Can we Explain/Predict Exchange Rates?

P. Sercu, *International Finance: Putting Theory to Practice*

Overview

Chapter 11

Do FX Markets Themselves See What’s Coming?
Overview

The Forward Rate as a Black-Box Predictor
Testing the forward rate as a predictor?
Unconditional tests
Time-series Regression Tests
Trading rules
The Forward Bias: Concluding discussion

Forecasts by Specialists
Central Banks
Professional Traders and Forecasters

What to take home?
Why do pros always know all?
Why do we know so little?
Can we still trust/use the fwd rate?
Overview

The Forward Rate as a Black-Box Predictor
Testing the forward rate as a predictor?
Unconditional tests
Time-series Regression Tests
Trading rules
The Forward Bias: Concluding discussion

Forecasts by Specialists
Central Banks
Professional Traders and Forecasters

What to take home?
Why do pros always know all?
Why do we know so little?
Can we still trust/use the fwd rate?
Overview

The Forward Rate as a Black-Box Predictor
Testing the forward rate as a predictor?
Unconditional tests
Time-series Regression Tests
Trading rules
The Forward Bias: Concluding discussion

Forecasts by Specialists
Central Banks
Professional Traders and Forecasters

What to take home?
Why do pros always know all?
Why do we know so little?
Can we still trust/use the fwd rate?
The row to hoe

Models:
– not successful: too streamlined, simplified, inflexible?
– market may be better at predicting, black-box style

We review
– forward rate
– specialized forecasters
– traders
– central banks
The row to hoe

Models:
- not successful: too streamlined, simplified, inflexible?
- market may be better at predicting, black-box style

We review
- forward rate
- specialized forecasters
- traders
- central banks
Can we Explain/Predict Exchange Rates?

P. Sercu, *International Finance: Putting Theory to Practice*

Outline

The Forward Rate as a Black-Box Predictor

Testing the forward rate as a predictor?
Unconditional tests
Time-series Regression Tests
Trading rules
The Forward Bias: Concluding discussion

Forecasts by Specialists
Central Banks
Professional Traders and Forecasters

What to take home?
Why do pros always know all?
Why do we know so little?
Can we still trust/use the fwd rate?
Testing the forward rate as a predictor?

General: \[\frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{\tilde{s},t,T})} = \frac{F_{t,T}}{1 + r_{t,T}} \] (\(=\) PV of FC 1);

\[\Rightarrow E_t(\tilde{S}_T) = F_{t,T} \frac{1 + E_t(\tilde{r}_{\tilde{s},t,T})}{1 + r_{t,T}} \]

\[= F_{t,T} \frac{1 + r_{t,T} + RP_{t,T}}{1 + r_{t,T}} \]

\[\Rightarrow E_t(\tilde{S}_T) = \frac{F_{t,T}}{S_t} \frac{1 + r_{t,T} + RP_{t,T}}{1 + r_{t,T}}; \]

\[\Rightarrow 1 + E_t(\tilde{s}_{t,T}) = \left(1 + FP_{t,T}\right) \frac{1 + r_{t,T} + RP_{t,T}}{1 + r_{t,T}}; \]

\[\Rightarrow E_t(\tilde{s}_{t,T}) = FP_{t,T} \text{ if } RP_{t,T} = 0, \]

\[\approx 1 + FP_{t,T} + RP_{t,T} - 1 \text{ if not.} \]

Most of Lit: \(- RP \approx 0\) (Uncovered Interest Parity—UIP)\n
- to “solve Siegel”, write in terms of logs (“≈”)
Test 1-2: unconditional means tests

Simple test, currency by currency (C. Smith, 1974?)

If $E_t(\epsilon_{t,T}) = 0$,
then $E(\epsilon) = 0 \iff E(FP) = E(\tilde{s})$.

Meta-test across currencies (Backus and Smith, 2002?)
Test 1-2: unconditional means tests

Simple test, currency by currency (C. Smith, 1974?)

If $E_t(\epsilon_{t,T}) = 0$,
then $E(\epsilon) = 0 \iff E(\bar{FP}) = E(\bar{s})$.

Meta-test across currencies (Backus and Smith, 2002?)
Test 1-2: unconditional means tests

Simple test, currency by currency (C. Smith, 1974?)

If $E_t(\epsilon_{t,T}) = 0$,

then $E(\epsilon) = 0 \iff E(\bar{FP}) = E(\bar{s})$.

Meta-test across currencies (Backus and Smith, 2002?)
Test 3-4: conditional tests

Fama / Cumbo-Obstfeld Currency-by-currency regression

Test for \([\gamma_1 = 1 \text{ and } \gamma_0 = 0]\) in

\[
E_t(\tilde{s}_{t+1}) = \gamma_0 + \gamma_1 FP_{t+1}.
\]

Evaluation of trading rules

- carry-trade style test: take clue from interest rates
- take clue from predictable \(E(\tilde{s})\), if any, and test whether \(FP_{t,T}\) picks it up

Below: tests on three data sets

- Lieven De Moor: 5-weekly obs on one-month \(\tilde{s}\) and \(FP_{t,T}\), 17 currencies against the GBP, 1977-1996
- Martina Vandebroek: one-week contracts against the DEM, 23 years
- Fang Liu: 24 years of weekly obs on (overlapping) monthly contracts, ERM rates for DEM
Test 3-4: conditional tests

Fama / Cumbo-Obstfelt Currency-by-currency regression
Test for \([\gamma_1 = 1 \text{ and } \gamma_0 = 0]\) in

\[E_t(\tilde{s}_{t,t+1}) = \gamma_0 + \gamma_1 FP_{t,t+1}. \]

Evaluation of trading rules

- carry-trade style test: take clue from interest rates
- take clue from predictable \(E(\tilde{s})\), if any, and test whether \(FP_{t,T}\) picks it up

Below: tests on three data sets

- Lieven De Moor: 5-weekly obs on one-month \(\tilde{s}\) and \(FP_{t,T}\), 17 currencies against the GBP, 1977-1996
- Martina Vandebroek: one-week contracts against the DEM, 23 years
- Fang Liu: 24 years of weekly obs on (overlapping) monthly contracts, ERM rates for DEM
Can we Explain/Predict Exchange Rates?

P. Sercu, *International Finance: Putting Theory to Practice*

Unconditional tests

Sample 1 (prices for one pound—i.e. GBP as FC)

<table>
<thead>
<tr>
<th>Currency</th>
<th>avg s</th>
<th>avg FP</th>
<th>s-FP</th>
<th>t</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>ats</td>
<td>-14.20</td>
<td>-31.30</td>
<td>17.10</td>
<td>0.83</td>
<td>0.41</td>
</tr>
<tr>
<td>bef</td>
<td>-4.80</td>
<td>-11.20</td>
<td>6.40</td>
<td>0.31</td>
<td>0.75</td>
</tr>
<tr>
<td>cad</td>
<td>-1.60</td>
<td>-8.60</td>
<td>7.00</td>
<td>0.26</td>
<td>0.80</td>
</tr>
<tr>
<td>chf</td>
<td>-19.70</td>
<td>-48.00</td>
<td>28.30</td>
<td>1.20</td>
<td>0.23</td>
</tr>
<tr>
<td>dem</td>
<td>-16.80</td>
<td>-34.80</td>
<td>18.00</td>
<td>0.88</td>
<td>0.38</td>
</tr>
<tr>
<td>dkk</td>
<td>-3.80</td>
<td>0.75</td>
<td>-4.55</td>
<td>-0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>esp</td>
<td>21.50</td>
<td>28.99</td>
<td>-7.49</td>
<td>-0.39</td>
<td>0.70</td>
</tr>
<tr>
<td>frf</td>
<td>6.05</td>
<td>-3.20</td>
<td>9.25</td>
<td>0.45</td>
<td>0.65</td>
</tr>
<tr>
<td>iep</td>
<td>-2.10</td>
<td>5.45</td>
<td>-7.55</td>
<td>-0.43</td>
<td>0.67</td>
</tr>
<tr>
<td>itl</td>
<td>18.90</td>
<td>23.90</td>
<td>-5.00</td>
<td>-0.24</td>
<td>0.81</td>
</tr>
<tr>
<td>jpy</td>
<td>-23.50</td>
<td>-47.20</td>
<td>23.70</td>
<td>0.84</td>
<td>0.40</td>
</tr>
<tr>
<td>nok</td>
<td>-0.60</td>
<td>2.41</td>
<td>-3.01</td>
<td>-0.16</td>
<td>0.87</td>
</tr>
<tr>
<td>nlg</td>
<td>-13.80</td>
<td>-30.20</td>
<td>16.40</td>
<td>0.82</td>
<td>0.41</td>
</tr>
<tr>
<td>pte</td>
<td>56.31</td>
<td>65.35</td>
<td>-9.04</td>
<td>-0.44</td>
<td>0.66</td>
</tr>
<tr>
<td>sek</td>
<td>-0.40</td>
<td>1.57</td>
<td>-1.97</td>
<td>-0.10</td>
<td>0.92</td>
</tr>
<tr>
<td>usd</td>
<td>-14.40</td>
<td>-18.40</td>
<td>4.00</td>
<td>0.14</td>
<td>0.89</td>
</tr>
</tbody>
</table>

\[
s = 3.37 + 0.64 \ FP, \ R^2 = 0.92 \\
(1.47) \quad (0.05)
\]

Key I test the equality of mean monthly exchange-rate changes and one-monthly forward premia against the GBP (quoted as HC/GBP, UK style), 1977-96. All means (and their differences) are expressed as basis points, i.e. percentages of percentages. The plot on the right visualizes the means. Means and t-tests kindly provided by Martina Vandebroek.
Can we Explain/Predict Exchange Rates?

