
xi

Preface

Welcome to the second edition of Agent-Based and Individual-Based Modeling. In the six years 
since the original edition was published, we have been using and supporting the book, col
lecting feedback from instructors and people using it to teach themselves, supervising young 
modelers, and continuing to build, use, and publish our own models. The authors of the soft
ware platform we use, Wilensky’s NetLogo (Wilensky 1999), meanwhile continued to improve 
it in important ways. And the NetLogo user community has continued to develop new soft
ware tools that can also be extremely helpful. As a result of all this experience, this second 
edition includes well over 200 revisions.

Many of the revisions were to improve parts of the book that caused particular difficulty to 
students and instructors, to implement many excellent suggestions from these users, and to 
simply make things clearer and easier to learn. A few were necessary to update code examples 
and techniques to correspond to the current version (6.0.4) of NetLogo. A number of revisions, 
especially in part IV, address new techniques and software tools that have become available. 
To aid instructors, many of the exercises have been revised, replaced, or newly added. Those of 
you familiar with the first edition should be aware that we made major revisions to the Butter
fly model used in chapters 4 and 5, replaced the software testing exercise model presented in 
section 6.5, made important changes to the Business Investor model used in chapters 10–12, 
changed how the Wild Dog model of chapter 16 is programmed, completely revised the style 
of sensitivity analysis presented in section 23.2.1, and made other updates to chapters 23 and 
24 to reflect advances since 2012.

As we revised the book, we also updated the chapter exercises and the solutions available 
to instructors (discussed below). The new instructor materials are more complete and detailed 
than they were for the first edition.

We like to believe that the first edition was successful: it was adopted and used as a text at 
many universities, and we have been contacted by hundreds of individual users. Agentbased 
and individualbased models (A/IBMs) continue to grow in popularity, in their use in policy 
and decisionmaking, and in their acceptance as a tool that scientists use themselves and teach 
to others. However, our original goal for the book remains valid. That goal is to address the gap 
between the need and desire to use A/IBMs and the availability of instructors and instructional 

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



xii Preface

materials for learning how. More university departments want to offer classes in this kind of 
modeling, but there are still few instructors with the experience to develop courses by them
selves. Therefore, we formulated this book to help inexperienced instructors and selflearners 
access this knowledge.

This book is designed so it can be used by itself, but we think many of its users would benefit 
from reading our first book, Individual-Based Modeling and Ecology (Grimm and Railsback 
2005) either beforehand or concurrently with this one. Our first book focused on conceptual 
aspects of how to design A/IBMs and analyze them to do science, while this book focuses more 
on the details of implementing and analyzing models. One difference is that this book is not 
specific to ecology; while it still reflects our own backgrounds in ecology, the book uses many 
examples from social and human sciences and is designed for the many fields in which a text
book on A/IBMs is needed. This multidisciplinarity is possible because the principles of model
ing in general, and agentbased modeling in particular, are independent of scientific domains.

In disciplines other than ecology, IBMs are more often referred to as ABMs, so we use the 
term “agentbased” in this book more than “individualbased.” There have been historical dif
ferences between individual and agentbased models: IBMs focused on individual variability 
and local interactions, whereas ABMs focused on decisionmaking and adaptive behavior. But 
these differences are fading away so that we use both terms interchangeably, as we did in our 
first book. (In fact, the fascinating bibliographic analysis by Vincenot 2018 indicates that these 
two terms became interchangeable in part because of standards we promote in this book, es
pecially the ODD protocol introduced in chapter 3.) Likewise, we also implicitly include and 
address “multiagent systems,” which are just a branch of agentbased modeling that originated 
from computer science and research on artificial intelligence and artificial life.

