,
implying that the solution to the first-order condition is the maximum.
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For example, if u(x) = ln(x), so that u′(x) = 1
x

, the solution to the player’s problem
will be

1

x1
= δ

K − x1

or

x1 = K

1 + δ
. (2.2)

Turning back to the player’s first-order condition in equation (2.1), the solution
has a nice intuitive flavor that will be familiar to students of economics. Because the
player needs to allocate a scarce resource, K, across the two periods, the optimal
solution equates the marginal values across the two periods, taking into account that
the second period is discounted by the factor δ. Turning to the specific form using
the natural log function in (2.2), we can see that when period t = 2 is not discounted
(δ = 1) then the player splits K equally between the two periods. This is the case in
which the player perfectly smooths his first-period resource across the two periods.
As discounting becomes stronger, more of the scarce resource is consumed in the first
period, and when the second period is completely discounted (δ goes to zero) then
the player consumes all of the resource in the first period.

2.6 Theory versus Practice

We required the player to be rational in that he fully understands the decision problem
he is facing. Hence if we present the same decision problem in different ways to the
player, then as long as our presentation is loyal to the facts and includes all the relevant
information, he should be able to decipher the true problem regardless of the way we
present it to him. Yet Amos Tversky and Daniel Kahneman (1981) have shown that
“framing,” or the way in which a problem is presented, can affect the choices made
by a decision maker. This would imply that our fundamental assumptions of rational
choice do not hold.

Tversky and Kahneman demonstrated systematic “preference reversals” when the
same problem was presented in different ways, in particular for the “Asian disease”
decision problem. Physician participants were asked to “imagine that the U.S. is
preparing for the outbreak of an unusual Asian disease, which is expected to kill 600
people. Two alternative programs to combat the disease have been proposed. Assume
the exact scientific estimates of the consequences of the programs are as follows.”
The first group of participants was presented with a decision problem between two
programs:

Program A 200 people will be saved.
Program B There is a 1

3 probability that 600 people will be saved and a 2
3 probability

that no people will be saved.

When presented with these alternatives, 72% of participants preferred program A
and 28% preferred program B. The second group of participants was presented with
the following choice:

Program C 400 people will die.
Program D There is a 1

3 probability that nobody will die, and a 2
3 probability that

600 people will die.
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For this decision problem, 78% preferred program D, while the remaining 22%
preferred program C. Notice, however, that programs A and C are identical, as are
programs B and D. A change in the framing of the decision problem between the two
groups of participants produced a “preference reversal,” with the first group preferring
program A/C and the second group preferring program B/D.

Many argue today that framing biases affect a host of decisions made by people
in their daily lives. Preference reversals and other associated phenomena have been
key subjects for research in the flourishing field of behavioral economics, which is
primarily involved in the study of behavior that contradicts the predictions of rational
choice theory.

Nevertheless the rather naive and simple framework of rational choice theory goes
a long way toward helping us understand the decisions of many individuals. Fur-
thermore many argue that the “rational” decision makers will drive out the irrational
ones when the stakes are high enough, and hence when we look at behavior that
persists in situations for which some people have the opportunity to learn the envi-
ronment, that behavior will often be consistent with rational choice theory. I will use
the rational choice framework throughout this book, and I will leave its defense to
others.

2.7 Summary

. When prospects are uncertain, a rational decision maker needs to put structure
on the problem in the form of probability distributions over outcomes that we
call lotteries.

. Whether the acts of Nature evolve over time or whether they are chosen
once and for all, a rational player cares only about the distribution over final
outcomes. Hence any series of compound lotteries can be compressed to its
equivalent simple lottery.

. When evaluating lotteries, we use the expected payoff criterion. Hence every
lottery is evaluated by the expected payoff it offers the player.

. Unlike certain outcomes in which only the order of preferences matters, when
random outcomes are evaluated with expected payoffs, the magnitude of
payoffs matters as well. The difference in payoff values between outcomes
will also be related to a player’s risk preferences.

. Rational players will always choose the action that offers them the highest
expected payoff.

. When decisions need to be made over time, a rational player will solve his
problem “backwards” so that early decisions take into account later decisions.

. Payoffs that are received in future periods will often be discounted in earlier
periods to reflect impatience, costs of capital, or uncertainty over whether
future periods will be relevant.

