Corrections applicable to the first and second printings

Chapter 3

Section 3.7.3

• page 114, first paragraph. Change “produces 1 cluster containing only Democrats and the other consisting only of Republicans” to “produces one cluster containing all Democrats except one and the other consisting only of Republicans”.

Chapter 4

Section 4.1.1

• page 126. In the second code chunk, the results should be “1.5 NA NA” rather than “1 NA NA”

Section 4.2.1

• page 140, first paragraph. Add the following sentence immediately after the first sentence, “Here, the competence measure for a Democratic candidate, for example, represents the proportion of experimental subjects who rated the Democrat more competent than the Republican.”

Section 4.2.3

• page 148. Change “roughly 13 percentage points” to “12 – 13 percentage points”

Chapter 5

Section 5.1.1

• page 192. In the tm package version 0.7-1, which was released after this book went into the printer, it introduced SimpleCorpus, which became the default output object class for the Corpus() function. This change affects the results though the overall conclusions of the analysis remain similar. To obtain the results in the book, you will have to specify VCorpus as the output class using the following syntax:

corpus.raw <- VCorpus(DirSource(directory = "federalist", pattern = "fp"))
Section 5.1.4

- page 200, third paragraph. Change “we focus on the usage of articles, prepositions, and conjunctions” to “we focus on the usage of adjectives, adverbs, prepositions and conjunctions”

Section 5.2.2

- page 209, first paragraph. Add the following footnote to the end of the paragraph, “If a node is not connected to any other node, then the number of nodes in the graph, i.e., 16 in this case, is used instead of the length of the shortest path. Thus, Pucci family’s closeness is equal to $1/(15 \times 16)$”

Section 5.3.1

- page 221, first paragraph. Change “the neighborhoods along the River Thames (indicated by the blue region)” to “the area further south (indicated by the red region)”. Change “the area further south (indicated by the red region)” to “the neighborhoods along the River Thames (indicated by the blue region)”.
- page 222, Figure 5.5 caption. Change “blue (Lambeth) and red (Southwark and Vauxhall)” to “red (Lambeth) and blue (Southwark and Vauxhall)”.

Section 5.3.5

- page 231, first paragraph. Change “Bentonville, Arkansas” to “Rogers, Arkansas”.

Section 5.3.6

- page 235, first paragraph. Change “Midwestern” to “Southern”.

Chapter 6

Section 6.1.5

- page 253, first paragraph. Change “0.84 = 1 − 0.016 − 0.135” to “0.85 ≈ 1 − 252/15504 − 2100/15504”.
- page 253, footnote 1. Add the following sentence to the footnote, “Although there are a total of 86 words from For to time, we follow the original article and use 85”.

Section 6.2.1

- page 259, Table 6.2. We are missing the last row for Other whose entries should be 0.017 (Female), 0.017 (Male), 0.034 (Marginal prob.)
- page 273, the third set of equations should be changed to:

\[
P(surname \mid race and residence) = \frac{P(surname and residence \mid race)}{P(residence \mid race)} = \frac{P(surname \mid race)P(residence \mid race)}{P(residence \mid race)} = P(surname \mid race).
\]

(6.23)
Corrections only applicable to the first printing

Table of Contents

• page ix. Change “Heterogenous” to “Heterogeneous” in the Section 4.3.3 title

Chapter 1

Section 1.3.8

• page 27, first paragraph. Change “The lintr() function in the lintr package” to “The lint() function in the lintr package”

• page 27, code output. Change “## UNpop.R:8:7: style” to “## UNpop.R:7:7: style”

Chapter 3

Section 3.3.2

• page 83, first paragraph. Change “skewed towards the left” to “right-skewed”

Chapter 4

Section 4.3.3

• page 170. Change “4.3.3 HETEROGENOUS TREATMENT EFFECTS” to “4.3.3 HETEROGENEOUS TREATMENT EFFECTS”.

• page 170. Change “helpful for exploring heterogenous treatment effects” to “helpful for exploring heterogeneous treatment effects”.

• page 170. Change “To illustrate the analysis of heterogenous treatment effects” to “To illustrate the analysis of heterogeneous treatment effects”

• pages 170 – 176. Throughout this section, the primary2008 variable should be labeled as primary2006 so that it matches with the social.csv data file introduced in Chapter 2. For now, we include another version of social.csv in this chapter’s folder so that users can apply the code.

