Chapter 9

Currency Options (2): Hedging and Valuation
Overview

The Binomial Logic: One-period pricing
- The Replication Approach
- The Hedging Approach
- The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
- Notation
- Assumptions
- Discussion

Stepwise Multiperiod Binomial Option Pricing
- Backward Pricing, Dynamic Hedging
- What can go wrong?
- American-style Options

Towards Black-Merton-Scholes
- STP-ing of European Options
- Towards the Black-Merton-Scholes Equation
- The Delta of an Option
Overview

The Binomial Logic: One-period pricing
- The Replication Approach
- The Hedging Approach
- The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
- Notation
- Assumptions
- Discussion

Stepwise Multiperiod Binomial Option Pricing
- Backward Pricing, Dynamic Hedging
- What can go wrong?
- American-style Options

Towards Black-Merton-Scholes
- STP-ing of European Options
- Towards the Black-Merton-Scholes Equation
- The Delta of an Option
Overview

The Binomial Logic: One-period pricing
 The Replication Approach
 The Hedging Approach
 The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
 Notation
 Assumptions
 Discussion

Stepwise Multiperiod Binomial Option Pricing
 Backward Pricing, Dynamic Hedging
 What can go wrong?
 American-style Options

Towards Black-Merton-Scholes
 STP-ing of European Options
 Towards the Black-Merton-Scholes Equation
 The Delta of an Option
Overview

The Binomial Logic: One-period pricing
The Replication Approach
The Hedging Approach
The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
Notation
Assumptions
Discussion

Stepwise Multiperiod Binomial Option Pricing
Backward Pricing, Dynamic Hedging
What can go wrong?
American-style Options

Towards Black-Merton-Scholes
STP-ing of European Options
Towards the Black-Merton-Scholes Equation
The Delta of an Option
Binomial Models—What & Why?

◊ **Binomial Model**

- given S_t, there only two possible values for S_{t+1}, called “up” and “down”.

◊ **Restrictive?—Yes, but ...**

- the distribution of the total return, after many of these binomial price changes, becomes bell-shaped
- the binomial option price converges to the BMS price
- the binomial math is much more accessible than the BMS math
- BinMod can be used to value more complex derivatives that have no closed-form Black-Scholes type solution.

◊ **Ways to explain the model—all very similar:**

<table>
<thead>
<tr>
<th></th>
<th>via hedging</th>
<th>via replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>in spot market</td>
<td>(not here)</td>
<td>(not here)</td>
</tr>
<tr>
<td>forward</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Binomial Models—What & Why?

◇ Binomial Model

▷ given S_t, there only two possible values for S_{t+1}, called “up” and “down”.

◇ Restrictive?—Yes, but ...

▷ the distribution of the total return, after many of these binomial price changes, becomes bell-shaped

▷ the binomial option price converges to the BMS price

▷ the binomial math is much more accessible than the BMS math

▷ BinMod can be used to value more complex derivatives that have no closed-form Black-Scholes type solution.

◇ Ways to explain the model—all very similar:

<table>
<thead>
<tr>
<th></th>
<th>via hedging</th>
<th>via replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>in spot market</td>
<td>(not here)</td>
<td>(not here)</td>
</tr>
<tr>
<td>forward</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Binomial Models—What & Why?

◊ **Binomial Model**

▷ given \(S_t \), there only two possible values for \(S_{t+1} \), called “up” and “down”.

◊ **Restrictive?—Yes, but ...**

▷ the distribution of the total return, after many of these binomial price changes, becomes bell-shaped
▷ the binomial option price converges to the BMS price
▷ the binomial math is much more accessible than the BMS math
▷ BinMod can be used to value more complex derivatives that have no closed-form Black-Scholes type solution.

◊ **Ways to explain the model—all very similar:**

<table>
<thead>
<tr>
<th></th>
<th>via hedging</th>
<th>via replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>in spot market</td>
<td>(not here)</td>
<td>(not here)</td>
</tr>
<tr>
<td>forward</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Outline

The Binomial Logic: One-period pricing
- The Replication Approach
- The Hedging Approach
- The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
- Notation
- Assumptions
- Discussion

Stepwise Multiperiod Binomial Option Pricing
- Backward Pricing, Dynamic Hedging
- What can go wrong?
- American-style Options

Towards Black-Merton-Scholes
- STP-ing of European Options
- Towards the Black-Merton-Scholes Equation
- The Delta of an Option
Our Example

◇ Data

▷ $S_0 = \text{INR/MTL 100}$, $r = 5\%p.p.; r^* = 3.9604\%$. Hence:

$$F_{0,1} = S_0 \frac{1 + r_{0,1}}{1 + r^*_{0,1}} = 100 \frac{1.05}{1.039604} = 101.$$

▷ S_1 is either $S_{1,u} = 110$ ("up") or $S_{1,d} = 95$ ("down").

▷ 1-period European-style call with $X=\text{INR/MTL 105}$

slope of exposure line (exposure):

$$\text{exposure} = \frac{C_{1,u} - C_{1,d}}{S_{1,u} - S_{1,d}} = \frac{5 - 0}{110 - 95} = \frac{5}{15} = \frac{1}{3}$$
Our Example

Data

- \(S_0 = \text{INR/MTL} 100, r = 5\%\text{p.p.}; r^* = 3.9604\%. \) Hence:

\[
F_{0,1} = S_0 \frac{1 + r_{0,1}}{1 + r^{*}_{0,1}} = 100 \cdot \frac{1.05}{1.039604} = 101.
\]

- \(S_1 \) is either \(S_{1,u} = 110 \) (“up”) or \(S_{1,d} = 95 \) (“down”).

- 1-period European-style call with \(X=\text{INR/MTL} 105 \)

\[
\begin{align*}
\text{slope of exposure line (exposure)}: \\
\text{exposure} &= \frac{C_{1,u} - C_{1,d}}{S_{1,i} - S_{1,d}} \\
&= \frac{5 - 0}{110 - 95} = \frac{1}{3}
\end{align*}
\]
The Replication Approach

Step 1 Replicate the payoff from the call—[5 if u] and [0 if d]:

<table>
<thead>
<tr>
<th></th>
<th>(a) = forward contract (buy MTL 1/3 at 101)</th>
<th>(b) = deposit, $V_1=20$</th>
<th>(a)+(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1 = 95$</td>
<td>$1/3 \times (95 - 101) = -2$</td>
<td>+2</td>
<td>0</td>
</tr>
<tr>
<td>$S_1 = 110$</td>
<td>$1/3 \times (110 - 101) = +3$</td>
<td>+2</td>
<td>5</td>
</tr>
</tbody>
</table>

Step 2 Time-0 cost of the replicating portfolio:

- forward contract is free
- deposit will cost INR $2/1.05 = INR 1.905$

Step 3 Law of One Price: option price = value portfolio

$$C_0 = INR 1.905$$
The Replication Approach

◊ **Step 1** Replicate the payoff from the call—[5 if \(u \)] and [0 if \(d \)]:

<table>
<thead>
<tr>
<th>(S_1)</th>
<th>(\frac{1}{3} \times (95 - 101) = -2)</th>
<th>(\frac{1}{3} \times (110 - 101) = +3)</th>
<th>(a)+ (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>-2</td>
<td>+2</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>+3</td>
<td>+2</td>
<td>5</td>
</tr>
</tbody>
</table>

◊ **Step 2** Time-0 cost of the replicating portfolio:

▷ forward contract is free

▷ deposit will cost INR 2/1.05 = INR 1.905

◊ **Step 3** Law of One Price: option price = value portfolio

\[C_0 = \text{INR} \ 1.905 \]
The Replication Approach

- **Step 1** Replicate the payoff from the call—[5 if \(u \)] and [0 if \(d \)]:

<table>
<thead>
<tr>
<th>(S_1)</th>
<th>(a) = forward contract (buy MTL 1/3 at 101)</th>
<th>(b) = deposit, (V_1 = 20)</th>
<th>(a)+(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>(1/3 \times (95 - 101) = -2)</td>
<td>+2</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>(1/3 \times (110 - 101) = +3)</td>
<td>+2</td>
<td>5</td>
</tr>
</tbody>
</table>

