Chapter 8

Currency Options (1): Concepts and Uses
Overview

Introduction
 Puts and Calls
 Some Jargon: IV, I-A-OTM, TV
 Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage
 Lower Bounds
 (European) Put-Call Parity

Using Options (2): hedging
 Advantages

Using Options (3): Speculation

What have we learned?
 Summary
 Are Options too Expensive?
Overview

Introduction
- Puts and Calls
- Some Jargon: IV, I-A-OTM, TV
- Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage
- Lower Bounds
 - (European) Put-Call Parity

Using Options (2): hedging
- Advantages

Using Options (3): Speculation

What have we learned?
- Summary
- Are Options too Expensive?
Overview

Introduction
- Puts and Calls
- Some Jargon: IV, I-A-OTM, TV
- Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage
- Lower Bounds
- (European) Put-Call Parity

Using Options (2): hedging
- Advantages

Using Options (3): Speculation

What have we learned?
- Summary
- Are Options too Expensive?
Overview

Introduction

- Puts and Calls
- Some Jargon: IV, I-A-OTM, TV
- Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage

- Lower Bounds
- (European) Put-Call Parity

Using Options (2): hedging

- Advantages

Using Options (3): Speculation

What have we learned?

Summary

- Are Options too Expensive?
Overview

Introduction
- Puts and Calls
- Some Jargon: IV, I-A-OTM, TV
- Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage
- Lower Bounds
- (European) Put-Call Parity

Using Options (2): hedging
- Advantages

Using Options (3): Speculation

What have we learned?
- Summary
- Are Options too Expensive?
Overview

Introduction
- Puts and Calls
- Some Jargon: IV, I-A-OTM, TV
- Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage
- Lower Bounds
- (European) Put-Call Parity

Using Options (2): hedging
- Advantages

Using Options (3): Speculation

What have we learned?
- Summary
- Are Options too Expensive?
Introduction

Puts and Calls

Some Jargon: IV, I-A-OTM, TV

Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage

Lower Bounds

(European) Put-Call Parity

Using Options (2): hedging

Advantages

Using Options (3): Speculation

What have we learned?

Summary

Are Options too Expensive?
A Young person’s Guide to FX Options

- **Options**: the holder has the right to buy (call option) or sell (put option), at an agreed-upon expiry moment T, an agreed-upon quantity of a specified asset ("underlying") at an agreed-upon price (strike or exercise price), from/to the writer of the option.

- **Exercising (killing) the option**: using the right, that is, buying (or selling) at the strike, at T or (for an American-style:) possibly also early, i.e. before T.

- **Premium**: the price paid (by the holder, to writer) for the option, irrespective of exercising. Usually paid upfront, rarely at T (forward-style), sometimes partly via mark2market and partly final (futures-style).
A Young person’s Guide to FX Options

Options (1): Concepts and Uses

P. Sercu, *International Finance: Theory into Practice*

Introduction

Puts and Calls

Some Jargon

Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage

Using Options (2): Hedging

Using Options (3): Speculation

What have we learned?

Options: the holder has the right to \(\begin{cases} \text{buy} & \text{(call option)} \\ \text{sell} & \text{(put option)} \end{cases} \)

at (European-style option)

up until (American style option)

an agreed-upon expiry moment \(T \), an agreed-upon quantity of a specified asset (“underlying”) at an agreed-upon price (strike or exercise price), from/to the writer of the option.

Exercising (killing) the option: using the right, that is, buying (or selling) at the strike, at \(T \) or (for an American-style:) possibly also early, i.e. before \(T \)

Premium: the price paid (by the holder, to writer) for the option, irrespective of exercising.

Usually paid upfront, rarely at \(T \) (forward-style), sometimes partly via mark2market and partly final (futures-style).
A Young person’s Guide to FX Options

Options (1):
Concepts and Uses

P. Sercu,
International Finance: Theory into Practice

Introduction

Puts and Calls
Some Jargon
Rational Exercising

Institutional Aspects

Using Options (1):
Arbitrage
Using Options (2):
hedging
Using Options (3):
Speculation

What have we learned?

Options: the holder has the right to
\[
\begin{cases}
\text{buy} & \text{(call option)} \\
\text{sell} & \text{(put option)} \\
\end{cases}
\]
at \quad \text{(European-style option)}
up until \quad \text{(American style option)}
an agreed-upon expiry moment \(T \), an agreed-upon quantity of a specied asset (“underlying”) at an agreed-upon price (strike or exercise price), from/to the writer of the option.

Exercising (killing) the option: using the right, that is, buying (or selling) at the strike, at \(T \) or (for an American-style:) possibly also early, i.e. before \(T \).

Premium: the price paid (by the holder, to writer) for the option, irrespective of exercising.
Usually paid upfront, rarely at \(T \) (forward-style), sometimes partly via mark2market and partly final (futures-style).
A Young person’s Guide to FX Options

Options (1): Concepts and Uses

P. Sercu,
International Finance: Theory into Practice

Introduction

Puts and Calls
Some Jargon
Rational Exercising

Institutional Aspects

Using Options (1):
Arbitrage
Using Options (2):
hedging
Using Options (3):
Speculation

What have we learned?