Book Objectives

This book is designed to support introductory classes—or independent study—in agentbased 
modeling for scientists, including courses with instructors new to simulation modeling and 
computer programming. The course is targeted at graduate students and advanced under
graduates who are starting their research careers, but it is also appropriate for experienced 
scientists who want to add agentbased modeling to their toolkit. Students can expect to learn 
about both the conceptual and theoretical aspects of using ABMs and the details of imple
menting models on the computer using NetLogo software. Among the topics covered are

When and why to use ABMs, and how they are different from other models;
How to design an ABM for a particular system and problem;
A conceptual foundation for designing and describing models;
Programming models and conducting simulation experiments in NetLogo; and
How to analyze a model to solve scientific problems, including development of theory for 
complex systems.

Our objective is to provide a good foundation in these topics, especially those unique to 
ABMs. We chose to strategically limit the book to materials that students can reasonably be 
expected to absorb in one course, and not to delve deeply into technical details that are covered 
in the very extensive and established literature on general simulation modeling.

Throughout the course we emphasize several themes about doing science with ABMs:

Using models for solving research problems. The primary characteristic of scientific models 
is that they are designed to solve a specific problem about a system or class of systems. 

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Preface xiii

These problems might include predicting how the system responds to novel conditions, or 
just understanding the mechanisms that drive the system.
Basing models on theory, and using models to develop theory. By theory, in the context 
of agentbased complex systems, we mean models of the individual characteristics and 
behaviors from which system behaviors emerge.
Learning and following the conventions and theory of scientific modeling. Modeling is not 
simply an intuitive process that lacks standard procedures and theory. There is in fact 
much that modelers need to learn from our predecessors. Examples include knowing the 
importance of appropriate space and time scales and how to conduct standard kinds of 
model analysis.
Documenting models and testing software. These tasks are often treated by novices as 
tedious distractions, but they are in fact essential—and productive, and sometimes even 
fun—parts of scientific modeling.
Employing standardization. One of the historical difficulties with ABMs is that the stan
dard “languages” we have for thinking about and describing other kinds of models (e.g., 
differential equations, statistics) are not sufficient for formulating ABMs. A great deal of 
recent work has gone into developing standards for ABMs, and we emphasize their use. 
Throughout this book we use a standard protocol (called ODD) for describing models and 
a set of standard concepts for thinking about and designing ABMs; and NetLogo itself is a 
standard language for programming ABMs.

Why Netlogo?

Choosing which software platform to use in this book was a critical decision for us. There are 
many platforms for agentbased modeling, and they vary in many ways. We learned to use 
the most popular platforms and tried teaching several of them. This experience led us to two 
conclusions. First, there is no single ideal platform; platforms are inevitably compromises that 
cannot be best for all applications. Second, though, NetLogo (Wilensky 1999) clearly stands 
apart as the best platform for both beginners and serious scientific modelers.

NetLogo provides a programming language that is simple yet extremely powerful for 
ABMs, along with the graphical interfaces that are essential for testing and understanding 
them. Therefore, we can spend far less time on programming and much more time doing 
science. Now, many if not most published scientific ABMs are implemented in NetLogo. 
Just as importantly, the NetLogo team at Northwestern University provides an extremely 
complete, helpful, and professional set of documentation and tutorial materials. NetLogo 
was originally designed as an educational tool, but its use in science has grown very rapidly, 
and NetLogo itself has changed to better meet the needs of scientists. Further, NetLogo is 
available for all popular operating systems and is free, although we encourage others to join 
us in contributing to its support (via the NetLogo web site) from projects and programs that 
depend on it.

NetLogo has had a reputation as computationally slow, and we used to assume that espe
cially large or complex models would need to be programmed in another language. But this 
reputation is no longer deserved, as we discuss in chapter 24. While we still introduce general 
software concepts throughout the book, we now have sufficient experience with large models 
implemented and analyzed productively in NetLogo that we no longer assume students will 
need to transition to another platform for “serious” models. Many NetLogo models are initially 
quite slow, but for reasons that would affect any programming language. In a separate pub
lication and supporting materials (at www.railsbackgrimmabmbook.com/JASSSmodels.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



xiv Preface

html), we explain how to identify and remedy slow parts of NetLogo programs, and we il
lustrate the many very large models and analyses that have been implemented with NetLogo.