2.8 Exercises

2.1 Getting an MBA: Recall the decision problem in Section 2.3.2, and now
assume that the probability of a strong labor market is p, that of an average
labor market is 0.5, and that of a weak labor market is 0.5 − p. All the other
values are the same.
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a. For which values of p will you decide not to get an MBA?
b. If p = 0.4, what is the highest price the university can charge for you

to be willing to go ahead and get an MBA?

2.2 Recreation Choices: A player has three possible activities from which to
choose: going to a football game, going to a boxing match, or going for a
hike. The payoff from each of these alternatives will depend on the weather.
The following table gives the agent’s payoff in each of the two relevant weather
events:

Alternative Payoff if rain Payoff if shine

Football game 1 2

Boxing match 3 0

Hike 0 1

Let p denote the probability of rain.

a. Is there an alternative that a rational player will never take regardless
of p?

b. What is the optimal decision as a function of p?

2.3 At the Dog Races: You’re in Las Vegas, and you must decide what to do
at the dog-racing betting window. You may choose not to participate or you
may bet on one of two dogs as follows. Betting on Snoopy costs $1, and you
will be paid $2 if he wins. Betting on Lassie costs $1, and you will be paid
$11 if she wins. You believe that Snoopy has probability 0.7 of winning and
that Lassie has probability 0.1 of winning (there are other dogs on which you
are not considering betting). Your goal is to maximize the expected monetary
return of your action.

a. Draw the decision tree for this problem.
b. What is your best course of action, and what is your expected value?
c. Someone offers you gambler’s “anti-insurance,” which you may ac-

cept or decline. If you accept it, you get paid $2 up front and you agree
to pay back 50% of any winnings you receive. Draw the new decision
tree and find the optimal action.

2.4 Drilling for Oil: An oil drilling company must decide whether or not to engage
in a new drilling venture before regulators pass a law that bans drilling on that
site. The cost of drilling is $1 million. The company will learn whether or not
there is oil on the site only after drilling has been completed and all drilling
costs have been incurred. If there is oil, operating profits are estimated at
$4 million. If there is no oil, there will be no future profits.

a. Using p to denote the likelihood that drilling results in oil, draw the
decision tree for this problem.

b. The company estimates that p = 0.6. What is the expected value of
drilling? Should the company go ahead and drill?

c. To be on the safe side, the company hires a specialist to come up with
a more accurate estimate of p. What is the minimum value of p for
which it would be the company’s best response to go ahead and drill?

2.5 Discount Prices: A local department store sells products at a given initial
price, and every week a product goes unsold, its price is discounted by 25%
of the original price. If it is not sold after four weeks, it is sent back to the
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regional warehouse. A set of kitchen knives was just put out for $200. Your
willingness to pay for the knives (your dollar value) is $180, so if you buy
them at a price P, your payoff is u = 180 − P. If you don’t buy the knives,
the chances that they will be sold to someone else, conditional on not having
been sold the week before, are as follows:

Week 1 0.2

Week 2 0.4

Week 3 0.6

Week 4 0.8

For example, if you do not buy the knives during the first two weeks, the
likelihood that they will be available at the beginning of the third week is
the likelihood that they do not sell in either week 1 or week 2, which is
0.8 × 0.6 = 0.48.

a. Draw your decision tree for the four weeks after the knives are put out
for sale.

b. At the beginning of which week, if any, should you run to buy the
knives?

c. Find a willingness to pay for the knives that would make it optimal to
buy at the beginning of the first week.

d. Find a willingness to pay that would make it optimal to buy at the
beginning of the fourth week.

2.6 Real Estate Development: A real estate developer wishes to build a new
development. Regulations require an environmental impact study that will
yield an “impact score,” which is an index number based on the impact the
development will likely have on such factors as traffic, air quality, and sewer
and water usage. The developer, who has lots of experience, knows that the
score will be no less than 40 and no more than 70. Furthermore he knows
that any score between 40 and 70 is as likely as any other score between 40
and 70 (use continuous values). The local government’s past behavior implies
that there is a 35% chance that it will approve the development if the impact
score is less than 50 and a 5% chance that it will approve the development
if the score is between 50 and 55; if the score is greater than 55 then the
project will surely be halted. The value of the development to the developer is
$20 million. Assuming that the developer is risk neutral, what is the maximum
cost of the impact study such that it is still worthwhile for the developer to
have it conducted?

