Chapter 18

Estimating the Cost of International Capital
Overview

Translate first, then discount—or vv?

Two procedures
When to do what?

The Single-Country CAPM
From Asset Returns to Portfolio Return
The tangency solution
How the weights affect mean and variance
How to make a portfolio efficient
The Market Portfolio as the Benchmark

The International CAPM
Why do we need an InCAPM?
Why Xrisk pops up in the InCAPM
Do assets have a financial nationality?
Aggregating the Efficiency Conditions
The InCAPM

Wrapping up
Overview

Translate first, then discount—or vv?
Two procedures
When to do what?
The Single-Country CAPM
From Asset Returns to Portfolio Return
The tangency solution
How the weights affect mean and variance
How to make a portfolio efficient
The Market Portfolio as the Benchmark

The International CAPM
Why do we need an InCAPM?
Why Xrisk pops up in the InCAPM
Do assets have a financial nationality?
Aggregating the Efficiency Conditions
The InCAPM

Wrapping up
Overview

Translate first, then discount—or vv?
Two procedures
When to do what?

The Single-Country CAPM
From Asset Returns to Portfolio Return
The tangency solution
How the weights affect mean and variance
How to make a portfolio efficient
The Market Portfolio as the Benchmark

The International CAPM
Why do we need an InCAPM?
Why Xrisk pops up in the InCAPM
Do assets have a financial nationality?
Aggregating the Efficiency Conditions
The InCAPM

Wrapping up
Overview

Translate first, then discount—or vv?
Two procedures
When to do what?

The Single-Country CAPM
From Asset Returns to Portfolio Return
The tangency solution
How the weights affect mean and variance
How to make a portfolio efficient
The Market Portfolio as the Benchmark

The International CAPM
Why do we need an InCAPM?
Why Xrisk pops up in the InCAPM
Do assets have a financial nationality?
Aggregating the Efficiency Conditions
The InCAPM

Wrapping up
Suppose an Australian firm considers an investment in India. Issues:

► Can we assess NPV in INR, as locals would do?
 - would look simpler — no?
 - ... but works only if AU and IN are both (part of) an integrated market

► How does a multi-country market work, where investors “think in different currencies” depending on where they live?
 - risks and returns depend on the currency they are measured in,
 - ... which violates the ”homogenous expectations” assumption of standard CAPM
Suppose an Australian firm considers an investment in India. Issues:

- **Can we assess NPV in INR, as locals would do?**
 - would look simpler — no?
 - ... but works only if AU and IN are both (part of) an integrated market

- **How does a multi-country market work, where investors “think in different currencies” depending on where they live?**
 - risks and returns depend on the currency they are measured in,
 - ... which violates the ”homogenous expectations” assumption of standard CAPM
Suppose an Australian firm considers an investment in India. Issues:

- Can we assess NPV in INR, as locals would do?
 - would look simpler — no?
 - ... but works only if AU and IN are both (part of) an integrated market

- How does a multi-country market work, where investors “think in different currencies” depending on where they live?
 - risks and returns depend on the currency they are measured in,
 - ... which violates the ”homogenous expectations” assumption of standard CAPM
Translate first, then discount—or vv?
 Two procedures
 When to do what?

The Single-Country CAPM
 From Asset Returns to Portfolio Return
 The tangency solution
 How the weights affect mean and variance
 How to make a portfolio efficient
 The Market Portfolio as the Benchmark

The International CAPM
 Why do we need an InCAPM?
 Why Xrisk pops up in the InCAPM
 Do assets have a financial nationality?
 Aggregating the Efficiency Conditions
 The InCAPM

Wrapping up
Two facts need reconciliation:

◊ **CF’s are probably first computed in FC (INR):**
 - cost data in INR; local sales “priced to market”
 - all these prices are probably sticky in terms of INR, not AUD

◊ **Yet commonly used CoCa is in HC (AUD)**

So

– either we translate the cashflows into AUD
– or we shift to an INR CoCa
Two facts need reconciliation:

◊ CF’s are probably first computed in FC (INR):
 ▶ cost data in INR; local sales “priced to market”
 ▶ all these prices are probably sticky in terms of INR, not AUD

◊ Yet commonly used CoCa is in HC (AUD)

So

– either we translate the cashflows into AUD
– or we shift to an INR CoCa
Two facts need reconciliation:

- **CF’s are probably first computed in FC (INR):**
 - cost data in INR; local sales “priced to market”
 - all these prices are probably sticky in terms of INR, not AUD

- **Yet commonly used CoCa is in HC (AUD)**

So

- either we translate the cashflows into AUD
- or we shift to an INR CoCa
Two procedures

◊ “When in Rome, act like the Romans”?
 ▶ set CoCA on basis of INR risk-free rate, and add risk premium computed from INR stock returns (risk, price of risk)
 ▶ compute FCPV
 ▶ if desired, convert PV into HC

... or ...

◊ “My shareholders consume/think in AUD”?
 ▶ translate expected CFs into AUD, including the covariance
 ▶ set CoCA on basis of AUD risk-free rate, and add risk premium computed from AUD stock returns (risk, price of risk)
 ▶ compute PV in HC
Two procedures

◊ “When in Rome, act like the Romans”?
▷ set CoCA on basis of INR risk-free rate, and add risk premium computed from INR stock returns (risk, price of risk)
▷ compute FCPV
▷ if desired, convert PV into HC

... or ...

◊ “My shareholders consume/think in AUD”?
▷ translate expected CFs into AUD, including the covariance
▷ set CoCA on basis of AUD risk-free rate, and add risk premium computed from AUD stock returns (risk, price, price of risk)
▷ compute PV in HC
When to do what?

Does the translation/discounting procedure matter?

- **In practice**: the “local” version looks easier (but only if we cut corners, as we’ll see)
- **In principle**: no if mkts are integrated, yes if mkts aren’t
 - Australians care about the value to them, not about how Indians would value the project. The two are not the same in segmented markets.
 - We can ”see” the Australian’s required return in their own capital market. So we value “à l’Australienne”

Can there be a CAPM-type no-PPP equilibrium?

- presence of (real) exchange risk means expectations cannot be homogenous: (real) expected returns and risks for asset j differ across investors
- But this special type of investors heterogeneity is easily incorporated (InCAPM instead of CAPM)
When to do what?

Does the translation/discounting procedure matter?

- **In practice:** the “local” version looks easier (but only if we cut corners, as we’ll see)
- **In principle:** no if mkts are integrated, yes if mkts aren’t
 - Australians care about the value to them, not about how Indians would value the project. The two are not the same in segmented markets.
 - We can ”see” the Australian’s required return in their own capital market. So we value “à l’Australienne”

Can there be a CAPM-type no-PPP equilibrium?

- presence of (real) exchange risk means expectations cannot be homogenous: (real) expected returns and risks for asset \(j \) differ across investors
- But this special type of investors heterogeneity is easily incorporated (InCAPM instead of CAPM)
When to do what?

◊ **Does the translation/discounting procedure matter?**
 - **In practice:** the “local” version looks easier (but only if we cut corners, as we’ll see)
 - **In principle:** no if mkts are integrated, yes if mkts aren’t

 – Australians care about the value to them, not about how Indians would value the project. The two are not the same in segmented markets.
 – We can “see” the Australian’s required return in their own capital market. So we value “à l’Australienne”

◊ **Can there be a CAPM-type no-PPP equilibrium?**
 - presence of (real) exchange risk means expectations cannot be homogenous: (real) expected returns and risks for asset \(j \) differ across investors
 - But this special type of investors heterogeneity is easily incorporated (InCAPM instead of CAPM)
When to do what? Overview

<table>
<thead>
<tr>
<th>CoCa model</th>
<th>currency of calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Foreign investments:</td>
<td></td>
</tr>
<tr>
<td>• home and host financially integrated</td>
<td>inCAPM</td>
</tr>
<tr>
<td>• home and host financially segmented</td>
<td>inCAPM</td>
</tr>
<tr>
<td>• home country part of larger financial market</td>
<td></td>
</tr>
<tr>
<td>• home country totally isolated</td>
<td>CAPM</td>
</tr>
<tr>
<td>2. domestic investments</td>
<td></td>
</tr>
<tr>
<td>• home country part of larger financial market</td>
<td>inCAPM</td>
</tr>
<tr>
<td>• home country totally isolated</td>
<td>CAPM</td>
</tr>
</tbody>
</table>
The Cost of International Capital

P. Sercu, *International Finance: Theory into Practice*

Outline

- Translate first, then discount—or vv?
 - Two procedures
 - When to do what?

The Single-Country CAPM

- From Asset Returns to Portfolio Return
- The tangency solution
- How the weights affect mean and variance
- How to make a portfolio efficient
- The Market Portfolio as the Benchmark

The International CAPM

- Why do we need an InCAPM?
- Why Xrisk pops up in the InCAPM
- Do assets have a financial nationality?
- Aggregating the Efficiency Conditions
- The InCAPM

Wrapping up
From Asset Returns to Portfolio Return

Key relation—stated in excess return terms, here—between portfolio return \(\tilde{r}_p \) and asset returns \(\tilde{r}_j \) & weights \(x_j \):

\[
\tilde{r}_p - r = \sum_{j=1}^{N} x_j (\tilde{r}_j - r)
\]

Example

<table>
<thead>
<tr>
<th>(j)</th>
<th>(V_{j,0})</th>
<th>(n_j)</th>
<th>(n_j V_{j,0})</th>
<th>(x_j)</th>
<th>(V_{j,1})</th>
<th>(n_j V_{j,1})</th>
<th>(r_j)</th>
<th>(r_j - r)</th>
<th>(x_j (r_j - r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>risky:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>4</td>
<td>400</td>
<td>0.40</td>
<td>120</td>
<td>480</td>
<td>0.20</td>
<td>0.15</td>
<td>0.060</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>4</td>
<td>200</td>
<td>0.20</td>
<td>70</td>
<td>280</td>
<td>0.40</td>
<td>0.35</td>
<td>0.070</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>12</td>
<td>300</td>
<td>0.30</td>
<td>20</td>
<td>240</td>
<td>-0.20</td>
<td>-0.25</td>
<td>-0.075</td>
</tr>
<tr>
<td>subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>=900</td>
<td>=0.90</td>
<td></td>
<td></td>
<td>=0.055</td>
</tr>
<tr>
<td>riskfree</td>
<td>0</td>
<td>+100</td>
<td>+0.10</td>
<td></td>
<td>105</td>
<td></td>
<td>+0.050</td>
<td></td>
<td>=0.105</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>=1000</td>
<td>=1.00</td>
<td></td>
<td></td>
<td>=1.055</td>
</tr>
</tbody>
</table>
From Asset Returns to Portfolio Return