- **Step 2** Time-0 cost of the replicating portfolio:
 - forward contract is free
 - deposit will cost \(\text{INR} \ 2/1.05 = \text{INR} \ 1.905 \)

- **Step 3** Law of One Price: option price = value portfolio

\[C_0 = \text{INR} \ 1.905 \]
The Hedging Approach

Replcation: call = forward position + riskfree deposit
Hedging: call – forward position = riskfree deposit

◊ Step 1 Hedge the call

<table>
<thead>
<tr>
<th></th>
<th>(a) = forward hedge</th>
<th>(b) = call</th>
<th>(a)+(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sell MTL 1/3 at 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_1 = 95$</td>
<td>$1/3 \times (101 - 95) = 2$</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$S_1 = 110$</td>
<td>$1/3 \times (101 - 110) = -3$</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

◊ Step 2 time-0 value of the riskfree portfolio

\[
\text{value} = \text{INR} \frac{2}{1.05} = \text{INR} 1.905
\]

◊ Step 3 Law of one price: option price = value portfolio

\[C_0 + \text{[time-0 value of hedge]} = \text{INR} 1.905 \Rightarrow C_0 = \text{INR} 1.905\]

... otherwise there are arbitrage possibilities.
The Hedging Approach

Replication: call = forward position + riskfree deposit
Hedging: call – forward position = riskfree deposit

◊ **Step 1** Hedge the call

<table>
<thead>
<tr>
<th></th>
<th>(a) = forward hedge</th>
<th>(b) = call</th>
<th>(a)+(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>($S_1 = 95$)</td>
<td>$1/3 \times (101 - 95) = 2$</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>($S_1 = 110$)</td>
<td>$1/3 \times (101 - 110) = -3$</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

◊ **Step 2** time-0 value of the riskfree portfolio

value = INR 2/1.05 = INR 1.905

◊ **Step 3** Law of one price: option price = value portfolio

\[C_0 + [\text{time-0 value of hedge}] = \text{INR} 1.905 \Rightarrow C_0 = \text{INR} 1.905 \]

... otherwise there are arbitrage possibilities.
The Hedging Approach

| Replication: | call = forward position + riskfree deposit |
| Hedging: | call – forward position = riskfree deposit |

- **Step 1** Hedge the call

 (a) = forward hedge
 (sell MTL 1/3 at 101)
 (b) = call
 (a)+(b)

| $S_1 = 95$ | $1/3 \times (101 - 95) = 2$ | 0 | 2 |
| $S_1 = 110$ | $1/3 \times (101 - 110) = -3$ | 5 | 2 |

- **Step 2** time-0 value of the riskfree portfolio

 value = INR 2 / 1.05 = INR 1.905

- **Step 3** Law of one price: option price = value portfolio

 $C_0 + [time-0 \ value \ of \ hedge] = INR \ 1.905 \Rightarrow C_0 = INR \ 1.905$

... otherwise there are arbitrage possibilities.
The Risk-adjusted Probabilities

◊ **Overview:** Implicitly, the replication/hedging story ...

▷ extracts a risk-adjusted probability “up” from the forward market,

▷ uses this probability to compute the call’s risk-adjusted expected payoff, $\text{CEQ}_0(\tilde{C}_1)$; and

▷ discounts this risk-adjusted expectation at the riskfree rate.
The Risk-adjusted Probabilities

Overview: Implicitly, the replication/hedging story...

- Extracts a risk-adjusted probability "up" from the forward market,
- Uses this probability to compute the call's risk-adjusted expected payoff, $\text{CEQ}_0(\tilde{C}_1)$; and
- Discounts this risk-adjusted expectation at the risk-free rate.
The Risk-adjusted Probabilities

◊ **Overview:** Implicitly, the replication/hedging story ...

▷ extracts a risk-adjusted probability “up” from the forward market,

▷ uses this probability to compute the call’s risk-adjusted expected payoff, $\text{CEQ}_0(\tilde{\tilde{C}}_1)$; and

▷ discounts this risk-adjusted expectation at the riskfree rate.
The Risk-adjusted Probabilities

§ Step 1 Extract risk-adjusted probability from F:

- **Ordinary expectation:** $E_0(\tilde{S}_1) = p \times 110 + (1 - p) \times 95$
- **Risk-adjusted expectation:** $CEQ_0(\tilde{S}_1) = q \times 110 + (1 - q) \times 95$
- **We do not know how/why the market selects** q, but q is revealed by $F_{0,1} (= 101)$:

$$101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4$$

§ Step 2 CEQ of the call’s payoff:

$$CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2$$

§ Step 3 Discount at r:

$$C_0 = \frac{CEQ_0(\tilde{C}_1)}{1 + r_{0,1}} = \frac{2}{1.05} = 1.905$$
The Risk-adjusted Probabilities

- **Step 1** Extract risk-adjusted probability from F:
 - Ordinary expectation: $E_0(\tilde{S}_1) = p \times 110 + (1 - p) \times 95$
 - Risk-adjusted expectation: $CEQ_0(\tilde{S}_1) = q \times 110 + (1 - q) \times 95$
 - We do not know how/why the market selects q, but q is revealed by $F_{0,1} (= 101)$:

 $101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4$

- **Step 2** CEQ of the call’s payoff:

 $CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2$

- **Step 3** Discount at r:

 $C_0 = \frac{CEQ_0(\tilde{C}_1)}{1 + r_{0,1}} = \frac{2}{1.05} = 1.905$
The Risk-adjusted Probabilities

◊ **Step 1** Extract risk-adjusted probability from F:

- Ordinary expectation: $E_0(\tilde{S}_1) = p \times 110 + (1 - p) \times 95$
- Risk-adjusted expectation: $CEQ_0(\tilde{S}_1) = q \times 110 + (1 - q) \times 95$
- We do not know how/why the market selects q, but q is revealed by $F_{0,1} (= 101)$:

\[
101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4
\]

◊ **Step 2** CEQ of the call’s payoff:

\[
CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2
\]

◊ **Step 3** Discount at r:

\[
C_0 = \frac{CEQ_0(\tilde{C}_1)}{1 + r_{0,1}} = \frac{2}{1.05} = 1.905
\]
The Risk-adjusted Probabilities

◇ **Step 1** Extract risk-adjusted probability from F:

- Ordinary expectation:
 \[E_0(\widetilde{S}_1) = p \times 110 + (1 - p) \times 95 \]

- Risk-adjusted expectation:
 \[CEQ_0(\widetilde{S}_1) = q \times 110 + (1 - q) \times 95 \]

- We do not know how/why the market selects q, but q is revealed by $F_{0,1}$ (=101):

 \[101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4 \]

◇ **Step 2** CEQ of the call’s payoff:

\[CEQ_0(\widetilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2 \]

◇ **Step 3** Discount at r:

\[C_0 = \frac{CEQ_0(\widetilde{C}_1)}{1 + r_{0,1}} = \frac{2}{1.05} = 1.905 \]
The Risk-adjusted Probabilities

- **Step 1** Extract risk-adjusted probability from F:
 - Ordinary expectation: $E_0(\tilde{S}_1) = p \times 110 + (1 - p) \times 95$
 - Risk-adjusted expectation: $CEQ_0(\tilde{S}_1) = q \times 110 + (1 - q) \times 95$
 - We do not know how/why the market selects q, but q is revealed by $F_{0,1} (= 101)$:
 \[
 101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4
 \]

- **Step 2** CEQ of the call’s payoff:
 \[
 CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2
 \]

- **Step 3** Discount at r:
 \[
 C_0 = \frac{CEQ_0(\tilde{C}_1)}{1 + r_{0,1}} = \frac{2}{1.05} = 1.905
 \]
Outline

The Binomial Logic: One-period pricing
 The Replication Approach
 The Hedging Approach
 The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
 Notation
 Assumptions
 Discussion

Stepwise Multiperiod Binomial Option Pricing
 Backward Pricing, Dynamic Hedging
 What can go wrong?
 American-style Options