2.7 Toys: WakTek is a manufacturer of electronic toys, with a specialty in remote-
controlled miniature vehicles. WakTek is considering the introduction of a
new product, a remote-controlled hovercraft called WakAtak. Preliminary
designs have already been produced at a cost of $2 million. To introduce
a marketable product requires the building of a dedicated production line
at a cost of $12 million. In addition, before the product can be launched a
prototype must be built and tested for safety. The prototype can be crafted in
the absence of a production line, at a cost of $0.5 million, but if the prototype
is created after the production line is built then its cost is negligible (you can
treat it as zero). There is uncertainty over what safety rating WakAtak will get.
This could have a significant impact on demand, as a lower safety rating will
increase the minimum age required of users. Safety testing costs $1 million.
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The outcome of the safety test is estimated to have a 65% chance of resulting
in a minimum user age of 8 years, a 30% chance of a minimum age of 15
years, and a 5% chance that the product will be declared unsafe—in which
case it could not be sold at all. (The cost of improving the safety rating of
a finished design is deemed prohibitive.) After successful safety testing the
product could be launched at a cost of $1.5 million.

There is also uncertainty over demand, which will have a crucial impact
on the eventual profits. Currently the best estimate is that the finished product,
if available to the 8- to 14-year demographic, has a 50-50 chance of resulting
in profits of either $10 million or $5 million from that demographic. Similarly
there is a 50-50 chance of either $14 million or $6 million in profits from
the 15-year-or-above demographic. These demand outcomes are independent
across the demographics. The profits do not take into account the costs previ-
ously defined; they are measured in expected present-value terms, so they are
directly comparable with the costs.

a. What is the optimal plan of action for WakTek? What is the current
expected economic value of the WakAtak project?

b. Suddenly it turns out that the original estimate of the cost of safety
testing was incorrect. Analyze the sensitivity of WakTek’s optimal plan
of action to the cost of safety testing.

c. Suppose WakTek also has the possibility of conducting a market sur-
vey, which would tell it exactly which demand scenario is true. This
market research costs $1.5 million if done simultaneously for both de-
mographics and $1 million if done for only one demographic. How, if
at all, is your answer to part (a) affected?

d. Suppose that demand is not independent across demographics after
all, but instead is perfectly correlated (i.e., if demand is high in one
demographic then it is for sure high in the other one as well). How, if
at all, would that change your answer to part (c)?

2.8 Juice: Bozoni is a Swiss maker of fruit and vegetable juice, whose products
are sold at specialty stores throughout Western Europe. Bozoni is considering
whether to add cherimoya juice to its line of products. “It would be one
of our more difficult varieties to produce and distribute,” observes Johann
Ziffenboeffel, Bozoni’s CEO. “The cherimoya would be flown in from New
Zealand in firm, unripe form, and it would need its own dedicated ripening
facility here in Europe.” Three successful steps are absolutely necessary for the
new cherimoya variety to be worth producing. The industrial ripening process
must be shown to allow the delicate flavors of the cherimoya to be preserved;
the testing of the ripening process requires the building of a small-scale
ripening facility. Market research in selected limited regions around Europe
must show that there is sufficient demand among consumers for cherimoya
juice. And cherimoya juice must be shown able to withstand the existing
tiny gaps in the cold chain (the temperature-controlled supply chain) between
the Bozoni plant and the end consumers (these gaps would be prohibitively
expensive to fix). Once these three steps have been completed, there would be
about €2,500,000 worth of expenses in launching the new variety of juice. A
successful new variety will then yield profits, in expected present-value terms,
of €42.5 million.
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The three necessary steps can be done in parallel or sequentially, and in
any order. Data about these three steps are given in the following table:

Step Probability of success Cost

Ripening process 0.7 €1,000,000

Market research 0.3 5,000,000

Cold chain 0.6 500,000

“Probability of success” refers to how likely it is that the step will be
successful. If it is not successful, then that means that cherimoya juice cannot
be sold at a profit. All probabilities are independent of each other (i.e., whether
a given step is successful or not does not affect the probabilities that the other
steps will be successful). “Cost” refers to the cost of undertaking the step
(regardless of whether it is successful or not).

a. Suppose Mr. Ziffenboeffel calls you and asks your advice about
the project. In particular he wants to know (i) should he undertake
the three necessary steps in parallel (i.e., all at once) or should he
undertake them sequentially, and (ii) if sequentially, what’s the correct
order in which the steps should be done? What answers do you give
him?

