Contents

A Preliminaries 1

1 Introduction for teachers 3
- Purpose and intended audience, 3
- Topics in the book, 6
- Why pluralism?, 13
- Feedback, 18
- Acknowledgments, 19

2 Introduction for students 20
- Who should study logic?, 20
- Formalism and certification, 25
- Language and levels, 34
- Semantics and syntactics, 39
- Historical perspective, 49
- Pluralism, 57
- Jarden’s example (optional), 63

3 Informal set theory 65
- Sets and their members, 68
- Russell’s paradox, 77
- Subsets, 79
- Functions, 84
- The Axiom of Choice (optional), 92
- Operations on sets, 94
- Venn diagrams, 102
- Syllogisms (optional), 111
- Infinite sets (postponable), 116

4 Topologies and interiors (postponable) 126
- Topologies, 127
- Interiors, 133
- Generated topologies and finite topologies (optional), 139

5 English and informal classical logic 146
- Language and bias, 146
- Parts of speech, 150
- Semantic values, 151
- Disjunction (or), 152
- Conjunction (and), 155
- Negation (not), 156
- Material implication, 161
- Cotenability, fusion, and constants
Contents

(postponable), 170 • Methods of proof, 174 • Working backwards, 177 • Quantifiers, 183 • Induction, 195 • Induction examples (optional), 199

6 Definition of a formal language 206
 • The alphabet, 206 • The grammar, 210 • Removing parentheses, 215 • Defined symbols, 219 • Prefix notation (optional), 220 • Variable sharing, 221 • Formula schemes, 222 • Order preserving or reversing subformulas (postponable), 228

B Semantics 233

7 Definitions for semantics 235
 • Interpretations, 235 • Functional interpretations, 237 • Tautology and truth preservation, 240

8 Numerically valued interpretations 245
 • The two-valued interpretation, 245 • Fuzzy interpretations, 251 • Two integer-valued interpretations, 258 • More about comparative logic, 262 • More about Sugihara’s interpretation, 263

9 Set-valued interpretations 269
 • Powerset interpretations, 269 • Hexagon interpretation (optional), 272 • The crystal interpretation, 273 • Church’s diamond (optional), 277

10 Topological semantics (postponable) 281
 • Topological interpretations, 281 • Examples, 282 • Common tautologies, 285 • Nonredundancy of symbols, 286 • Variable sharing, 289 • Adequacy of finite topologies (optional), 290 • Disjunction property (optional), 293
11 More advanced topics in semantics 295
 • Common tautologies, 295 • Images of interpretations, 301 • Dugundji formulas, 307

C Basic syntactics 311

12 Inference systems 313

13 Basic implication 318
 • Assumptions of basic implication, 319 • A few easy derivations, 320 • Lemmaless expansions, 326 • Detachmental corollaries, 330 • Iterated implication (postponable), 332

14 Basic logic 336
 • Further assumptions, 336 • Basic positive logic, 339
 • Basic negation, 341 • Substitution principles, 343

D One-formula extensions 349

15 Contraction 351
 • Weak contraction, 351 • Contraction, 355

16 Expansion and positive paradox 357
 • Expansion and mingle, 357 • Positive paradox (strong expansion), 359 • Further consequences of positive paradox, 362

17 Explosion 365

18 Fusion 369

19 Not-elimination 372
 • Not-elimination and contrapositives, 372 • Interchangeability results, 373 • Miscellaneous consequences of not-elimination, 375
20 Relativity

E Soundness and major logics 381

21 Soundness 383

22 Constructive axioms: avoiding not-elimination 385
 • Constructive implication, 386 • Herbrand-Tarski Deduction Principle, 387 • Basic logic revisited, 393 • Soundness, 397 • Nonconstructive axioms and classical logic, 399 • Glivenko’s Principle, 402

23 Relevant axioms: avoiding expansion 405
 • Some syntactic results, 405 • Relevant deduction principle (optional), 407 • Soundness, 408 • Mingle: slightly irrelevant, 411 • Positive paradox and classical logic, 415

24 Fuzzy axioms: avoiding contraction 417
 • Axioms, 417 • Meredith’s chain proof, 419 • Additional notations, 421 • Wajsberg logic, 422 • Deduction principle for Wajsberg logic, 426

25 Classical logic 430
 • Axioms, 430 • Soundness results, 431 • Independence of axioms, 431

26 Abelian logic 437

F Advanced results 441

27 Harrop’s principle for constructive logic 443
 • Meyer’s valuation, 443 • Harrop’s principle, 448 • The disjunction property, 451 • Admissibility, 451 • Results in other logics, 452
Contents

28 Multiple worlds for implications 454
 • Multiple worlds, 454 • Implication models, 458 •
 Soundness, 460 • Canonical models, 461 • Completeness, 464

29 Completeness via maximality 466
 • Maximal unproving sets, 466 • Classical logic, 470
 • Wajsberg logic, 477 • Constructive logic, 479 •
 Non-finitely-axiomatizable logics, 485

References 487

Symbol list 493

Index 495