Towards Black-Merton-Scholes
 STP-ing of European Options
 Towards the Black-Merton-Scholes Equation
 The Delta of an Option
Multiperiod Pricing: Notation

- **Subscripts**: \(n, j \) where
 - \(n \) says how many jumps have been made since time 0
 - \(j \) says how many of these jumps were *up*

- **General pricing equation**:

\[
C_{t,j} = \frac{C_{t+1,u} \times q_t + C_{t+1,d} \times (1 - q_t)}{1 + r_{t,\text{1 period}}},
\]

where

\[
q_t = \frac{F_{t,t+1} - S_{t+1,d}}{S_{t+1,u} - S_{t+1,d}},
\]

\[
S_t \frac{1 + r_{t,t+1}}{1 + r^{*}_{t,t+1}} - S_t d_t
= \frac{S_t u_t - S_t d_t}{S_t u_t - S_t d_t},
\]

\[
d_t = \frac{S_{t+1,d}}{S_t}, \quad u_t = \frac{S_{t+1,u}}{S_t}.
\]
Multiperiod Pricing: Notation

- **Subscripts**: \(n,j \) where
 - \(n \) says how many jumps have been made since time 0
 - \(j \) says how many of these jumps were up

- **General pricing equation**:

 \[
 C_{t,j} = \frac{C_{t+1,u} \times q_t + C_{t+1,d} \times (1 - q_t)}{1 + r_{t,1\text{ period}}} ,
 \]

 where

 \[
 q_t = \frac{F_{t,t+1} - S_{t+1,d}}{S_{t+1,u} - S_{t+1,d}},
 \]

 \[
 S_t \frac{1 + r_{t,t+1}}{1 + r^*_{t,t+1}} - S_t d_t
 = \frac{S_t u_t - S_t d_t}{S_t u_t - S_t d_t} ,
 \]

 \[
 = \frac{1 + r_{t,t+1}}{1 + r^*_{t,t+1}} - d_t
 \]

 \[
 = \frac{u_t - d_t}{u_t - d_t} ,
 \]

 \[
 d_t = \frac{S_{t+1,d}}{S_t} , \quad u_t = \frac{S_{t+1,u}}{S_t} .
 \]
Assumptions

- **A1 \((r \text{ and } r^*)\)**: The risk-free one-period rates of return on both currencies are constant
 - denoted by unsubscripted \(r\) and \(r^*\)
 - Also assumed in Black-Scholes.

- **A2 \((u \text{ and } d)\)**: The multiplicative change factors, \(u\) and \(d\), are constant.
 - Also assumed in Black-Scholes:
 - no jumps (sudden de/revaluations) in the exchange rate process, and
 - a constant variance of the period-by-period percentage changes in \(S\).

- **Implication of A1-A2**: \(q_t\) is a constant.

- **A2.01 (no free lunch in \(F\))**:
 \[
d < \frac{1 + r}{1 + r^*} < u \iff S_{t+1,d} < F_t < S_{t+1,u} \iff 0 < q < 1
 \]

Q: what would you do if \(S_1 = [95 \text{ or } 110]\) while \(F=90\)? 115?
Assumptions

- **A1 (r and r*)**: The risk-free one-period rates of return on both currencies are constant
 - denoted by unsubscripted r and r^*
 - Also assumed in Black-Scholes.

- **A2 (u and d)**: The multiplicative change factors, u and d, are constant.
 - Also assumed in Black-Scholes:
 - no jumps (sudden de/revaluations) in the exchange rate process, and
 - a constant variance of the period-by-period percentage changes in S.

- **Implication of A1-A2**: q_t is a constant.

- **A2.01 (no free lunch in F)**:

 $$d < \frac{1 + r}{1 + r^*} < u \iff S_{t+1,d} < F_t < S_{t+1,u} \iff 0 < q < 1$$

Q: what would you do if $S_1 = [95$ or $110]$ while $F=90$? 115?
Assumptions

- **A1 (r and \(r^* \))**: The risk-free one-period rates of return on both currencies are constant
 - denoted by unsubscripted \(r \) and \(r^* \)
 - Also assumed in Black-Scholes.

- **A2 (u and d)**: The multiplicative change factors, \(u \) and \(d \), are constant.
 - Also assumed in Black-Scholes:
 - no jumps (sudden de/revaluations) in the exchange rate process, and
 - a constant variance of the period-by-period percentage changes in \(S \).

- **Implication of A1-A2**: \(q_t \) is a constant.

- **A2.01 (no free lunch in \(F \))**:
 \[
 d < \frac{1 + r}{1 + r^*} < u \iff S_{t+1,d} < F_t < S_{t+1,u} \iff 0 < q < 1
 \]

Q: what would you do if \(S_1 = [95 \text{ or } 110] \) while \(F = 90? \ 115? \)
Assumptions

- **A1 (r and r*)**: The risk-free one-period rates of return on both currencies are constant
 - denoted by unsubscripted r and r^*
 - Also assumed in Black-Scholes.

- **A2 (u and d)**: The multiplicative change factors, u and d, are constant.
 - Also assumed in Black-Scholes:
 - no jumps (sudden de/revaluations) in the exchange rate process, and
 - a constant variance of the period-by-period percentage changes in S.

- **Implication of A1-A2**: q_t is a constant.

- **A2.01 (no free lunch in F)**:

 \[d < \frac{1 + r}{1 + r^*} < u \iff S_{t+1,d} < F_t < S_{t+1,u} \iff 0 < q < 1 \]

Q: what would you do if $S_1 = [95$ or $110]$ while $F = 90$? 115?
How such a tree works

The Binomial Logic:
One-period pricing

Multiperiod Pricing:
Assumptions
Notation
Assumptions
Discussion

Stepwise Multiperiod
Binomial Pricing
Towards
BlackMertonScholes
The Emerging Bellshape

The Binomial Logic: One-period pricing

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

Currency Options (2): Hedging and Valuation

P. Sercu, *International Finance: Theory into Practice*

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

The emerging bell-shape

let \(p = \frac{1}{2} \)

\[
\begin{align*}
1 & \quad 1/2 \\
1/2 & \quad 1/2 \\
1/4 & \quad 1/4 \\
1/8 & \quad 1/8 \\
1/16 & \quad 1/16 \\
4/16 & \quad 4/16 \\
6/16 & \quad 6/16 \\
4/16 & \quad 4/16 \\
1/16 & \quad 1/16 \\
C = 4!/4!0! = 1 & \quad C = 4!/3!1! = 24/6 = 4 \\
C = 4!/2!2! = 24/6 = 6 & \quad C = 4!/1!3! = 24/6 = 4 \\
C = 4!/4!0! = 1 &
\end{align*}
\]
What Emerging Bellshape?

◇ Chosing between two oversimplifications:

- additive

 100 ← 110 ← 120 ← 130
 90 ← 100 ← 90 ← 70

- multiplicative

 100 ← 110 ← 121 ← 133.1
 90 ← 99 ← 81 ← 72.9

- cents v percent: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.

- non-negative prices: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.

- invertible: we get a similar multiplicative process for the exchange rate as viewed abroad,
 \[S^* = 1/S \]
 (with \(d^* = 1/u, \ a^* = 1/d \)).

◇ Corresponding Limiting Distributions:

- additive: \(\tilde{S}_n = S_0 + \sum_{t=1}^{n} \tilde{\Delta}_t \) where \(\tilde{\Delta} = \{+10, -10\} \)
 \(\iff \) \(\tilde{S}_n \) is normal if \(n \) is large (CLT)

- multiplicative: \(\tilde{S}_n = S_0 \times \prod_{t=1}^{n} (1 + \tilde{r}_t) \) where \(\tilde{r} = \{+10\%, -10\%\} \)
 \(\iff \) \(\ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^{n} \tilde{\rho}_t \) where \(\tilde{\rho} = \ln(1 + \tilde{r}) = \{-0.095, -0.095\} \)
 \(\iff \) \(\ln \tilde{S}_n \) is normal if \(n \) is large \(\iff \) \(\tilde{S}_n \) is lognormal.
What Emerging Bellshape?

