Chapter 13

Measuring Exposure to Exchange Rates
Overview

The Concepts of Risk and Exposure
Types of Exposure

Contractual Exposure
 Limitations of ContrExp Hedging
 What about Fuzzy Contracts?
 What About Book Values?

Operations Exposure
 Operating Exposure Comes in all Shapes & Sizes
 The General Linear Hedge
 Examples
 General Issues in Linear Cross-Hedging

Translation Exposure
 Translating Individual FC Items
 Translating Entire FC Financials
 Closing Remarks
Overview

The Concepts of Risk and Exposure
Types of Exposure

Contractual Exposure
 Limitations of ContrExp Hedging
 What about Fuzzy Contracts?
 What About Book Values?

Operations Exposure
 Operating Exposure Comes in all Shapes & Sizes
 The General Linear Hedge
 Examples
 General Issues in Linear Cross-Hedging

Translation Exposure
 Translating Individual FC Items
 Translating Entire FC Financials
 Closing Remarks
Overview

The Concepts of Risk and Exposure
Types of Exposure

Contractual Exposure
Limitations of ContrExp Hedging
What about Fuzzy Contracts?
What About Book Values?

Operations Exposure
Operating Exposure Comes in all Shapes & Sizes
The General Linear Hedge
Examples
General Issues in Linear Cross-Hedging

Translation Exposure
Translating Individual FC Items
Translating Entire FC Financials
Closing Remarks
Overview

The Concepts of Risk and Exposure
Types of Exposure

Contractual Exposure
Limitations of ContrExp Hedging
What about Fuzzy Contracts?
What About Book Values?

Operations Exposure
Operating Exposure Comes in all Shapes & Sizes
The General Linear Hedge
Examples
General Issues in Linear Cross-Hedging

Translation Exposure
Translating Individual FC Items
Translating Entire FC Financials
Closing Remarks
The Concepts of Risk and Exposure

Types of Exposure

Contractual Exposure
- Limitations of ContrExp Hedging
- What about Fuzzy Contracts?
- What About Book Values?

Operations Exposure
- Operating Exposure Comes in all Shapes & Sizes
- The General Linear Hedge
- Examples
- General Issues in Linear Cross-Hedging

Translation Exposure
- Translating Individual FC Items
- Translating Entire FC Financials
- Closing Remarks
The Concepts of Risk and Exposure

✧ **Forex Risk**

▷ a measure of uncertainty, like the variance of \tilde{S}_T

✧ **Forex Exposure**

▷ a numerical measure of how sensitive the financial position of a firm is to changes in the exchange rate: $B_{t,T} := \frac{\Delta \tilde{V}_T}{\Delta \tilde{S}_T}$.

▷ Note that the changes Δ are at T—comparing two or more possible future time-T outcomes, not changes over time:

– a partial derivative $\frac{\partial \tilde{V}_T}{\partial \tilde{S}_T}$.
– the exposure of an option in a binomial model
– the regression coefficient of \tilde{V}_T on \tilde{S}_T across scenarios
– in contractual exposure: the FC contract size:

Example

You hold HC Tbill, 5000 units, and FC Tbill, 7000 units. So

\[\text{HC value } \tilde{V}_T = 5,000 + 7,000 \tilde{S}_T \]

⇒ exposure is 7,000 units of forex, as $\Delta V_T = 7000 \Delta S_T$.

Measuring Exposure to Exchange Rates

P. Sercu, *International Finance: Theory into Practice*

Risk and Exposure: Concepts

Types of Exposure

Contractual Exposure

Operations Exposure

Translation Exposure
The Concepts of Risk and Exposure

◊ **Forex Risk**
 ▶ a measure of uncertainty, like the variance of \tilde{S}_T

◊ **Forex Exposure**
 ▶ a numerical measure of how sensitive the financial position of a firm is to changes in the exchange rate: $B_{t,T} := \frac{\Delta \tilde{V}_T}{\Delta \tilde{S}_T}$.
 ▶ Note that the changes Δ are *at* T—*comparing two or more possible future time-T outcomes*, not changes over time:
 - a partial derivative $\frac{\partial \tilde{V}_T}{\partial \tilde{S}_T}$.
 - the exposure of an option in a binomial model
 - the regression coefficient of \tilde{V}_T on \tilde{S}_T across scenarios
 - in contractual exposure: the FC contract size:

Example

You hold HC Tbill, 5000 units, and FC Tbill, 7000 units. So

$$\text{HC value } \tilde{V}_T = 5,000 + 7,000\tilde{S}_T$$

⇒ exposure is 7,000 units of forex, as $\Delta V_T = 7000\Delta \tilde{S}_T$.

Measuring Exposure to Exchange Rates

P. Sercu, *International Finance: Theory into Practice*

Risk and Exposure: Concepts

Types of Exposure

Contractual Exposure

Operations Exposure

Translation Exposure
The Concepts of Risk and Exposure

◇ **Forex Risk**

▷ a measure of uncertainty, like the variance of \tilde{S}_T

◇ **Forex Exposure**

▷ a numerical measure of how sensitive the financial position of a firm is to changes in the exchange rate: $B_{t,T} := \frac{\Delta \tilde{V}_T}{\Delta \tilde{S}_T}$.

▷ Note that the changes Δ are *at* T—comparing two or more possible future time-T outcomes, not changes over time:

- a partial derivative $\frac{\partial \tilde{V}_T}{\partial \tilde{S}_T}$.
- the exposure of an option in a binomial model
- the regression coefficient of \tilde{V}_T on \tilde{S}_T across scenarios
- in contractual exposure: the FC contract size:

Example

You hold HC Tbill, 5000 units, and FC Tbill, 7000 units. So

\[\text{HC value } \tilde{V}_T = 5,000 + 7,000\tilde{S}_T \]

\Rightarrow exposure is 7,000 units of forex, as $\Delta V_T = 7000\Delta S_T$.
The Concepts of Risk and Exposure

- **Forex Risk**
 - a measure of uncertainty, like the variance of \tilde{S}_T

- **Forex Exposure**
 - a numerical measure of how sensitive the financial position of a firm is to changes in the exchange rate: $B_{t,T} := \frac{\Delta \tilde{V}_T}{\Delta \tilde{S}_T}$.
 - Note that the changes Δ are at T—comparing two or more possible future time-T outcomes, not changes over time:
 - a partial derivative $\frac{\partial \tilde{V}_T}{\partial \tilde{S}_T}$.
 - the exposure of an option in a binomial model
 - the regression coefficient of \tilde{V}_T on \tilde{S}_T across scenarios
 - in contractual exposure: the FC contract size:

Example

You hold **HC** Tbill, 5000 units, and **FC** Tbill, 7000 units. So

HC value $\tilde{V}_T = 5,000 + 7,000\tilde{S}_T$

\Rightarrow exposure is 7,000 units of forex, as $\Delta V_T = 7000\Delta S_T$.
Exposures: *What* is affected by ΔS_T?

- **(Contractual \sim :)** HC *realized cash flow* from FC-denominated contracts
 - For every date: A/R & A/P, other commercial contracts, loans & deposits, forward sales & purchases. $B = \text{net flow that day}$.
 - *(Assumed to be) risk-free in FC, so HC value is linear in \tilde{S}_T*

- **(Operations \sim :)** future non-contractual cash flows:
 - there is no known single contractual FC amount: decisions still need to be taken (by us, by others), and may depend on \tilde{S}_T and on other variables
 - relation between HC cashflow and \tilde{S}_T is noisy (⇐ other variables) and—p.t.o.—probably convex in \tilde{S}_T

- **(Translation \sim :)** book values, not cash flows
 - Book value of contractual positions in FC
 - Book value of foreign subsidiaries whose books are kept in FC
Exposures: What is affected by ΔS_T?

◇ **(Contractual \sim :)** HC realized cash flow from FC-denominated contracts

- For every date: A/R & A/P, other commercial contracts, loans & deposits, forward sales & purchases. $B = \text{net flow that day}$.
- (Assumed to be) risk-free in FC, so HC value is linear in \tilde{S}_T.