Key relation—stated in excess return terms, here—between portfolio return \tilde{r}_p and asset returns \tilde{r}_j & weights x_j:

$$\tilde{r}_p - r = \sum_{j=1}^{N} x_j(\tilde{r}_j - r)$$

Example

<table>
<thead>
<tr>
<th>j</th>
<th>risky:</th>
<th>time–0 data and decisions</th>
<th>time–1 result</th>
<th>(excess) rates of return</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>$v_{j,0}$</td>
<td>n_j</td>
<td>$n_jv_{j,0}$</td>
<td>x_j</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>4</td>
<td>400</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>4</td>
<td>200</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>12</td>
<td>300</td>
<td>0.30</td>
</tr>
<tr>
<td>subtotal</td>
<td>=900</td>
<td>=0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>risky</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j</th>
<th>riskfree</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+100</td>
<td>+0.10</td>
</tr>
<tr>
<td>0</td>
<td>=1000</td>
<td>=1.00</td>
</tr>
<tr>
<td>riskfree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Two assets—one risk-free, one risky

\[\tilde{r}_p = x\tilde{r}_s + (1 - x)r_0 = r_0 + x(\tilde{r}_s - r_0) \]

\[\Rightarrow \begin{cases}
E(\tilde{r}_p) = r_0 + xE(\tilde{r}_s - r_0), \\
sd(\tilde{r}_p) = |x|sd(\tilde{r}_s)
\end{cases} \]
Two assets—one risk-free, one risky

\[\tilde{r}_p = x\tilde{r}_s + (1-x)r_0 = r_0 + x(\tilde{r}_s - r_0) \]

\[\Rightarrow \begin{cases}
E(\tilde{r}_p) = r_0 + xE(\tilde{r}_s - r_0), \\
sd(\tilde{r}_p) = |x|sd(\tilde{r}_s)
\end{cases} \]
Two imperfectly correlated risky assets

\[
\tilde{r}_p = x_1 \tilde{r}_1 + (1 - x_1) \tilde{r}_2; \Rightarrow
\]

\[
\begin{cases}
E(\tilde{r}_p) = E(\tilde{r}_2) + x [E(\tilde{r}_1) - E(\tilde{r}_2)], \\
sd(\tilde{r}_p) = \sqrt{x_1^2 \text{var}(\tilde{r}_1) + 2x_1(1 - x_1) \text{cov}(\tilde{r}_1, \tilde{r}_2) + (1 - x_1)^2 \text{var}(\tilde{r}_2)}
\end{cases}
\]
Many risky assets and one risk-free

- many risky assets:
 - bound is similar, but most portfolios are now inside the bound
 - only portfolios on the upper half of the bound are efficient

- add a risk-free asset
 - best risky portfolio is the tangency one:

![Graph showing the relationship between expected return and standard deviation for many risky assets and one risk-free asset.](image)
Many risky assets and one risk-free

◊ many risky assets:
 – bound is similar, but most portfolios are now inside the bound
 – only portfolios on the upper half o/t bound are efficient

◊ add a risk-free asset
 – best risky portfolio is the tangency one:
How weights affect mean and variance (1)

From $\tilde{r}_p = r + \sum_{j=1}^{N} x_j (\tilde{r}_j - r)$:

$$E(\tilde{r}_p) = r + \sum_{j=1}^{N} x_j E(\tilde{r}_j - r),$$

$$\text{var}(\tilde{r}_p) = \sum_{j=1}^{N} x_j \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_j, \tilde{r}_k).$$

Understanding the variance formula:

- portfolio variance is a weighted average of each asset’s covariance with the entire portfolio:

$$\text{cov}(\tilde{r}_p, \tilde{r}_p) = \text{cov}(\sum_{k=1}^{N} x_k \tilde{r}_k, \tilde{r}_p) = \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_k, \tilde{r}_p).$$

- each of these assets’ portfolio covariances is, in turn, a weighted average of the asset’s covariance with all components of the portfolio:

$$\text{cov}(\tilde{r}_j, \tilde{r}_p) = \text{cov}(\tilde{r}_j, \sum_{k=1}^{N} x_k \tilde{r}_k) = \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_j, \tilde{r}_k).$$
How weights affect mean and variance (1)

From $\tilde{r}_p = r + \sum_{j=1}^{N} x_j (\tilde{r}_j - r)$:

$$
\begin{align*}
E(\tilde{r}_p) &= r + \sum_{j=1}^{N} x_j E(\tilde{r}_j - r), \\
\text{var}(\tilde{r}_p) &= \sum_{j=1}^{N} x_j \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_j, \tilde{r}_k).
\end{align*}
$$

Understanding the variance formula:
- portfolio variance is a weighted average of each asset’s covariance with the entire portfolio:

$$
\text{cov}(\tilde{r}_p, \tilde{r}_p) = \text{cov}(\sum_{k=1}^{N} x_k \tilde{r}_k, \tilde{r}_p) = \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_k, \tilde{r}_p).
$$
- each of these assets’ portfolio covariances is, in turn, a weighted average of the asset’s covariance with all components of the portfolio:

$$
\text{cov}(\tilde{r}_j, \tilde{r}_p) = \text{cov}(\tilde{r}_j, \sum_{k=1}^{N} x_k \tilde{r}_k) = \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_j, \tilde{r}_k).
$$
How weights affect mean and variance (1)

From $\tilde{r}_p = r + \sum_{j=1}^{N} x_j (\tilde{r}_j - r)$:

$$E(\tilde{r}_p) = r + \sum_{j=1}^{N} x_j E(\tilde{r}_j - r),$$

$$\text{var}(\tilde{r}_p) = \sum_{j=1}^{N} x_j \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_j, \tilde{r}_k).$$

Understanding the variance formula:

- Portfolio variance is a weighted average of each asset’s covariance with the entire portfolio:

$$\text{cov}(\tilde{r}_p, \tilde{r}_p) = \text{cov}(\sum_{k=1}^{N} x_k \tilde{r}_k, \tilde{r}_p) = \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_k, \tilde{r}_p).$$

- Each of these assets’ portfolio covariances is, in turn, a weighted average of the asset’s covariance with all components of the portfolio:

$$\text{cov}(\tilde{r}_j, \tilde{r}_p) = \text{cov}(\tilde{r}_j, \sum_{k=1}^{N} x_k \tilde{r}_k) = \sum_{k=1}^{N} x_k \text{cov}(\tilde{r}_j, \tilde{r}_k).$$
How weights affect mean and variance (2)

Example:

<table>
<thead>
<tr>
<th></th>
<th>$E(\tilde{r}_j - r)$</th>
<th>$\text{cov}(\tilde{r}_j, \tilde{r}_1)$</th>
<th>$\text{cov}(\tilde{r}_j, \tilde{r}_2)$</th>
<th>x_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.200</td>
<td>0.16</td>
<td>0.05</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>0.122</td>
<td>0.05</td>
<td>0.09</td>
<td>0.40</td>
</tr>
</tbody>
</table>

\[
E(\tilde{r}_p - r) = 0.50 \times 0.200 + 0.40 \times 0.122 = 0.1488
\]

\[
\text{cov}(\tilde{r}_1, \tilde{r}_p) = 0.50 \times 0.160 + 0.40 \times 0.050 = 0.1000
\]

\[
\text{cov}(\tilde{r}_2, \tilde{r}_p) = 0.50 \times 0.050 + 0.40 \times 0.090 = 0.0610
\]

\[
\Rightarrow \text{cov}(\tilde{r}_p, \tilde{r}_p) = 0.50 \times 0.100 + 0.40 \times 0.061 = 0.0744
\]
Marginal effect of x_j on mean and variance

Three-asset example:

- Asset 1’s marginal contribution to portfolio expected excess return is its own expected excess return:

$$E(\tilde{r}_p - r) = x_1 E(\tilde{r}_1 - r) + x_2 E(\tilde{r}_2 - r);$$

$$\Rightarrow \frac{\partial E(\tilde{r}_p - r)}{\partial x_1} = E(\tilde{r}_1 - r).$$

- Asset 1’s marginal contribution to portfolio variance is (twice) its covariance with the portfolio return:

$$\text{var}(\tilde{r}_p) = x_1^2 \text{var}(\tilde{r}_1) + 2x_1x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2) + x_2^2 \text{var}(\tilde{r}_2);$$

$$\Rightarrow \frac{\partial \text{var}(\tilde{r}_p)}{\partial x_1} = 2\text{cov}(\tilde{r}_1, \tilde{r}_p).$$

Proof:

$$\frac{\partial \text{var}(\tilde{r}_p)}{\partial x_1} = 2x_1 \text{var}(\tilde{r}_1) + 2x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2),$$

$$= 2[x_1 \text{cov}(\tilde{r}_1, \tilde{r}_1) + x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2)],$$

$$= 2[\text{cov}(\tilde{r}_1, \tilde{r}_1) + \text{cov}(\tilde{r}_1, x_2 \tilde{r}_2)],$$

$$= 2\text{cov}(\tilde{r}_1, x_1 \tilde{r}_1 + x_2 \tilde{r}_2).$$
Marginal effect of x_j on mean and variance

Three-asset example:

- Asset 1’s marginal contribution to portfolio expected excess return is its own expected excess return:

$$
\mathbb{E}(\tilde{r}_p - r) = x_1 \mathbb{E}(\tilde{r}_1 - r) + x_2 \mathbb{E}(\tilde{r}_2 - r);
$$

$$\Rightarrow \frac{\partial \mathbb{E}(\tilde{r}_p - r)}{\partial x_1} = \mathbb{E}(\tilde{r}_1 - r).
$$

- Asset 1’s marginal contribution to portfolio variance is (twice) its covariance with the portfolio return:

$$
\text{var}(\tilde{r}_p) = x_1^2 \text{var}(\tilde{r}_1) + 2x_1x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2) + x_2^2 \text{var}(\tilde{r}_2);
$$

$$\Rightarrow \frac{\partial \text{var}(\tilde{r}_p)}{\partial x_1} = 2 \text{cov}(\tilde{r}_1, \tilde{r}_p).
$$

Proof:
$$
\frac{\partial \text{var}(\tilde{r}_p)}{\partial x_1} = 2x_1 \text{var}(\tilde{r}_1) + 2x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2),
$$

$$= 2[x_1 \text{cov}(\tilde{r}_1, \tilde{r}_1) + x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2)],
$$

$$= 2[\text{cov}(\tilde{r}_1, x_1 \tilde{r}_1) + \text{cov}(\tilde{r}_1, x_2 \tilde{r}_2)],
$$

$$= 2 \text{cov}(\tilde{r}_1, x_1 \tilde{r}_1 + x_2 \tilde{r}_2),
$$
Marginal effect of x_j on mean and variance

Three-asset example:

- Asset 1’s marginal contribution to portfolio expected excess return is its own expected excess return:

$$E(\tilde{r}_p - r) = x_1 E(\tilde{r}_1 - r) + x_2 E(\tilde{r}_2 - r);$$

$$\Rightarrow \frac{\partial E(\tilde{r}_p - r)}{\partial x_1} = E(\tilde{r}_1 - r).$$

- Asset 1’s marginal contribution to portfolio variance is (twice) its covariance with the portfolio return:

$$\text{var}(\tilde{r}_p) = x_1^2 \text{var}(\tilde{r}_1) + 2x_1x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2) + x_2^2 \text{var}(\tilde{r}_2);$$

$$\Rightarrow \frac{\partial \text{var}(\tilde{r}_p)}{\partial x_1} = 2 \text{cov}(\tilde{r}_1, \tilde{r}_p).$$