◊ Chosing between two oversimplifications:

- **cents v percent**: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.

- **non-negative prices**: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.

- **invertible**: we get a similar multiplicative process for the exchange rate as viewed abroad,
 \[S^* = 1/S \] (with \(d^* = 1/u, \quad u^* = 1/d \)).

◊ Corresponding Limiting Distributions:

- **additive**:
 \[\tilde{S}_n = S_0 + \sum_{t=1}^{n} \Delta_t \]
 where \(\Delta = \{+10, -10\} \)
 \(\Leftrightarrow \tilde{S}_n \) is normal if \(n \) is large (CLT)

- **multiplicative**:
 \[\tilde{S}_n = S_0 \times \prod_{t=1}^{n} (1 + \tilde{r}_t) \]
 where \(\tilde{r} = \{+10\%, -10\%\} \)
 \(\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^{n} \tilde{r}_t \) where \(\tilde{r} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\} \)
 \(\Leftrightarrow \ln \tilde{S}_n \) is normal if \(n \) is large \(\Leftrightarrow \tilde{S}_n \) is lognormal.
What Emerging Bellshape?

◊ Chosing between two oversimplifications:

<table>
<thead>
<tr>
<th>additive</th>
<th>multiplicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ← 110 ← 120 ← 130</td>
<td>100 ← 110 ← 121 ← 133.1</td>
</tr>
<tr>
<td>90 ← 100 ← 110 ← 90</td>
<td>90 ← 99 ← 81 ← 72.9</td>
</tr>
</tbody>
</table>

— **cents v percent**: we prefer a constant distribution of *percentage* price changes over a constant distribution of *dollar* price changes.

— **non-negative prices**: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.

— **invertible**: we get a similar multiplicative process for the exchange rate as viewed abroad,

\[S^* = \frac{1}{S} \text{ (with } d^* = \frac{1}{u}, \ u^* = \frac{1}{d}) \]

◊ Corresponding Limiting Distributions:

— **additive**:

\[\tilde{S}_n = S_0 + \sum_{t=1}^{n} \Delta_t \text{ where } \Delta = \{+10, -10\} \]

\[\iff \tilde{S}_n \text{ is normal if } n \text{ is large (CLT)} \]

— **multiplicative**:

\[\tilde{S}_n = S_0 \times \prod_{t=1}^{n} (1 + \tilde{r}_t) \text{ where } \tilde{r} = \{+10\%, -10\%\} \]

\[\iff \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^{n} \tilde{r}_t \text{ where } \tilde{r} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\} \]

\[\iff \ln \tilde{S}_n \text{ is normal if } n \text{ is large } \iff \tilde{S}_n \text{ is lognormal.} \]
Chosing between two oversimplifications:

- **cents v percent**: we prefer a constant distribution of *percentage* price changes over a constant distribution of *dollar* price changes.
- **non-negative prices**: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.
- **invertible**: we get a similar multiplicative process for the exchange rate as viewed abroad, $S^* = 1/S$ (with $d^* = 1/u, u^* = 1/d$).

Corresponding Limiting Distributions:

- **additive**: $\tilde{S}_n = S_0 + \sum_{t=1}^{n} \tilde{\Delta}_t$ where $\tilde{\Delta} = \{+10, -10\}$
 $\Leftrightarrow \tilde{S}_n$ is normal if n is large (CLT)

- **multiplicative**: $\tilde{S}_n = S_0 \times \prod_{t=1}^{n} (1 + \tilde{\rho}_t)$ where $\tilde{\rho} = \{+10\%, -10\%\}$
 $\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^{n} \tilde{\rho}_t$ where $\tilde{\rho} = \ln(1 + \tilde{\rho}) = \{+0.095, -0.095\}$
 $\Leftrightarrow \ln \tilde{S}_n$ is normal if n is large $\Leftrightarrow \tilde{S}_n$ is lognormal.
What Emerging Bellshape?

◇ Chosing between two oversimplifications:

- **cents v percent**: we prefer a constant distribution of *percentage* price changes over a constant distribution of *dollar* price changes.

- **non-negative prices**: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.

- **invertible**: we get a similar multiplicative process for the exchange rate as viewed abroad, $S^* = 1/S$ (with $d^* = 1/u$, $u^* = 1/d$).

◇ Corresponding Limiting Distributions:

- **additive**: $\tilde{S}_n = S_0 + \sum_{t=1}^{n} \tilde{\Delta}_t$ where $\tilde{\Delta} = \{+10, -10\}$
 $\iff \tilde{S}_n$ is normal if n is large (CLT)

- **multiplicative**: $\tilde{S}_n = S_0 \times \prod_{t=1}^{n} (1 + \tilde{r}_t)$ where $\tilde{r} = \{+10\%, -10\%\}$
 $\iff \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^{n} \tilde{\rho}_t$ where $\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\}$
 $\iff \ln \tilde{S}_n$ is normal if n is large $\iff \tilde{S}_n$ is lognormal.
What Emerging Bellshape?

◇ Chosing between two oversimplifications:

additive

\[\begin{array}{ccc}
100 & 110 & 120 \\
90 & 100 & 110 \\
80 & 90 & 70 \\
\end{array} \]

multiplicative

\[\begin{array}{ccc}
100 & 110 & 121 \\
90 & 99 & 81 \\
80 & 72.9 & 72.9 \\
\end{array} \]

- **cents v percent**: we prefer a constant distribution of *percentage* price changes over a constant distribution of *dollar* price changes.

- **non-negative prices**: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.

- **invertible**: we get a similar multiplicative process for the exchange rate as viewed abroad, \(S^* = 1/S \) (with \(d^* = 1/u, \ u^* = 1/d \)).

◇ Corresponding Limiting Distributions:

- **additive**: \(\tilde{S}_n = S_0 + \sum_{t=1}^n \tilde{\Delta}_t \) where \(\tilde{\Delta} = \{+10, -10\} \)
 \(\Leftrightarrow \tilde{S}_n \) is normal if \(n \) is large (CLT)

- **multiplicative**: \(\tilde{S}_n = S_0 \times \prod_{t=1}^n (1 + \tilde{r}_t) \) where \(\tilde{r} = \{+10\%, -10\%\} \)
 \(\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^n \tilde{\rho}_t \) where \(\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\} \)
 \(\Leftrightarrow \ln \tilde{S}_n \) is normal if \(n \) is large \(\Leftrightarrow \tilde{S}_n \) is lognormal.
What Emerging Bellshape?

◇ Chosing between two oversimplifications:

<table>
<thead>
<tr>
<th>additive</th>
<th>multiplicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>70</td>
<td>72.9</td>
</tr>
<tr>
<td>110</td>
<td>108.9</td>
</tr>
<tr>
<td>120</td>
<td>110</td>
</tr>
<tr>
<td>130</td>
<td>121</td>
</tr>
<tr>
<td>133.1</td>
<td>133.1</td>
</tr>
</tbody>
</table>

- **cents v percent**: we prefer a constant distribution of *percentage* price changes over a constant distribution of *dollar* price changes.
- **non-negative prices**: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.
- **invertible**: we get a similar multiplicative process for the exchange rate as viewed abroad, \(S^* = 1/S \) (with \(d^* = 1/u, \ u^* = 1/d \)).