◦ Options: the holder has the right to \{ \begin{align*}
& \text{buy (call option)} \\
& \text{sell (put option)}
\end{align*} \}
up until an agreed-upon expiry moment \(T \), an agreed-upon quantity of a specified asset (“underlying”) at an agreed-upon price (strike or exercise price), from/to the writer of the option.

◦ Exercising (killing) the option: using the right, that is, buying (or selling) at the strike, at \(T \) or (for an American-style:) possibly also early, i.e. before \(T \)

◦ Premium: the price paid (by the holder, to writer) for the option, irrespective of exercising. Usually paid upfront, rarely at \(T \) (forward-style), sometimes partly via mark2market and partly final (futures-style).
A Young person’s Guide to FX Options

Options (1): Concepts and Uses

P. Sercu, *International Finance: Theory into Practice*

Introduction

Puts and Calls

Some Jargon

Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage

Using Options (2): hedging

Using Options (3): Speculation

What have we learned?

diamond Options: the holder has the right to \{ buy (call option), sell (put option) \},

\{ at (European-style option), up until (American style option) \} an agreed-upon expiry moment \(T \), an agreed-upon quantity of a specified asset ("underlying") at an agreed-upon price (strike or exercise price), from/to the writer of the option.

diamond Exercising (killing) the option: using the right, that is, buying (or selling) at the strike, at \(T \) or (for an American-style:) possibly also early, i.e. before \(T \).

diamond Premium: the price paid (by the holder, to writer) for the option, irrespective of exercising.

Usually paid upfront, rarely at \(T \) (forward-style), sometimes partly via mark2market and partly final (futures-style).
Options (1): Concepts and Uses

P. Sercu, *International Finance: Theory into Practice*

Introduction

Puts and Calls

Some Jargon

Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage

Using Options (2): Hedging

Using Options (3): Speculation

What have we learned?

A Young person’s Guide to FX Options

- **Options**: the holder has the right to \(\begin{cases}
\text{buy} & \text{(call option)} \\
\text{sell} & \text{(put option)}
\end{cases} \)

 - at \(\text{(European-style option)} \)
 - up until \(\text{(American style option)} \)

 an agreed-upon expiry moment \(T \), an agreed-upon quantity of a specified asset ("underlying") at an agreed-upon price (strike or exercise price), from/to the writer of the option.

- **Exercising** (killing) the option: using the right, that is, buying (or selling) at the strike, at \(T \) or (for an American-style:) possibly also early, i.e. before \(T \)

- **Premium**: the price paid (by the holder, to writer) for the option, irrespective of exercising.

 Usually paid upfront, rarely at \(T \) (forward-style), sometimes partly via mark2market and partly final (futures-style).
Options: the holder has the right to \(\left\{ \begin{array}{l} \text{buy} \quad \text{(call option)} \\ \text{sell} \quad \text{(put option)} \end{array} \right\} \), at (European-style option) up until (American style option) an agreed-upon expiry moment \(T \), an agreed-upon quantity of a specified asset ("underlying") at an agreed-upon price (strike or exercise price), from/to the writer of the option.

Exercising (killing) the option: using the right, that is, buying (or selling) at the strike, at \(T \) or (for an American-style:) possibly also early, i.e. before \(T \)

Premium: the price paid (by the holder, to writer) for the option, irrespective of exercising. Usually paid upfront, rarely at \(T \) (forward-style), sometimes partly via mark2market and partly final (futures-style).
A Young person’s Guide to FX Options (2)

- **Intrinsic value or value dead**: what the option would be worth if the exercise decision would have to be taken now.

- **In / at / out of the money (ITM, ATM, OTM)**: the strike relative to the current price is such that immediate exercise would yield a positive / zero / negative cashflow.

- **ITM** means the intrinsic value is positive.

- **Time value**: premium - intrinsic value. Positive if the market thinks that it’s better to postpone exercising. An ATM/OTM option’s premium is pure time value.
A Young person’s Guide to FX Options (2)

- **Intrinsic value or value dead**: what the option would be worth if the exercise decision would have to be taken now.

- **In / at /out of the money (ITM, ATM, OTM)**: the strike relative to the current price is such that immediate exercise would yield a positive / zero / negative cashflow.

 ITM means the intrinsic value is positive.

- **Time value** := premium - intrinsic value. Positive if the market thinks that it’s better to postpone exercising. An ATM/OTM option’s premium is pure time value.
Intrinsic value or value dead: what the option would be worth if the exercise decision would have to be taken now.

In / at /out of the money (ITM, ATM, OTM): the strike relative to the current price is such that immediate exercise would yield a positive / zero / negative cashflow. ITM means the intrinsic value is positive.