Proof: $$\frac{\partial \text{var}(\tilde{r}_p)}{\partial x_1} = 2x_1 \text{var}(\tilde{r}_1) + 2x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2),$$

$$= 2[x_1 \text{cov}(\tilde{r}_1, \tilde{r}_1) + x_2 \text{cov}(\tilde{r}_1, \tilde{r}_2)],$$

$$= 2[\text{cov}(\tilde{r}_1, x_1 \tilde{r}_1) + \text{cov}(\tilde{r}_1, x_2 \tilde{r}_2)],$$

$$= 2\text{cov}(\tilde{r}_1, x_1 \tilde{r}_1 + x_2 \tilde{r}_2).$$
Effect of w on $var(\tilde{r}_p)$: example

Example

<table>
<thead>
<tr>
<th></th>
<th>$E(\tilde{r}_j - r)$</th>
<th>$cov(\tilde{r}_j, \tilde{r}_1)$</th>
<th>$cov(\tilde{r}_j, \tilde{r}_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>portfolio 1: $x_1 = .40, x_2 = .40, x_0 = .20$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.200</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>portfolio 2: $x_1 = .41, x_2 = .40, x_0 = .19$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.122</td>
<td>0.05</td>
<td>0.09</td>
</tr>
</tbody>
</table>

\[
\Delta \text{var} = \frac{.037524 - .036800}{.01} = \frac{.000724}{.01} = 0.0724 \approx 2 \times \text{cov}(\tilde{r}_1, \tilde{r}_p).
\]
Effect of \(w \) on \(\text{var}(\tilde{r}_p) \): example

Example

<table>
<thead>
<tr>
<th>(\bar{r}_j - r)</th>
<th>(\text{cov}(\tilde{r}_j, \tilde{r}_1))</th>
<th>(\text{cov}(\tilde{r}_j, \tilde{r}_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.200</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>2 0.122</td>
<td>0.05</td>
<td>0.09</td>
</tr>
</tbody>
</table>

portfolio 1: \(x_1 = .40, x_2 = .40, x_0 = .20 \)

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.036000, \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.056000, \\
\text{cov}(\tilde{r}_p, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.036800,
\end{align*}
\]

portfolio 2: \(x_1 = .41, x_2 = .40, x_0 = .19 \)

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.036400, \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.056500, \\
\text{cov}(\tilde{r}_p, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.037524,
\end{align*}
\]

\[
\frac{\Delta \text{var}}{\Delta x_1} = \frac{0.037524 - 0.036800}{0.01} = \frac{0.000724}{0.01} = 0.0724 \approx 2 \times \text{cov}(\tilde{r}_1, \tilde{r}_p).
\]
Effect of w on $\text{var}(\tilde{r}_p)$: example

Example

<table>
<thead>
<tr>
<th></th>
<th>$E(\tilde{r}_j - r)$</th>
<th>$\text{cov}(\tilde{r}_j, \tilde{r}_1)$</th>
<th>$\text{cov}(\tilde{r}_j, \tilde{r}_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.200</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.122</td>
<td>0.05</td>
<td>0.09</td>
</tr>
</tbody>
</table>

portfolio 1: $x_1 = 0.40, x_2 = 0.40, x_0 = 0.20$

\[
\text{cov}(\tilde{r}_1, \tilde{r}_p) = 0.\ldots \times 0.\ldots + 0.\ldots \times 0.\ldots = 0.036 \, 000,
\]

\[
\text{cov}(\tilde{r}_2, \tilde{r}_p) = 0.\ldots \times 0.\ldots + 0.\ldots \times 0.\ldots = 0.056 \, 000,
\]

\[
\text{cov}(\tilde{r}_p, \tilde{r}_p) = 0.\ldots \times 0.\ldots + 0.\ldots \times 0.\ldots = 0.036 \, 800,
\]

portfolio 2: $x_1 = 0.41, x_2 = 0.40, x_0 = 0.19$

\[
\text{cov}(\tilde{r}_1, \tilde{r}_p) = 0.\ldots \times 0.\ldots + 0.\ldots \times 0.\ldots = 0.036 \, 400,
\]

\[
\text{cov}(\tilde{r}_2, \tilde{r}_p) = 0.\ldots \times 0.\ldots + 0.\ldots \times 0.\ldots = 0.056 \, 500,
\]

\[
\text{cov}(\tilde{r}_p, \tilde{r}_p) = 0.\ldots \times 0.\ldots + 0.\ldots \times 0.\ldots = 0.037 \, 524,
\]

\[
\frac{\Delta \text{var}}{\Delta x_1} = \frac{0.037 \, 524 - 0.036 \, 800}{0.01} = \frac{0.000 \, 724}{0.01} = 0.0724 \approx 2 \times \text{cov}(\tilde{r}_1, \tilde{r}_p).
\]
Effect of w on $\text{var}(\tilde{r}_p)$: example

<table>
<thead>
<tr>
<th></th>
<th>$E(\tilde{r}_j - r)$</th>
<th>$\text{cov}(\tilde{r}_j, \tilde{r}_1)$</th>
<th>$\text{cov}(\tilde{r}_j, \tilde{r}_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.200</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.122</td>
<td>0.05</td>
<td>0.09</td>
</tr>
</tbody>
</table>

portfolio 1: $x_1 = .40, x_2 = .40, x_0 = .20$

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) &= 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.036000, \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) &= 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.056000, \\
\text{cov}(\tilde{r}_p, \tilde{r}_p) &= 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.036800,
\end{align*}
\]

portfolio 2: $x_1 = .41, x_2 = .40, x_0 = .19$

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) &= 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.036400, \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) &= 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.056500, \\
\text{cov}(\tilde{r}_p, \tilde{r}_p) &= 0. \ldots \times 0. \ldots + 0. \ldots \times 0. \ldots = 0.037524,
\end{align*}
\]

\[
\Delta \text{var} = \frac{0.037524 - 0.036800}{0.01} = \frac{0.000724}{0.01} = 0.0724 \approx 2 \times \text{cov}(\tilde{r}_1, \tilde{r}_p).
\]
How to make a portfolio efficient

◊ **Micro economics:** budget allocation problem has as efficiency condition that

\[
\frac{\text{marginal utility}}{\text{marginal cost}} = \text{same across all goods } j
\]

◊ **Mean-Variance:** the “good” side is not utility but expected return; and the bad side is variance. So the efficiency condition is

\[
\frac{\text{j’s contribution to } E(\tilde{r}_p)}{\text{j’s contribution to } \text{var}(\tilde{r}_p)} = \text{same across all assets } j
\]

\[
\frac{E(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_p)} = \lambda, \text{ for all risky assets } j=1, \ldots, N
\]
How to make a portfolio efficient

◊ **Micro economics:** budget allocation problem has as efficiency condition that

\[
\frac{\text{marginal utility}}{\text{marginal cost}}_j = \text{same across all goods } j
\]

◊ **Mean-Variance:** the “good” side is not utility but expected return; and the bad side is variance. So the efficiency condition is

\[
\frac{j\text{’s contribution to } E(\tilde{r}_p)}{j\text{’s contribution to } \text{var}(\tilde{r}_p)} = \text{same across all assets } j
\]

\[
\frac{E(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_p)} = \lambda, \text{ for all risky assets } j=1, \ldots, N
\]
How to make a portfolio efficient

- **Micro economics:** budget allocation problem has as efficiency condition that

\[
\frac{\text{marginal utility}}{\text{marginal cost}} = \text{same across all goods } j
\]

- **Mean-Variance:** the “good” side is not utility but expected return; and the bad side is variance. So the efficiency condition is

\[
\frac{j\text{'s contribution to } E(\tilde{r}_p)}{j\text{'s contribution to } \text{var}(\tilde{r}_p)} = \text{same across all assets } j
\]

\[
E(\tilde{r}_j - r) = \lambda, \text{ for all risky assets } j=1, \ldots, N
\]
(In)Efficiency and Risk Aversion: examples

<table>
<thead>
<tr>
<th></th>
<th>(E(\tilde{r}_j - r))</th>
<th>(co)variances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset 1</td>
<td>0.092</td>
<td>(\text{cov}(\tilde{r}_1, \tilde{r}_1) = 0.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{cov}(\tilde{r}_1, \tilde{r}_2) = 0.05)</td>
</tr>
<tr>
<td>Asset 2</td>
<td>0.148</td>
<td>(\text{cov}(\tilde{r}_2, \tilde{r}_1) = 0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{cov}(\tilde{r}_2, \tilde{r}_2) = 0.09)</td>
</tr>
</tbody>
</table>

portfolio with weights \(x_1 = .40, x_2 = .40, x_0 = .20 \) is not efficient:

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + \ldots \times 0. \ldots = 0.036 \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + \ldots \times 0. \ldots = 0.056 \\
\end{align*}
\]

\[
\frac{0. \ldots}{0. \ldots} = 2.555 \neq \frac{0. \ldots}{0. \ldots} = 2.643
\]

portfolio with weights \(x_1 = .40, x_2 = .60, x_0 = .00 \) is efficient:

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + \ldots \times 0. \ldots = 0.046 \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + \ldots \times 0. \ldots = 0.074 \\
\end{align*}
\]

\[
\frac{0. \ldots}{0. \ldots} = 2 = \frac{0. \ldots}{0. \ldots}
\]

portfolio with weights \(x_1 = .20, x_2 = .30, x_0 = .50 \) is efficient:

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + \ldots \times 0. \ldots = 0.023 \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) & = 0. \ldots \times 0. \ldots + \ldots \times 0. \ldots = 0.037 \\
\end{align*}
\]

\[
\frac{0. \ldots}{0. \ldots} = 4 = \frac{0. \ldots}{0. \ldots}
\]
(In)Efficiency and Risk Aversion: examples

<table>
<thead>
<tr>
<th></th>
<th>$E(\tilde{r}_j - r)$</th>
<th>(co)variances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset 1</td>
<td>0.092</td>
<td>$\text{cov}(\tilde{r}_1, \tilde{r}_1) = 0.04$</td>
</tr>
<tr>
<td>Asset 2</td>
<td>0.148</td>
<td>$\text{cov}(\tilde{r}_2, \tilde{r}_1) = 0.05$</td>
</tr>
</tbody>
</table>

portfolio with weights $x_1 = .40, x_2 = .40, x_0 = .20$ **is not efficient:**

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) & = 0.036 \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) & = 0.056,
\end{align*}
\]

\[
\frac{0.036}{0.056} = 2.555 \neq \frac{0.046}{0.074} = 2.643
\]

portfolio with weights $x_1 = .40, x_2 = .60, x_0 = .00$ **is efficient:**

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) & = 0.046 \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) & = 0.074,
\end{align*}
\]

\[
\frac{0.046}{0.074} = 2 = \frac{0.046}{0.074}
\]

portfolio with weights $x_1 = .20, x_2 = .30, x_0 = .50$ **is efficient:**

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) & = 0.023 \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) & = 0.037,
\end{align*}
\]

\[
\frac{0.023}{0.037} = 4 = \frac{0.023}{0.037}
\]
(In)Efficiency and Risk Aversion: examples