◇ Corresponding Limiting Distributions:

- **additive**: \(\tilde{S}_n = S_0 + \sum_{t=1}^{n} \tilde{\Delta}_t \) where \(\tilde{\Delta} = \{+10, -10\} \)
 \(\iff \tilde{S}_n \) is normal if \(n \) is large (CLT)

- **multiplicative**: \(\tilde{S}_n = S_0 \times \prod_{t=1}^{n} (1 + \tilde{r}_t) \) where \(\tilde{r} = \{+10\%, -10\%\} \)
 \(\iff \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^{n} \tilde{\rho}_t \) where \(\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\} \)
 \(\iff \ln \tilde{S}_n \) is normal if \(n \) is large \(\iff \tilde{S}_n \) is lognormal.
The Binomial Logic: One-period pricing
 The Replication Approach
 The Hedging Approach
 The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
 Notation
 Assumptions
 Discussion

Stepwise Multiperiod Binomial Option Pricing
 Backward Pricing, Dynamic Hedging
 What can go wrong?
 American-style Options

Towards Black-Merton-Scholes
 STP-ing of European Options
 Towards the Black-Merton-Scholes Equation
 The Delta of an Option
An N-period European Call: The Problem

\[
\begin{array}{c}
S_0 = 100 \\
S_{1,0} = 90 \\
S_{1,1} = 110 \\
S_{2,0} = 81 \\
S_{2,1} = 99 \\
S_{2,2} = 121 \\
\end{array}
\]

- payoff
- \(u = 1.1 \);
- \(d = 0.9 \);
- \(1 + r = 1.05 \);
- \(1 + r^* = 1.0294118 \);
- forward factor \(\frac{1 + r}{1 + r^*} = 1.02 \);
- \(q = \frac{1.02 - 0.9}{1.1 - 0.9} = 0.60 \)

A4. At any discrete moment in the model, investors can trade and adjust their portfolios of HC-FC loans.

Black-Scholes: trading is continuous
Backward Pricing, Dynamic Hedging

Bow the binomial pricing of European options.

\[S_0 = 100 \]

\[S_{1,0} = 90 \]

\[S_{1,1} = 110 \]

\[S_{2,0} = 81 \]

\[S_{2,1} = 99 \]

\[S_{2,2} = 121 \]

\[\text{payoff} \]

\[26 \]

\[4 \]

\[0 \]

\[u = 1.1; d = 0.9; 1+r = 1.05; 1+r^* = 1.0294118; \]

\[\text{forward factor} \frac{1+r}{1+r^*} = 1.02 \]

\[q = \frac{1.02 - 0.9}{1.1 - 0.9} = 0.60 \]

◊ if we land in node \((1,1)\):

\[b_{1,1} = \frac{26 - 4}{121 - 99} = 1 \]

\[C_{1,1} = \frac{(26 \times 0.6) + (4 \times 0.4)}{1.05} = 16.38 \]

◊ if we land in node \((1,0)\):

\[b_{1,0} = \frac{4 - 0}{99 - 81} = 0.222 \]

\[C_{1,0} = \frac{(4 \times 0.6) + (0 \times 0.4)}{1.05} = 2.29 \]
Backward Pricing, Dynamic Hedging

\[b_{1,1} = \frac{26 - 4}{121 - 99} = 1 \]
\[C_{1,1} = \frac{(26 \times 0.6) + (4 \times 0.4)}{1.05} = 16.38 \]

\[b_{1,0} = \frac{4 - 0}{99 - 81} = .222 \]
\[C_{1,0} = \frac{(4 \times 0.6) + (0 \times 0.4)}{1.05} = 2.29 \]
Backward Pricing, Dynamic Hedging

\[C_1 = \begin{cases} 16.38 & \text{if } S_1 = 110 \\ 2.29 & \text{if } S_1 = 90 \end{cases} \]

\[b_0 = \frac{16.38 - 2.29}{110 - 90} = 0.704 \]

\[C_{1,1} = \frac{(16.38 \times 0.6) + (2.29 \times 0.4)}{1.05} = 10.23 \]

Summary:

- We hedge dynamically:
 - Start the hedge at time 0 with 0.704 units sold forward.
 - The time-1 hedge will be to sell forward 1 or 0.222 units of foreign currency, depending on whether the rate moves up or down.

- We price backward, step by step
Backward Pricing, Dynamic Hedging

\[
C_1 = \begin{cases}
16.38 & \text{if } S_1 = 110 \\
2.29 & \text{if } S_1 = 90
\end{cases}
\]

◊ at time 0 we do have a two-point problem:

\[
b_0 = \frac{16.38 - 2.29}{110 - 90} = 0.704
\]

\[
C_{1,1} = \frac{(16.38 \times 0.6) + (2.29 \times 0.4)}{1.05} = 10.23
\]

Summary:

▷ we hedge dynamically:

- Start the hedge at time 0 with 0.704 units sold forward.
- The time-1 hedge will be to sell forward 1 or 0.222 units of foreign currency, depending on whether the rate moves up or down.

▷ we price backward, step by step
Backward Pricing, Dynamic Hedging

\[C_1 = \begin{cases}
16.38 & \text{if } S_1 = 110 \\
2.29 & \text{if } S_1 = 90
\end{cases} \]

\[b_0 = \frac{16.38 - 2.29}{110 - 90} = 0.704 \]

\[C_{1,1} = \frac{(16.38 \times 0.6) + (2.29 \times 0.4)}{1.05} = 10.23 \]

Summary:

- we hedge dynamically:
 - start the hedge at time 0 with 0.704 units sold forward.
 - The time-1 hedge will be to sell forward 1 or 0.222 units of foreign currency, depending on whether the rate moves up or down.

- we price backward, step by step
Backward Pricing, Dynamic Hedging

\[C_1 = \begin{cases} 16.38 & \text{if } S_1 = 110 \\ 2.29 & \text{if } S_1 = 90 \end{cases} \]

\[
\Rightarrow b_0 = \frac{16.38 - 2.29}{110 - 90} = 0.704 \\
C_{1,1} = \frac{(16.38 \times 0.6) + (2.29 \times 0.4)}{1.05} = 10.23
\]

Summary:

▶ we hedge dynamically:
 - start the hedge at time 0 with 0.704 units sold forward.
 - The time-1 hedge will be to sell forward 1 or 0.222 units of foreign currency, depending on whether the rate moves up or down.

▶ we price backward, step by step
Hedging Verified

<table>
<thead>
<tr>
<th>Step</th>
<th>Value if up</th>
<th>Value if down</th>
</tr>
</thead>
<tbody>
<tr>
<td>at time 0:</td>
<td>invest 10.23 129 at 5%, buy fwd MTL 0.704 762 at 100 × 1.02 = 102</td>
<td>invest 10.23 129 at 5%, buy fwd MTL 0.704 762 at 100 × 1.02 = 102</td>
</tr>
<tr>
<td>— value if up</td>
<td>10.23 129 × 1.05 + 0.704 762 × (110 − 102) = 16.380 95</td>
<td>10.23 129 × 1.05 + 0.704 762 × (90 − 102) = 2.295 71</td>
</tr>
<tr>
<td>— value if down</td>
<td>10.23 129 × 1.05 + 0.704 762 × (90 − 102) = 2.295 71</td>
<td>10.23 129 × 1.05 + 0.704 762 × (81 − 91.8) = 0.000 00</td>
</tr>
<tr>
<td>if in node (1,1):</td>
<td>invest 16.380 95 at 5%, buy fwd MTL 1 at 100 × 1.02 = 112.2</td>
<td>invest 16.380 95 at 5%, buy fwd MTL 1 at 100 × 1.02 = 112.2</td>
</tr>
<tr>
<td>— value if up</td>
<td>16.380 95 × 1.05 + 1.000 000 × (121 − 112.2) = 26.000 00</td>
<td>16.380 95 × 1.05 + 1.000 000 × (99 − 112.2) = 4.000 00</td>
</tr>
<tr>
<td>— value if down</td>
<td>16.380 95 × 1.05 + 1.000 000 × (99 − 112.2) = 4.000 00</td>
<td>16.380 95 × 1.05 + 1.000 000 × (81 − 91.8) = 0.000 00</td>
</tr>
<tr>
<td>if in node (1,0):</td>
<td>invest 2.295 71 at 5%, buy fwd MTL 0.222 222 at 90 × 1.02 = 91.8</td>
<td>invest 2.295 71 at 5%, buy fwd MTL 0.222 222 at 90 × 1.02 = 91.8</td>
</tr>
<tr>
<td>— value if up</td>
<td>2.295 71 × 1.05 + 0.222 222 × (99 − 91.8) = 4.000 00</td>
<td>2.295 71 × 1.05 + 0.222 222 × (81 − 91.8) = 0.000 00</td>
</tr>
<tr>
<td>— value if down</td>
<td>2.295 71 × 1.05 + 0.222 222 × (81 − 91.8) = 0.000 00</td>
<td>2.295 71 × 1.05 + 0.222 222 × (70 − 91.8) = 0.000 00</td>
</tr>
</tbody>
</table>
What can go wrong?