b. Mr. Ziffenboeffel calls you back. Since the table was produced, Bozoni
has found a small research firm that can perform the necessary tests for
the ripening process at a lower cost than Bozoni’s in-house research
department. At the same time, the European Union (EU) has tightened
the criteria for getting approval for new food-producing facilities,
which raises the costs of these tests. Mr. Ziffenboeffel would like to
know how your answer to (a) changes as a function of the cost of the
ripening test. What do you tell him?

c. Mr. Ziffenboeffel calls you back yet again. The good news is that the
cost of adhering to the EU regulations and the savings from outsourc-
ing the ripening tests balance each other out, so the cost of the test
remains €1,000,000. Now the problem is that his marketing depart-
ment is suggesting that the probability that the market research will
result in good news about demand for the juice could be different in
light of recent data on the sales of other subtropical fruit products. He
would like to know how your answer to (a) changes as a function of
the probability of a positive result from the market research. What do
you tell him?

2.9 Steel: AK Steel Holding Corporation is a producer of flat-rolled carbon,
stainless, and electrical steels and tubular products through its wholly owned
subsidiary, AK Steel Corporation. The recent surge in demand for steel sig-
nificantly increased AK’s profits,7 and it is now engaged in a research project
to improve its production of rolled steel. The research involves three distinct

7. See “Demand Sends AK Steel Profit Up 32%,” New York Times, July 23, 2008, http://www
.nytimes.com/2008/07/23/business/23steel.html?partner=rssnyt&emc=rss.
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steps, each of which must be successfully completed before the firm can im-
plement the cost-saving new production process. If the research is completed
successfully, it will save the firm $4 million. Unfortunately there is a chance
that one or more of the research steps might fail, in which case the entire
project would be worthless. The three steps are done sequentially, so that the
firm knows whether one step was successful before it has to invest in the next
step. Each step has a 0.8 probability of success and costs $500,000. The risks
of failure in the three steps are uncorrelated with one another. AK Steel is a
risk-neutral company. (In case you are worried about such things, the interest
rate is zero.)

a. Draw the decision tree for the firm.
b. If the firm proceeds with this project, what is the probability that it

will succeed in implementing the new production process?
c. If the research were costless, what would be the firm’s expected gain

from it before the project began?
d. Should the firm begin the research, given that each step costs $500,000?
e. Once the research has begun, should the firm quit at any point even if

it has had no failures? Should it ever continue the research even if it
has had a failure?

After the firm has successfully completed the first two steps, it discovers
an alternate production process that would cost $150,000 and would lower
production costs by $1 million with certainty. This process, however, is a
substitute for the three-step cost-saving process; they cannot be used simulta-
neously. Furthermore, to have this process available, the firm must spend the
$150,000 before it knows if it will successfully complete the third step of the
three-step research project.

f. Draw the augmented decision tree that includes the possibility of
pursuing this alternate production process.

g. If the firm continues the three-step project, what is the chance it would
get any value from also developing the alternate production process?

h. If developing the alternate production process were costless and if the
firm continues the three-step project, what is the expected value that it
would get from having the alternate production process available (at
the beginning of the third research step)? (This is known as the option
value of having this process available.)

i. Should the firm

i. Pursue only the third step of the three-step project?
ii. Pursue only the alternate production process?

iii. Pursue both the third step of the three-step project and the
alternate production process?

j. If the firm had known of the alternate production process before it
began the three-step research project, what should it have done?

2.10 Surgery: A patient is very sick and will die in 6 months if he goes untreated.
The only available treatment is risky surgery. The patient is expected to live
for 12 months if the surgery is successful, but the probability that the surgery
will fail and the patient will die immediately is 0.3.

a. Draw a decision tree for this decision problem.
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b. Let v(x) be the patient’s payoff function, where x is the number of
months until death. Assuming that v(12) = 1and v(0) = 0, what is the
lowest payoff the patient can have for living 3 months so that having
surgery is a best response?

For the rest of the problem, assume that v(3) = 0.8.

c. A test is available that will provide some information that predicts
whether or not surgery will be successful. A positive test implies an
increased likelihood that the patient will survive the surgery as follows:

True-positive rate: The probability that the results of this test will
be positive if surgery is to be successful is 0.90.

False-positive rate: The probability that the results of this test will
be positive if the patient will not survive the operation is 0.10.