Overview and Suggested Course Structure

The book has four parts. The first provides the foundation that students need to get started: a 
basic understanding of what agentbased modeling is and of the modeling process, and basic 
skills in implementing ABMs in NetLogo. Part II introduces specific model design concepts 
and techniques while widening and deepening the student’s NetLogo skills. In part III we move 
on to broader scientific issues: using knowledge of the system being modeled to design models 
with the right level of complexity, develop theoretical understanding of the system, and cali
brate models. Finally, part IV focuses on analyzing models: how to learn from and do science 
with ABMs. At the end we provide suggestions for moving on to become a successful modeler 
without losing momentum.

A course using this book is expected to include both lecture and handson computer lab 
time. We present many modeling and software concepts that are best explained in a lecture 
format. But most of the learning will take place in a computer laboratory as students work 
on exercises and projects of increasing complexity and independence. For a college class, we 
envision each week to include one or two lecture hours plus at least one computer lab of two 
to four hours.

At the start of the course, chapters 1, 3, and 6 are designed for lecture, while chapters 2, 4, 
and 5 are designed as introductory computer labs led by the instructor; chapter 6 also includes 
an important lab exercise. For the remainder of the course, each chapter includes modeling 
concepts and programming techniques to be introduced in lecture, followed by exercises that 
reinforce the concepts and techniques. In the computer labs for parts II–IV, students should 
be able to work more independently, with the instructor spending less time in front of the 
class and more time circulating to help individual students. Exercises started in lab can be 
completed as homework.

The exercises in parts I–II are generally short and focused, and it is probably best to have 
the entire class do the same exercises. Starting with part III, the exercises are more openended 
and demand more creativity and independence. It is natural to transition to more projectlike 
work at this point, and it should be easy to develop independent projects that accomplish the 
same objectives as the exercises we provide. We strongly encourage instructors to replace our 
exercises with ones based on their own experience and discipline wherever they can.

Our experience has been that working on exercises in teams, usually of two students, is 
productive at least early in a class. It is great when students teach and help each other, and it 
is good to encourage them to do so, for example, by providing a computer lab where they can 
work in the same room. Anyone who programs regularly knows that the best way to find your 
mistake is to explain it to someone else. However, it is also very common for beginning pro
grammers to get stuck and need just a little help to get moving again. Programming instructors 
often provide some kind of “consulting service”—office hours, tutors, email, and the like—to 
students needing help with their assignments outside of regular class hours.

Even for a graduatelevel class, it may be ambitious to try to work through the entire book. 
Especially in part II, instructors should be able to identify subsections, or perhaps even a whole 
chapter or two, to leave out, considering their particular interests. We certainly discourage 
instructors from spending so much time in parts I and II that the key later chapters (especially 
18, 19, and 22) are neglected; that would be like teaching art students to mix pigments and 
stretch canvas but never to paint pictures.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Preface xv

What We Expect of Instructors

We wrote this book with the expectation that many instructors using it will have little or no 
prior experience with ABMs. This approach is unusual for a textbook, but we had little choice, 
given how few experienced agentbased modelers there are.

What do we expect of instructors? First, we believe it will help them to digest our first book, 
Individual-Based Modeling and Ecology, fairly thoroughly, especially because it presents many 
of the ideas in this book in more detail and provides more explanation for why we do things 
the way we do. The book of O’Sullivan and Perry (2013) also provides valuable and accessible 
background in the kind of modeling we address.