◇ **(Operations \sim :)** future non-contractual cash flows:

- there is no known single contractual FC amount: decisions still need to be taken (by us, by others), and may depend on \tilde{S}_T and on other variables.
- relation between HC cashflow and \tilde{S}_T is noisy (\leftarrow other variables) and—p.t.o.—probably convex in \tilde{S}_T.

◇ **(Translation \sim :)** book values, not cash flows

- Book value of contractual positions in FC
- Book value of foreign subsidiaries whose books are kept in FC.
Exposures: *What* is affected by ΔS_T?

- **(Contractual \sim :)** HC *realized cash flow* from FC-denominated contracts
 - For every date: A/R & A/P, other commercial contracts, loans & deposits, forward sales & purchases. $B = \text{net flow that day}$.
 - (Assumed to be) risk-free in FC, so HC value is *linear in* \tilde{S}_T

- **(Operations \sim :)** future *non-contractual cash flows*:
 - there is no known single contractual FC amount: decisions still need to be taken (by us, by others), and may depend on \tilde{S}_T and on other variables
 - relation between HC cashflow and \tilde{S}_T is *noisy* (\Leftarrow other variables) and—p.t.o.—probably *convex in* \tilde{S}_T

- **(Translation \sim :)** book values, not cash flows
 - Book value of contractual positions in FC
 - Book value of foreign subsidiaries whose books are kept in FC
Example: VW exporting bugs to the US

- current export price, USD 2000, induces a cashflow in DEM that is linear in S_T, ceteris paribus
- If the rate changes enough, VW will change the price ...
 - upward if USD went down, giving up volume to improve shrunken profit margin
 - downward if USD went up, giving up some of the extra margin to increase sales
- Any new pricing policy induces a new cet-par-linear relation with S_T
- Optimizing leads to convexity
Exposures—the Movie

- **CONTRACTUAL**
 - outstanding contracts in FC
 - one-to-one, perfect hedge
 - future S

- **OPERATING**
 - economic conditions, home & abroad
 - indirect, imperfect hedge
 - HC cashflow
 - ? taxes

- **TRANSLATION**
 - accounting rules chosen
 - book values
Outline

The Concepts of Risk and Exposure
Types of Exposure

Contractual Exposure
Limitations of ContrExp Hedging
What about Fuzzy Contracts?
What About Book Values?

Operations Exposure
Operating Exposure Comes in all Shapes & Sizes
The General Linear Hedge
Examples
General Issues in Linear Cross-Hedging

Translation Exposure
Translating Individual FC Items
Translating Entire FC Financials
Closing Remarks
Limitations of ContrExp Hedging

Viticola de Calabria can avoid ContrExp from its monthly sales of Fine Wines to the US—so what?

- **Constant USD price; hedge every invoice**
 - *cet par*, sales volume in USD will remain constant
 - conditional variance falls: every hedge replaces \tilde{S}_T by a known $F_{t,T}$, which is close to S_t
 - even if we hedge each & every A/R, the unconditional risk is unaffected: long-run time series of hedged incomes will remain as variable as the unhedged one
 - So: should we hedge also expected sales?

- **Constant EUR price?**
 - No ContrExp, but
 - USD cost of wine fluctuates, inducing fluctuations in sales volume

So either way there still is Operating Exposure.
Limitations of ContrExp Hedging

Viticola de Calabria *can* avoid ContrExp from its monthly sales of Fine Wines to the US—so what?

◊ **Constant USD price; hedge every invoice**

▷ *cet par*, sales volume in USD will remain constant

▷ **conditional variance falls**: every hedge replaces \tilde{S}_T by a known $F_{t,T}$, which is close to S_t

▷ even if we hedge each & every A/R, the unconditional risk is unaffected: long-run time series of hedged incomes will remain as variable as the unhedged one

▷ So: should we hedge also expected sales?

◊ **Constant EUR price?**

▷ No ContrExp, but

▷ USD cost of wine fluctuates, inducing fluctuations in sales volume

So either way there still is Operating Exposure.
Limitations of ContrExp Hedging

Viticola de Calabria *can* avoid ContrExp from its monthly sales of Fine Wines to the US—so what?

◊ **Constant USD price; hedge every invoice**

 ▶ *cet par*, sales volume in USD will remain constant

 ▶ *conditional variance falls*: every hedge replaces \(\tilde{S}_T \) by a known \(F_{t,T} \), which is close to \(S_t \)

 ▶ even if we hedge each & every A/R, the *unconditional risk is unaffected*: long-run time series of hedged incomes will remain as variable as the unhedged one

 ▶ So: should we hedge also expected sales?

◊ **Constant EUR price?**

 ▶ No ContrExp, but

 ▶ USD cost of wine fluctuates, inducing fluctuations in sales volume

So either way there still is Operating Exposure...
Limitations of ContrExp Hedging

Viticola de Calabria can avoid ContrExp from its monthly sales of Fine Wines to the US—so what?

◊ **Constant USD price; hedge every invoice**

 ▶ *cet par*, sales volume in USD will remain constant
 ▶ conditional variance falls: every hedge replaces \tilde{S}_T by a known $F_{t,T}$, which is close to S_t
 ▶ even if we hedge each & every A/R, the unconditional risk is unaffected: long-run time series of hedged incomes will remain as variable as the unhedged one
 ▶ So: should we hedge also expected sales?

◊ **Constant EUR price?**

 ▶ No ContrExp, but
 ▶ USD cost of wine fluctuates, inducing fluctuations in sales volume

So either way there still is Operating Exposure.
Limitations of ContrExp Hedging

Viticola de Calabria *can* avoid ContrExp from its monthly sales of Fine Wines to the US—so what?

◊ **Constant USD price; hedge every invoice**

 ▶ *cet par*, sales volume in USD will remain constant

 ▶ *conditional variance falls*: every hedge replaces \tilde{S}_T by a known $F_{t,T}$, which is close to S_t

 ▶ even if we hedge each & every A/R, the *unconditional risk is unaffected*: long-run time series of hedged incomes will remain as variable as the unhedged one

 ▶ So: should we hedge also *expected* sales?

◊ **Constant EUR price?**

 ▶ No ContrExp, but

 ▶ USD cost of wine fluctuates, inducing fluctuations in sales volume

So either way there still is Operating Exposure
Contractual E Hedging—where to stop? (1)

- **Where does “risk-free” stop? (1)**
 - cancellation clauses, default risk: no contract is a 100% sure prospect
 - is a memorandum of understanding or an orally expressed intent, a contract?
 - what about highly likely sales/purchases, even if there is no contract/MOU/talks?

- **Hedging of “expected” future sales** brings up two issues—those of operations exposure:
 - non-linearity:
 - use an approximate linear hedge? if so, which approximation?
 “expected” FC sales (or purchases etc)? will NOT do – see below.
 - use a nonlinear hedge (a portfolio of options)?
 - noise: other variables can obscure/upset the likely effect of S_T
 (and other state variables), so hedging can and will be very imperfect
Contractual E Hedging—where to stop? (1)

- **Where does “risk-free” stop? (1)**
 - cancellation clauses, default risk: no contract is a 100% sure prospect
 - is a memorandum of understanding or an orally expressed intent, a contract?
 - what about highly likely sales/purchases, even if there is no contract/MOU/talks?

- **Hedging of “expected” future sales** brings up two issues—those of *operations* exposure:
 - non-linearity:
 - use an approximate linear hedge? if so, which approximation?
 - “expected” FC sales (or purchases etc)? will NOT do – see below.
 - use a nonlinear hedge (a portfolio of options)?
 - noise: other variables can obscure/upset the likely effect of s_T (and other state variables), so hedging can and will be very imperfect
Contractual E Hedging—where to stop? (1)

◊ Where does “risk-free” stop? (1)
 ▶ cancellation clauses, default risk: no contract is a 100% sure prospect
 ▶ is a memorandum of understanding or an orally expressed intent, a contract?
 ▶ what about highly likely sales/purchases, even if there is no contract/MOU/talks?