Everything can and will go wrong:

Change of risk: ±20% if up, ±5% if down, instead of the current ±10%:

\[
C_{1,1} = \frac{37 \times 0.55 + 0}{1.05} = 19.36, \text{ not } 16.38,
\]

\[
C_{1,0} = \frac{0 + 0}{1.05} = 0.00, \text{ not } 2.29,
\]

You would have mishedged:

- You would lose, as a writer, in the upstate (risk up)
- You would gain, as a writer, in the downstate (risk down)
What can go wrong?

Everything can and will go wrong:

Change of risk: \(\pm 20\% \) if up, \(\pm 5\% \) if down, instead of the current \(\pm 10\% \):

\[
\begin{align*}
C_{1,1} &= \frac{37 \times 0.55 + 0}{1.05} = 19.36, \text{ not } 16.38, \\
C_{1,0} &= \frac{0 + 0}{1.05} = 0.00, \text{ not } 2.29,
\end{align*}
\]

You would have mishedged:

– You would lose, as a writer, in the upstate (risk up)
– You would gain, as a writer, in the downstate (risk down)
American-style Options

\[u = 1.1, \ d = 0.9, \ r = 5\%, \ \frac{(1+r)}{(1+r^*)} = 1.02, \ q = 0.60 \]

- **Node (1,1)** In this node the choices are
 - PV of later exercise (0 or 1): 0.381
 - Value of immediate exercise: 0 — so we wait; \(V_{1,1} = 0.381 \)

- **Node (1,0)** Now the choices are
 - PV of later exercise (0 or 19): 7.81
 - Value of immediate exercise: 10 — so we exercise; \(V_{1,0} = 10 \) not 7.81

- **Node (0)** We now choose between
 - PV of later exercise (0 or 1 at time 2, or 10 at time 1):
 \[
 P_{0}^{alive} = \frac{0.381 \times 0.60 + 10 \times 0.40}{1.05} = 4.03
 \]
 - Value of immediate exercise: 0 — so we wait; \(V_{0} = 4.03 \)
American-style Options

\[u = 1.1, \quad d = 0.9, \quad r = 5\%, \quad \frac{1 + r}{1 + r^*} = 1.02, \quad q = 0.60 \]

\[\text{Exchange rate} \]

\[
\begin{array}{c|c|c}
0 & 1 & 0 \\
100 & 110 & 121 \\
90 & 99 & 81 \\
\end{array}
\]

\[\text{European Put with} \]
\[X = 100 \]

\[
\begin{array}{c|c|c}
0 & 1 & 0 \\
3.193 & .381 (0) & 0 \\
7.81 & 7.81 (10) & 19 \\
\end{array}
\]

\[\text{American Put with} \]
\[X = 100 \]

\[
\begin{array}{c|c|c}
0 & 1 & 0 \\
4.03 & .381 (0) & 1 \\
7.81 & 7.81 (10) & 19 \\
\end{array}
\]

- **Node (1,1)** In this node the choices are
 - PV of later exercise (0 or 1): 0.381
 - Value of immediate exercise: 0 — so we wait; \(V_{1,1} = 0.381 \)

- **Node (1,0)** Now the choices are
 - PV of later exercise (0 or 19): 7.81
 - Value of immediate exercise: 10 — so we exercise; \(V_{1,0} = 10 \) not 7.81

- **Node (0)** We now choose between
 - PV of later exercise (0 or 1 at time 2, or 10 at time 1):
 \[
 p_{alive}^0 = \frac{0.381 \times 0.60 + 10 \times 0.40}{1.05} = 4.03
 \]
 - Value of immediate exercise: 0 — so we wait; \(V_0 = 4.03 \)
American-style Options

Node (1,1)
In this node the choices are
- **PV of later exercise (0 or 1):** 0.381
- **Value of immediate exercise:** 0 — so we wait; \(V_{1,1} = 0.381 \)

Node (1,0)
Now the choices are
- **PV of later exercise (0 or 19):** 7.81
- **Value of immediate exercise:** 10 — so we exercise; \(V_{1,0} = 10 \) not 7.81

Node (0)
We now choose between
- **PV of later exercise (0 or 1 at time 2, or 10 at time 1):**
 \[
 P_{0}^{\text{alive}} = \frac{0.381 \times 0.60 + 10 \times 0.40}{1.05} = 4.03
 \]
- **Value of immediate exercise:** 0 — so we wait; \(V_{0} = 4.03 \)
Outline

The Binomial Logic: One-period pricing
 The Replication Approach
 The Hedging Approach
 The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
 Notation
 Assumptions
 Discussion

Stepwise Multiperiod Binomial Option Pricing
 Backward Pricing, Dynamic Hedging
 What can go wrong?
 American-style Options

Towards Black-Merton-Scholes
 STP-ing of European Options
 Towards the Black-Merton-Scholes Equation
 The Delta of an Option
Straight-Through-Pricing a 3-period Put

The long way:

\[
\begin{align*}
C_{2,2} &= \frac{0.00 \times 0.6 + 0.00 \times 0.4}{1.05} = 0.00, \\
C_{2,1} &= \frac{0.00 \times 0.6 + 10.9 \times 0.4}{1.05} = 4.152, \\
C_{2,0} &= \frac{10.0 \times 0.6 + 27.1 \times 0.4}{1.05} = 16.55, \\
C_{1,1} &= \frac{0.000 \times 0.6 + 4.152 \times 0.4}{1.05} = 1.582, \\
C_{1,0} &= \frac{4.152 \times 0.6 + 16.55 \times 0.4}{1.05} = 8.678, \\
C_0 &= \frac{1.582 \times 0.6 + 8.678 \times 0.4}{1.05} = 4.210.
\end{align*}
\]
Straight-Through-Pricing a 3-period Put

The long way:

\[
\begin{align*}
C_{2,2} &= \frac{0.00 \times 0.6 + 0.00 \times 0.4}{1.05} = 0.00, \\
C_{2,1} &= \frac{0.00 \times 0.6 + 10.9 \times 0.4}{1.05} = 4.152, \\
C_{2,0} &= \frac{10.0 \times 0.6 + 27.1 \times 0.4}{1.05} = 16.55, \\
C_{1,1} &= \frac{0.000 \times 0.6 + 4.152 \times 0.4}{1.05} = 1.582, \\
C_{1,0} &= \frac{4.152 \times 0.6 + 16.55 \times 0.4}{1.05} = 8.678, \\
C_0 &= \frac{1.582 \times 0.6 + 8.678 \times 0.4}{1.05} = 4.210.
\end{align*}
\]
Straight-Through-Pricing a 3-period Put

100
90
121
99
133.1
108.9
89.1
72.9\[\Rightarrow\]
4.21
1.58
6.68
4.15
10.9
27.1

The fast way:

▷ \(pr_3 = \ldots \)
▷ \(pr_2 = \ldots \)
▷ \(pr_1 = \ldots \)
▷ \(pr_0 = \ldots \)
▷ The (risk-adjusted) chance of ending in the money is ...
▷ \(C_0 = \ldots \times \ldots \times \ldots \times \ldots \times \ldots = 4.21 \)
Straight-Through-Pricing: 2-period Math

\[C_{1,1} = \frac{q C_{2,2} + (1 - q)C_{2,1}}{1 + r}, \]
\[C_{1,0} = \frac{q C_{2,1} + (1 - q)C_{2,0}}{1 + r}, \]
\[C_0 = \frac{q C_{1,1} + (1 - q)C_{1,0}}{1 + r}, \]
\[=q \left[\frac{q C_{2,2} + (1 - q)C_{2,1}}{1 + r} \right] + (1 - q) \left[\frac{q C_{2,1} + (1 - q)C_{2,0}}{1 + r} \right] \]
\[= \frac{q^2 C_{2,2} + 2q (1 - q)C_{2,1} + (1 - q)^2 C_{2,0}}{(1 + r)^2} \]
Straight-Through-Pricing: 3-period Math

\[C_{1,1} = \frac{q^2 C_{3,3} + 2q(1-q)C_{3,2} + (1-q)^2 C_{3,1}}{(1+r)^2} \]

\[C_{1,0} = \frac{q^2 C_{3,2} + 2q(1-q)C_{3,1} + (1-q)^2 C_{3,0}}{(1+r)^2} \]

\[C_0 = \frac{q C_{1,1} + (1-q)C_{1,0}}{1+r} \]

\[= q \left[q^2 C_{3,3} + 2q(1-q)C_{3,2} + (1-q)^2 C_{3,1} \right] \]
\[+ (1-q) \left[q^2 C_{3,2} + 2q(1-q)C_{3,1} + (1-q)^2 C_{3,0} \right] \]
\[= \frac{q^3 C_{3,3} + 3q^2(1-q)C_{3,2} + 3q(1-q)^2 C_{3,1} + (1-q)^3 C_{3,0}}{(1+r)^3} \]
Toward BMS 1: two terms

Let \(pr_{n,j}^{(Q)} \) = risk-adjusted chance of having \(j \) ups in \(n \) jumps

\[
= \frac{n!}{j! (n-j)!} \times q^j (1-q)^{N-j} = \left(\begin{array}{c} N \\ j \end{array} \right) q^j (1-q)^{N-j}
\]

\# of paths with \(j \) ups
prob of such a path

and let \(a \) : \(\{ j \geq a \} \iff \{ S_{n,j} \geq X \} \);

then \(C_0 \)

\[
= \frac{\sum_{j=0}^{N} pr_{n,j}^{(Q)} C_{n,j}}{(1+r)^N} = \frac{\text{CEQ}_0(\tilde{C}_N)}{\text{discounted}},
\]

\[
= \frac{\sum_{j=0}^{N} pr_{n,j}^{(Q)} (S_{n,j} - X)_+}{(1+r)^N},
\]

\[
= \frac{\sum_{j=a}^{N} pr_{n,j}^{(Q)} (S_{n,j} - X)}{(1+r)^N},
\]

\[
= \frac{\sum_{j=a}^{N} pr_{n,j}^{(Q)} S_{n,j}}{(1+r)^N} - \frac{X}{(1+r)^N} \sum_{j=a}^{N} pr_{n,j}^{(Q)}. \quad (2)
\]
Toward BMS 2: two probabilities

Recall: \(C_0 = \frac{\sum_{j=a}^{N} p_r(Q) s_{n,j}}{(1 + r)^N} - \frac{X}{(1 + r)^N} \sum_{j=a}^{N} p_r(Q). \)

We can factor out \(S_0 \), in the first term, by using

\[S_{n,j} = S_0 u^j d^{N-j}. \]

We also use

\[\frac{1}{(1 + r)^N} = \frac{1}{(1 + r^*)^N} \left(\frac{1 + r^*}{1 + r} \right)^j \left(\frac{1 + r^*}{1 + r} \right)^{N-j} \]

\[
\sum_{j=a}^{N} p_r(Q) s_{n,j} = \frac{S_0}{(1 + r^*)^N} \sum_{j=a}^{N} \binom{N}{j} \left(q \frac{1 + r^*}{1 + r} \right)^j \left(1 - q \frac{1 + r^*}{1 + r} \right)^{N-j}
\]

\[
= \frac{S_0}{(1 + r^*)^N} \sum_{j=a}^{N} \binom{N}{j} \pi^j (1 - \pi)^{N-j}
\]

where \(\pi := q \frac{1 + r^*}{1 + r} \Rightarrow 1 - \pi = (1 - q) \frac{1 + r^*}{1 + r}. \)
Towards BMS 3: the limit

\[C_0 = \frac{S_0}{(1 + r^*)^N} \left\{ \sum_{j=a}^{N} \binom{N}{j} \pi^j (1 - \pi)^{N-j} \right\} \]

\[\left\{ \frac{X}{(1 + r)^N} \right\} \sum_{j=a}^{N} pr(Q)_{n,j} \]

\(C_0 \) = price of the underlying FC PN

\(a \geq a \) probability-like expression

\(j \geq a \) discounted strike

\(Q \) of

\(j \geq a \)

\(pr(Q) \)

\(N \rightarrow \infty \) (and suitably adjusting \(u, d, r, r^* \))

\(j/N \) becomes Gaussian, so we get Gaussian probabilities

\(\text{first prob typically denoted } N(d_1), d_1 = \frac{\ln(F_t,T/X) + (1/2)\sigma_t^2}{\sigma_t \sqrt{T}} \), with \(\sigma_t \)

\(\text{the effective stdev of } \ln(S_T) \text{ as seen at time } t \)

\(\text{second prob typically denoted } N(d_2), d_2 = \frac{\ln(F_t,T/X) - (1/2)\sigma_t^2}{\sigma_t \sqrt{T}} \)

\(\text{Special case } a = 0: \)

\(a = 0 \) means that ...

so both probabilities become ...

and we recognize the value of ...

\(\text{Towards BMS} \)
Towards BMS 3: the limit

\[
C_0 = \frac{S_0}{(1 + r^*)^N} \sum_{j=a}^N \binom{N}{j} \pi^j (1 - \pi)^{N-j} \left(\frac{X}{(1 + r)^N} \right) \sum_{j=a}^N pr_{n,j}^{(Q)} \tag{3}
\]

- a “\(j \geq a \)” probability-like expression
- price of the underlying FC PN
- discounted strike
- prob\((Q)\) of \(j \geq a \)

\(a = 0 \):

- “\(a = 0 \)” means that ...
- so both probabilities become ...
- and we recognize the value of ...

- In the limit for \(N \to \infty \) (and suitably adjusting \(u, d, r, r^* \))
 - \(j/N \) becomes Gaussian, so we get Gaussian probabilities
 - first prob typically denoted \(N(d_1) \), \(d_1 = \frac{\ln(F_{t,T}/X) + (1/2)\sigma_{t,T}^2}{\sigma_{t,T}} \), with \(\sigma_{t,T} \) the effective stdev of \(\ln \tilde{S}_T \) as seen at time \(t \)
 - second prob typically denoted \(N(d_2) \), \(d_2 = \frac{\ln(F_{t,T}/X) - (1/2)\sigma_{t,T}^2}{\sigma_{t,T}} \)
Towards BMS 3: the limit

\[C_0 = \frac{S_0}{(1 + r^*)^N} \sum_{j=a}^{N} \left(\binom{N}{j} \pi^j (1 - \pi)^{N-j} \right) X \left(\frac{1}{1 + r} \right)^N - \sum_{j=a}^{N} pr_{n,j}^{(Q)}. \]

\[(3) \]

\[C_0 = \frac{S_0}{(1 + r^*)^N} \sum_{j=a}^{N} \left(\binom{N}{j} \pi^j (1 - \pi)^{N-j} \right) X \left(\frac{1}{1 + r} \right)^N - \sum_{j=a}^{N} pr_{n,j}^{(Q)}. \]

\[(3) \]

\[a \geq a \] probability-like expression

\[j \geq a \]

\[\text{price of the underlying FC PN} \]

\[\text{discounted strike} \]

\[\text{prob}(Q) \] of \(j \geq a \)

\[\diamond \] Special case \(a = 0 \):

\[\text{“a = 0” means that ...} \]

\[\text{so both probabilities become ...} \]

\[\text{and we recognize the value of ...} \]

\[\text{In the limit for } N \rightarrow \infty \text{ (and suitably adjusting } u, \, d, \, r, \, r^*) \]

\[j/N \text{ becomes Gaussian, so we get Gaussian probabilities} \]

\[\text{first prob typically denoted } N(d_1), \, d_1 = \frac{\ln(F_{t,T}/X) + (1/2)\sigma^2_{t,T}}{\sigma_{t,T}}, \text{ with } \sigma_{t,T} \]

\[\text{the effective stdev of } \ln(\tilde{S}_T) \text{ as seen at time } t \]

\[\text{second prob typically denoted } N(d_2), \, d_2 = \frac{\ln(F_{t,T}/X) - (1/2)\sigma^2_{t,T}}{\sigma_{t,T}} \]

\[\text{STP-ing of European Options} \]

\[\text{Towards BlackMertonScholes} \]

\[\text{Towards BlackMertonScholes} \]
Towards BMS 3: the limit

\[C_0 = \frac{S_0}{(1 + r^*)^N} \sum_{j=a}^{N} \binom{N}{j} \pi^j (1 - \pi)^{N-j} - \frac{X}{(1 + r)^N} \sum_{j=a}^{N} pr_n^{(Q)}(j). \]

- Special case \(a = 0 \):
 - "\(a = 0 \)" means that ...
 - so both probabilities become ...
 - and we recognize the value of ...

- In the limit for \(N \to \infty \) (and suitably adjusting \(u, d, r, r^* \))
 - \(j/N \) becomes Gaussian, so we get Gaussian probabilities
 - first prob typically denoted \(N(d_1) \), \(d_1 = \frac{\ln(F_{t,T}/X) + (1/2)\sigma_{t,T}^2}{\sigma_{t,T}} \), with \(\sigma_{t,T} \)
 the effective stddev of \(\ln \tilde{S}_T \) as seen at time \(t \)
 - second prob typically denoted \(N(d_2) \), \(d_2 = \frac{\ln(F_{t,T}/X) - (1/2)\sigma_{t,T}^2}{\sigma_{t,T}} \)
Towards BMS 3: the limit

\[C_0 = \frac{S_0}{(1 + r^*)^N} \sum_{j=a}^{N} \binom{N}{j} \pi^j (1 - \pi)^{N-j} - \frac{X}{(1 + r)^N} \sum_{j=a}^{N} pr_{n,j}(Q) \]

- **Special case** \(a = 0 \):
 - “\(a = 0 \)” means that ...
 - so both probabilities become ...
 - and we recognize the value of ...

- **In the limit for \(N \rightarrow \infty \)** (and suitably adjusting \(u, d, r, r^* \))
 - \(j/N \) becomes Gaussian, so we get Gaussian probabilities
 - first prob typically denoted \(N(d_1) \), \(d_1 = \frac{\ln(F_{t,T}/X) + (1/2)\sigma_{t,T}^2}{\sigma_{t,T}} \), with \(\sigma_{t,T} \) the effective stdev of \(\ln \tilde{S}_T \) as seen at time \(t \)
 - second prob typically denoted \(N(d_2) \), \(d_2 = \frac{\ln(F_{t,T}/X) - (1/2)\sigma_{t,T}^2}{\sigma_{t,T}} \)
The Delta of an Option

◊ **Replication:** in BMS the option formula is still based on a portfolio that replicates the option (over the short time period dt):

- a fraction $\sum_{j=a}^n \pi_j$ or $N(d_1)$ of a FC PN with face value unity, and
- a fraction $\sum_{j=a}^n pr_j$ or $N(d_2)$ of a HC PN with face value X.

◊ **Hedge:** since hedging is just replication reversed, you can use the formula to hedge:

<table>
<thead>
<tr>
<th>version of formula</th>
<th>hedge instrument</th>
<th>unit price</th>
<th>size of position</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_0 = \frac{S_0}{1+r_0,T}N(d_1) - \ldots$</td>
<td>FC PN expiring at T</td>
<td>$\frac{S_0}{1+r_0,T}$</td>
<td>$N(d_1)$</td>
</tr>
<tr>
<td>$C_0 = S_0 \frac{N(d_1)}{1+r_0,T} - \ldots$</td>
<td>FC spot deposit</td>
<td>S_0</td>
<td>$\frac{N(d_1)}{1+r_0,T}$</td>
</tr>
<tr>
<td>$C_0 = F_{0,T} \frac{N(d_1)}{1+r_0,T} - \ldots$</td>
<td>Forward expiring at T</td>
<td>$F_{0,T}$</td>
<td>$\frac{N(d_1)}{1+r_0,T}$</td>
</tr>
</tbody>
</table>
The Delta of an Option

◆ Replication: in BMS the option formula is still based on a portfolio that replicates the option (over the short time period dt):
 - a fraction $\sum_{j=a}^{n} \pi_j$ or $N(d_1)$ of a FC PN with face value unity, and
 - a fraction $\sum_{j=a}^{n} pr_j$ or $N(d_2)$ of a HC PN with face value X.

◆ Hedge: since hedging is just replication reversed, you can use the formula to hedge:

<table>
<thead>
<tr>
<th>version of formula</th>
<th>hedge instrument</th>
<th>unit price</th>
<th>size of position</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_0 = \frac{S_0}{1+r_0^*,T} N(d_1) - \ldots$</td>
<td>FC PN expiring at T</td>
<td>$\frac{S_0}{1+r_0^*,T}$</td>
<td>$N(d_1)$</td>
</tr>
<tr>
<td>$C_0 = S_0 \frac{N(d_1)}{1+r_0^*,T} - \ldots$</td>
<td>FC spot deposit</td>
<td>S_0</td>
<td>$\frac{N(d_1)}{1+r_0^*,T}$</td>
</tr>
<tr>
<td>$C_0 = F_0,T \frac{N(d_1)}{1+r_0^*,T} - \ldots$</td>
<td>Forward expiring at T</td>
<td>$F_{0,T}$</td>
<td>$\frac{N(d_1)}{1+r_0^*,T}$</td>
</tr>
</tbody>
</table>
What have we learned in this chapter?

◇ **Why binomial?**
 - does basically the same as the BMS pde, but ...
 - is much simpler

◇ **One-period problems**
 - hedging/replication gets us the price without knowing the true p and the required risk correction in the discount rate
 - but that’s because we implicitly use q instead:
 - the price is the discounted risk-adjusted expectation

◇ **Multiperiod models**
 - basic model assumes constant u, d, r, r^*
 - we can hedge dynamically and price backward
 - for American-style options, we also compare to the value dead

◇ **Black-Merton-Scholes**
 - For European-style options, you can Straight-Through-Price the option
 - This gets us a BMS-like model
 - BMS itself is a limit case
What have we learned in this chapter?

Why binomial?

- does basically the same as the BMS pde, but ...
- is much simpler

One-period problems

- hedging/replication gets us the price without knowing the true p and the required risk correction in the discount rate
- but that’s because we implicitly use q instead:
- the price is the discounted risk-adjusted expectation

Multiperiod models

- basic model assumes constant u, d, r, r^*
- we can hedge dynamically and price backward
- for American-style options, we also compare to the value dead

Black-Merton-Scholes

- For European-style options, you can Straight-Through-Price the option
- This gets us a BMS-like model
- BMS itself is a limit case
What have we learned in this chapter?

- **Why binomial?**
 - does basically the same as the BMS pde, but ...
 - is much simpler

- **One-period problems**
 - hedging/replication gets us the price without knowing the true \(p \) and the required risk correction in the discount rate
 - but that’s because we implicitly use \(q \) instead:
 - the price is the discounted risk-adjusted expectation

- **Multiperiod models**
 - basic model assumes constant \(u, d, r, r^* \)
 - we can hedge dynamically and price backward
 - for American-style options, we also compare to the value dead

- **Black-Merton-Scholes**
 - For European-style options, you can Straight-Through-Price the option
 - This gets us a BMS-like model
 - BMS itself is a limit case
What have we learned in this chapter?

- **Why binomial?**
 - does basically the same as the BMS pde, but ...
 - is much simpler

- **One-period problems**
 - hedging/replication gets us the price without knowing the true p and the required risk correction in the discount rate
 - but that’s because we implicitly use q instead:
 - the price is the discounted risk-adjusted expectation

- **Multiperiod models**
 - basic model assumes constant u, d, r, r^*
 - we can hedge dynamically and price backward
 - for American-style options, we also compare to the value dead

- **Black-Merton-Scholes**
 - For European-style options, you can Straight-Through-Price the option
 - This gets us a BMS-like model
 - BMS itself is a limit case