Second, instructors and the people who assist them need to develop enough experience 
with the NetLogo platform to stay ahead of their students. This platform can be very easy to 
learn, but it has a distinct style that takes getting used to. Prior experience with programming 
may or may not be helpful: NetLogo uses some standard programming techniques (e.g., de
claring variables, writing subroutinelike procedures), but if you try to write NetLogo code the 
way you write C or Java or MatLab, you will miss most of its advantages. Luckily, there is no 
reason to fear NetLogo. Its excellent documentation and example models will be a great help 
to you and your students. And NetLogo is fun: if you try to learn it completely by yourself, 
your primary problem (after an initial 1–2 hours of confusion and frustration) will be making 
yourself stop. Also, NetLogo is quite popular and it is likely that you can find experienced users 
on campus, or perhaps even a computer science professor or student willing to learn and help. 
Finally, there is an online NetLogo users community, programming support on stackoverflow.
com, and an online forum for users of this book (discussed below). If you start working your 
way through NetLogo’s tutorial materials and parts I and II of this book with some focus a few 
weeks before starting to teach, you should be OK.

The third thing we hope for from instructors is to work on keeping students from devel
oping bad habits that are unfortunately common among novice and selftaught modelers. 
NetLogo encourages an experimental approach: it is very easy and fun to make little code 
changes and see what happens. This experimentation is fine, but students need to learn that 
they are not really modeling until they do three things. First is to stop changing and expanding 
their model—even before it seems “realistic” or “finished”—so they can proceed with learning 
something from it. Second is to write down what their model is to do and why; and third is 
to provide solid evidence that their software actually does what they wrote down. After build
ing many ABMs, we know that software that has not been tested seriously is very unlikely 
to be mistakefree, even with a platform as simple as NetLogo. And a written description of 
the model is necessary for both scientific communication and software testing. But neither of 
those tasks can be completed until the student stops changing the model’s design. We hope in
structors will do what computer programming instructors do: treat assignments as incomplete 
unless software is accompanied with documentation of (a) its purpose and design and (b) a 
serious attempt to find mistakes in it. You will find your students making much more rapid 
progress with modeling after these steps become habit.

In courses using our first edition, some students struggled with programming much more 
than others. Prior training may or may not help: people simply vary in how rapidly and intui
tively they learn to program. We think this course in agentbased modeling should be valuable 
even to those who go on not to build models but to use the science developed via modeling. (In 
our work as applied modelers, we find familiarity with the modeling process a very valuable 
skill in scientists and managers even if they never develop models themselves.) Therefore, we 
would not require students to have prior programming experience because that could discour
age some from even attempting the class. However, instructors should be prepared to provide 

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



xvi Preface

extra support to students who are not natural programmers. This support could include con
sulting by instructors or peers, additional exercises and examples, or even simply providing 
working code so students can conduct the model analysis steps that are actually more impor
tant than programming.

For the Independent Learner

As much as we hope that classes on agentbased modeling will be offered at every university, 
we realize that this will not happen immediately and some people will need to teach them
selves. If you are one of these people, we kept you in mind as we designed the book.

How should you proceed? We recommend you read a chapter and then work through its 
exercises until you are comfortable moving on. If you are nervous about learning NetLogo by 
yourself, keep in mind that we will point you to many learning materials and sources of sup
port provided with NetLogo and by its users. The online user community may be especially 
helpful for you, and you should be able to find other NetLogo users nearby to consult with. 
And you should feel free to contact us for access to exercise solutions and example code.

Course Web Site and Supporting Materials

Materials supporting this book and its users are available through http://press.princeton.edu/
titles/14270.html. Please check this site for news and updates as you use the book. The infor
mation available through the site includes

Any changes to the text, example code, and exercises that result from new versions of 
NetLogo (this edition is current with NetLogo 6.0.4);
Input files, documents, etc., used in the text and exercises;
Supplementary materials, referred to in the book, that we plan to update;
Corrections and clarifications;
Materials to help instructors and people teaching themselves; and
Ways to communicate with us, provide feedback, and share ideas.

Thanks to Dr. Jeremy Wojdak of Radford University, there is also an online forum for this 
book, part of the Quantitative Undergraduate Biology Education and Synthesis network. This 
QUBES forum is designed to help instructors using the book interact with each other and the 
authors, and share instructional materials and experience. There is a link to the QUBES site 
from the book’s web site.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu




