Contents

I Need and Tools to Verify Critical Cyber-Physical Systems 1

1 Critical Embedded Software: Control Software Development and V&V 3

2 Formal Methods: Different Approaches for Verification 7
 2.1 Semantics and Properties 7
 2.2 A Formal Verification Methods Overview 11
 2.3 Deductive Methods 19
 2.4 SMT-based Model-checking 21
 2.5 Abstract Interpretation (of Collecting Semantics) 23
 2.6 Need for Inductive Invariants 29

3 Control Systems 31
 3.1 Controllers’ Development Process 31
 3.2 A Simple Linear System: Spring-mass Damper 35

II Invariant Synthesis: Convex-optimization Based Abstract Interpretation 41

4 Definitions–Background 43
 4.1 Discrete Dynamical Systems 43
 4.2 Elements of (Applied) Convex Optimization 54

5 Invariants Synthesis via Convex Optimization: Postfixpoint Computation as Semialgebraic Constraints 64
 5.1 Invariants, Lyapunov Functions, and Convex Optimization 64
 5.2 Quadratic Invariants 68
 5.3 Piecewise Quadratic Invariants 76
 5.4 k-inductive Quadratic Invariants 87
CONTENTS

5.5 Polynomial Invariants 95
5.6 Image Measure Method 103
5.7 Related Works 108

6 Template-based Analyses and Min-policy Iteration 111
6.1 Template-based Abstract Domains 111
6.2 Template Abstraction Fixpoint as an Optimization Problem 112
6.3 SOS-relaxed Semantics 114
6.4 Example 122
6.5 Related Works 124

III System-level Analysis at Model and Code Level 127

7 System-level Properties as Numerical Invariants 129
7.1 Open-loop and Closed-loop Stability 130
7.2 Robustness with Vector Margin 139
7.3 Related Work 145

8 Validation of System-level Properties at Code Level 147
8.1 Axiomatic Semantics of Control Properties through Synchronous Observers and Hoare Triples 147
8.2 Generating Annotations: A Strongest Postcondition Propagation Algorithm 155
8.3 Discharging Proof Objectives using PVS 159

IV Numerical Issues 165

9 Floating-point Semantics of Analyzed Programs 167
9.1 Floating-point Semantics 167
9.2 Revisiting Inductiveness Constraints 170
9.3 Bound Floating-point Errors: Taylor-based Abstractions aka Zonotopic Abstract Domains 173
9.4 Related Works 190

10 Convex Optimization and Numerical Issues 191
10.1 Convex Optimization Algorithms 191
10.2 Guaranteed Feasible Solutions with Floats 196

Bibliography 201
Index 217
Acknowledgments 220