<table>
<thead>
<tr>
<th></th>
<th>(E(\tilde{r}_j - r))</th>
<th>(co)variances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset 1</td>
<td>0.092</td>
<td>(\text{cov}(\tilde{r}_1, \tilde{r}_1) = 0.04) (\text{cov}(\tilde{r}_1, \tilde{r}_2) = 0.05)</td>
</tr>
<tr>
<td>Asset 2</td>
<td>0.148</td>
<td>(\text{cov}(\tilde{r}_2, \tilde{r}_1) = 0.05) (\text{cov}(\tilde{r}_2, \tilde{r}_2) = 0.09)</td>
</tr>
</tbody>
</table>

portfolio with weights \(x_1 = .40, x_2 = .40, x_0 = .20 \) **is not efficient:**

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) &= 0.092 \times 0.04 + 0.092 \times 0.05 = 0.036, \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) &= 0.148 \times 0.05 + 0.148 \times 0.09 = 0.056,
\end{align*}
\]

\[
\frac{0.036}{0.056} = 2.555 \neq \frac{0.056}{0.056} = 2.643
\]

portfolio with weights \(x_1 = .40, x_2 = .60, x_0 = .00 \) **is efficient:**

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) &= 0.092 \times 0.04 + 0.092 \times 0.074 = 0.046, \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) &= 0.148 \times 0.074 + 0.148 \times 0.037 = 0.074,
\end{align*}
\]

\[
\frac{0.046}{0.074} = 2 = \frac{0.074}{0.074}
\]

portfolio with weights \(x_1 = .20, x_2 = .30, x_0 = .50 \) **is efficient:**

\[
\begin{align*}
\text{cov}(\tilde{r}_1, \tilde{r}_p) &= 0.092 \times 0.023 + 0.092 \times 0.037 = 0.023, \\
\text{cov}(\tilde{r}_2, \tilde{r}_p) &= 0.148 \times 0.037 + 0.148 \times 0.037 = 0.037,
\end{align*}
\]

\[
\frac{0.023}{0.037} = 4 = \frac{0.037}{0.037}
\]
The Market Portfolio as the Benchmark

◊ Homogeneous expectations and opportunities:

▷ Peter’s tangency portfolio is the same as Paul’s and Mary’s
▷ So everybody holds a combination of the tangency portfolio and riskfree assets
▷ So the aggregate portfolio of all investors is a combination of the tangency portfolio and riskfree assets, with a weight that reflects the average risk-aversion
▷ In a closed economy, this aggregate portfolio must be the portfolio of all existing shares (“the market portfolio”).

◊ Bottom line: the market portfolio must be efficient too; so

\[
\forall j : \frac{\mathbb{E}(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)} = \lambda_m, \\
\Rightarrow \mathbb{E}(\tilde{r}_j - r) = \lambda_m \text{cov}(\tilde{r}_j, \tilde{r}_m). \quad (1)
\]
The Market Portfolio as the Benchmark

diamond Homogeneous expectations and opportunities:

▷ Peter’s tangency portfolio is the same as Paul’s and Mary’s
▷ So everybody holds a combination of the tangency portfolio and riskfree assets
▷ So the aggregate portfolio of all investors is a combination of the tangency portfolio and riskfree assets, with a weight that reflects the average risk-aversion
▷ In a closed economy, this aggregate portfolio must be the portfolio of all existing shares (“the market portfolio”).

diamond Bottom line: the market portfolio must be efficient too; so

$$\forall j : \frac{\mathbb{E}(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)} = \lambda_m,$$

$$\Rightarrow \mathbb{E}(\tilde{r}_j - r) = \lambda_m \text{ cov}(\tilde{r}_j, \tilde{r}_m). \quad (1)$$
Homogeneous expectations and opportunities:

- Peter’s tangency portfolio is the same as Paul’s and Mary’s
- So everybody holds a combination of the tangency portfolio and riskfree assets
- So the aggregate portfolio of all investors is a combination of the tangency portfolio and riskfree assets, with a weight that reflects the average risk-aversion
- In a closed economy, this aggregate portfolio must be the portfolio of all existing shares (“the market portfolio”).

Bottom line: the market portfolio must be efficient too; so

\[
\forall j : \frac{E(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)} = \lambda_m,
\]

\[
\Rightarrow E(\tilde{r}_j - r) = \lambda_m \text{cov}(\tilde{r}_j, \tilde{r}_m). \hspace{1cm}(1)
\]
The Market Portfolio as the Benchmark

◊ **Homogeneous expectations and opportunities:**
 - Peter’s tangency portfolio is the same as Paul’s and Mary’s.
 - So everybody holds a combination of the tangency portfolio and riskfree assets.
 - So the aggregate portfolio of all investors is a combination of the tangency portfolio and riskfree assets, with a weight that reflects the average risk-aversion.
 - In a closed economy, this aggregate portfolio must be the portfolio of all existing shares ("the market portfolio").

◊ **Bottom line:** the market portfolio must be efficient too; so

$$\forall j : \frac{\mathbb{E}(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)} = \lambda_m,$$

$$\Rightarrow \mathbb{E}(\tilde{r}_j - r) = \lambda_m \text{cov}(\tilde{r}_j, \tilde{r}_m). \quad (1)$$
Homogeneous expectations and opportunities:
- Peter’s tangency portfolio is the same as Paul’s and Mary’s.
- So everybody holds a combination of the tangency portfolio and riskfree assets.
- So the aggregate portfolio of all investors is a combination of the tangency portfolio and riskfree assets, with a weight that reflects the average risk-aversion.
- In a closed economy, this aggregate portfolio must be the portfolio of all existing shares ("the market portfolio").

Bottom line: the market portfolio must be efficient too; so

$$\forall j : \frac{E(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)} = \lambda_m,$$

$$\Rightarrow E(\tilde{r}_j - r) = \lambda_m \text{cov}(\tilde{r}_j, \tilde{r}_m). \quad (1)$$
Identifying λ_m—the CAPM

Piece of cake. If $\forall j$: $\lambda_m = \frac{E(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)}$, then for any portfolio p (with weights x_j):

$$\lambda_m = \frac{\sum_{j=1}^{n} x_j E(\tilde{r}_j - r)}{\sum_{j=1}^{n} x_j \text{cov}(\tilde{r}_j, \tilde{r}_m)} = \frac{E(\tilde{r}_p - r)}{\text{cov}(\tilde{r}_p, \tilde{r}_m)}$$

Now pick the market portfolio as our p. Then

$$\lambda_m = \frac{E(\tilde{r}_m - r)}{\text{cov}(\tilde{r}_m, \tilde{r}_m)} = \frac{E(\tilde{r}_m - r)}{\text{var}(\tilde{r}_m)}.$$

Substitute:

$$E(\tilde{r}_j - r) = \lambda_m \text{cov}(\tilde{r}_j, \tilde{r}_m),$$

$$= \frac{E(\tilde{r}_m - r)}{\text{var}(\tilde{r}_m)} \text{cov}(\tilde{r}_j, \tilde{r}_m),$$

$$= \beta_j E(\tilde{r}_m - r),$$

with β_j as in $\tilde{r}_j = \alpha_j + \beta_j \tilde{r}_m + \epsilon_j$, the “market model”. $\beta_j \tilde{r}_m$ is the undiversifiable risk or market risk, ϵ_j the firm-specific or idiosyncratic or diversifiable risk.
Identifying λ_m—the CAPM

Piece of cake. If $\forall j$: $\lambda_m = \frac{E(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)}$, then for any portfolio p (with weights x_j):

$$
\lambda_m = \frac{\sum_{j=1}^{n} x_j E(\tilde{r}_j - r)}{\sum_{j=1}^{n} x_j \text{cov}(\tilde{r}_j, \tilde{r}_m)} = \frac{E(\tilde{r}_p - r)}{\text{cov}(\tilde{r}_p, \tilde{r}_m)}
$$

Now pick the market portfolio as our p. Then

$$
\lambda_m = \frac{E(\tilde{r}_m - r)}{\text{cov}(\tilde{r}_m, \tilde{r}_m)} = \frac{E(\tilde{r}_m - r)}{\text{var}(\tilde{r}_m)}.
$$

Substitute:

$$
E(\tilde{r}_j - r) = \lambda_m \text{cov}(\tilde{r}_j, \tilde{r}_m),
$$

$$
= \frac{E(\tilde{r}_m - r)}{\text{var}(\tilde{r}_m)} \text{cov}(\tilde{r}_j, \tilde{r}_m),
$$

$$
= \beta_j E(\tilde{r}_m - r),
$$

with β_j as in $\tilde{r}_j = \alpha_j + \beta_j \tilde{r}_m + \epsilon_j$, the "market model". $\beta_j \tilde{r}_m$ is the undiversifiable risk or market risk, ϵ_j the firm-specific or idiosyncratic or diversifiable risk.
Identifying λ_m—the CAPM

Piece of cake. If $\forall j$: $\lambda_m = \frac{E(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)}$, then for any portfolio p (with weights x_j):

$$\lambda_m = \frac{\sum_{j=1}^{n} x_j E(\tilde{r}_j - r)}{\sum_{j=1}^{n} x_j \text{cov}(\tilde{r}_j, \tilde{r}_m)} = \frac{E(\tilde{r}_p - r)}{\text{cov}(\tilde{r}_p, \tilde{r}_m)}$$

Now pick the market portfolio as our p. Then

$$\lambda_m = \frac{E(\tilde{r}_m - r)}{\text{cov}(\tilde{r}_m, \tilde{r}_m)} = \frac{E(\tilde{r}_m - r)}{\text{var}(\tilde{r}_m)}.$$

Substitute:

$$E(\tilde{r}_j - r) = \lambda_m \text{cov}(\tilde{r}_j, \tilde{r}_m),$$

$$= \frac{E(\tilde{r}_m - r)}{\text{var}(\tilde{r}_m)} \text{cov}(\tilde{r}_j, \tilde{r}_m),$$

$$= \beta_j E(\tilde{r}_m - r),$$

with β_j as in $\tilde{r}_j = \alpha_j + \beta_j \tilde{r}_m + \epsilon_j$, the “market model”. $\beta_j \tilde{r}_m$ is the undiversifiable risk or market risk, ϵ_j the firm-specific or idiosyncratic or diversifiable risk.
Identifying λ_m—the CAPM

Piece of cake. If $\forall j$: $\lambda_m = \frac{E(\tilde{r}_j - r)}{\text{cov}(\tilde{r}_j, \tilde{r}_m)}$, then for any portfolio p (with weights x_j):

$$\lambda_m = \frac{\sum_{j=1}^{n} x_j E(\tilde{r}_j - r)}{\sum_{j=1}^{n} x_j \text{cov}(\tilde{r}_j, \tilde{r}_m)} = \frac{E(\tilde{r}_p - r)}{\text{cov}(\tilde{r}_p, \tilde{r}_m)}$$

Now pick the market portfolio as our p. Then

$$\lambda_m = \frac{E(\tilde{r}_m - r)}{\text{cov}(\tilde{r}_m, \tilde{r}_m)} = \frac{E(\tilde{r}_m - r)}{\text{var}(\tilde{r}_m)}.$$

Substitute:

$$E(\tilde{r}_j - r) = \lambda_m \text{cov}(\tilde{r}_j, \tilde{r}_m),$$

$$= \frac{E(\tilde{r}_m - r)}{\text{var}(\tilde{r}_m)} \text{cov}(\tilde{r}_j, \tilde{r}_m),$$

$$= \beta_j E(\tilde{r}_m - r),$$

with β_j as in $\tilde{r}_j = \alpha_j + \beta_j \tilde{r}_m + \epsilon_j$, the “market model”. $\beta_j \tilde{r}_m$ is the undiversifiable risk or market risk, ϵ_j the firm-specific or idiosyncratic or diversifiable risk.
The CAPM for dummies: just using words

- The beta is a measure of the asset’s relative risk—that is, the asset’s market covariance risk $\text{cov}(\tilde{r}_j, \tilde{r}_m)$, rescaled by the portfolio’s total risk, $\text{var}(\tilde{r}_m)$.

Beta can be estimated from the market-model regression.

- A risky asset with beta equal to zero should have an expected return that is equal to the risk-free rate, even if the asset’s return is uncertain.

The reason is that the marginal contribution to the total market risk is zero.

- If an asset’s beta or relative risk is non-zero, the asset’s expected return should contain a risk premium. The additional return that can be expected per unit of beta is the market’s expected excess return above the risk-free rate.
The CAPM for dummies: just using words

- The beta is a measure of the asset’s relative risk—that is, the asset’s market covariance risk $\text{cov}(\tilde{r}_j, \tilde{r}_m)$, rescaled by the portfolio’s total risk, $\text{var}(\tilde{r}_m)$.

 Beta can be estimated from the market-model regression.

- A risky asset with beta equal to zero should have an expected return that is equal to the risk-free rate, even if the asset’s return is uncertain.

 The reason is that the marginal contribution to the total market risk is zero.

- If an asset’s beta or relative risk is non-zero, the asset’s expected return should contain a risk premium. The additional return that can be expected per unit of beta is the market’s expected excess return above the risk-free rate.
The CAPM for dummies: just using words

- The beta is a measure of the asset’s relative risk—that is, the asset’s market covariance risk $\text{cov}(\tilde{r}_j, \tilde{r}_m)$, rescaled by the portfolio’s total risk, $\text{var}(\tilde{r}_m)$.

 Beta can be estimated from the market-model regression.

- A risky asset with beta equal to zero should have an expected return that is equal to the risk-free rate, even if the asset’s return is uncertain.

 The reason is that the marginal contribution to the total market risk is zero.

- If an asset’s beta or relative risk is non-zero, the asset’s expected return should contain a risk premium. The additional return that can be expected per unit of beta is the market’s expected excess return above the risk-free rate.
The CAPM for yuppies: APT interpretation

◊ You can always avoid a stock’s idiosyncratic risk:
 ▶ form j’s “shadow portfolio” \(\hat{j} \): invest a weight \(\beta_j \) in \(m \), and
 \((1 - \beta_j) \) riskfree
 ▶ now compare the returns on \(j \) and on \(\hat{j} \):

\[
\tilde{r}_j = \alpha_j + \beta_j \tilde{r}_m + \epsilon_j, \\
\tilde{r}_\hat{j} = (1 - \beta_j) r + \beta_j \tilde{r}_m.
\]

◊ You cannot seriously expect to be rewarded for a risk
 that you can easily avoid.
 So \(j \) and \(\hat{j} \) have the same expected return:

\[
\begin{align*}
E(\tilde{r}_j) &\equiv E(\tilde{r}_\hat{j}), \\
&= (1 - \beta_j) r + \beta_j E(\tilde{r}_m), \\
&= r + \beta_j E(\tilde{r}_m - r).
\end{align*}
\]

CAPM: diversifiable risk gets no reward.
The CAPM for yuppies: APT interpretation

- **You can always avoid a stock’s idiosyncratic risk:**
 - form j’s “shadow portfolio” \hat{j}: invest a weight β_j in m, and $(1 - \beta_j)$ riskfree
 - now compare the returns on j and on \hat{j}:
 \[\tilde{r}_j = \alpha_j + \beta_j \tilde{r}_m + \epsilon_j, \]
 \[\tilde{r}_\hat{j} = (1 - \beta_j) r + \beta_j \tilde{r}_m. \]

- **You cannot seriously expect to be rewarded for a risk that you can easily avoid.** So j and \hat{j} have the same expected return:
 \[E(\tilde{r}_j) \overset{eq.}{=} E(\tilde{r}_\hat{j}), \]
 \[= (1 - \beta_j) r + \beta_j E(\tilde{r}_m), \]
 \[= r + \beta_j E(\tilde{r}_m - r). \]

CAPM: diversifiable risk gets no reward.
The CAPM for yuppies: APT interpretation

◊ **You can always avoid a stock’s idiosyncratic risk:**

▷ form j’s “shadow portfolio” \(\hat{j} \): invest a weight \(\beta_j \) in \(m \), and \((1 - \beta_j)\) riskfree

▷ now compare the returns on \(j \) and on \(\hat{j} \):

\[
\tilde{r}_j = \alpha_j + \beta_j \tilde{r}_m + \epsilon_j,
\]
\[
\tilde{r}_{\hat{j}} = (1 - \beta_j) r + \beta_j \tilde{r}_m.
\]

◊ **You cannot seriously expect to be rewarded for a risk that you can easily avoid.** So \(j \) and \(\hat{j} \) have the same expected return:

\[
E(\tilde{r}_j) \overset{eq.}{=} E(\tilde{r}_{\hat{j}}),
\]
\[
= (1 - \beta_j) r + \beta_j E(\tilde{r}_m),
\]
\[
= r + \beta_j E(\tilde{r}_m - r).
\]

CAPM: diversifiable risk gets no reward.
The CAPM for yuppies: APT interpretation

◊ **You can always avoid a stock’s idiosyncratic risk:**
 - form j’s “shadow portfolio” \(\hat{j} \): invest a weight \(\beta_j \) in \(m \), and \((1 - \beta_j) \) riskfree
 - now compare the returns on \(j \) and on \(\hat{j} \):
 \[
 \tilde{r}_j = \alpha_j + \beta_j \tilde{r}_m + \epsilon_j,
 \]
 \[
 \tilde{r}_\hat{j} = (1 - \beta_j) r + \beta_j \tilde{r}_m.
 \]

◊ **You cannot seriously expect to be rewarded for a risk that you can easily avoid.** So \(j \) and \(\hat{j} \) have the same expected return:
 \[
 E(\tilde{r}_j) \quad \text{eq.} \quad E(\tilde{r}_\hat{j}),
 \]
 \[
 = (1 - \beta_j) r + \beta_j E(\tilde{r}_m),
 \]
 \[
 = r + \beta_j E(\tilde{r}_m - r).
 \]

CAPM: diversifiable risk gets no reward.
How and when to use the single-country CAPM

Finding beta?
- single-asset betas are noisy; many prefer industry betas. See e.g. http://pages.stern.nyu.edu/adamodar/New_Home_Page/datafile/Betas.htm
- intervaling effect: monthly-return beta estimates are higher than daily-return ones
- correct for thin trading: Scholes-Williams-Fowler-Rorke; Dimson;
- correct for leverage: CoCa assumed full-equity financing

Finding the market risk premium?
- Take long-term estimates: 20 yrs is not enough
- Correct past data for inflation?
- Issue of survivorship bias
- Just assume 4 or 5%??

When to use the model?
- When local mkt is segmented from RoW
- Or assuming that RoW is not important?
How and when to use the single-country CAPM

◇ Finding beta?

▷ single-asset betas are noisy; many prefer industry betas. See e.g. http://pages.stern.nyu.edu/adamodar/New_Home_Page/datafile/Betas.htm

▷ intervaling effect: monthly-return beta estimates are higher than daily-return ones

▷ correct for thin trading: Scholes-Williams-Fowler-Rorke; Dimson;

▷ correct for leverage: CoCa assumed full-equity financing

◇ Finding the market risk premium?

▷ Take long-term estimates: 20 yrs is not enough

▷ Correct past data for inflation?

▷ Issue of survivorship bias

▷ Just assume 4 or 5%??

◇ When to use the model?

▷ When local mkt is segmented from RoW

▷ Or assuming that RoW is not important?
How and when to use the single-country CAPM

Finding beta?
- Single-asset betas are noisy; many prefer industry betas. See e.g. http://pages.stern.nyu.edu/adamodar/New_Home_Page/datafile/Betas.htm
- Intervaling effect: monthly-return beta estimates are higher than daily-return ones
- Correct for thin trading: Scholes-Williams-Fowler-Rorke; Dimson;
- Correct for leverage: CoCa assumed full-equity financing

Finding the market risk premium?
- Take long-term estimates: 20 yrs is not enough
- Correct past data for inflation?
- Issue of survivorship bias
- Just assume 4 or 5%??

When to use the model?
- When local mkt is segmented from RoW
- Or assuming that RoW is not important?
Outline

The Cost of International Capital

P. Sercu, *International Finance: Theory into Practice*

Translate first, then discount—or vv?

The Single-Country CAPM

Two procedures

When to do what?

The International CAPM

From Asset Returns to Portfolio Return

The tangency solution

How the weights affect mean and variance

How to make a portfolio efficient

The Market Portfolio as the Benchmark

The International CAPM

Why do we need an InCAPM?

Why does it contain Xrisk?

Do assets have a financial nationality?

Aggregating the Efficiency Conditions

The InCAPM

Wrapping up
Why do we need an InCAPM?

◊ **Standard country-by-country CAPM?**

▷ Summing until the national level—e.g. Canada—the country’s aggregate portfolio should be efficient in CAD terms,

▷ ... but it can no longer be equated to the stocks issued issued by local companies:
 - Canadian investors hold many foreign stocks
 - Many Canadian stocks are held abroad

◊ **Aggregating to the world level solves this problem, but**

▷ we might run into problems with “homogeneous opportunities”

▷ we do run into problems with “homogeneous expectations”
 - Canadian T-bill is risky to Americans, not to Canadians
 - US T-bill: vv—and these are just the most obvious examples

⇒ We need a CAPM that takes into account the fact that investors “think” in different currencies.
Why do we need an InCAPM?

◊ **Standard country-by-country CAPM?**

▷ Summing until the national level—e.g. Canada—the country’s aggregate portfolio should be efficient in CAD terms,

▷ ... but it can no longer be equated to the stocks issued by local companies:
 – Canadian investors hold many foreign stocks
 – Many Canadian stocks are held abroad

◊ **Aggregating to the world level solves this problem, but**

▷ we might run into problems with “homogeneous opportunities”

▷ we do run into problems with “homogeneous expectations”
 – Canadian T-bill is risky to Americans, not to Canadians
 – US T-bill: vv—and these are just the most obvious examples

⇒ We need a CAPM that takes into account the fact that investors “think” in different currencies.
Why do we need an InCAPM?

◊ **Standard country-by-country CAPM?**
 ▶ Summing until the national level—e.g. Canada—the country’s aggregate portfolio should be efficient in CAD terms,
 ▶ ... but it can no longer be equated to the stocks issued by local companies:
 – Canadian investors hold many foreign stocks
 – Many Canadian stocks are held abroad

◊ **Aggregating to the world level solves this problem, but**
 ▶ we might run into problems with “homogeneous opportunities”
 ▶ we do run into problems with “homogeneous expectations”
 – Canadian T-bill is risky to Americans, not to Canadians
 – US T-bill: vv—and these are just the most obvious examples

⇒ We need a CAPM that takes into account the fact that investors “think” in different currencies.
Why do we need an InCAPM?

◊ **Standard country-by-country CAPM?**
 ▶ Summing until the national level—e.g. Canada—the country’s aggregate portfolio should be efficient in CAD terms,
 ▶ ... but it can no longer be equated to the stocks issued by local companies:
 - Canadian investors hold many foreign stocks
 - Many Canadian stocks are held abroad

◊ **Aggregating to the world level solves this problem, but**
 ▶ we might run into problems with “homogeneous opportunities”
 ▶ we do run into problems with “homogeneous expectations”
 - Canadian T-bill is risky to Americans, not to Canadians
 - US T-bill: vv—and these are just the most obvious examples
 ⇒ We need a CAPM that takes into account the fact that investors “think” in different currencies.
Why Xrisk pops up in the InCAPM

◊ **Obvious down-to-earth reasons:**

- We need to translate FC returns into the investor’s HC
- The FC T-bill even has $\tilde{s} (=\Delta S/S)$ as its sole source of risk

◊ **An analytical problem:**

- Demand equations (or efficiency conditions) are in different currencies—say CAD and USD
- ... so how can we aggregate and find the link between aggregate demand and the world market portfolio w?
- ⇒ we need to translate the US investor’s efficiency condition (which is in USD) into CAD—or *vice versa*—before we can aggregate
Why Xrisk pops up in the InCAPM

◊ **Obvious down-to-earth reasons:**
 - We need to translate FC returns into the investor’s HC
 - The FC T-bill even has $\tilde{s} (=\Delta S/S)$ as its sole source of risk

◊ **An analytical problem:**
 - Demand equations (or efficiency conditions) are in different currencies—say CAD and USD
 - ... so how can we aggregate and find the link between aggregate demand and the world market portfolio w?
 - \Rightarrow we need to translate the US investor’s efficiency condition (which is in USD) into CAD—or vice versa—before we can aggregate
Why Xrisk pops up in the InCAPM

◊ **Obvious down-to-earth reasons:**
 - We need to translate FC returns into the investor’s HC
 - The FC T-bill even has $\tilde{s} (=\Delta S/S)$ as its sole source of risk

◊ **An analytical problem:**
 - Demand equations (or efficiency conditions) are in different currencies—say CAD and USD
 - ... so how can we aggregate and find the link between aggregate demand and the world market portfolio w?
 - \Rightarrow we need to translate the US investor’s efficiency condition (which is in USD) into CAD—or *vice versa*—before we can aggregate
How to translate returns and their moments?

◊ **Exact formula:**

\[
1 + r_j = \frac{\tilde{V}_{j,t+1}}{V_{j,t}} = \frac{\tilde{V}_{j,t+1}\tilde{S}_{t+1}}{V_{j,t}S_{t}} = (1 + \tilde{r}_j^*)(1 + \tilde{s}),
\]

\[
\Rightarrow 1 + r_j^* = \frac{1 + \tilde{r}_j}{1 + \tilde{s}}.
\]

◊ **Quadratic approximation**

\[
r_j^* = \tilde{r}_j - \tilde{s} - \tilde{r}_j\tilde{s} + \tilde{s}^2
\]

<table>
<thead>
<tr>
<th>input data:</th>
<th>true r^*</th>
<th>linear approx</th>
<th>quadr approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>s</td>
<td>$(r - s)/(1 + s)$</td>
<td>$r - s$</td>
</tr>
<tr>
<td>0.1</td>
<td>0.000</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.025</td>
<td>0.0732</td>
<td>0.0750</td>
</tr>
<tr>
<td>0.1</td>
<td>0.050</td>
<td>0.0476</td>
<td>0.0500</td>
</tr>
<tr>
<td>0.1</td>
<td>0.075</td>
<td>0.0233</td>
<td>0.0250</td>
</tr>
<tr>
<td>0.1</td>
<td>0.100</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.125</td>
<td>-0.0222</td>
<td>-0.0250</td>
</tr>
<tr>
<td>0.1</td>
<td>0.150</td>
<td>-0.0435</td>
<td>-0.0500</td>
</tr>
<tr>
<td>0.1</td>
<td>0.175</td>
<td>-0.0638</td>
<td>-0.0750</td>
</tr>
<tr>
<td>0.1</td>
<td>0.200</td>
<td>-0.0833</td>
<td>-0.1000</td>
</tr>
</tbody>
</table>
How to translate returns and their moments?

◊ **Exact formula:**

\[
1 + r_j = \frac{\tilde{V}_{j,t+1}}{V_{j,t}} = \frac{\tilde{V}_{j,t+1}\tilde{S}_{t+1}}{V_{j,t}^*S_t} = (1 + \tilde{r}_j^*)(1 + \tilde{s}),
\]

\[\Rightarrow 1 + r_j^* = \frac{1 + \tilde{r}_j}{1 + \tilde{s}}.\]

◊ **Quadratic approximation**

\[r_j^* = \tilde{r}_j - \tilde{s} - \tilde{r}_j\tilde{s} + \tilde{s}^2\]

Example

<table>
<thead>
<tr>
<th>input data:</th>
<th>true (r^*)</th>
<th>linear approx</th>
<th>quadr approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>(s)</td>
<td>((r - s)/(1 + s))</td>
<td>(r - s)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.000</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.025</td>
<td>0.0732</td>
<td>0.0750</td>
</tr>
<tr>
<td>0.1</td>
<td>0.050</td>
<td>0.0476</td>
<td>0.0500</td>
</tr>
<tr>
<td>0.1</td>
<td>0.075</td>
<td>0.0233</td>
<td>0.0250</td>
</tr>
<tr>
<td>0.1</td>
<td>0.100</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.125</td>
<td>-0.0222</td>
<td>-0.0250</td>
</tr>
<tr>
<td>0.1</td>
<td>0.150</td>
<td>-0.0435</td>
<td>-0.0500</td>
</tr>
<tr>
<td>0.1</td>
<td>0.175</td>
<td>-0.0638</td>
<td>-0.0750</td>
</tr>
<tr>
<td>0.1</td>
<td>0.200</td>
<td>-0.0833</td>
<td>-0.1000</td>
</tr>
</tbody>
</table>
How to translate returns and their moments?

Quadratic approximation

\[r_j^* = \tilde{r}_j - \tilde{s} - \tilde{r}_j\tilde{s} + \tilde{s}^2 \]

Approximation to mean & variance:

\[
E(r_p^*) = E(\tilde{r}_p) - E(\tilde{s}) - E(\tilde{r}_p\tilde{s}) + E(\tilde{s}^2)
\]

\[
= E(\tilde{r}_p) - E(\tilde{s}) - [E(\tilde{r}_p)E(\tilde{s}) + \text{cov}(\tilde{r}_p, \tilde{s})] + [E(\tilde{s})^2 + \text{var}(\tilde{s})],
\]

\[
\xrightarrow{d} E(\tilde{r}_p) - E(\tilde{s}) - \text{cov}(\tilde{r}_p, \tilde{s}) + \text{var}(\tilde{s}).
\]

\[
\text{var}(r_p^*) \xrightarrow{d} \text{var}(\tilde{r}_p - \tilde{s}) = \text{var}(\tilde{r}_p) - 2\text{cov}(\tilde{r}_p, \tilde{s}) + \text{var}(\tilde{s}).
\]

Example: do Americans-in-Paris like USD exposure?

<table>
<thead>
<tr>
<th>Example 1: Positive covariance</th>
<th>Example 2: Negative covariance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{US}) (in CAD)</td>
<td>12,000</td>
<td>12,000</td>
</tr>
<tr>
<td>(S) (CAD/USD)</td>
<td>1.00</td>
<td>1.50</td>
</tr>
<tr>
<td>(W_{US}^*) (in USD)</td>
<td>12,000</td>
<td>8,000</td>
</tr>
<tr>
<td>(E(W_{US}^*))</td>
<td>11,333</td>
<td>12,000</td>
</tr>
<tr>
<td>(\text{stdev}(W_{US}^*))</td>
<td>667</td>
<td>4,000</td>
</tr>
</tbody>
</table>

- same distribution for \(W_{US} \) ... and same distribution for \(S \);
- but the large-cov case has ...
 - a lower mean \(W_{US}^* \) ...
 - and a lower stdev \(W_{US}^* \)
How to translate returns and their moments?

Quadratic approximation

\[r_j^* = \tilde{r}_j - \tilde{s} - \tilde{r}_j\tilde{s} + \tilde{s}^2 \]

Approximation to mean & variance:

\[
\begin{align*}
E(r_p^*) &= E(\tilde{r}_p) - E(\tilde{s}) - E(\tilde{r}_p\tilde{s}) + E(\tilde{s}^2) \\
&= E(\tilde{r}_p) - E(\tilde{s}) - [E(\tilde{r}_p)E(\tilde{s}) + \text{cov}(\tilde{r}_p, \tilde{s})] + [E(\tilde{s})^2 + \text{var}(\tilde{s})], \\
\xrightarrow{\text{d}} &\quad E(\tilde{r}_p) - E(\tilde{s}) - \text{cov}(\tilde{r}_p, \tilde{s}) + \text{var}(\tilde{s}).
\end{align*}
\]

\[
\begin{align*}
\text{var}(r_p^*) &\xrightarrow{\text{d}} \quad \text{var}(\tilde{r}_p - \tilde{s}) = \text{var}(\tilde{r}_p) - 2\text{cov}(\tilde{r}_p, \tilde{s}) + \text{var}(\tilde{s}).
\end{align*}
\]

Example: do Americans-in-Paris like USD exposure?

<table>
<thead>
<tr>
<th></th>
<th>Example 1: Positive covariance</th>
<th>Example 2: Negative covariance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{us}) (in CAD)</td>
<td>12,000 16,000</td>
<td>12,000 16,000</td>
<td>same distribution for (W_{us}) ... and same distribution for (S);</td>
</tr>
<tr>
<td>(S) (CAD/USD)</td>
<td>1.00 1.50</td>
<td>1.50 1.00</td>
<td></td>
</tr>
<tr>
<td>(W_{us}^*) (in USD)</td>
<td>12,000 10,667</td>
<td>8,000 16,000</td>
<td>but the large-cov case has ...</td>
</tr>
<tr>
<td>(E(W_{us}^*))</td>
<td>11,333</td>
<td>12,000</td>
<td>– a lower mean (W_{us}^*) ...</td>
</tr>
<tr>
<td>(\text{stdev}(W_{us}^*))</td>
<td>667</td>
<td>4,000</td>
<td>– and a lower stdev (W_{us}^*)</td>
</tr>
</tbody>
</table>
Do assets have a financial nationality?

Consider

\[\tilde{r}_j = \delta_j + \gamma \tilde{s}_{CAD/USD} + \epsilon_j, \]

with \(\gamma \) = relative exposure (or elasticity of \(V \) wrt \(S \)).

Relative exposures of various assets

<table>
<thead>
<tr>
<th>asset type</th>
<th>gamma</th>
<th>effect of rising USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD TBill</td>
<td>0</td>
<td>no effect</td>
</tr>
<tr>
<td>USD TBill</td>
<td>1</td>
<td>one-to-one effect</td>
</tr>
<tr>
<td>Canadian importer</td>
<td>< 0</td>
<td>CAD price should fall</td>
</tr>
<tr>
<td>Canadian exporter</td>
<td>> 0</td>
<td>CAD price should rise</td>
</tr>
<tr>
<td>US exporter</td>
<td>< 1</td>
<td>USD price should fall</td>
</tr>
<tr>
<td>US importer</td>
<td>> 1</td>
<td>USD price should rise</td>
</tr>
</tbody>
</table>

Q: is gold, or oil, a dollar investment “because it is quoted in USD”?
Do assets have a financial nationality?

Consider

\[\tilde{r}_j = \delta_j + \gamma \tilde{s}_{CAD/USD} + \epsilon_j, \]

with \(\gamma = \) relative exposure (or elasticity of V wrt S).

<table>
<thead>
<tr>
<th>asset type</th>
<th>gamma</th>
<th>effect of rising USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD TBill</td>
<td>0</td>
<td>no effect</td>
</tr>
<tr>
<td>USD TBill</td>
<td>1</td>
<td>one-to-one effect</td>
</tr>
<tr>
<td>Canadian importer</td>
<td>< 0</td>
<td>CAD price should fall</td>
</tr>
<tr>
<td>Canadian exporter</td>
<td>> 0</td>
<td>CAD price should rise</td>
</tr>
<tr>
<td>US exporter</td>
<td>< 1</td>
<td>USD price should fall</td>
</tr>
<tr>
<td>US importer</td>
<td>> 1</td>
<td>USD price should rise</td>
</tr>
</tbody>
</table>

Q: is gold, or oil, a dollar investment “because it is quoted in USD”?
Do assets have a financial nationality?

Consider

\[\tilde{r}_j = \delta_j + \gamma \tilde{s}_{\text{CAD/USD}} + \epsilon_j, \]

with \(\gamma \) = relative exposure (or elasticity of \(V \) wrt \(S \)).

Relative exposures of various assets

<table>
<thead>
<tr>
<th>asset type</th>
<th>gamma</th>
<th>effect of rising USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD TBill</td>
<td>0</td>
<td>no effect</td>
</tr>
<tr>
<td>USD TBill</td>
<td>1</td>
<td>one-to-one effect</td>
</tr>
<tr>
<td>Canadian importer</td>
<td>< 0</td>
<td>CAD price should fall</td>
</tr>
<tr>
<td>Canadian exporter</td>
<td>> 0</td>
<td>CAD price should rise</td>
</tr>
<tr>
<td>US exporter</td>
<td>< 1</td>
<td>USD price should fall</td>
</tr>
<tr>
<td>US importer</td>
<td>> 1</td>
<td>USD price should rise</td>
</tr>
</tbody>
</table>

Q: is gold, or oil, a dollar investment “because it is quoted in USD”?
Do assets have a financial nationality?

- The picture:

- Summary

 - Exposures are not either 0 (CDN) or 1 (US), but spread around these values.
 - Lots of overlap in the middle: internationally competing firms have little nationality.
Do assets have a financial nationality?

◊ The picture:

◊ Summary

▷ exposures are not either 0 (CAD) or 1 (USD), but spread around these values

▷ lots of overlap in the middle: internationally competing firms have little nationality
Aggregating the Efficiency Conditions

✧ The original conditions—a Babylonian chaos:

CDN’s \(p \):
\[
E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p),
\]

US’s \(p^* \):
\[
E(\tilde{r}^*_j - r^*) = \lambda \text{cov}(\tilde{r}^*_j, \tilde{r}^*_p).\]

✧ Peace and Harmony Restored:

CDN’s \(p \):
\[
E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p),
\]

US’s \(p^* \):
\[
E(\tilde{r}^*_j - r^*) = \lambda \text{cov}(\tilde{r}^*_j, \tilde{r}^*_p) + (1 - \lambda) \text{cov}(\tilde{r}_j, s).\]

✧ Aggregate (after weighting by invested wealths):

world:
\[
E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \kappa \text{cov}(\tilde{r}_j, s),\]

Proof:
\[
W_{ca}E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, W_{ca} \tilde{r}_p)
\]
\[
W_{us}E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, W_{us} \tilde{r}^*_p)
\]
\[
(W_{ca} + W_{us})E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, W_{ca} \tilde{r}_p + W_{us} \tilde{r}^*_p) + W_{us} (1 - \lambda) \text{cov}(\tilde{r}_j, s)
\]
\[
\Rightarrow E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \frac{W_{us}}{W_{ca} + W_{us}} (1 - \lambda) \text{cov}(\tilde{r}_j, s).
\]

"\kappa"
The Cost of International Capital

P. Sercu, *International Finance: Theory into Practice*

Translate first, then discount—or vv?

The Single-Country CAPM

Why do we need an InCAPM?
Why does it contain Xrisk?
Do assets have a financial nationality?

Aggregating the Efficiency Conditions

- The original conditions—a Babylonian chaos:

 CDN’s p : \[E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p), \]

 US ’s p^* : \[E(\tilde{r}_j^* - r^*) = \lambda \text{cov}(\tilde{r}_j^*, \tilde{r}_p^*). \]

- Peace and Harmony Restored:

 CDN’s p : \[E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p), \]

 US ’s p^* : \[E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p^*) + (1 - \lambda) \text{cov}(\tilde{r}_j, s). \]

- Aggregate (after weighting by invested wealths):

 world: \[E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \kappa \text{cov}(\tilde{r}_j, s), \]

Proof:

\[
\begin{align*}
W_{ca} E(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{ca} \tilde{r}_p) \\
W_{us} E(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{us} \tilde{r}_p^*) \\
(W_{ca} + W_{us}) E(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{ca} \tilde{r}_p + W_{us} \tilde{r}_p^*) \\
&+ W_{us} (1 - \lambda) \text{cov}(\tilde{r}_j, s) \\
\Rightarrow E(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) \\
&+ \frac{W_{us}}{W_{ca} + W_{us}} (1 - \lambda) \text{cov}(\tilde{r}_j, s).
\end{align*}
\]
Aggregating the Efficiency Conditions

◇ The original conditions—a Babylonian chaos:

CDN’s $p:$ \[E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p), \]

US ’s p^*: \[E(\tilde{r}_j - r^*) = \lambda \text{cov}(\tilde{r}_j^*, \tilde{r}_p^*). \]

◇ Peace and Harmony Restored:

CDN’s $p:$ \[E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p), \]

US ’s p^*: \[E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p^*) + (1 - \lambda) \text{cov}(\tilde{r}_j, s). \]

◇ Aggregate (after weighting by invested wealths):

world: \[E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \kappa \text{cov}(\tilde{r}_j, s), \]

Proof:

\[
\begin{align*}
W_{ca} E(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{ca} \tilde{r}_p), \\
W_{us} E(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{us} \tilde{r}_p^*), \\
(W_{ca} + W_{us}) E(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{ca} \tilde{r}_p + W_{us} \tilde{r}_p^*) + W_{us} (1 - \lambda) \text{cov}(\tilde{r}_j, s), \\
\Rightarrow E(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \frac{W_{us}}{W_{ca} + W_{us}} (1 - \lambda) \text{cov}(\tilde{r}_j, s).
\end{align*}
\]
Aggregating the Efficiency Conditions

◊ The original conditions—a Babylonian chaos:

CDN’s \(p \): \(\mathbb{E}(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p) \),

US ‘s \(p^* \): \(\mathbb{E}(\tilde{r}_j^* - r^*) = \lambda \text{cov}(\tilde{r}_j^*, \tilde{r}_p^*) \).

◊ Peace and Harmony Restored:

CDN’s \(p \): \(\mathbb{E}(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_p) \),

US ’s \(p^* \): \(\mathbb{E}(\tilde{r}_j^* - r^*) = \lambda \text{cov}(\tilde{r}_j^*, \tilde{r}_p^*) + (1 - \lambda) \text{cov}(\tilde{r}_j, s) \).

◊ Aggregate (after weighting by invested wealths):

world: \(\mathbb{E}(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \kappa \text{cov}(\tilde{r}_j, s) \),

Proof:

\[
\begin{align*}
W_{ca} \mathbb{E}(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{ca} \tilde{r}_p) \\
W_{us} \mathbb{E}(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{us} \tilde{r}_p^*) \\
(W_{ca} + W_{us}) \mathbb{E}(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, W_{ca} \tilde{r}_p + W_{us} \tilde{r}_p^*) + W_{us} (1 - \lambda) \text{cov}(\tilde{r}_j, s) \\
\Rightarrow \mathbb{E}(\tilde{r}_j - r) &= \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \frac{W_{us}}{W_{ca} + W_{us}} (1 - \lambda) \text{cov}(\tilde{r}_j, s) \text{ “} \kappa \text{”}
\end{align*}
\]
A 2-country InCAPM

- **Need to identify two prices of risk:** λ, κ
 - So we need two benchmarks
 - We wake the world market, and the USD T-bill

- **Let’s cheat a bit** and assume that $\text{cov}(\tilde{r}_w, \tilde{s}) = 0$
 - general: $E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \kappa \text{cov}(\tilde{r}_j, s)$
 - world: $E(\tilde{r}_w - r) = \lambda \text{cov}(\tilde{r}_w, \tilde{r}_w) + \kappa 0$
 $$\Rightarrow \lambda = \frac{E(\tilde{r}_w - r)}{\text{var}(\tilde{r}_w)}$$
 - USD TBill: $E(\tilde{s}_j + r^* - r) = \lambda 0 + \kappa \text{cov}(\tilde{s}, \tilde{s})$
 $$\Rightarrow \kappa = \frac{E(\tilde{s} + r^* - r)}{\text{var}(\tilde{s})}$$
 - general: $E(\tilde{r}_j - r) = \frac{E(\tilde{r}_w - r)}{\text{var}(\tilde{r}_w)} \text{cov}(\tilde{r}_j, \tilde{r}_w) + \frac{E(\tilde{s} + r^* - r)}{\text{var}(\tilde{s})} \text{cov}(\tilde{r}_j, s)$
 $$= \beta_j E(\tilde{r}_w - r) + \gamma_j E(\tilde{s} + r^* - r)$$

- **The no-cheating model:** same, except that the regression slopes are from a **multiple** regression,
 $$r_j = \alpha_{j,w,s} + \beta_{j;w} r_w + \gamma_{j;w} \tilde{s} + \epsilon_{j;w,s}.$$
A 2-country InCAPM

◇ **Need to identify two prices of risk:** λ, κ

▷ So we need two benchmarks

▷ We wake the world market, and the **USD T-bill**

◇ **Let’s cheat a bit** and assume that $\text{cov}(\tilde{r}_w, \tilde{s}) = 0$

▷ **general:** $E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \kappa \text{cov}(\tilde{r}_j, s)$

▷ **world:** $E(\tilde{r}_w - r) = \lambda \text{cov}(\tilde{r}_w, \tilde{r}_w) + \kappa 0$