P. Sercu,
International Finance: Putting Theory to Practice

Unconditional tests — comments

Lieven’s data (sample 1)
- t-tests individually insignificant
- meta-R^2 0.92!
- meta-slope 0.62, statistically > 0 and < 1
- intercept 3.4 bp, statistically close to zero

Fang’s data (sample 3)
- meta-R^2 0.42 (weekly)
- meta-slope 0.58, statistically > 0 and < 1

Implication: carry-trade profits

Let $\tilde{s} \approx 0.6 \times (r - r^*) + \tilde{c}$,

\[
\Rightarrow \tilde{s} + r^* - r \approx 0.6 \times (r - r^*) + (r^* - r),
\]

\[
= 0.4 \times (r^* - r),
\]

\[
\begin{cases}
> 0 & \text{when } r^* > r \quad (\text{FC weak}) \\
< 0 & \text{when } r^* < r \quad (\text{FC strong})
\end{cases}
\]
Unconditional tests — comments

Lieven’s data (sample 1)
- t-tests individually insignificant
- meta-R^2 0.92!
- meta-slope 0.62, statistically > 0 and < 1
- intercept 3.4 bp, statistically close to zero

Fang’s data (sample 3)
- meta-R^2 0.42 (weekly)
- meta-slope 0.58, statistically > 0 and < 1

Implication: carry-trade profits

Let $\tilde{s} \approx 0.6 \times (r - r^*) + \tilde{e}$,

$$\Rightarrow \quad \tilde{s} + r^* - r \approx 0.6 \times (r - r^*) + (r^* - r),$$

$$= 0.4 \times (r^* - r),
\begin{cases}
 > 0 & \text{when } r^* > r \quad \text{(FC weak)} \\
 < 0 & \text{when } r^* < r \quad \text{(FC strong)}
\end{cases}$$
Unconditional tests — comments

Lieven’s data (sample 1)
- t-tests individually insignificant
- meta-R^2 0.92!
- meta-slope 0.62, statistically >0 and <1
- intercept 3.4 bp, statistically close to zero

Fang’s data (sample 3)
- meta-R^2 0.42 (weekly)
- meta-slope 0.58, statistically >0 and <1

Implication: carry-trade profits

Let $\tilde{s} \approx 0.6 \times (r - r^*) + \tilde{\epsilon}$,

$\Rightarrow \tilde{s} + r^* - r \approx 0.6 \times (r - r^*) + (r^* - r)$,

$= 0.4 \times (r^* - r), \left\{ \begin{array}{ll}
> 0 & \text{when } r^* > r \quad \text{(FC weak)} \\
< 0 & \text{when } r^* < r \quad \text{(FC strong)}
\end{array} \right.$
What kind of risk premium?

Unconditionally, carry trade has a (hitherto) reliably high Sharpe Ratio – one of the best. What’s the rub?

◊ respectable v shady currencies?

 - Traders afraid to lose reputation.

 “Nobody ever got fired for buying CHF. Getting fired for buying Turkish Lira is much easier to imagine.”

 - Fallen angels in stock market, small-stock effect, liquidity?

◊ ‘picking up pennies in front of a steamroller’ (The Economist)

 - hi-ß currencies drop drastically when panic strikes and traders unwind their carry-trade positions
 ⇒ negative co-skewness (drop when variance is high) (Liu and Sercu, 2010; Christiansen, Ranaldo, and Söderlind, 2010)

 - these panicks are also times where stocks drop
 ⇒ these are conditionally high-beta assets (although on average low-beta) (Ranaldo and Söderlind, 2010; Christiansen, Ranaldo, and Söderlind, 2010)
What kind of risk premium?

Unconditionally, carry trade has a (hitherto) reliably high Sharpe Ratio – one of the best. What’s the rub?

◊ respectable v shady currencies?

 – Traders afraid to lose reputation.

 “Nobody ever got fired for buying CHF. Getting fired for buying Turkish Lira is much easier to imagine.”

 – Fallen angels in stock market, small-stock effect, liquidity?

◊ ‘picking up pennies in front of a steamroller’ (The Economist)

 – hi-ᵢ currencies drop drastically when panic strikes and traders unwind their carry-trade positions

 ⇒ negative co-skewness (drop when variance is high) (Liu and Sercu, 2010; Christiansen, Ranaldo, and Söderlind, 2010)

 – these panicks are also times where stocks drop

 ⇒ these are conditionally high-beta assets (although on average low-beta) (Ranaldo and Söderlind, 2010; Christiansen, Ranaldo, and Söderlind, 2010)
What kind of risk premium?

Unconditionally, carry trade has a (hitherto) reliably high Sharpe Ratio – one of the best. What’s the rub?

◊ respectable v shady currencies?
 – Traders afraid to lose reputation.
 "Nobody ever got fired for buying CHF. Getting fired for buying Turkish Lira is much easier to imagine."
 – Fallen angels in stock market, small-stock effect, liquidity?

◊ ‘picking up pennies in front of a steamroller’ (The Economist)
 – hi-\(r\) currencies drop drastically when panic strikes and traders unwind their carry-trade positions
 ⇒ negative co-skewness (drop when variance is high) (Liu and Sercu, 2010; Christiansen, Ranaldo, and Söderlind, 2010)
 – these panicks are also times where stocks drop
 ⇒ these are conditionally high-beta assets (although on average low-beta) (Ranaldo and Söderlind, 2010; Christiansen, Ranaldo, and Söderlind, 2010)
Time-series Regression Tests

\[\gamma_1 s \text{ in samples 1 and 3} \] (Monthly for GBP and weekly for DEM)

\[E_t(s_{t+1}) = \gamma_0 + \gamma_1 F_{t,t+1} \]

- Monthly observations, one-month contracts for GBP, 1977-96
 - ATS BEF CAD CHF DEM DKK ESP FRF
 -1.52 -1.21 -4.98 -1.24 -1.08 -0.90 0.22 -0.61
 - IEP ITL JPY NOK NLG PTE SEK USD mean
 0.35 -1.38 -5.11 0.01 -1.97 0.71 -2.68 -2.79 -1.50

- Weekly observations, one-month contracts for DEM, 1976-98
 - ATS BEF DKK FRF NLG ITL ESP IEP mean
 0.11 0.25 0.15 0.78 -0.66 0.16 0.91 0.15 0.23

Key Monthly percentage exchange rate changes are regressed on one-month forward premia. The base currency is the GBP, and we use OLS. Table kindly provided by Martina Vandebrrok.

Comments
- slope small or \(< 0\), not 0.6 or 1 – lots of variability (random error?)
- \(R^2\) (not shown) abysmal

Nothing to predict?
- maybe for floating rates, but not for DEM data (sample 2)
Time-series Regression Tests

\(\gamma_1 \)s in samples 1 and 3 (Monthly for GBP and weekly for DEM)

\[
E_t(\tilde{s}_{t,t+1}) = \gamma_0 + \gamma_1 F_{P,t+1}
\]

- Monthly observations, one-month contracts for GBP, 1977-96
 - ATS BEF CAD CHF DEM DKK ESP FRF
 - IEP ITL JPY NOK NLG PTE SEK USD mean
 - ATS BEF CAD CHF DEM DKK ESP FRF
 - IEP ITL JPY NOK NLG PTE SEK SEK USD mean

Key Monthly percentage exchange rate changes are regressed on one-month forward premia. The base currency is the GBP, and we use OLS. Table kindly provided by Martina Vandebroek.