What is the probability of a successful surgery if the test is positive?
d. Assuming that the patient has the test done, at no cost, and the result

is positive, should surgery be performed?
e. It turns out that the test may have some fatal complications; that is, the

patient may die during the test. Draw a decision tree for this revised
problem.

f. If the probability of death during the test is 0.005, should the patient
opt to have the test prior to deciding on the operation?

2.11 To Run or Not to Run: You’re a sprinter, and in practice today you fell
and hurt your leg. An x-ray suggests that it’s broken with probability 0.2.
Your problem is deciding whether you should participate in next week’s
tournament. If you run, you think you’ll win with probability 0.1. If your
leg is broken and you run, then it will be further damaged and your payoffs
are as follows:

+100 if you win the race and your leg isn’t broken
+50 if you win and your leg is broken
0 if you lose and your leg isn’t broken
−50 if you lose and your leg is broken
−10 if you don’t run and if your leg is broken
0 if you don’t run and your leg isn’t broken

a. Draw the decision tree for this problem.
b. What is your best choice of action and its expected payoff?

You can gather some more information by having more tests, and you can
gather more information about whether you’ll win the race by talking to your
coach.

c. What is the value of perfect information about the state of your leg?
d. What is the value of perfect information about whether you’ll win the

tournament?
e. As stated previously, the probability that your leg is broken and the

probability that you will win the tournament are independent. Can you
use a decision tree in the case that the probability that you will win the
race depends on whether your leg is broken?

2.12 More Oil: Chevron, the number 2 U.S. oil company, was facing a tough
decision. The new oil project dubbed “Tahiti” was scheduled to produce its first
commercial oil in mid-2008, yet it was still unclear how productive it would
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be. “Tahiti is one of Chevron’s five big projects,” said Peter Robertson, vice
chairman of the company’s board, to the Wall Street Journal.8 Nevertheless
it was unclear whether the project would result in the blockbuster success
Chevron was hoping for. As of June 2007 $4 billion had been invested in
the high-tech deep sea platform, which sufficed to perform early well tests.
Aside from offering information on the type of reservoir, the tests would
produce enough oil to just cover the incremental costs of the testing (beyond
the $4 billion investment).

Following the test wells, Chevron predicted one of three possible scenar-
ios. The optimistic one was that Tahiti sits on one giant, easily accessible oil
reservoir, in which case the company expected to extract 200,000 barrels a
day after expending another $5 billion in platform setup costs, with a cost
of extraction of about $10 a barrel. This would continue for 10 years, after
which the field would have no more economically recoverable oil. Chevron
believed this scenario had a 1-in-6 chance of occurring. A less rosy scenario,
twice as likely as the optimistic one, was that Chevron would have to drill
two more wells at an additional cost of $0.5 billion each (above and beyond
the $5 billion setup costs), in which case production would be around 100,000
barrels a day with a cost of extraction of about $30 a barrel, and the field would
still be depleted after 10 years. The worst-case scenario involves the oil being
tucked away in numerous pockets, requiring expensive water injection tech-
niques, which would involve upfront costs of another $4 billion (above and
beyond the $5 billion setup costs) and extraction costs of $50 a barrel; produc-
tion would be estimated to be at about 60,000 barrels a day for 10 years. Bill
Varnado, Tahiti’s project manager, was quoted as giving this least desirable
outcome odds of 50-50.

The current price of oil is $70 a barrel. For simplicity assume that the
price of oil and all costs will remain constant (adjusted for inflation) and that
Chevron faces a 0% cost of capital (also adjusted for inflation).

a. If the test wells would not produce information about which one of
three possible scenarios would result, should Chevron invest the setup
costs of $5 billion to be prepared to produce under whichever scenario
is realized?

b. If the test wells do produce accurate information about which of three
possible scenarios is true, what is the added value of performing these
tests?

2.13 Today, Tomorrow, or the Day After: A player has $100 today that needs
to be consumed over the next three periods, t = 1, 2, 3. The utility over
consuming $xt in period t is given by the utility function u(x) = ln(x), and
at period t = 1 the player values his net present value from all consumption
as u(x1) + δu(x2) + δ2u(x3), where δ = 0.9.

a. How will the player plan to spend the $100 over the three periods of
consumption?

b. Imagine that the player knows that in period t = 2 he will receive an
additional gift of $20. How will he choose to allocate his original $100
initially, and how will he spend the extra $20?

8. “Chevron Bets Big on Gulf Output,” Wall Street Journal, June 27, 2007, http://online.wsj.com/article/
SB118291402301349620.html.
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