• page 181. Change “We discussed how to estimate heterogenous treatment effects” to “We discussed how to estimate heterogeneous treatment effects”

Chapter 5

Section 5.2.3

• page 212. The code chunk that loads the data sets need to be changed to:

```
twitter <- read.csv("twitter-following.csv", stringsAsFactors = FALSE)
Senator <- read.csv("twitter-senator.csv", stringsAsFactors = FALSE)
```

so that the names of senators will be treated as a character variable instead of a factor variable (default). Unfortunately, this changes the results of the rest of this subsection 5.2 although it does not change the code.
Section 5.3.6

- page 235, second paragraph. Change “by opening a web browser and clicking File > Open file... in the menu.” to “opening the resulting walmart.html file in a web browser.”

Chapter 6

Section 6.2.2

- page 265. The original code for the Monty Hall problem does not return the right answer when the order of doors is changed. This is due to the fact that the sample() function behaves differently when an integer is supplied as an input. The correct code that avoids this problem is below:

```r
sims <- 1000
doors <- c("goat", "goat", "car")
result.switch <- result.noswitch <- rep(NA, sims)
for (i in 1:sims) {
  ## randomly choose the initial door
  first <- sample(1:3, size = 1)
  result.noswitch[i] <- doors[first]
  remain <- doors[-first] # remaining two doors
  ## Monty chooses one door with a goat
  if (doors[first] == "car") # two goats left
    monty <- sample(1:2, size = 1)
  else # one goat and one car left
    monty <- (1:2)[remain == "goat"]
  result.switch[i] <- remain[-monty]
}
mean(result.noswitch == "car")
mean(result.switch == "car")
```

Section 6.3.3.

- page 284, second paragraph. Change “{HTHTHT}” to “{HTHTH}”.

Section 6.4.2.

- page 304, first paragraph. Change “we expect a binomial random variable to approximate the normal distribution as the sample size, or the number of balls in this case, increases.” to “we expect the binomial random variable to approximate the normal random variable as the sample size, or the number of lines of pegs in this case, increases. Here, the sample size refers to the number of lines of pegs, not the number of balls. Increasing the latter reduces the Monte Carlo error.” Also, change “The central limit theorem applies not only to the binomial distribution, but” to “The central limit theorem applies not only to the Bernoulli random variable, but”.

- page 304, equation (6.42). The second term is missing X_i, which is highlighted in the correct equation below:

$$
E(X_n) = E \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = E(X)
$$
Chapter 7

Section 7.1.3

- page 305. Add a sentence to the end of the last paragraph whose last sentence ends with “approximated by the standard normal distribution.” The sentence to be added is “To illustrate the quincunx through Monte Carlo simulations, we sample from the Bernoulli distribution or equivalently the Binomial distribution with size $n = 1$.”

- page 327, last paragraph. Change “such that $P(Z > \alpha/2) = 1 - P(Z \leq \alpha/2) = 1 - \alpha/2$” to “such that $P(Z > z_{\alpha/2}) = 1 - P(Z \leq z_{\alpha/2}) = 1 - \alpha/2$”

- page 329, last paragraph. Change “Consider the probability that $(1 - \alpha/2) \times 100\%$ confidence interval” to “Consider the probability that $(1 - \alpha) \times 100\%$ confidence interval”

- page 330, Step 4 in the box. Change “Compute the critical value $z_{\alpha/2}$ as the $(1 - \alpha/2) \times 100\%$ percentile value” to “Compute the critical value $z_{\alpha/2}$ as the $(1 - \alpha) \times 100\%$ percentile value”

Section 7.2.3

- page 354, first paragraph. The first sentence should read: “We can confirm this result using the current example by checking that 0.5 is contained in the 99% confidence interval (we fail to reject the null hypothesis when $\alpha = 0.01$) but not in the 95% confidence interval (we reject the null when $\alpha = 0.05$).”

General Index

- page 402. Change “heterogenous treatment effects, 170” to “heterogeneous treatment effects, 170”

Acknowledgements

Thanks to Jeff Arnold, Masahiko Asano, Matt Blackwell, Michael Donnelly, Fallend Franz, Joel Gautschi, Mamiko Hamakado, Masataka Harada, Michael Lewis, Yuko Kasuya, Soyoung Lee, Rocio Titiunik, and Sandy Weisberg for pointing out the errors.