Comments
- slope small or < 0, not 0.6 or 1 – lots of variability (random error?)
- \(R^2 \) (not shown) abysmal

Nothing to predict?
- maybe for floating rates, but not for DEM data (sample 2)
Time-series Regression Tests

γ₁s in samples 1 and 3 (Monthly for GBP and weekly for DEM)

\[E_t(\tilde{s}_{t+1}) = \gamma_0 + \gamma_1 F P_{t,t+1} \]

monthly observations, one-month contracts for GBP, 1977-96

<table>
<thead>
<tr>
<th></th>
<th>ATS</th>
<th>BEF</th>
<th>CAD</th>
<th>CHF</th>
<th>DEM</th>
<th>DKK</th>
<th>ESP</th>
<th>FRF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.52</td>
<td>-1.21</td>
<td>-4.98</td>
<td>-1.24</td>
<td>-1.08</td>
<td>-0.90</td>
<td>0.22</td>
<td>-0.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>IEP</th>
<th>ITL</th>
<th>JPY</th>
<th>NOK</th>
<th>NLG</th>
<th>PTE</th>
<th>SEK</th>
<th>USD</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.35</td>
<td>-1.38</td>
<td>-5.11</td>
<td>0.01</td>
<td>-1.97</td>
<td>0.71</td>
<td>-2.68</td>
<td>-2.79</td>
<td>-1.50</td>
</tr>
</tbody>
</table>

weekly observations, one-month contracts for DEM, 1976-98

<table>
<thead>
<tr>
<th></th>
<th>ATS</th>
<th>BEF</th>
<th>DKK</th>
<th>FRF</th>
<th>NLG</th>
<th>ITL</th>
<th>ESP</th>
<th>IEP</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.11</td>
<td>0.25</td>
<td>0.15</td>
<td>0.78</td>
<td>-0.66</td>
<td>0.16</td>
<td>0.91</td>
<td>0.15</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Key Monthly percentage exchange rate changes are regressed on one-month forward premia. The base currency is the GBP, and we use OLS. Table kindly provided by Martina Vandebroek.

Comments

– slope small or < 0, not 0.6 or 1 – lots of variability (random error?)
– \(R^2 \) (not shown) abysmal

Nothing to predict?

– maybe for floating rates, but not for DEM data (sample 2)
Autocorrelations in sample 2 (weekly, DEM as HC)

\[E_{t-1}(\tilde{s}_t) = \kappa_0 + \rho_1 \tilde{s}_{t-1} \]

<table>
<thead>
<tr>
<th></th>
<th>BEF</th>
<th>DKK</th>
<th>FRF</th>
<th>NLG</th>
<th>CHF</th>
<th>ITL</th>
<th>GBP</th>
<th>JPY</th>
<th>CAD</th>
<th>USD</th>
<th>ERM</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total period (1985/6 - 1998/3), (\sigma(\rho) = 0.039)</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>-0.28</td>
<td>-0.15</td>
<td>-0.17</td>
<td>-0.48</td>
<td>-0.03</td>
<td>0.11</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.22</td>
</tr>
<tr>
<td>GARCH</td>
<td>-0.38</td>
<td>-0.22</td>
<td>-0.11</td>
<td>-0.44</td>
<td>-0.00</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>-0.23</td>
<td>0.01</td>
</tr>
<tr>
<td>Early ERM (tight band, 1985/6 - 1992/8), (\sigma(\rho) = 0.052)</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>-0.36</td>
<td>-0.30</td>
<td>-0.13</td>
<td>-0.51</td>
<td>-0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>-0.26</td>
<td>-0.01</td>
</tr>
<tr>
<td>GARCH</td>
<td>-0.39</td>
<td>-0.28</td>
<td>-0.17</td>
<td>-0.52</td>
<td>0.02</td>
<td>0.12</td>
<td>-0.01</td>
<td>-0.04</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.27</td>
<td>0.01</td>
</tr>
<tr>
<td>Sept 92 - end 93 (turbulence, 1992/9-1993/12), (\sigma(\rho) = 0.12)</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>0.02</td>
<td>0.01</td>
<td>-0.24</td>
<td>-0.45</td>
<td>0.02</td>
<td>0.13</td>
<td>0.04</td>
<td>0.02</td>
<td>-0.08</td>
<td>0.08</td>
<td>-0.13</td>
<td>0.04</td>
</tr>
<tr>
<td>GARCH</td>
<td>-0.21</td>
<td>0.01</td>
<td>-0.26</td>
<td>-0.32</td>
<td>-0.00</td>
<td>0.13</td>
<td>0.07</td>
<td>0.08</td>
<td>-0.21</td>
<td>0.04</td>
<td>-0.16</td>
<td>-0.02</td>
</tr>
<tr>
<td>Late ERM (wide band, 1994/1 - 1998/3), (\sigma(\rho) = 0.066)</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>-0.39</td>
<td>-0.09</td>
<td>-0.17</td>
<td>-0.26</td>
<td>-0.08</td>
<td>0.11</td>
<td>-0.03</td>
<td>-0.13</td>
<td>0.09</td>
<td>-0.01</td>
<td>-0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>GARCH</td>
<td>-0.42</td>
<td>-0.18</td>
<td>-0.16</td>
<td>-0.26</td>
<td>-0.05</td>
<td>-0.08</td>
<td>-0.03</td>
<td>-0.13</td>
<td>0.11</td>
<td>-0.01</td>
<td>-0.21</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

Comments
- negative autocorrelation for ERM rates—how else could it be?
- no autocorrelation for floaters
- well-behaved estimates
Autocorrelations in sample 2 (weekly, DEM as HC)

\[E_{t-1}(\tilde{s}_t) = \kappa_0 + \rho_1 \tilde{s}_{t-1} \]

<table>
<thead>
<tr>
<th>BEF</th>
<th>DKK</th>
<th>FRF</th>
<th>NLG</th>
<th>CHF</th>
<th>ITL</th>
<th>GBP</th>
<th>JPY</th>
<th>CAD</th>
<th>USD</th>
<th>averages</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>-0.28</td>
<td>-0.15</td>
<td>-0.17</td>
<td>-0.48</td>
<td>-0.03</td>
<td>0.11</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>GARCH</td>
<td>-0.38</td>
<td>-0.22</td>
<td>-0.11</td>
<td>-0.44</td>
<td>-0.00</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- Early ERM (tight band, 1985/6 - 1992/8), \(\sigma(\rho) = 0.052 \)
- OLS: -0.36, -0.30, -0.13, -0.51, -0.03, 0.03, 0.00, -0.03, 0.03, 0.01
- GARCH: -0.39, -0.28, -0.17, -0.52, 0.02, 0.12, -0.01, -0.04, 0.00, -0.01

- Sept 92 - end 93 (turbulence, 1992/9-1993/12), \(\sigma(\rho) = 0.12 \)
- OLS: 0.02, 0.01, -0.24, -0.45, 0.02, 0.13, 0.04, 0.02, -0.08, 0.08
- GARCH: -0.21, 0.01, -0.26, -0.32, -0.00, 0.13, 0.07, 0.08, -0.21, 0.04

- Late ERM (wide band, 1994/1 - 1998/3), \(\sigma(\rho) = 0.066 \)
- OLS: -0.39, -0.09, -0.17, -0.26, -0.08, 0.11, -0.03, -0.13, 0.09, -0.01
- GARCH: -0.42, -0.18, -0.16, -0.26, -0.05, -0.08, -0.03, -0.13, 0.11, -0.01

Comments

- **negative autocorrelation** for ERM rates—how else could it be?
- no autocorrelation for floaters
- well-behaved estimates
But $FP_{t,T}$ does not predict change! (1)

$$E_t(s_{t+1}) = \gamma_0 + \gamma_1 FP_{t+1} + \kappa_1 st_{-1,t} + \tilde{e}_{t,t+1}.$$

Panel A: COF slope coefficient (γ_1)

<table>
<thead>
<tr>
<th></th>
<th>BEF</th>
<th>NLG</th>
<th>DKK</th>
<th>FRF</th>
<th>ITL</th>
<th>CHF</th>
<th>GBP</th>
<th>JPY</th>
<th>CAD</th>
<th>USD</th>
<th>central values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg</td>
</tr>
<tr>
<td>OLS</td>
<td>-0.05</td>
<td>-0.18</td>
<td>0.38</td>
<td>0.69</td>
<td>1.17</td>
<td>-0.33</td>
<td>2.07</td>
<td>0.30</td>
<td>0.26</td>
<td>2.75</td>
<td>0.71</td>
</tr>
<tr>
<td>FIML</td>
<td>-0.34</td>
<td>-0.36</td>
<td>0.17</td>
<td>0.46</td>
<td>0.32</td>
<td>-0.33</td>
<td>0.97</td>
<td>-1.06</td>
<td>-0.48</td>
<td>1.95</td>
<td>0.13</td>
</tr>
<tr>
<td>GMM</td>
<td>-0.11</td>
<td>-0.59</td>
<td>0.27</td>
<td>0.38</td>
<td>0.53</td>
<td>-0.38</td>
<td>1.57</td>
<td>-0.56</td>
<td>0.10</td>
<td>2.08</td>
<td>0.33</td>
</tr>
</tbody>
</table>

A1. Total period (1985/6 - 1998/3)

A2. Early ERM (tight band, 1985/6 - 1992/8)

OLS -0.37 -0.33 -0.21 1.71 0.38 -0.44 0.80 -3.96 -1.90 -0.42 -0.47 -0.35
FIML -0.58 -0.67 -0.28 1.49 0.17 -0.28 -0.62 -4.42 -1.48 -0.96 -0.76 -0.60
GMM -0.46 -0.75 -0.17 1.33 0.28 -0.41 0.93 -4.52 -1.37 0.30 -0.49 -0.29

OLS 1.74 2.48 0.89 -2.42 9.31 -12.53 3.44 57.92 9.06 63.30 13.32 2.96
FIML 0.57 -0.62 -0.04 -3.78 7.13 -3.81 5.35 19.29 -5.43 12.10 3.08 0.27

A4. Late ERM (wide band, 1994/1 - 1998/3)

OLS -1.11 -1.55 -4.31 -2.35 -5.52 -3.90 -7.23 -19.06 -2.66 -7.20 -5.49 -4.10
FIML -2.18 -1.85 -4.18 -2.22 -4.15 -2.71 -1.74 -23.64 -5.08 0.31 -4.74 -2.47
GMM 0.07 -1.63 -4.28 -2.12 -5.30 -3.57 -6.80 -17.82 -2.58 -6.79 -5.08 -3.92

Comments

- horribly unstable slopes across currencies, periods
- even central estimates total period vary from 0.71 to –0.08
But $FP_{t,T}$ does not predict change! (1)

$$E_t(\hat{s}_{t+1}) = \gamma_0 + \gamma_1 FP_{t+1} + \kappa_1 s_{t-1,t} + \tilde{\epsilon}_{t+1}.$$

Panel A: COF slope coefficient (γ_1)

<table>
<thead>
<tr>
<th>coefficients for individual currencies</th>
<th>BEF</th>
<th>NLG</th>
<th>DKK</th>
<th>FRF</th>
<th>ITL</th>
<th>CHF</th>
<th>GBP</th>
<th>JPY</th>
<th>CAD</th>
<th>USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>-0.05</td>
<td>-0.18</td>
<td>0.38</td>
<td>0.69</td>
<td>1.17</td>
<td>-0.33</td>
<td>2.07</td>
<td>0.30</td>
<td>0.26</td>
<td>2.75</td>
</tr>
<tr>
<td>FIML</td>
<td>-0.34</td>
<td>-0.36</td>
<td>0.17</td>
<td>0.46</td>
<td>0.32</td>
<td>-0.33</td>
<td>0.97</td>
<td>-1.06</td>
<td>-0.48</td>
<td>1.95</td>
</tr>
<tr>
<td>GMM</td>
<td>-0.11</td>
<td>-0.59</td>
<td>0.27</td>
<td>0.38</td>
<td>0.53</td>
<td>-0.38</td>
<td>1.57</td>
<td>-0.56</td>
<td>0.10</td>
<td>2.08</td>
</tr>
</tbody>
</table>

A1. Total period (1985/6 - 1998/3)

A2. Early ERM (tight band, 1985/6 - 1992/8)

A4. Late ERM (wide band, 1994/1 - 1998/3)

<table>
<thead>
<tr>
<th>central values</th>
<th>avg</th>
<th>med</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>0.71</td>
<td>0.34</td>
</tr>
<tr>
<td>FIML</td>
<td>0.13</td>
<td>-0.08</td>
</tr>
<tr>
<td>GMM</td>
<td>0.33</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>central values</th>
<th>avg</th>
<th>med</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>0.47</td>
<td>-0.35</td>
</tr>
<tr>
<td>FIML</td>
<td>0.76</td>
<td>-0.60</td>
</tr>
<tr>
<td>GMM</td>
<td>0.49</td>
<td>-0.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>central values</th>
<th>avg</th>
<th>med</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>13.32</td>
<td>2.96</td>
</tr>
<tr>
<td>FIML</td>
<td>3.08</td>
<td>0.27</td>
</tr>
<tr>
<td>GMM</td>
<td>5.49</td>
<td>-4.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>central values</th>
<th>avg</th>
<th>med</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>-5.08</td>
<td>-3.92</td>
</tr>
<tr>
<td>FIML</td>
<td>-4.74</td>
<td>-2.47</td>
</tr>
<tr>
<td>GMM</td>
<td>-5.08</td>
<td>-3.92</td>
</tr>
</tbody>
</table>

Comments

– horribly unstable slopes across currencies, periods
– even central estimates total period vary from 0.71 to −0.08
But $FP_{t,T}$ does not predict change! (2)

$$E_t(\delta_{t,t+1}) = \gamma_0 + \gamma_1 FP_{t,t+1} + \kappa_1 s_{t-1,t} + \epsilon_{t,t+1}.$$

Panel B: autoregression coefficient (κ_1)

<table>
<thead>
<tr>
<th></th>
<th>BEF</th>
<th>NLG</th>
<th>DKK</th>
<th>FRF</th>
<th>ITL</th>
<th>CHF</th>
<th>GBP</th>
<th>JPY</th>
<th>CAD</th>
<th>USD</th>
<th>averages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>*-0.28</td>
<td>*-0.48</td>
<td>*-0.16</td>
<td>*-0.18</td>
<td>*0.10</td>
<td>-0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>FIML</td>
<td>*-0.29</td>
<td>*-0.43</td>
<td>*-0.17</td>
<td>*-0.21</td>
<td>0.08</td>
<td>-0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>GMM</td>
<td>*-0.28</td>
<td>*-0.45</td>
<td>*-0.16</td>
<td>*-0.17</td>
<td>0.09</td>
<td>-0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>B2. Early ERM (tight band, 1985/6 - 1992/8), $\sigma(\kappa_2) = 0.052$</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>*-0.35</td>
<td>*-0.51</td>
<td>*-0.30</td>
<td>*-0.14</td>
<td>-0.03</td>
<td>-0.03</td>
<td>0.00</td>
<td>-0.05</td>
<td>0.03</td>
<td>-0.01</td>
<td>-0.27</td>
</tr>
<tr>
<td>FIML</td>
<td>*-0.35</td>
<td>*-0.46</td>
<td>*-0.29</td>
<td>*-0.12</td>
<td>0.01</td>
<td>-0.03</td>
<td>0.04</td>
<td>-0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>-0.24</td>
</tr>
<tr>
<td>GMM</td>
<td>*-0.33</td>
<td>*-0.48</td>
<td>*-0.29</td>
<td>*-0.14</td>
<td>-0.03</td>
<td>-0.04</td>
<td>0.02</td>
<td>-0.03</td>
<td>0.04</td>
<td>0.02</td>
<td>-0.26</td>
</tr>
<tr>
<td>B3. Sept 92 end 93 (turbulence, 1992/9 - 1993/12), $\sigma(\kappa_2) = 0.12$</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>0.01</td>
<td>*-0.44</td>
<td>-0.05</td>
<td>-0.22</td>
<td>-0.09</td>
<td>-0.03</td>
<td>0.06</td>
<td>-0.12</td>
<td>0.03</td>
<td>0.08</td>
<td>-0.16</td>
</tr>
<tr>
<td>FIML</td>
<td>-0.13</td>
<td>*-0.39</td>
<td>-0.09</td>
<td>*-0.31</td>
<td>-0.06</td>
<td>0.05</td>
<td>0.08</td>
<td>-0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>-0.20</td>
</tr>
<tr>
<td>B4. Late ERM (wide band, 1994/1 - 1998/3), $\sigma(\kappa_2) = 0.066$</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>*-0.39</td>
<td>*-0.27</td>
<td>-0.14</td>
<td>*-0.18</td>
<td>0.09</td>
<td>-0.09</td>
<td>-0.05</td>
<td>0.09</td>
<td>-0.14</td>
<td>-0.02</td>
<td>-0.18</td>
</tr>
<tr>
<td>FIML</td>
<td>*-0.37</td>
<td>*-0.25</td>
<td>*-0.16</td>
<td>*-0.16</td>
<td>0.05</td>
<td>-0.10</td>
<td>-0.02</td>
<td>0.07</td>
<td>-0.09</td>
<td>0.01</td>
<td>-0.18</td>
</tr>
<tr>
<td>GMM</td>
<td>*-0.39</td>
<td>*-0.26</td>
<td>*-0.13</td>
<td>*-0.18</td>
<td>0.09</td>
<td>-0.09</td>
<td>-0.05</td>
<td>0.08</td>
<td>-0.13</td>
<td>-0.02</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

Comments
- nothing of the predictability was picked up by $FP_{t,T}$!
But $FP_{t,T}$ does not predict change! (2)

$$E_t(\delta_{t,t+1}) = \gamma_0 + \gamma_1 FP_{t,t+1} + \kappa_1 s_{t-1,t} + \epsilon_{t,t+1}.$$

Panel B: autoregression coefficient (κ_1)

<table>
<thead>
<tr>
<th></th>
<th>BEF</th>
<th>NLG</th>
<th>DKK</th>
<th>FRF</th>
<th>ITL</th>
<th>CHF</th>
<th>GBP</th>
<th>JPY</th>
<th>CAD</th>
<th>USD</th>
<th>averages</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>*-0.28</td>
<td>*-0.48</td>
<td>*-0.16</td>
<td>*-0.18</td>
<td>*0.10</td>
<td>-0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.02</td>
<td>-0.20</td>
</tr>
<tr>
<td>FIML</td>
<td>*-0.29</td>
<td>*-0.43</td>
<td>*-0.17</td>
<td>*-0.21</td>
<td>0.08</td>
<td>-0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.02</td>
<td>-0.20</td>
</tr>
<tr>
<td>GMM</td>
<td>*-0.28</td>
<td>*-0.45</td>
<td>*-0.16</td>
<td>*-0.17</td>
<td>0.09</td>
<td>-0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.02</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

B1. Total period (1985/6 - 1998/4), $\sigma(\kappa_2) = 0.039$

B2. Early ERM (tight band, 1985/6 - 1992/8), $\sigma(\kappa_2) = 0.052$

B3. Sept 92 end 93 (turbulence, 1992/9 - 1993/12), $\sigma(\kappa_2) = 0.12$

B4. Late ERM (wide band, 1994/1 - 1998/3), $\sigma(\kappa_2) = 0.066$

Comments
– nothing of the predictability was picked up by $FP_{t,T}$!
Concluding comments

– The above are not fluke databases
 Froot and Thaler, over seventy-five studies, find a meta-estimate for slope of –0.8.

– Implication 1: dynamic carry trade
 When a currency’s $FP_{t,T}$ is unusually high, expected carry trade profits are higher too (as long as there is no panic)

– Implication 2: inference about missing variable (RP?)
 – $\text{cov}(\text{RP},FP)$ is negative: $\Delta \text{RP} \pm$ neutralizes ΔFP;
 – $\text{cov}(\text{RP},FP) > \text{var}(FP)$; and
 – $\text{var}(\text{RP}) > \text{var}(E(\tilde{s}))$.
 (Fama moment conditions)
Trading Rules (1): the Carry Trade

- Robinson and Warburton (1980), and later Bell and Kettle (1983)

Compare yield on GBP to return if one invests in currency with

1. the highest nominal interest rate.
2. the highest real interest rate (CPI),
3. the highest real interest rate (WPI),
4. the highest real interest rate (ULC)

Make pots of paper money

- Thomas (1986): buy futures with negative basis ($F < S$)
- Taylor (1992): trade on basis moving avges
- Deutsche Bank: Currency Harvest Fund: buy 3 highest-yield currencies, sell 3 lowest-yield
Chartism is popular. Lui and Mole (1998)’s survey:

“(…) over 85% of respondents rely on both fundamental and technical analyses for predicting future rate movements at different time horizons. At shorter horizons, there exists a skew towards reliance on technical analysis as opposed to fundamental analysis, but the skew becomes steadily reversed as the length of horizon considered is extended. Technical analysis is considered slightly more useful in forecasting trends than fundamental analysis, but significantly more useful in predicting turning points. Interest rate-related news is found to be a relatively important fundamental factor in exchange rate forecasting, while moving average and/or other trend-following systems are the most useful technical technique.”

- Sweeney (1986, 1988): statistically significant returns, before costs, from Alexander filter
- Gernaey (1990) finds opposite
- Curcio and Goodhart (1991) chartist software does not improve trading—and students do as well as pros
– many others claim success—incl Sercu et al. (2006) on ERM
– conclusions?

 – publication bias: you can’t sell a paper saying “rule X does not work”
 – fishing bias: 1000 people do nothing but fishing for successful rules (in-sample)

– but may really be marginally profitable: mkts cannot be 100% efficient (Grossman and Stiglitz, 1980)
– Still, most CFOs don’t bother: they have better things to do
Trading Rules (2): Technical cont’d

– many others claim success—incl Sercu et al. (2006) on ERM
 – conclusions?

 – publication bias: you can’t sell a paper saying “rule X does not work”
 – fishing bias: 1000 people do nothing but fishing for successful rules (in-sample)
 – but may really be marginally profitable: mkts cannot be 100% efficient (Grossman and Stiglitz, 1980)
 – Still, most CFOs don’t bother: they have better things to do
What’s causing the bias?

An orthodox risk premium?

◊ **CAPM and beta:**
 – traditional unconditional beta: failure
 – conditional on things being panicky: yes

◊ **Beja pricing model** (cov with growth in marginal utility)
 Hollifield and Uppal (1997): GE model (Dumas (1992) and Uppal (1993)): RP tiny

◊ **Bansal (1997):** “CCAPM predicts RP quadratic in FP”. Works in *his* sample

But: technical trading is short-term. Can risk change so fast, from day to day?
What’s causing the bias?

An orthodox risk premium?

◊ **CAPM and beta:**
 - traditional unconditional beta: failure
 - conditional on things being panicky: yes

◊ **Beja pricing model** (cov with growth in marginal utility)
 Hollifield and Uppal (1997): GE model (Dumas (1992) and Uppal (1993)): RP tiny

◊ **Bansal (1997):** “CCAPM predicts \(R_P \) quadratic in \(F_P \).”
 Works in *his* sample

But: technical trading is short-term. Can risk change so fast, from day to day?
What’s causing the bias?

An orthodox risk premium?

- CAPM and beta:
 - traditional unconditional beta: failure
 - conditional on things being panicky: yes

- Beja pricing model (cov with growth in marginal utility)
 Hollifield and Uppal (1997): GE model (Dumas (1992) and Uppal (1993)): RP tiny

But: technical trading is short-term. Can risk change so fast, from day to day?
What’s causing the bias?

An orthodox risk premium?

- **CAPM and beta:**
 - traditional unconditional beta: failure
 - conditional on things being panicky: yes

- **Beja pricing model** (cov with growth in marginal utility)
 Hollifield and Uppal (1997): GE model (Dumas (1992) and Uppal (1993)): RP tiny

- **Bansal (1997):** “CCAPM predicts RP quadratic in FP”. Works in *his* sample

But: technical trading is short-term. Can risk change so fast, from day to day?
What’s causing the bias? cont’d

Markets need time to learn about new policies—Lewis (1989)
– but: all the time?

Dark Matter Theories: Peso risks, overreaction, career risks

1. Peso risk
– small probability of big event — easily missed by statistician
– negative γ_1?
– fluctuations in peso risk affect both $S(\downarrow)$ and $FP(\downarrow)$,
– but then S picks up again, denying F’s forecast
– but: what’s the big event for floating currencies??
– untestable — indistinguishable from ‘seeing phantoms’

2. Safe harbor currencies (Liu and Sercu 2009, 2010)
– USD, DEM, CHF look respectable, safe, liquid, familiar
– other currencies need risk premium that
 – goes up after risk signal (drop in S, divergence, sigma,...),
 – goes up when r^* is high
What’s causing the bias? cont’d

Markets need time to learn about new policies—Lewis (1989)
– but: all the time?

Dark Matter Theories: Peso risks, overreaction, career risks

1. Peso risk
– small probability of big event — easily missed by statistician
– negative γ_1?
 – fluctuations in peso risk affect both $S(\downarrow)$ and $FP(\downarrow)$,
 – but then S picks up again, denying F’s forecast
– but: what’s the big event for floating currencies??
– untestable — indistinguishable from ‘seeing phantoms’

2. Safe harbor currencies (Liu and Sercu 2009, 2010)
– USD, DEM, CHF look respectable, safe, liquid, familiar
– other currencies need risk premium that
 – goes up after risk signal (drop in S, divergence, sigma,...),
 – goes up when r^* is high
What’s causing the bias? cont’d

Markets need time to learn about new policies—Lewis (1989)

– but: all the time?

Dark Matter Theories: Peso risks, overreaction, career risks

1. **Peso risk**

 – small probability of big event — easily missed by statistician

 – negative γ_1?

 – fluctuations in peso risk affect both $S(\downarrow)$ and $FP(\downarrow)$,

 – but then S picks up again, denying F’s forecast

 – but: what’s the big event for floating currencies??

 – untestable — indistinguishible from ‘seeing phantoms’

2. **Safe harbor currencies** (Liu and Sercu 2009, 2010)

 – USD, DEM, CHF look respectable, safe, liquid, familiar

 – other currencies need risk premium that

 – goes up after risk signal (drop in S, divergence, sigma,...),

 – goes up when r^* is high
What’s causing the bias? cont’d

Panicking steamroller effect
– whenever general panic, risky currencies plummet

“There’s nothing to predict, or profits are way to risky”
– assume $FP = -0.25\%$ 90d; so if $\gamma = -1$ then $E(\tilde{r} - r) = 0.5\%$
– but std $10\%\sqrt{1/4}$ so choose: $997.5 \pm 1005 \pm 2 \times 50$??
– but (Sercu et al., 2005) ERM game was low risk, hi SharpeRatio

Transaction costs; “extreme support” (Huisman et al, 1998)
– usually, $E(\tilde{s})$ small and fuzzy. Imperfections clog up picture
– but occasionally, $E(\tilde{s})$ is big $\rightarrow FP$ does react
– so: look at subsample with big FPs, and find higher beta
– but: r, r^* sticky while S isn’t: why doesn’t S change iso FP?
– hi FP may reflect hi RP instead of hi $E()$
– I have not been able to replicate in similar and other data
What’s causing the bias? cont’d

Panicking steamroller effect
– whenever general panic, risky currencies plummet

“There’s nothing to predict, or profits are way to risky”
– assume FP = −.25% 90d; so if $\gamma = -1$ then $E(\tilde{r} - r) = .5\%$
– but std $10\% \sqrt{1/4}$ so choose: $997.5 \text{ v } 1005 \pm 2 \times 50??$
– but (Sercu et al., 2005) ERM game was low risk, hi SharpeRatio

Transaction costs; “extreme support” (Huisman et al, 1998)
– usually, $E(\tilde{s})$ small and fuzzy. Imperfections clog up picture
– but occasionally, $E(\tilde{s})$ is big → FP does react
– so: look at subsample with big FPs, and find higher beta
– but: r, r^* sticky while S isn’t: why doesn’t S change iso FP?
– hi FP may reflect hi RP instead of hi $E()$
– I have not been able to replicate in similar and other data
What’s causing the bias? cont’d

Panicking steamroller effect
– whenever general panic, risky currencies plummet

“There’s nothing to predict, or profits are way too risky”
– assume FP = −.25% 90d; so if $\gamma = -1$ then $E(\tilde{r} - r) = .5\%$
– but std $10\% \sqrt{1/4}$ so choose: $997.5 \, \text{v} \, 1005 \pm 2 \times 50$??
– but (Sercu et al., 2005) ERM game was low risk, hi SharpeRatio

Transaction costs; “extreme support” (Huisman et al, 1998)
– usually, $E(\tilde{s})$ small and fuzzy. Imperfections clog up picture
– but occasionally, $E(\tilde{s})$ is big $\rightarrow FP$ does react
– so: look at subsample with big FPs, and find higher beta
– but: r, r^* sticky while S isn’t: why doesn’t S change iso FP?
– hi FP may reflect hi RP instead of hi $E()$
– I have not been able to replicate in similar and other data
What’s causing the bias? cont’d

Panicking steamroller effect
– whenever general panic, risky currencies plummet

“There’s nothing to predict, or profits are way to risky”
– assume FP = −.25% 90d; so if \(\gamma = -1 \) then \(E(\tilde{r} - r) = .5\% \)
– but std 10% \(\sqrt{1/4} \) so choose: 997.5 v 1005 ± 2 × 50??
– but (Sercu et al., 2005) ERM game was low risk, hi SharpeRatio

Transaction costs; “extreme support” (Huisman et al, 1998)
– usually, \(E(\tilde{s}) \) small and fuzzy. Imperfections clog up picture
– but occasionally, \(E(\tilde{s}) \) is big → FP does react
– so: look at subsample with big FP\(_{s}\), and find higher beta
– but: \(r, r^* \) sticky while \(S \) isn’t: why doesn’t \(S \) change iso FP?
– hi FP may reflect hi RP instead of hi \(E() \)
– I have not been able to replicate in similar and other data
What’s causing the bias? cont’d

Statistical flaws in the tests
– \(FP \) close to unit root \(\Rightarrow \) \(SE(\gamma_1) \gg \) what SPSS tells us
– but: doesn’t explain why \(\gamma_1 \) is low on average

Schizofrenic markets?
– portfolio managers are really marginal players, in FX mkts
– traders dominate, and play intraday, so ignore interest
– so \(E(\tilde{s}) \approx 0 \) all the time?
– if so, \(\Delta FP \) reflects \(\Delta RP \) or so, and \(\gamma_1 = 0 \).
Outline

Can we Explain/Predict Exchange Rates?

P. Sercu,
International Finance: Putting Theory to Practice

- F as predictor
- Forecasts by Specialists
 - Central Banks
 - Professional Traders and Forecasters

What to take home?
- Why do pros always know all?
- Why do we know so little?
- Can we still trust/use the fwd rate?

The Forward Rate as a Black-Box Predictor

Testing the forward rate as a predictor?
- Unconditional tests
- Time-series Regression Tests
- Trading rules
- The Forward Bias: Concluding discussion

Forecasts by Specialists

Central Banks
Professional Traders and Forecasters

What to take home?
Should we watch Central Banks’ trades?

- CBs claim to “smooth out unnecessary peaks/troughs without going against fundamental trends”
- **Friedman**: “show me the money”:
 - claim requires that CBs can foresee later corrections
 - so CBs would buy before later recoveries and vv
- Taylor (1982, 84) studies 8 CBs 14 yrs
 - only one CB seemed to make profits from interventions
 - three out of seven losses were significant
 - update study: most banks made modest profits?
- Fase and Huijser (1989) (NedBk)
 - much better data
 - find: NB made gains in spot mkt, losses in fwd
Should we watch Central Banks’ trades?

▷ CBs claim to “smooth out unnecessary peaks/troughs without going against fundamental trends”

▷ **Friedman**: “show me the money”:
 ▷ claim requires that CBs can foresee later corrections
 ▷ so CBs would buy before later recoveries

▷ **Taylor (1982, 84)** studies 8 CBs 14 yrs
 ▷ only one CB seemed to make profits from interventions
 ▷ three out of seven losses were significant
 ▷ update study: most banks made modest profits?

▷ **Fase and Huijser (1989) (NedBk)**
 ▷ much better data
 ▷ find: NB made gains in spot mkt, losses in fwd
Should we watch Central Banks’ trades?

- CBs claim to “smooth out unnecessary peaks/troughs without going against fundamental trends”

- **Friedman**: “show me the money”:
 - claim requires that CBs can foresee later corrections
 - so CBs would buy before later recoveries and vv

- **Taylor (1982, 84)** studies 8 CBs 14 yrs
 - only one CB seemed to make profits from interventions
 - three out of seven losses were significant
 - update study: most banks made modest profits?

- **Fase and Huijser (1989)** (NedBk)
 - much better data
 - find: NB made gains in spot mkt, losses in fwd
Should we watch Central Banks? cont’d

 - “modest profits”
 - unstable over time

- Leahy (1995) (Fed)
 - “profitable”

- Fischer (2003) Bk of CH
 - “profitable”, 1986-95
 - yet stops trading in 1995

- Sweeney (1997) (review paper)
 “Estimates of central bank intervention losses or profits vary widely; some estimates find substantial losses, others profits. In most cases, estimated profits are not risk-adjusted, and risk adjustment can have large effects. Furthermore, profit estimates involve variables integrated of order one, and because of this test-statistics may have nonstandard distributions; few studies take this into account.”
Should we watch Central Banks? cont’d

 - “modest profits”
 - unstable over time

- Leahy (1995) (Fed)
 - “profitable"

- Fischer (2003) Bk of CH
 - “profitable”, 1986-95
 - yet stops trading in 1995

- Sweeney (1997) (review paper)
 “Estimates of central bank intervention losses or profits vary widely; some estimates find substantial losses, others profits. In most cases, estimated profits are not risk-adjusted, and risk adjustment can have large effects. Furthermore, profit estimates involve variables integrated of order one, and because of this test-statistics may have nonstandard distributions; few studies take this into account.”
Should we watch Central Banks? cont’d

 - “modest profits”
 - unstable over time

- Leahy (1995) (Fed)
 - “profitable”

- Fischer (2003) Bk of CH
 - “profitable”, 1986-95
 - yet stops trading in 1995

- Sweeney (1997) (review paper)
 “Estimates of central bank intervention losses or profits vary widely; some estimates find substantial losses, others profits. In most cases, estimated profits are not risk-adjusted, and risk adjustment can have large effects. Furthermore, profit estimates involve variables integrated of order one, and because of this test-statistics may have nonstandard distributions; few studies take this into account.”
Should we watch Central Banks? cont’d

 ▶ “modest profits”
 ▶ unstable over time

▶ Leahy (1995) (Fed)
 ▶ “profitable”

▶ Fischer (2003) Bk of CH
 ▶ “profitable”, 1986-95
 ▶ yet stops trading in 1995

▶ Sweeney (1997) (review paper)
 “Estimates of central bank intervention losses or profits vary widely; some estimates find substantial losses, others profits. In most cases, estimated profits are not risk-adjusted, and risk adjustment can have large effects. Furthermore, profit estimates involve variables integrated of order one, and because of this test-statistics may have nonstandard distributions; few studies take this into account.”
Should we watch Central Banks? cont’d

▶ **Sweeney (2000) (on Fed)**
 ▶ profits after beta-correction
 ▶ sensitive to period and way of adjusting for risk

▶ **Sjöö and Sweeney (2000, 2001) (On Riksbank, SE)**
 “Estimated profits can be quite sensitive as to whether rates of return are risk-adjusted or not, and how the risk-adjustment is done. (...) Results, on daily data, support the view that Riksbank intervention did not make risk-adjusted losses over the period 1986-1990. The results might be challenged as arising from inappropriate risk adjustment.”

Conclusions:
– modest profits, but unstable, and Qs about risk adjustment
– if specialists are just so-so, what are earthlings’ chances?
Should we watch Central Banks? cont’d

▷ **Sweeney (2000)** (on Fed)
 ▷ profits after beta-correction
 ▷ sensitive to period and way of adjusting for risk

▷ **Sjöö and Sweeney (2000, 2001)** (On Riksbank, SE)
 “Estimated profits can be quite sensitive as to whether rates of return are risk-adjusted or not, and how the risk-adjustment is done. (...) Results, on daily data, support the view that Riksbank intervention did not make risk-adjusted losses over the period 1986-1990. The results might be challenged as arising from inappropriate risk adjustment.”

Conclusions:
– modest profits, but unstable, and Qs about risk adjustment
– if specialists are just so-so, what are earthlings’ chances?
Should we watch Central Banks? cont’d

▷ Sweeney (2000) (on Fed)
 ▷ profits after beta-correction
 ▷ sensitive to period and way of adjusting for risk

▷ Sjöö and Sweeney (2000, 2001) (On Riksbank, SE)
 “Estimated profits can be quite sensitive as to whether rates of return are risk-adjusted or not, and how the risk-adjustment is done. (...) Results, on daily data, support the view that Riksbank intervention did not make risk-adjusted losses over the period 1986-1990. The results might be challenged as arising from inappropriate risk adjustment.”

Conclusions:
– modest profits, but unstable, and Qs about risk adjustment
– if specialists are just so-so, what are earthlings’ chances?
Performance of Professional Forecasters

▶ Goodman (1979, etc) (Money mgt Singer Corp)
 ▶ 79: fundamental forecasters do poorly, technical guys OK
 ▶ updates: they *all* lose (Goodman’s) money

▶ Levich (1979) comprehensive survey
 ▶ do poorly in terms of MSE
 ▶ some merit in predicting whether we should buy/sell fwd

\[
\begin{align*}
 F &= 1.50 & S &= 1.52 \\
 F &= 1.50 & S &= 1.52
\end{align*}
\]

a forecast of 1.55 would be "imprecise"; still, it correctly told you to buy forward.

a forecast of 1.49 would be not just imprecise: it also incorrectly told you to sell forward.

▶ Levich (1982, 1983) updates
 ▶ the list of winners changes unpredictably
Performance of Professional Forecasters

- Goodman (1979, etc) (Money mgt Singer Corp)
 - 79: fundamental forecasters do poorly, technical guys OK
 - updates: they all lose (Goodman’s) money

- Levich (1979) comprehensive survey
 - do poorly in terms of MSE
 - some merit in predicting whether we should buy/sell fwd

\[
\begin{align*}
F &= 1.50 & S &= 1.52 \\
F &= 1.50 & S &= 1.52 \\
\end{align*}
\]

- Levich (1982, 1983) updates
 - the list of winners changes unpredictably

Notes:
- A forecast of 1.55 would be "imprecise"; still, it correctly told you to buy forward.
- A forecast of 1.49 would be not just imprecise: it also incorrectly told you to sell forward.
Performance of Professional Forecasters

- **Goodman (1979, etc)** (Money mgt Singer Corp)
 - 79: fundamental forecasters do poorly, technical guys OK
 - updates: they *all* lose (Goodman’s) money

- **Levich (1979)** comprehensive survey
 - do poorly in terms of MSE
 - some merit in predicting whether we should buy/sell fwd

 - a forecast of 1.55 would be "imprecise"; still, it correctly told you to buy forward.
 - a forecast of 1.49 would be not just imprecise: it also incorrectly told you to sell forward.

- **Levich (1982, 1983) updates**
 - the list of winners changes unpredictably
Observations:

- **makes much money:** “(...) he averages $100,000 profit per day (on volume of $1 billion per day). By comparison, equity dealers average about $10,000 profit per day (on volume of roughly $10 million per day).”

- **high turnover:** half-life 10 minutes (stocks: 1 week)

- **forecasting abilities?**
 - after a purchase (sale), prices do not rise (fall) significantly
 - when bid-ask is stripped out (trades at midpoint), there is a small loss
 - “speculative profits are much more volatile than profits from intermediation. Nevertheless, our findings are consistent with those from the much lower-frequency analysis of Ammer and Brunner (1997).”

- **consistent with boom/bust cycle in trading rooms**
Lyons (1998)’s study of one trader

Observations:

○ makes much money: “(...) he averages $100 000 profit per day (on volume of $1 billion per day). By comparison, equity dealers average about $10 000 profit per day (on volume of roughly $10 million per day).”

○ high turnover: half-life 10 minutes (stocks: 1 week)

○ forecasting abilities?
 ▶ after a purchase (sale), prices do not rise (fall) significantly
 ▶ when bid-ask is stripped out (trades at midpoint), there is a small loss
 ▶ “speculative profits are much more volatile than profits from intermediation. Nevertheless, our findings are consistent with those from the much lower-frequency analysis of Ammer and Brunner (1997).”

○ consistent with boom/bust cycle in trading rooms
Lyons (1998)’s study of one trader

Observations:

○ makes much money: “(...) he averages $100,000 profit per day (on volume of $1 billion per day). By comparison, equity dealers average about $10,000 profit per day (on volume of roughly $10 million per day).”

○ high turnover: halflife 10 minutes (stocks: 1 week)

○ forecasting abilities?
 ▶ after a purchase (sale), prices do not rise (fall) significantly
 ▶ when bid-ask is stripped out (trades at midpoint), there is a small loss
 ▶ “speculative profits are much more volatile than profits from intermediation. Nevertheless, our findings are consistent with those from the much lower-frequency analysis of Ammer and Brunner (1997).”

○ consistent with boom/bust cycle in trading rooms
Lyons (1998)’s study of one trader

Observations:

◊ makes much money: “(...) he averages $100,000 profit per day (on volume of $1 billion per day). By comparison, equity dealers average about $10,000 profit per day (on volume of roughly $10 million per day).”

◊ high turnover: half-life 10 minutes (stocks: 1 week)

◊ forecasting abilities?
 ▶ after a purchase (sale), prices do not rise (fall) significantly
 ▶ when bid-ask is stripped out (trades at midpoint), there is a small loss
 ▶ “speculative profits are much more volatile than profits from intermediation. Nevertheless, our findings are consistent with those from the much lower-frequency analysis of Ammer and Brunner (1997).”

◊ consistent with boom/bust cycle in trading rooms
Can we Explain/Predict Exchange Rates?

P. Sercu, *International Finance: Putting Theory to Practice*

Outline

The Forward Rate as a Black-Box Predictor

- Testing the forward rate as a predictor?
- Unconditional tests
- Time-series Regression Tests
- Trading rules
- The Forward Bias: Concluding discussion

Forecasts by Specialists

- Central Banks
- Professional Traders and Forecasters

What to take home?

- Why do pros always know all?
- Why do we know so little?
- Can we still trust/use the fwd rate?
Why do pros always know all?

Professionals can always explain

Hopper (1997): *No matter which way currencies zig or zag, it seems there is always an analyst with a quotable, ready explanation. Either interest rates are rising faster than expected in some country, or the trade balance is up or down, or central banks are tightening or loosening their monetary policies.*

How to become guru

1. Check which way the market went today
2. Run down the list of news items, and tick any bit that fits
 ¡¡Carefully ignore any news that does not!!
3. If unsuccessful at Step 2, select a conventional old-hat story:
 “The Euro again suffered from the sclerosis in Old Europe's labor markets.”
 “The dollar came under pressure because its yield is below that of Euro and Sterling, while the US current-account deficit remains negative.”
4. Write a cogent, simple and unhesitating comment.
Why do pros always know all?

Professionals can always explain

Hopper (1997): *No matter which way currencies zig or zag, it seems there is always an analyst with a quotable, ready explanation. Either interest rates are rising faster than expected in some country, or the trade balance is up or down, or central banks are tightening or loosening their monetary policies.*

How to become guru

1. Check which way the market went today
2. Run down the list of news items, and tick any bit that fits
 ¡¡Carefully ignore any news that does not!!
3. If unsuccessful at Step 2, select a conventional old-hat story:
 “The Euro again suffered from the sclerosis in Old Europe’s labor markets.”
 “The dollar came under pressure because its yield is below that of Euro and Sterling, while the US current-account deficit remains negative.”
4. Write a cogent, simple and unhesitating comment.
Why do pros always know all?

Professionals can always explain

Hopper (1997): *No matter which way currencies zig or zag, it seems there is always an analyst with a quotable, ready explanation. Either interest rates are rising faster than expected in some country, or the trade balance is up or down, or central banks are tightening or loosening their monetary policies.*

How to become guru

1. Check which way the market went today
2. Run down the list of news items, and tick any bit that fits
 ¡¡Carefully ignore any news that does not!!
3. If unsuccessful at Step 2, select a conventional old-hat story:
 “*The Euro again suffered from the sclerosis in Old Europe’s labor markets.*”
 “*The dollar came under pressure because its yield is below that of Euro and Sterling, while the US current-account deficit remains negative.*”
4. Write a cogent, simple and unhesitating comment.
Why do pros always know all?

Professionals can always explain

Hopper (1997): *No matter which way currencies zig or zag, it seems there is always an analyst with a quotable, ready explanation. Either interest rates are rising faster than expected in some country, or the trade balance is up or down, or central banks are tightening or loosening their monetary policies.*

How to become guru

1. Check which way the market went today
2. Run down the list of news items, and tick any bit that fits
 ¡¡Carefully ignore any news that does not!!
3. If unsuccessful at Step 2, select a conventional old-hat story:
 “*The Euro again suffered from the sclerosis in Old Europe’s labor markets.*”
 “*The dollar came under pressure because its yield is below that of Euro and Sterling, while the US current-account deficit remains negative.*”
4. Write a cogent, simple and unhesitating comment.
Check what traders are watching:

Theme of the Week - January 6, 2008 to January 11, 2008

Euro Gains vs Dollar on Hawkish Trichet and Dovish Bernanke: The pair climbed 100 pips following the hawkish tone of Trichet’s conference. The pair then extended these gains after Fed Chairman Bernanke, in a speech, said that the FOMC was ready to lower rates to offset “downside risk to growth” fueling speculation of a 50 basis point cut in the next meeting.

German Data Weakens Euros: Fundamental reports out of Germany showed retail sales declining by 1.3% and industrial production falling 0.9% in November. The news underscored forecasts of increases to both indicators and caused the Euro to weaken.

Pound Falls Prior to BOE Announcement: The Pound fell during Wednesday’s trading session following data showing consumer confidence is at a 10 month low.

Previous Week’s Recap

<table>
<thead>
<tr>
<th>Region</th>
<th>EST</th>
<th>Indicator</th>
<th>Actual</th>
<th>Forecasted</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ</td>
<td>4:45pm</td>
<td>Trade Balance</td>
<td>-0.55%</td>
<td>-0.47%</td>
<td>-0.72%</td>
</tr>
<tr>
<td>JPN</td>
<td>6:50pm</td>
<td>Monetary Base x/y</td>
<td>0.4%</td>
<td>1.0%</td>
<td></td>
</tr>
</tbody>
</table>

Next Week’s Outlook

<table>
<thead>
<tr>
<th>Region</th>
<th>EST</th>
<th>Indicator</th>
<th>Actual</th>
<th>Forecasted</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWZ</td>
<td>1:45pm</td>
<td>Unemployment Rate</td>
<td>2.6%</td>
<td>2.5%</td>
<td>2.6%</td>
</tr>
<tr>
<td>EAU</td>
<td>4:30am</td>
<td>Saxo Bank’s Investor Confidence</td>
<td>105</td>
<td>105</td>
<td>119</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Producer Price Index m/m</td>
<td>0.8%</td>
<td>0.7%</td>
<td>0.4%</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Consumer Confidence</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Foreign Sovereign Indicator</td>
<td>104.7</td>
<td>104.3</td>
<td>104.6</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Industrial Confidence</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Business Climate Indicator</td>
<td>0.1%</td>
<td>0.9%</td>
<td>1.04%</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Unemployment Rate</td>
<td>7.2%</td>
<td>7.2%</td>
<td>7.2%</td>
</tr>
<tr>
<td>AUG</td>
<td>5:30pm</td>
<td>Construction PMI</td>
<td>59.2</td>
<td>59.2</td>
<td>59.2</td>
</tr>
<tr>
<td>UK</td>
<td>7:01pm</td>
<td>BBC Retail Sales x/y</td>
<td>0.3%</td>
<td>0.8%</td>
<td>1.2%</td>
</tr>
<tr>
<td>AUG</td>
<td>7:30pm</td>
<td>Building Approvals</td>
<td>8.9%</td>
<td>0.2%</td>
<td>-3.0%</td>
</tr>
</tbody>
</table>

Monday, January 07 | Market Highlights

<table>
<thead>
<tr>
<th>Region</th>
<th>EST</th>
<th>Indicator</th>
<th>Actual</th>
<th>Forecasted</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ</td>
<td>4:45pm</td>
<td>Trade Balance</td>
<td>-0.55%</td>
<td>-0.47%</td>
<td>-0.72%</td>
</tr>
<tr>
<td>JPN</td>
<td>6:50pm</td>
<td>Monetary Base x/y</td>
<td>0.4%</td>
<td>1.0%</td>
<td></td>
</tr>
</tbody>
</table>

Video Recap

- Trade Balance
- Monetary Base x/y

Nilsson’s Commentary

- Trade Balance
- Monetary Base x/y

What clues can gurus invoke?

Check what traders are watching:

<table>
<thead>
<tr>
<th>Region</th>
<th>EST</th>
<th>Indicator</th>
<th>Actual</th>
<th>Forecasted</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWZ</td>
<td>1:45pm</td>
<td>Unemployment Rate</td>
<td>2.6%</td>
<td>2.6%</td>
<td>2.6%</td>
</tr>
<tr>
<td>EAU</td>
<td>4:30am</td>
<td>Saxo Bank’s Investor Confidence</td>
<td>105</td>
<td>105</td>
<td>119</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Producer Price Index m/m</td>
<td>0.8%</td>
<td>0.7%</td>
<td>0.4%</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Consumer Confidence</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Foreign Sovereign Indicator</td>
<td>104.7</td>
<td>104.3</td>
<td>104.6</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Industrial Confidence</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Business Climate Indicator</td>
<td>0.1%</td>
<td>0.9%</td>
<td>1.04%</td>
</tr>
<tr>
<td>EAU</td>
<td>5:00am</td>
<td>Unemployment Rate</td>
<td>7.2%</td>
<td>7.2%</td>
<td>7.2%</td>
</tr>
<tr>
<td>AUG</td>
<td>5:30pm</td>
<td>Construction PMI</td>
<td>59.2</td>
<td>59.2</td>
<td>59.2</td>
</tr>
<tr>
<td>UK</td>
<td>7:01pm</td>
<td>BBC Retail Sales x/y</td>
<td>0.3%</td>
<td>0.8%</td>
<td>1.2%</td>
</tr>
<tr>
<td>AUG</td>
<td>7:30pm</td>
<td>Building Approvals</td>
<td>8.9%</td>
<td>0.2%</td>
<td>-3.0%</td>
</tr>
</tbody>
</table>

What clues can gurus invoke?

Check what traders are watching:

<table>
<thead>
<tr>
<th>Region</th>
<th>EST</th>
<th>Indicator</th>
<th>Actual</th>
<th>Forecasted</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ</td>
<td>4:45pm</td>
<td>Commodity Price Index (ANZ)</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Can we Explain/Predict Exchange Rates?

P. Sercu, *International Finance: Putting Theory to Practice*

F as predictor
Forecasts by Specialists

What to take home?
Why do pros always know all?
Why do we know so little?
Can we still trust/use the fwd rate?

Reader’s Digest

<table>
<thead>
<tr>
<th>Economic Activity</th>
<th>Employment</th>
<th>Construction, housing</th>
<th>Retail sales, cons. credit</th>
<th>Ind prod, inventories, orders, GDP</th>
<th>Commodity prices</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>economic activity (observed)</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>expectations, confidence, sentiment</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>25</td>
</tr>
</tbody>
</table>

You’ll always find something
Reader’s Digest

<table>
<thead>
<tr>
<th>Economic Activity</th>
<th>Observations</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Construction, housing</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Retail sales, cons. credit</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ind prod, inventories, orders, GDP</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Commodity prices</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Expectations, confidence, sentiment	10	
Trade balance	6	
CPI, WPI or TPI	4	
Interest rates	3	
Money supply	2	

You’ll always find something
Why do we know so little?

- the myth of a logical model. Hopper:

> Whatever the explanations, the underlying belief is that exchange rates are affected by fundamental economic forces, such as money supplies, interest rates, real output levels, or the trade balance, which, if well forecasted, give the forecaster an advantage in predicting the exchange rate.

(...) exchange economists ... tell very cogent stories ... often based on plausible economic assumptions or models. These economists hope that market participants will act on their forecasts and trade currencies.

- ... while, in reality,

 ▶ There is no obvious core story, unlike for stocks (earnings, dividends, interest rates, risk)
 ▶ guru may just spin tales to make us trade—like consultants inventing strategic threats?
Why do we know so little?

The myth of homogenous expectations, representative investors.

Evans (2002): a heterogenous-information structure

... permits the existence of an equilibrium distribution of transaction prices at a point in time. I develop and estimate a model of the price distribution using data from the Deutsche mark/dollar market that produces two striking results:

1. Much of the short-term volatility in exchange rates comes from sampling the heterogeneous trading decisions of dealers in a distribution that, under normal market conditions, changes comparatively slowly;

2. Public news is rarely the predominant source of exchange rate movements over any horizon.
Why do we know so little?

Even if there were a model, we would still need to be able to

- forecast future exogenous variables, and
- figure out to what extent others thunk the same
 - if so, it’s probably already in the price
 - if not, are we just imagining things?
Can we still trust/use the fwd rate?

- formal models of risk premia fail to explain the excess return

- but: does that mean the world is wrong, or the model?

My rule:

- the forward rate is the expected future spot rate corrected for any risks the market thinks to be relevant.

- If we want to maximize shareholder wealth, we should accept the market’s way of pricing too.