◊ Hedging of “expected” future sales brings up two issues—those of operations exposure:
 ▶ non-linearity:
 – use an approximate linear hedge? if so, which approximation?
 “expected” FC sales (or purchases etc)? will NOT do – see below.
 – use a nonlinear hedge (a portfolio of options)?
 ▶ noise: other variables can obscure/upset the likely effect of S_T
 (and other state variables), so hedging can and will be very imperfect
Contractual E Hedging—where to stop? (2)

Why look at realized cash flows only?

What about (marked-to-market) book value of e.g. A/R and A/P—i.e. unrealized gains/losses that do reflect genuine changes in value?

if the answer is yes, then what about the value of participations in foreign firms in consolidated A/L.

New issues if we bring in unrealized gains/losses (translation exposure):

- hedging of cash-flows v hedging of PVs:
 - in principle, value hedging is an alternative to cash-flow hedging. Don’t do both.
 - issue 1: how to estimate value changes of individual assets and liabilities
 - issue 2: risk arising from time mismatches between hedge cashflow and exposed asset

- hedging an unlisted company:
 - same problems—only worse
Contractual E Hedging—where to stop? (2)

Why look at realized cash flows only?
What about (marked-to-market) book value of e.g. A/R and A/P—i.e. unrealized gains/losses that do reflect genuine changes in value?

if the answer is yes, then what about the value of participations in foreign firms in consolidated A/L.

New issues if we bring in unrealized gains/losses (translation exposure):

hedging of cash-flows v hedging of PVs:
- in principle, value hedging is an alternative to cash-flow hedging. Don’t do both.
- issue 1: how to estimate value changes of individual assets and liabilities
- issue 2: risk arising from time mismatches between hedge cashflow and exposed asset

hedging an unlisted company:
- same problems—only worse
Why look at realized cash flows only?
What about (marked-to-market) book value of e.g. A/R and A/P—i.e. unrealized gains/losses that do reflect genuine changes in value?

if the answer is yes, then what about the value of participations in foreign firms in consolidated A/L.

New issues if we bring in unrealized gains/losses (translation exposure):

- hedging of cash-flows v hedging of PVs:
 - in principle, value hedging is an alternative to cash-flow hedging. Don’t do both.
 - issue 1: how to estimate value changes of individual assets and liabilities
 - issue 2: risk arising from time mismatches between hedge cashflow and exposed asset

- hedging an unlisted company:
 - same problems—only worse
Contractual E Hedging—where to stop? (2)

◇ Why look at realized cash flows only?
 What about (marked-to-market) book value of e.g. A/R and A/P—i.e. unrealized gains/losses that do reflect genuine changes in value?

◇ if the answer is yes, then what about the value of participations in foreign firms in consolidated A/L.

◇ New issues if we bring in unrealized gains/losses (translation exposure):
 ▶ hedging of cash-flows v hedging of PVs:
 – in principle, value hedging is an alternative to cash-flow hedging. Don’t do both.
 – issue 1: how to estimate value changes of individual assets and liabilities
 – issue 2: risk arising from time mismatches between hedge cashflow and exposed asset
 ▶ hedging an unlisted company:
 – same problems—only worse
Outline

Measuring Exposure to Exchange Rates

P. Sercu, *International Finance: Theory into Practice*

Risk and Exposure: Concepts

Contractual Exposure

Limitations of ContrExp Hedging
What about Fuzzy Contracts?
What About Book Values?

Operations Exposure

Operating Exposure Comes in all Shapes & Sizes

The General Linear Hedge

Examples

General Issues in Linear Cross-Hedging

Translation Exposure

Translating Individual FC Items

Translating Entire FC Financials

Closing Remarks
Introduction

◊ **Multiple sources:**

▷ Exporting firms—whether invoicing in HC or not
▷ Importing firms
▷ “Domestic” firms with foreign competitors
▷ “Domestic” firms with *potential* foreign competitors
▷ Closed-industry firms: via general economic activity

◊ **Typical issues:**

▷ Difficult to identify the relationship between CF and \tilde{S}_T
▷ Conclusions often surprising or counter-intuitive
▷ How to handle nonlinearity and noise?

◊ **Three examples (below):**

▷ (1) pure binomial: pseudo-linear, no noise
▷ (2) two possible values for \tilde{S}_T, and noise added to $E(\tilde{V}_T | S_T)$
▷ (3) multiple possible exchange rates
Introduction

- **Multiple sources:**
 - Exporting firms—whether invoicing in HC or not
 - Importing firms
 - “Domestic” firms with foreign competitors
 - “Domestic” firms with *potential* foreign competitors
 - Closed-industry firms: via general economic activity

- **Typical issues:**
 - Difficult to identify the relationship between CF and \tilde{S}_T
 - Conclusions often surprising or counter-intuitive
 - How to handle nonlinearity and noise?

- **Three examples (below):**
 - (1) pure binomial: pseudo-linear, no noise
 - (2) two possible values for \tilde{S}_T, and noise added to $E(\tilde{V}_T|S_T)$
 - (3) multiple possible exchange rates
Introduction

◊ **Multiple sources:**
 - Exporting firms—whether invoicing in HC or not
 - Importing firms
 - “Domestic” firms with foreign competitors
 - “Domestic” firms with *potential* foreign competitors
 - Closed-industry firms: via general economic activity

◊ **Typical issues:**
 - Difficult to identify the relationship between CF and \tilde{S}_T
 - Conclusions often surprising or counter-intuitive
 - How to handle nonlinearity and noise?

◊ **Three examples (below):**
 - (1) pure binomial: pseudo-linear, no noise
 - (2) two possible values for \tilde{S}_T, and noise added to $E(\tilde{V}_T|S_T)$
 - (3) multiple possible exchange rates
Introduction

◊ **Multiple sources:**
 ▶ Exporting firms—whether invoicing in HC or not
 ▶ Importing firms
 ▶ “Domestic” firms with foreign competitors
 ▶ “Domestic” firms with *potential* foreign competitors
 ▶ Closed-industry firms: via general economic activity

◊ **Typical issues:**
 ▶ Difficult to identify the relationship between CF and \tilde{S}_T
 ▶ Conclusions often surprising or counter-intuitive
 ▶ How to handle nonlinearity and noise?

◊ **Three examples (below):**
 ▶ (1) pure binomial: pseudo-linear, no noise
 ▶ (2) two possible values for \tilde{S}_T, and noise added to $E(\tilde{V}_T|S_T)$
 ▶ (3) multiple possible exchange rates
A Non-linearity: the Option to Export

\[CF_T \]

Export

\[ST \]

Sell at home
An Indirect Exposure via General Activity

Example: your Freedonian Subsidiary

- CF depends on economic conditions: boom/funk (prob 50/50)
- but boom/funk depends on Xrate (120 or 80, prob 50/50)
- modeled as 35% chance of boom when FRK is cheap (>25%)

<table>
<thead>
<tr>
<th></th>
<th>boom: CF* = 150</th>
<th>funk: CF* = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_T = 1.2)</td>
<td>(p = 0.15)</td>
<td>(p = 0.35)</td>
</tr>
<tr>
<td>(S_T = 0.8)</td>
<td>(p = 0.35)</td>
<td>(p = 0.15)</td>
</tr>
<tr>
<td></td>
<td>(p = 0.50)</td>
<td>(p = 0.50)</td>
</tr>
</tbody>
</table>

Exposure?

- \(B = 0? \) (“CF does not depend on Xrate but on business conditions”)
- \(B = 125? \) (“\(E(CF^*) = 125 \)”)
- \(B = 75 \) (the right answer)
An Indirect Exposure via General Activity

Example: your Freedonian Subsidiary

- CF depends on economic conditions: boom/funk (prob 50/50)
- but boom/funk depends on Xrate (120 or 80, prob 50/50)
- modeled as 35% chance of boom when FRK is cheap (>25%)

<table>
<thead>
<tr>
<th></th>
<th>boom: CF* = 150</th>
<th>funk: CF* = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_T = 1.2$</td>
<td>$p = 0.15$</td>
<td>$p = 0.35$</td>
</tr>
<tr>
<td>$S_T = 0.8$</td>
<td>$p = 0.35$</td>
<td>$p = 0.15$</td>
</tr>
<tr>
<td></td>
<td>($p = 0.50$)</td>
<td>($p = 0.50$)</td>
</tr>
</tbody>
</table>

- Exposure?
 - $B = 0$? (“CF does not depend on Xrate but on business conditions”)
 - $B = 125$? (“$E(CF^*) = 125$”)
 - $B = 75$ (the right answer)
An Indirect Exposure via General Activity

Example: Android and the Pound

- Belgium’s Android MetaProducts has a UK marketing affiliate
- 1992. GBP has been at BEF/GBP 60 for 2 years now, despite UK’s high inflation
- Soros: “unsustainable”. HM’s Government may react by
 - devaluing to BEF/GBP 55: $CF^* = 1.80m$
 - start a deflationary policy: $CF^* = 1.55m$

Exposure?

- $B = GBP 1.675m$? (“$= (1.80m+1.55m)/2$”)
- “we have no probability data—but B must be somewhere between 1.80m and 1.55m”?
- $B = −1.2m$? (the right answer)
An Indirect Exposure via General Activity

Example: Android and the Pound

- Belgium’s Android MetaProducts has a UK marketing affiliate
- 1992. GBP has been at BEF/GBP 60 for 2 years now, despite UK’s high inflation
- Soros: “unsustainable”. HM’s Government may react by
 - devaluing to BEF/GBP 55: \(CF^* = 1.80m\)
 - start a deflationary policy: \(CF^* = 1.55m\)

Exposure?

- \(B = \text{GBP} 1.675m? \ (“=(1.80m+1.55m)/2”)\)
- “we have no probability data—but \(B\) must be somewhere between 1.80m and 1.55m”?
- \(B = -1.2m? \) (the right answer)
The General Linear Hedge

Dumas’ regression approach:

◦ **Step 1** Come up with a table containing
 ▶ a column of representative possible \tilde{S}_T’s,
 ▶ a column showing their probabilities, and
 ▶ a column showing the expected CF in HC for each such scenario (\Rightarrow talk to marketing and production people—sorry)

◦ **Step 2** Decompose the (HC) CF’s into
 ▶ a part perfectly correlated with \tilde{S}_T and
 ▶ a part uncorrelated with \tilde{S}_T

 This is done via regression across possible time-T scenarios:

 \[
 \tilde{V}_T = A_{t,T} + B_{t,T}\tilde{S}_T + \tilde{e}_{t,T} = A_{t,T} + \tilde{e}_{t,T} + B_{t,T}\tilde{S}_T.
 \]

 uncorr with \tilde{S}_T \hspace{1cm} linear in \tilde{S}_T

 uncorr with \tilde{S}_T \hspace{1cm} risk-free

◦ **Step 3** Sell forward FC B (i.e. buy $-B$ if $B < 0$)

 \[
 \tilde{V}_T^h = A_{t,T} + \tilde{e}_{t,T} + B_{t,T}\tilde{S}_T + B_{t,T}[F_{t,T} - \tilde{S}_T],
 \]

 \[
 = A_{t,T} + \tilde{e}_{t,T} + B_{t,T}F_{t,T}.
 \]
Dumas’ regression approach:

- **Step 1** Come up with a table containing
 - a column of representative possible \tilde{S}_T’s,
 - a column showing their probabilities, and
 - a column showing the expected CF in HC for each such scenario (\Rightarrow talk to marketing and production people—sorry)

- **Step 2** Decompose the (HC) CF’s into
 - a part perfectly correlated with \tilde{S}_T and
 - a part uncorrelated with \tilde{S}_T

 This is done via regression across possible time-T scenarios:
 \[
 \tilde{V}_T = A_{t,T} + B_{t,T} \tilde{S}_T + \tilde{e}_{t,T} = A_{t,T} + \tilde{e}_{t,T} + B_{t,T} \tilde{S}_T .
 \]
 - uncorr with \tilde{S}_T
 - linear in \tilde{S}_T

- **Step 3** Sell forward FC B (i.e. buy $-B$ if $B < 0$)
 \[
 \tilde{V}^h_T = A_{t,T} + \tilde{e}_{t,T} + B_{t,T} \tilde{S}_T + B_{t,T} [F_{t,T} - \tilde{S}_T],
 \]
 \[
 = A_{t,T} + \tilde{e}_{t,T} + B_{t,T} F_{t,T} .
 \]
 - uncorr with \tilde{S}_T
 - risk-free
The General Linear Hedge

Dumas’ regression approach:

◊ **Step 1** Come up with a table containing
 ▶ a column of representative possible \tilde{S}_T’s,
 ▶ a column showing their probabilities, and
 ▶ a column showing the expected CF in HC for each such scenario (\Rightarrow talk to marketing and production people—sorry)

◊ **Step 2** Decompose the (HC) CF’s into
 ▶ a part perfectly correlated with \tilde{S}_T and
 ▶ a part uncorrelated with \tilde{S}_T

This is done via regression across possible time-T scenarios:

$$\tilde{V}_T = A_{t,T} + B_{t,T}\tilde{S}_T + \tilde{e}_{t,T} = A_{t,T} + \tilde{e}_{t,T} + B_{t,T}\tilde{S}_T.$$
uncorr with \tilde{S}_T linear in \tilde{S}_T

◊ **Step 3** Sell forward FC B (i.e. buy $-B$ if $B < 0$)

$$\tilde{V}_T^h = A_{t,T} + \tilde{e}_{t,T} + B_{t,T}\tilde{S}_T + B_{t,T}[F_{t,T} - \tilde{S}_T],$$

$$= A_{t,T} + \tilde{e}_{t,T} + B_{t,T}F_{t,T}.$$
uncorr with \tilde{S}_T risk-free
Comments on the Regression Approach

- This approach minimizes the remaining variance (the variance of the hedged cash flow)
 - Remaining risk is uncorrelated with \tilde{S}_T, so cannot be picked up by forward contract

- in a pure binomial case: regr coeff collapses to the familiar two-point exposure

- in a binomial case with noise added: collapses to a two-point exposure, using conditional expected cash flows

- in general: provides a linear projection of expected cashflows onto \tilde{S}_T
 - not because we believe that the true CF is linear in \tilde{S}_T, but
 - because the hedge is linear—so we pick the linear approximation that captures as much variation as possible
Comments on the Regression Approach

- This approach minimizes the remaining variance (the variance of the hedged cash flow)
 - Remaining risk is uncorrelated with \tilde{S}_T, so cannot be picked up by forward contract

- in a pure binomial case: regr coeff collapses to the familiar two-point exposure

- in a binomial case with noise added: collapses to a two-point exposure, using conditional expected cash flows

- in general: provides a linear projection of expected cashflows onto \tilde{S}_T
 - not because we believe that the true CF is linear in \tilde{S}_T, but
 - because the hedge is linear—so we pick the linear approximation that captures as much variation as possible
Comments on the Regression Approach

- This approach minimizes the remaining variance (the variance of the hedged cash flow)
 - Remaining risk is uncorrelated with \tilde{S}_T, so cannot be picked up by forward contract

- in a pure binomial case: regr coeff collapses to the familiar two-point exposure

- in a binomial case with noise added: collapses to a two-point exposure, using conditional expected cash flows

- in general: provides a linear projection of expected cashflows onto \tilde{S}_T
 - not because we believe that the true CF is linear in \tilde{S}_T, but
 - because the hedge is linear—so we pick the linear approximation that captures as much variation as possible
Comments on the Regression Approach

- This approach minimizes the remaining variance (the variance of the hedged cash flow)
 - Remaining risk is uncorrelated with \tilde{S}_T, so cannot be picked up by forward contract

- in a pure binomial case: regr coeff collapses to the familiar two-point exposure

- in a binomial case with noise added: collapses to a two-point exposure, using conditional expected cash flows

- in general: provides a linear projection of expected cashflows onto \tilde{S}_T
 - not because we believe that the true CF is linear in \tilde{S}_T, but
 - because the hedge is linear—so we pick the linear approximation that captures as much variation as possible
Example 1: Android and the Pound

CF* = 1.8m or 1.55m, but B = GBP−1.2m!

<table>
<thead>
<tr>
<th>S_1</th>
<th>CF* GBP</th>
<th>CF*S BEF</th>
<th>hedge payoff BEF</th>
<th>CF hedged BEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>1.80m</td>
<td>99m</td>
<td>$1.2m \times (55 - 58) = -3.6m$</td>
<td>$99m - 3.6m = 95.4m$</td>
</tr>
<tr>
<td>60</td>
<td>1.55m</td>
<td>93m</td>
<td>$1.2m \times (60 - 58) = +2.4m$</td>
<td>$93m + 2.4m = 95.4m$</td>
</tr>
</tbody>
</table>

$\Delta S = 5$ \hspace{1cm} $\Delta V = -6m$

$\Rightarrow \Delta V / \Delta S = -6m / 5 = -1.2m$

Let $F = 58$.
Example 2: You and the Crown

Step 1: Identify Exposure: \(B = \text{FDK} \ 75. \)

| \(S_T \) | unhedged cash flows | \(E(\tilde{V}_T|S_T) \) |
|-----------|---------------------|--------------------------|
| \(S_T = 1.2 \) | \(150 \times 1.2 = 180 \) \(p = 0.15 \) \(100 \times 1.2 = 120 \) \(p = 0.35 \) | \(\frac{180 \times 0.15 + 120 \times 0.35}{0.15 + 0.35} = \text{GBP} \ 138 \) |
| \(S_T = 0.8 \) | \(150 \times 0.8 = 120 \) \(p = 0.35 \) \(100 \times 0.8 = 80 \) \(p = 0.15 \) | \(\frac{120 \times 0.35 + 80 \times 0.15}{0.35 + 0.15} = \text{GBP} \ 108 \) |
| \(\Delta S = 0.4 \) | | \(\Delta E(V) = 30 \) \(\Rightarrow B = \frac{30}{0.4} = \text{FDK} \ 75 \) |
Example 2: You and the Crown

Step 2: Verify the Hedge.

Let $F = 0.96$, so hedge pays off either $-75 \times (1.2 - .96) = -18$

or $-75 \times (.80 - .96) = +12$

| S_T | boom: $\text{CF}^* = 150$ | bust: $\text{CF}^* = 100$ | $E(\tilde{V}_T|S_T)$ |
|------|--------------------------|--------------------------|-------------------|
| 1.2 | $150 \times 1.2 = 180$ | $100 \times 1.2 = 120$ | $\frac{180 \times 0.15 + 120 \times 0.35}{0.15 + 0.35} = \text{GBP 138}$ |
| 0.8 | $150 \times 0.8 = 120$ | $100 \times 0.8 = 80$ | $\frac{120 \times 0.35 + 80 \times 0.15}{0.35 + 0.15} = \text{GBP 108}$ |

unhedged cash flows

<table>
<thead>
<tr>
<th>S_T</th>
<th>hedged cash flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>$180 - 18 = 162$</td>
</tr>
<tr>
<td>0.8</td>
<td>$120 + 12 = 132$</td>
</tr>
</tbody>
</table>
Example 3: $E(CF|S)$ non-linear in S

![Graph showing non-linear exposure with S on the x-axis and V(S_T) on the y-axis.]

<table>
<thead>
<tr>
<th>S</th>
<th>0.80</th>
<th>0.82</th>
<th>0.84</th>
<th>0.86</th>
<th>0.88</th>
<th>0.90</th>
<th>0.92</th>
<th>0.94</th>
<th>0.96</th>
<th>0.98</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>42181</td>
<td>42821</td>
<td>43607</td>
<td>44572</td>
<td>45754</td>
<td>47203</td>
<td>48977</td>
<td>51148</td>
<td>53805</td>
<td>57054</td>
<td>61026</td>
</tr>
<tr>
<td>p</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.10</td>
<td>0.16</td>
<td>0.24</td>
<td>0.16</td>
<td>0.10</td>
<td>0.06</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>
General Issues in Linear Cross-Hedging (1)

◇ Getting data

▷ Past data on stock returns? Not recommended:
 - data are at firm level, not project level
 - is recent past representative for future? e.g. real rate changed?
 - poor precision (weak link from dS/S to dV/V)
 - shaky transition from elasticity (dS/S vs dV/V) to exposure (dS vs dV)

▷ Alternative scenarios for future cash-flows
 - GIGO risk, like using accounting costs and mechanical mark-ups

◇ Identifying the Distribution of \tilde{S}_T

▷ Why needed?
 - this is not a random sample, but a constructed population
 - not an issue when the distribution is binomial or relation exactly linear: then one can fit only one possible straight line, regardless of probabilities

▷ How set the parms?
 - get $E(\tilde{S})$ from F and sigma from ISD — and fatten the tails perhaps
General Issues in Linear Cross-Hedging (1)

◆ **Getting data**

▷ **Past data on stock returns? Not recommended:**
 - data are at firm level, not project level
 - is recent past representative for future? e.g. real rate changed?
 - poor precision (← weak link from $\frac{dS}{S}$ to $\frac{dV}{V}$)
 - shaky transition from elasticity ($\frac{dS}{S}$ or $\frac{dV}{V}$) to exposure (dS or dV)

▷ Alternative scenarios for future cash-flows
 - GIGO risk, like using accounting costs and mechanical mark-ups

◆ **Identifying the Distribution of \tilde{S}_T**

▷ **Why needed?**
 - this is not a random sample, but a constructed population
 - not an issue when the distribution is binomial or relation exactly linear: then one can fit only one possible straight line, regardless of probabilities

▷ **How set the parms?**
 - get $E(\tilde{s})$ from F and sigma from ISD — and fatten the tails perhaps
General Issues in Linear Cross-Hedging (1)

◇ **Getting data**

▷ **Past data on stock returns?** Not recommended:

 – data are at firm level, not project level

 – is recent past representative for future? e.g. real rate changed?

 – poor precision (↔ weak link from $\frac{dS}{S}$ to $\frac{dV}{V}$)

 – shaky transition from elasticity ($\frac{dS}{S} \nu \frac{dV}{V}$) to exposure ($dS \nu dV$)

▷ **Alternative scenarios for future cash-flows**

 – GIGO risk, like using accounting costs and mechanical mark-ups

◇ **Identifying the Distribution of \tilde{S}_T**

▷ **Why needed?**

 – this is not a random sample, but a constructed population

 – not an issue when the distribution is binomial or relation exactly linear: then one can fit only one possible straight line, regardless of probabilities

▷ **How set the parms?**

 – get $E(\tilde{s})$ from F and sigma from ISD — and fatten the tails perhaps
General Issues in Linear Cross-Hedging (1)

◇ **Getting data**

▷ **Past data on stock returns?** Not recommended:
 - data are at firm level, not project level
 - is recent past representative for future? e.g. real rate changed?
 - poor precision (← weak link from \(dS/S\) to \(dV/V\))
 - shaky transition from elasticity (\(dS/S \vee dV/V\)) to exposure (\(dS \vee dV\))

▷ **Alternative scenarios for future cash-flows**
 - GIGO risk, like using accounting costs and mechanical mark-ups

◇ **Identifying the Distribution of \(\tilde{S}_T\)**

▷ **Why needed?**
 - this is not a random sample, but a constructed population
 - not an issue when the distribution is binomial or relation exactly linear: then one can fit only one possible straight line, regardless of probabilities

▷ **How set the parms?**
 - get \(E(\tilde{s})\) from \(F\) and sigma from ISD — and fatten the tails perhaps
General Issues in Linear Cross-Hedging (1)

- Getting data
 - Past data on stock returns? Not recommended:
 - data are at firm level, not project level
 - is recent past representative for future? e.g. real rate changed?
 - poor precision (\(\frac{dS}{S}\) to \(\frac{dV}{V}\))
 - shaky transition from elasticity (\(\frac{dS}{S} \times \frac{dV}{V}\)) to exposure (\(dS \times dV\))
 - Alternative scenarios for future cash-flows
 - GIGO risk, like using accounting costs and mechanical mark-ups

- Identifying the Distribution of \(\tilde{S}_T\)
 - Why needed?
 - this is not a random sample, but a constructed population
 - not an issue when the distribution is binomial or relation exactly linear: then one can fit only one possible straight line, regardless of probabilities
 - How set the parms?
 - get \(E(\tilde{S})\) from \(F\) and sigma from ISD — and fatten the tails perhaps
General Issues in Linear Cross-Hedging (2)

- **Linear or non-linear hedges?**
 - **Linear?** OK when nonlinearity not strong
 - **Nonlinear?** (portfolio of options, or dynamic replication)
 - construct piecewise linear approximation—manually or via linear spline regression
 - note changes of slopes: they tell you how many options to add at each kink
 - nice: better fit, and no need to specify probabilities

- **Hedging other risks?**
 - Add commodity futures etc.?
 - Need to run multiple regression of V on S and the other vars
 - Hard to build 3- or 4-dimensional scenarios!
General Issues in Linear Cross-Hedging (2)

◊ **Linear or non-linear hedges?**

▷ **Linear?** OK when nonlinearity not strong

▷ **Nonlinear?** (portfolio of options, or dynamic replication)
 - construct piecewise linear approximation—manually or via linear spline regression
 - note changes of slopes: they tell you how many options to add at each kink
 - nice: better fit, and no need to specify probabilities

◊ **Hedging other risks?**

▷ Add commodity futures etc.?
▷ Need to run multiple regression of V on S and the other vars
▷ Hard to build 3- or 4-dimensional scenarios!
General Issues in Linear Cross-Hedging (2)

- **Linear or non-linear hedges?**
 - **Linear?** OK when nonlinearity not strong
 - **Nonlinear?** (portfolio of options, or dynamic replication)
 - construct piecewise linear approximation—manually or via linear spline regression
 - note changes of slopes: they tell you how many options to add at each kink
 - nice: better fit, and no need to specify probabilities

- **Hedging other risks?**
 - Add commodity futures etc.?
 - Need to run multiple regression of V on S and the other vars
 - Hard to build 3- or 4-dimensional scenarios!
What have we Learnt in this Section?

◊ **Non-intuitive B’s**

Sometimes the exposure turns out to be quite different from what one would guessed—the expected value of CF^*?—and may even have a different sign.

▷ Shows the importance of thinking about exposure: do we actually win or lose if S rises?

▷ If the sign of B differs from that of C^*, then a naive hedge would have increased the risk!

◊ **Linear/Non-linear?**

Regression gives us the variance-minimizing linear hedge. A non-linear hedge might do better, but a forward is a linear tool.

◊ **Probabilities:**

Except for (pseudo)linear cases, one also needs to specify the probabilities (!?).

▷ By replication via options, one has a non-linear hedge and one leaves the assessment of probabilities to the market.
What have we Learnt in this Section?

◊ **Non-intuitive B’s**

Sometimes the exposure turns out to be quite different from what one would guessed—the expected value of CF^*—and may even have a different sign.

- Shows the importance of thinking about exposure: do we actually win or lose if S rises?
- If the sign of B differs from that of C^*, then a naive hedge would have increased the risk!

◊ **Linear/Non-linear?**

Regression gives us the variance-minimizing linear hedge. A non-linear hedge might do better, but a forward is a linear tool.

◊ **Probabilities:**

Except for (pseudo)linear cases, one also needs to specify the probabilities (!?).

- By replication via options, one has a non-linear hedge and one leaves the assessment of probabilities to the market.
What have we Learnt in this Section?

- **Non-intuitive B’s**

 Sometimes the exposure turns out to be quite different from what one would guessed—the expected value of CF*?—and may even have a different sign.

 - Shows the importance of thinking about exposure: do we actually win or lose if S rises?
 - If the sign of B differs from that of C*, then a naive hedge would have increased the risk!

- **Linear/Non-linear?**

 Regression gives us the variance-minimizing linear hedge. A non-linear hedge might do better, but a forward is a linear tool.

- **Probabilities:**

 Except for (pseudo)linear cases, one also needs to specify the probabilities (!?)

 - By replication via options, one has a non-linear hedge and one leaves the assessment of probabilities to the market.
What have we Learnt in this Section?

◊ **Horizon of Hedge?**

A maturity mismatch between exposure and hedge may create liquidity problems. See *Metallgesellschaft*

◊ **Precision issue**

Estimated exposure is not very precise, and the hedge’s R^2 must be low. But the procedure has indirect benefits too:

▷ stimulates awareness of the issue and
▷ advance planning speeds up an operational response.

◊ **Hedging is Just an Aspirine**

Does not solve long-run problems. Still, it’s quite useful to

▷ provide relief from temporary problems and
▷ buy time for an operational response in case of fundamental problems.
What have we Learnt in this Section?

◊ **Horizon of Hedge?**

A maturity mismatch between exposure and hedge may create liquidity problems. See *Metallgesellschaft*

◊ **Precision issue**

Estimated exposure is not very precise, and the hedge’s R^2 must be low. But the procedure has indirect benefits too:

- stimulates awareness of the issue and
- advance planning speeds up an operational response.

◊ **Hedging is Just an Aspirine**

Does not solve long-run problems. Still, it’s quite useful to

- provide relief from temporary problems and
- buy time for an operational response in case of fundamental problems.
What have we Learnt in this Section?

○ **Horizon of Hedge?**
 A maturity mismatch between exposure and hedge may create liquidity problems. See *Metallgesellschaft*

○ **Precision issue**
 Estimated exposure is not very precise, and the hedge’s R^2 must be low. But the procedure has indirect benefits too:
 - stimulates awareness of the issue and
 - advance planning speeds up an operational response.

○ **Hedging is Just an Aspirine**
 Does not solve long-run problems. Still, it’s quite useful to
 - provide relief from temporary problems and
 - buy time for an operational response in case of fundamental problems.
Outline

The Concepts of Risk and Exposure
Types of Exposure

Contractual Exposure
Limitations of ContrExp Hedging
What about Fuzzy Contracts?
What About Book Values?

Operations Exposure
Operating Exposure Comes in all Shapes & Sizes
The General Linear Hedge
Examples
General Issues in Linear Cross-Hedging

Translation Exposure
Translating Individual FC Items
Translating Entire FC Financials
Closing Remarks
Translating Individual FC Items (1)

Keep historic value? Or mark to market (m2m)?

- **A/R, A/P, deposits, loans in FC** USGAAP and IFRS recommend m2m
 - economic logic says: m2m using forward rate, not spot
 - ideally: also discount (as you should for HC counterparts)
 - these are *unrealized* gains/losses

- **Futures**
 - book all m2m inflows from Clearing Corp as Bank Account (A) and gains (L)
 - unrealized? hard to defend
 - FASB: should *not* be shown on P/L iff
 - futures position was designated as hedge of a specific A or L item
 - ... and this hedgee is not m’d2m.

Logic: otherwise the hedging would have increased variability of *reported* profits.
Translating Individual FC Items (1)

Keep historic value? Or mark to market (m2m)?

- **A/R, A/P, deposits, loans in FC** USGAAP and IFRS recommend m2m
 - economic logic says: m2m using forward rate, not spot
 - ideally: also discount (as you should for HC counterparts)
 - these are *unrealized* gains/losses

- **Futures**
 - book all m2m inflows from Clearing Corp as Bank Account (A) and gains (L)
 - unrealized? hard to defend
 - FASB: should *not* be shown on P/L iff
 - futures position was designated as hedge of a specific A or L item
 - ... and this hedgee is not m’d2m.

 Logic: otherwise the hedging would have increased variability of reported profits.
Translating Individual FC Items (1)

Keep historic value? Or mark to market (m2m)?

- A/R, A/P, deposits, loans in FC USGAAP and IFRS recommend m2m
 - economic logic says: m2m using forward rate, not spot
 - ideally: also discount (as you should for HC counterparts)
 - these are *unrealized* gains/losses

- Futures
 - book all m2m inflows from Clearing Corp as Bank Account (A) and gains (L)
 - unrealized? hard to defend
 - FASB: should *not* be shown on P/L iff
 - futures position was designated as hedge of a specific A or L item
 - ... and this hedgee is not m’d2m.
 Logic: otherwise the hedging would have increased variability of *reported* profits.
Translating Individual FC Items (2)

Forwards

Logic: m2m using F. So report $F_{t,T} - F_{t_0,T}$—probably undiscounted, in practice

unrealized

Second issue: how to m2m a participation in a foreign subsidiary.

- should we report unrealized gains on long-term assets, liabilities?
- are real assets exposed?
Translating Individual FC Items (2)

◊ **Forwards**

▷ Logic: m2m using F. So report $F_{t,T} - F_{t,0,T}$—probably undiscounted, in practice

▷ unrealized

Second issue: how to m2m a participation in a foreign subsidiary.

- should we report unrealized gains on *long-term* assets, liabilities?
- are *real* assets exposed?
Introduction

◊ **Why translate foreign financials?**
 ▶ taxation of foreign income
 ▶ consolidated financial statements
 ▶ performance evaluation across subsidiaries
 ▶ bonuses
 ▶ valuation

◊ **How translate foreign financials?**
 ▶ current/non-current
 ▶ temporal
 ▶ monetary/non-monetary
 ▶ current rate
Introduction

Why translate foreign financials?
- taxation of foreign income
- consolidated financial statements
- performance evaluation across subsidiaries
- bonuses
- valuation

How translate foreign financials?
- current/non-current
- temporal
- monetary/non-monetary
- current rate
General principles

Foreign Equity Stakes shown as two parts:
(i) original HC book value, and
(ii) m2m (called equity adjustments)

Example: Maltese investment in Australia:

- AUD 2.10m or, then (at 3.3333), MTL 700,000 15 months ago
- AUD 1.00m or, then (at 3.3113), MTL 302,000 10 months ago
- parent's balance sheet now shows the participation at MTL 1.002m, the historic value (until the next capital increase)

Equity Adjustments?

- determine which assets and liabilities need to be translated at the new rate, which at the original one
- compute, from the translated A&L, Net Worth
- difference between Net Worth of translated items and original AUD 3.1m is equity adjustment
General principles

- **Foreign Equity Stakes** shown as two parts:
 (i) original HC book value, and
 (ii) m2m (called *equity adjustments*)

Example: Maltese investment in Australia:

- AUD 2.10m or, then (at 3.3333), MTL 700,000 15 months ago
- AUD 1.00m or, then (at 3.3113), MTL 302,000 10 months ago
- ⇒ parent’s balance sheet now shows the participation at MTL 1.002m, the historic value (until the next capital increase)

- **Equity Adjustments?**
 - determine which assets and liabilities need to be translated at the new rate, which at the original one
 - compute, from the translated A&L, Net Worth
 - difference between Net Worth of translated items and original AUD 3.1m is equity adjustment
Equity and Equity Adjustments

\[EqAdj = (\text{Translated Assets} - \text{Debt}) - \text{original equity} \]

(1)

depends on method chosen

<table>
<thead>
<tr>
<th>Assets</th>
<th>Value in AUD</th>
<th>values in MTL after translation at 0.333 or 0.300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>curr/noncurr (at .333)</td>
</tr>
<tr>
<td>cash, securities</td>
<td>1,000</td>
<td>2,624</td>
</tr>
<tr>
<td>A/R</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>inventory</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>plant, equipment</td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>Total assets (a)</td>
<td>8,000</td>
<td>2,624</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liabilities</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A/P</td>
<td>500</td>
<td>1,011.5</td>
<td>995.0</td>
<td>984.3</td>
<td>1,080.0</td>
<td>1,032.3</td>
<td>930.0</td>
</tr>
<tr>
<td>Short-term debt</td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term debt</td>
<td>2,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Debt (b)</td>
<td>4,900</td>
<td>1,612.5</td>
<td>1,530</td>
<td>1,631.7</td>
<td>1,470</td>
<td>1,631.7</td>
<td>1,470</td>
</tr>
<tr>
<td>Net worth (a)–(b)</td>
<td>3,100</td>
<td>1,011.5</td>
<td>995.0</td>
<td>984.3</td>
<td>1,080.0</td>
<td>1,032.3</td>
<td>930.0</td>
</tr>
</tbody>
</table>

of which:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Equity</td>
<td>3,100</td>
<td>1002.0</td>
<td>1002.0</td>
<td>1002.0</td>
<td>1002.0</td>
<td>1002.0</td>
<td>1002.0</td>
</tr>
<tr>
<td>Eq Adjustment</td>
<td>—</td>
<td>9.5</td>
<td>-7.0</td>
<td>-17.7</td>
<td>78.0</td>
<td>30.3</td>
<td>-72.0</td>
</tr>
</tbody>
</table>
The Current/Non-current Method

diamond What?

- “When FC devalues, losses on short-term (ST) assets (and gains on ST debt) are quite likely; but greater uncertainties for LT items”
- So we deem LT A&L to be unexposed — keep historic value
- \Rightarrow Exposure = ST assets – ST liabilities = net working capital

diamond Evaluation

- (this) exposure is usually positive; $><<$ economically the sign of the value change isn’t that obvious, a priori, and definitely depends on mkt & environment
- Implicit view of mean-reversion is wrong: S is close to random walk.
- consolidated accounts not compatible with the subsidiary’s accounts ?!?
- mixture of H(istoric) and C(urrent) is confusing
The Current/Non-current Method

◇ **What?**

▷ “When FC devalues, losses on short-term (ST) assets (and gains on ST debt) are quite likely; but greater uncertainties for LT items”

▷ So we deem LT A&L to be unexposed — keep historic value

▷ ⇒ Exposure = ST assets – ST liabilities = net working capital

◇ **Evaluation**

▷ (this) exposure is usually positive; >><< economically the sign of the value change isn’t that obvious, a priori, and definitely depends on mkt & environment

▷ Implicit view of mean-reversion is wrong: S is close to random walk.

▷ consolidated accounts not compatible with the subsidiary’s accounts ?!?!

▷ mixture of H(istoric) and C(urrent) is confusing
Measuring Exposure to Exchange Rates

P. Sercu, *International Finance: Theory into Practice*

Risk and Exposure: Concepts

Contractual Exposure

Operations Exposure

Translation Exposure

Translating Individual FC Items

Translating Entire FC Financials

Closing Remarks

The Current/Non-current Method

Example

<table>
<thead>
<tr>
<th></th>
<th>Value in AUD</th>
<th>values in MTL after translation at 0.333 or 0.300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>curr/noncurr (at .333)</td>
<td>mon/nonmon (at .3)</td>
</tr>
<tr>
<td>Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cash, securities</td>
<td>1,000</td>
<td>333</td>
</tr>
<tr>
<td>A/R</td>
<td>1,000</td>
<td>333</td>
</tr>
<tr>
<td>inventory</td>
<td>1,000</td>
<td>333</td>
</tr>
<tr>
<td>plant, equipment</td>
<td>5,000</td>
<td>1,625</td>
</tr>
<tr>
<td>Total assets (a)</td>
<td>8,000</td>
<td>2,624</td>
</tr>
<tr>
<td>Liabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/P</td>
<td>500</td>
<td>166.5</td>
</tr>
<tr>
<td>Short-term debt</td>
<td>2,000</td>
<td>666.0</td>
</tr>
<tr>
<td>Long-term debt</td>
<td>2,400</td>
<td>780.0</td>
</tr>
<tr>
<td>Total Debt (b)</td>
<td>4,900</td>
<td>1,612.5</td>
</tr>
<tr>
<td>Net worth (a)–(b)</td>
<td>3,100</td>
<td>1,011.5</td>
</tr>
</tbody>
</table>

of which:

- Retained 0 0 0
- Equity 3,100 1002.0 1002.0
- Eq Adjustment — 9.5 −7.0

exposure of net worth

\[
\begin{align*}
0.333 & - 0.300 \\
& = \text{AUD 500} \\
& = \text{nt wrkng cntl}
\end{align*}
\]
the Monetary/Non-monetary Method

◇ What?

▷ ‘PPP: real items are unexposed”; so recognize only gains/losses on monetary items;

▷ ⇒ Exposure = financial assets – debt

◇ Evaluation

▷ (this) exposure is usually negative; >>>< economically etc etc

▷ PPP just says the AUD and MTL values are identical (in the long run), not that (AUD or) MTL value is constant

▷ Empirically, PPP is a joke anyway

▷ consolidated accounts not compatible with the subsidiary’s accounts ?!?

▷ mixture of H(istoric) and C(urrent) is confusing
the Monetary/Non-monetary Method

◊ **What?**
 ▶ ‘PPP: real items are unexposed”; so recognize only gains/losses on monetary items;
 ▶ ⇒ Exposure = financial assets – debt

◊ **Evaluation**
 ▶ (this) exposure is usually negative; >>>< economically etc etc
 ▶ PPP just says the AUD and MTL values are *identical* (in the long run), not that (AUD or) MTL value is *constant*
 ▶ Empirically, PPP is a joke anyway
 ▶ consolidated accounts not compatible with the subsidiary’s accounts ?!?
 ▶ mixture of H(istoric) and C(urrent) is confusing
the Monetary/Non-monetary Method

<table>
<thead>
<tr>
<th>Value in AUD</th>
<th>values in MTL after translation at 0.333 or 0.300</th>
<th>current rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(at .333)</td>
<td>(at .3)</td>
</tr>
<tr>
<td>Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cash, securities</td>
<td>1,000</td>
<td>333</td>
</tr>
<tr>
<td>A/R</td>
<td>1,000</td>
<td>333</td>
</tr>
<tr>
<td>inventory</td>
<td>1,000</td>
<td>333</td>
</tr>
<tr>
<td>plant, equipment</td>
<td>5,000</td>
<td>1,625</td>
</tr>
<tr>
<td>Total assets (a)</td>
<td>8,000</td>
<td>2,624</td>
</tr>
<tr>
<td>Liabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/P</td>
<td>500</td>
<td>166.5</td>
</tr>
<tr>
<td>Short-term debt</td>
<td>2,000</td>
<td>666.0</td>
</tr>
<tr>
<td>Long-term debt</td>
<td>2,400</td>
<td>780.0</td>
</tr>
<tr>
<td>Total Debt (b)</td>
<td>4,900</td>
<td>1,612.5</td>
</tr>
<tr>
<td>Net worth (a)−(b)</td>
<td>3,100</td>
<td>1,011.5</td>
</tr>
<tr>
<td>of which:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retained</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Equity</td>
<td>3,100</td>
<td>1,002.0</td>
</tr>
<tr>
<td>Eq Adjustment</td>
<td>—</td>
<td>9.5</td>
</tr>
<tr>
<td>exposure of net worth</td>
<td>1,011.5−955.0</td>
<td>984.3−1,080.0</td>
</tr>
<tr>
<td>= AUD 500</td>
<td></td>
<td>0.333−0.300</td>
</tr>
<tr>
<td>= nt wrkng cplt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= nt mon. assets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Current-rate Method

◊ **What?**

- Intent: maximal consistency with conventional accounting, and maximum consistency of the consolidated balance sheet with the parent’s and subsidiary’s accounts:
- So translate all assets and debts at the “current” rate
- ⇒ the implied net worth (in MTL) equals net worth $\text{AUD} \times \tilde{S}_T$, so its exposure = net worth in FC (AUD)

◊ **Evaluation**

- (this) exposure is usually positive; $\geq <$ economically etc etc
- Prediction that a 10% devaluation means a 10% loss is economically correct iff host economy is fully (choose:) closed/open ??!
The Current-rate Method

What?

Intent: maximal consistency with conventional accounting, and maximum consistency of the consolidated balance sheet with the parent’s and subsidiary’s accounts:

- So translate all assets and debts at the “current” rate
- ⇒ the implied net worth (in MTL) equals net worth $\text{AUD} \times \tilde{S}_T$, so its exposure = net worth in FC (AUD)

Evaluation

- (this) exposure is usually positive; >>>< economically etc etc
- Prediction that a 10% devaluation means a 10% loss is economically correct iff host economy is fully (choose:) closed/open ??!
The Current-rate Method

Example

<table>
<thead>
<tr>
<th>Assets</th>
<th>Value in AUD</th>
<th>values in MTL after translation at 0.333 or 0.300</th>
<th>current rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(at .333) (at .3)</td>
<td>(at .333) (at .3)</td>
</tr>
<tr>
<td>cash, securities</td>
<td>1,000</td>
<td>333 300</td>
<td>333 300</td>
</tr>
<tr>
<td>inventory</td>
<td>1,000</td>
<td>333 300</td>
<td>333 300</td>
</tr>
<tr>
<td>plant, equipment</td>
<td>5,000</td>
<td>1,625 1,625</td>
<td>1,665 1,500</td>
</tr>
<tr>
<td>Total assets (a)</td>
<td>8,000</td>
<td>2,624 2,525</td>
<td>2,664 2,400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liabilities</th>
<th></th>
<th>values in MTL after translation at 0.333 or 0.300</th>
<th>current rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(at .333) (at .3)</td>
<td>(at .333) (at .3)</td>
</tr>
<tr>
<td>A/R</td>
<td>500</td>
<td>166.5 150</td>
<td>166.5 150</td>
</tr>
<tr>
<td>Short-term debt</td>
<td>2,000</td>
<td>666.0 600</td>
<td>666.0 600</td>
</tr>
<tr>
<td>Long-term debt</td>
<td>2,400</td>
<td>780.0 780.0</td>
<td>799.2 720.0</td>
</tr>
<tr>
<td>Total Debt (b)</td>
<td>4,900</td>
<td>1,612.5 1,530</td>
<td>1,631.7 1,470</td>
</tr>
<tr>
<td>Net worth (a)–(b)</td>
<td>3,100</td>
<td>1,011.5 995.0</td>
<td>1,032.3 930.0</td>
</tr>
</tbody>
</table>

of which:			
Retained	0	0 0	0 0
Equity	3,100	1002.0 1002.0	1002.0 1002.0
Eq Adjustment	—	9.5 − 7.0	30.3 − 72.0

exposure of net worth

\[
\text{exposure of net worth} = \begin{cases}
1011.5—955.0 & 0.333—0.300 \\
0.333—0.300 & = \text{AUD 500} \\
1002.0 & = \text{net working capital} \\
984.3—1080.0 & 0.333—0.300 \\
0.333—0.300 & = \text{AUD—2,900} \\
1002.0 & = \text{net mon. assets} \\
1032.3—930.0 & 0.333—0.300 \\
0.333—0.300 & = \text{AUD 3,100} \\
1002.0 & = \text{net worth}
\end{cases}
\]
Closing Remarks

What Method to Choose?

Many regulating bodies favor the Current Rate method: US (FASB #52, 1982); UK and Canada; IASC #21, 1983 (and hence IFRS): simplicity, consistency.

EC 1983 7th Directive (implemented early 90s), imposes consolidation but does not specify translation method. Firm should simply disclose the method that was used.

Choice of valuation method is as (ir)relevant as choice between, say, LIFO/FIFO or straight-line/accelerated depreciation: it doesn’t affect any real cashflow except for taxes.
Closing Remarks

Relevance?

<table>
<thead>
<tr>
<th>Economic</th>
<th>Accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward looking : future cashflows</td>
<td>FinStatements reflect past decisions</td>
</tr>
<tr>
<td>Involves genuine cashflows</td>
<td>No cash is involved—except possibly taxes</td>
</tr>
<tr>
<td>Relates to changes in the economic value</td>
<td>Changes the firm’s book value</td>
</tr>
<tr>
<td>Depends on the firm’s outstanding contracts, the environment and the firm’s strategic response</td>
<td>Depends on the accounting rules chosen: (i) subsidiary’s own internal rules (e.g., type of depreciation, inventory valuation) and (ii) the translation process itself</td>
</tr>
<tr>
<td>Also exists for firms without foreign subsidiaries or FC FS items</td>
<td>Accounting exposure only exists if there are foreign subsidiaries or FC BS items</td>
</tr>
</tbody>
</table>
What did we Learn in this Section?

- Translation of subsidiaries’ FC financial statements can be done in many ways.
- The result does not affect cashflows except, possibly, through taxes.
- Economic reality and economic exposure are more important than the translation result.