$\Rightarrow \lambda = \frac{E(\tilde{r}_w - r)}{\text{var}(\tilde{r}_w)}$

▷ **USD TBill:** $E(\tilde{s}_j + r^* - r) = \lambda 0 + \kappa \text{cov}(\tilde{s}, \tilde{s})$

$\Rightarrow \kappa = \frac{E(\tilde{s} + r^* - r)}{\text{var}(\tilde{s})}$

$\Rightarrow \text{general: } E(\tilde{r}_j - r) = \frac{E(\tilde{r}_w - r)}{\text{var}(\tilde{r}_w)} \text{cov}(\tilde{r}_j, \tilde{r}_w) + \frac{E(\tilde{s} + r^* - r)}{\text{var}(\tilde{s})} \text{cov}(\tilde{r}_j, s)$

$= \beta_j E(\tilde{r}_w - r) + \gamma_j E(\tilde{s} + r^* - r)$

◇ **The no-cheating model:** same, except that the regression slopes are from a **multiple regression**, $r_j = \alpha_{j,w,s} + \beta_{j,s} r_w + \gamma_{j,w} \tilde{s} + \epsilon_{j,w,s}$.
A 2-country InCAPM

- **Need to identify two prices of risk:** λ, κ
 - So we need two benchmarks
 - We wake the world market, and the USD T-bill

- **Let’s cheat a bit** and assume that $\text{cov}(\tilde{r}_w, \tilde{s}) = 0$
 - general: $E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \tilde{r}_w) + \kappa \text{cov}(\tilde{r}_j, s)$
 - world: $E(\tilde{r}_w - r) = \lambda \text{cov}(\tilde{r}_w, \tilde{r}_w) + \kappa 0$
 \[\Rightarrow \lambda = \frac{E(\tilde{r}_w - r)}{\text{var}(\tilde{r}_w)} \]
 - USD TBill: $E(\tilde{s}_j + r^* - r) = \lambda 0 + \kappa \text{cov}(\tilde{s}, \tilde{s})$
 \[\Rightarrow \kappa = \frac{E(\tilde{s} + r^* - r)}{\text{var}(\tilde{s})} \]

- general: $E(\tilde{r}_j - r) = \frac{E(\tilde{r}_w - r)}{\text{var}(\tilde{r}_w)} \text{cov}(\tilde{r}_j, \tilde{r}_w) + \frac{E(\tilde{s} + r^* - r)}{\text{var}(\tilde{s})} \text{cov}(\tilde{r}_j, s)$
 \[= \beta_j E(\tilde{r}_w - r) + \gamma_j E(\tilde{s} + r^* - r) \]

- **The no-cheating model:** same, except that the regression slopes are from a *multiple* regression,
 \[r_j = \alpha_{j,w,s} + \beta_{j;w}s + \gamma_{j;w}\tilde{s} + \epsilon_{j;w,s}. \]
The Solnik-Sercu-Adler-Dumas model

\[N \text{ countries} \]

\[E(r_j - r) = \beta_j; \ldots E(r_w - r) + \gamma_{j,1}; \ldots E(s_{1} + r_{1}^{*} - r) + \gamma_{j,2}; \ldots E(s_{2} + r_{2}^{*} - r) + \ldots \gamma_{j,n}; \ldots E(s_{n} + r_{n}^{*} - r), \]

\[r_j = \alpha_{j,w}; \xi \ldots r_w + \gamma_{j,s_{1}}; \ldots s_{2} + \gamma_{j,s_{2}}; \ldots s_{2} + \ldots \gamma_{j,s_{n}}; \ldots s_{n} + \epsilon_{j,w}; \xi. \]

\[\text{Restricted versions (1): trim the list of countries} \]

because \(\gamma \)'s are hard to estimate and Tbill premia small.

- small countries’ exchange rates have a small risk premium

\[\kappa_l = \frac{W_l}{\sum_{k} W_k} (1 - \lambda) < 1 - \lambda \]

- unconnected countries (no \(X \), \(M \) links; no competitors): cov must be close to zero anyway

\[\text{Restricted Version (2): cut out all Xrisk terms, just keep the beta multivariate} \]

- Assumes that Tbill premia are zero in the long run

- So produces almost a world CAPM, except for the beta
The Solnik-Sercu-Adler-Dumas model

◇ **N countries**

\[
E(r_j - r) = \beta_j; \ldots E(r_w - r) + \gamma_{j,1}; \ldots E(s_1 + r_1^* - r) + \gamma_{j,2}; \ldots E(s_2 + r_2^* - r) + \ldots \gamma_{j,n}; \ldots E(s_n + r_n^* - r),
\]

\[
r_j = \alpha_{j,\text{w};\xi} + \beta_{j,\text{w};\xi} r_w + \gamma_{j,s_1;\xi} \tilde{s}_2 + \gamma_{j,s_2;\xi} \tilde{s}_2 + \ldots \gamma_{j,s_n;\xi} \tilde{s}_n + \epsilon_{j,\text{w};\xi}.
\]

◇ **Restricted versions (1): trim the list of countries**

because \(\gamma\)s are hard to estimate and Tbill premia small

▷ small countries’ exchange rates have a small risk premium

\[
\kappa_l = \frac{W_l}{\sum_{\forall k} W_k} (1 - \lambda) < 1 - \lambda
\]

▷ unconnected countries (no X, M links; no competitors): cov must be close to zero anyway

◇ **Restricted Version (2):** cut out all Xrisk terms, just keep the beta multivariate

▷ Assumes that Tbill premia are zero in the long run

▷ So produces almost a world CAPM, except for the beta
The Solnik-Sercu-Adler-Dumas model

▶ **N countries**

\[
E(r_j - r) = \beta_{j;\ldots} E(r_w - r) + \gamma_{j,1;\ldots} E(\tilde{s}_1 + r^*_1 - r) + \gamma_{j,2;\ldots} E(\tilde{s}_2 + r^*_2 - r) + \ldots + \gamma_{j,n;\ldots} E(\tilde{s}_n + r^*_n - r),
\]

\[
r_j = \alpha_{j,w;\xi} + \beta_{j,w;\ldots} r_w + \gamma_{j,s_1;\ldots} \tilde{s}_1 + \gamma_{j,s_2;\ldots} \tilde{s}_2 + \ldots + \gamma_{j,s_n;\ldots} \tilde{s}_n + \epsilon_{j,w;\xi}.
\]

▶ **Restricted versions (1): trim the list of countries**

because \(\gamma\)'s are hard to estimate and Tbill premia small

▷ small countries’ exchange rates have a small risk premium

\[
\kappa_l = \frac{W_l}{\sum_{\forall k} W_k} (1 - \lambda) < 1 - \lambda
\]

▷ unconnected countries (no X, M links; no competitors): cov must be close to zero anyway

▶ **Restricted Version (2):** cut out all Xrisk terms, just keep the beta multivariate

▷ Assumes that Tbill premia are zero in the long run

▷ So produces almost a world CAPM, except for the beta
The Cost of International Capital

P. Sercu,
International Finance: Theory into Practice

Outline

Translate first, then discount—or vv?
Two procedures
When to do what?

The Single-Country CAPM
From Asset Returns to Portfolio Return
The tangency solution
How the weights affect mean and variance
How to make a portfolio efficient
The Market Portfolio as the Benchmark

The International CAPM
Why do we need an InCAPM?
Why Xrisk pops up in the InCAPM
Do assets have a financial nationality?
Aggregating the Efficiency Conditions
The InCAPM

Wrapping up
Practical implications

◊ When do we use what model?
 ▶ Is host a segmented market? immaterial to the foreign investor!
 ▶ Is this a domestic or a foreign investment? immaterial!
 ▶ Is home a segmented market?
 – if yes: CAPM
 – if no: InCAPM, with “world” defined as market’s total portfolio

◊ When do we use what currency?
 ▶ home and host integrated? use either HC or FC
 ▶ home and host not integrated: use HC (home)

◊ Estimated risks and returns
 ▶ Market: use long-term, lowish estimates
 ▶ beta: use your priors too, or even exclusively
 – capital goods v consumer goods; operating leverage; growth opportunities
 ▶ gamma: use your common sense, incl. setting many = 0
 ▶ TBill premia: tiny and hard to estimate
Practical implications

◇ When do we use what model?
 ▶ Is host a segmented market? immaterial to the foreign investor!
 ▶ Is this a domestic or a foreign investment? immaterial!
 ▶ Is home a segmented market?
 - if yes: CAPM
 - if no: InCAPM, with “world” defined as market’s total portfolio

◇ When do we use what currency?
 ▶ home and host integrated? use either HC or FC
 ▶ home and host not integrated: use HC (home)

◇ Estimated risks and returns
 ▶ Market: use long-term, lowish estimates
 ▶ beta: use your priors too, or even exclusively
 - capital goods v consumer goods; operating leverage; growth opportunities
 ▶ gamma: use your common sense, incl. setting many =0
 ▶ TBill premia: tiny and hard to estimate
Practical implications

❖ **When do we use what model?**
 - Is host a segmented market? immaterial to the foreign investor!
 - Is this a domestic or a foreign investment? immaterial!
 - Is home a segmented market?
 - if yes: CAPM
 - if no: InCAPM, with “world” defined as market’s total portfolio

❖ **When do we use what currency?**
 - home and host integrated? use either HC or FC
 - home and host not integrated: use HC (home)

❖ **Estimated risks and returns**
 - Market: use long-term, lowish estimates
 - beta: use your priors too, or even exclusively
 - capital goods v consumer goods; operating leverage; growth opportunities
 - gamma: use your common sense, incl. setting many =0
 - TBill premia: tiny and hard to estimate
Practical implications

◊ **When do we use what model?**
 ▶ Is host a segmented market? immaterial to the foreign investor!
 ▶ Is this a domestic or a foreign investment? immaterial!
 ▶ Is home a segmented market?
 – if yes: CAPM
 – if no: InCAPM, with “world” defined as market’s total portfolio

◊ **When do we use what currency?**
 ▶ home and host integrated? use either HC or FC
 ▶ home and host not integrated: use HC (home)

◊ **Estimated risks and returns**
 ▶ Market: use long-term, lowish estimates
 ▶ beta: use your priors too, or even exclusively
 – capital goods v consumer goods; operating leverage; growth opportunities
 ▶ gamma: use your common sense, incl. setting many = 0
 ▶ TBill premia: tiny and hard to estimate
Practical implications

◊ **When do we use what model?**
 ▶ Is host a segmented market? immaterial to the foreign investor!
 ▶ Is this a domestic or a foreign investment? immaterial!
 ▶ Is home a segmented market?
 – if yes: CAPM
 – if no: InCAPM, with “world” defined as market’s total portfolio

◊ **When do we use what currency?**
 ▶ home and host integrated? use either HC or FC
 ▶ home and host not integrated: use HC (home)

◊ **Estimated risks and returns**
 ▶ Market: use long-term, lowish estimates
 ▶ beta: use your priors too, or even exclusively
 – capital goods v consumer goods; operating leverage; growth opportunities
 ▶ gamma: use your common sense, incl. setting many =0
 ▶ TBill premia: tiny and hard to estimate