Time value := premium - intrinsic value. Positive if the market thinks that it’s better to postpone exercising. An ATM/OTM option’s premium is pure time value.
Exercise Rules

<table>
<thead>
<tr>
<th>(style)</th>
<th>call</th>
<th>put</th>
</tr>
</thead>
<tbody>
<tr>
<td>European</td>
<td>$S_T > X$</td>
<td>$X > S_T$</td>
</tr>
<tr>
<td>American</td>
<td>$S_t > X$</td>
<td>$X > S_t$</td>
</tr>
<tr>
<td></td>
<td>$C_{t}^{am} = S_t - X(>0)$</td>
<td>$P_{t}^{am} = X - S_t(>0)$</td>
</tr>
</tbody>
</table>

European: – what’s what part of what forward contract?

![European call and put options diagram](image)
Outline

Introduction

Puts and Calls
Some Jargon: IV, I-A-OTM, TV
Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage
Lower Bounds
(European) Put-Call Parity

Using Options (2): hedging
Advantages

Using Options (3): Speculation

What have we learned?

Summary
Are Options too Expensive?
Institutional stuff

Traded v OTC

- Traded: Exchanges copied after futures: margin (for writer), clearing
- OTC: professionals

Option on futures contract

- Call: if you exercise, you become long side of a contract with historic price X, never marked to market.
- Triggers MtM flow of $f_{t,T_f} - X$.
- Exercise rules: Eur:
 - Am:

Futures-style options

- initial margin; daily MtM; final payment
- useful for speculators
- price is $[\text{price of regular option}] \times (1 + r_{t,T})$
- if on futures: convenient for put-call arbitrage
Institutional stuff

- **Traded v OTC**
 - Traded: Exchanges copied after futures: margin (for writer), clearing
 - OTC: professionals

- **Option on futures contract**
 - Call: if you exercise, you become long side of a contract with historic price \(X\), never marked to market.
 - Triggers MtM flow of \(f_t, T_f - X\).
 - Exercise rules: Eur:
 - Am:

- **Futures-style options**
 - Initial margin; daily MtM; final payment
 - Useful for speculators
 - Price is \([\text{price of regular option}] \times (1 + r_{t,T})\)
 - If on futures: convenient for put-call arbitrage
Institutional stuff

- **Traded v OTC**
 - Traded: Exchanges copied after futures: margin (for writer), clearing
 - OTC: professionals

- **Option on futures contract**
 - Call: if you exercise, you become long side of a contract with historic price X, never marked to market.
 - Triggers MtM flow of $f_{T_f} - X$.
 - Exercise rules: Eur:
 Am:

- **Futures-style options**
 - initial margin; daily MtM; final payment
 - useful for speculators
 - price is $[\text{price of regular option}] \times (1 + r_{t,T})$
 - if on futures: convenient for put-call arbitrage
Traded options: contract info (Liffe)

US Dollar / Euro Options

Underlying:

<table>
<thead>
<tr>
<th>Codes and classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mnemo</td>
</tr>
<tr>
<td>Exercise type</td>
</tr>
</tbody>
</table>

US Dollar / Euro Options

- **Unit of trading:** 100
- **Contract size:** USD 10,000
- **Expiry months:**
 1. Initial lifetime: 1, 2, and 3 months
 2. Initial lifetime: 6, 9 and 12 months
 3. Initial lifetime: 3 years
- **Cycle:**
 - Initial lifetime: 1, 2, and 3 months: all months
 - Initial lifetime: 6, 9 and 12 months: March, June, September and December
 - Initial lifetime: 3 years: September

- **Quotation:** Euros per USD 100
- **Minimum price movement (tick size and value):** EUR 0.01 (= EUR 1 per contract)

- **Last trading day:** Trading in expiring currency derivatives have the EuroFX rate as their settlement basis and ends at 13.00 Amsterdam time on the third Friday of the expiry month, provided this is a business day. If it is not, the previous business day will be the last day of trading.

- **Settlement:** EuroFX rate contracts: Cash settlement, based on the value of the Euro / US Dollar rate set by EuroFX at 13.00 Amsterdam time. For DEX, the inverse value of the EuroFX Euro / US Dollar rate is used and rounded off to four decimal places.

- **Trading hours:** 9.00 – 17.25 Amsterdam time
- **Clearing:** LCH.Clearnet S.A.
- **Option style:** European style.
 Holders of long positions are not entitled to exercise their options before the exercise date.
- **Exercise:** European
- **Last update:** 21/12/04

- **Trading Platform:** Liffe CONNECT®
- **Wholesale Service:** Prof Trade Facility
Options (1): Concepts and Uses

P. Sercu, *International Finance: Theory into Practice*

Introduction

Institutional Aspects

Using Options (1): Arbitrage

Using Options (2): Hedging

Using Options (3): Speculation

What have we learned?

Traded options: price info *(Neue Zürcher Zeitung)*

DEVISENOPTIONEN

<table>
<thead>
<tr>
<th>Strike/$ Fr.</th>
<th>Sep 1.2235</th>
<th>Dez 1.2250</th>
<th>Mar 1.2500</th>
<th>Jun 1.2750</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2000</td>
<td>2.60</td>
<td>3.06</td>
<td>3.41</td>
<td>3.65</td>
</tr>
<tr>
<td>1.2250</td>
<td>1.07</td>
<td>1.90</td>
<td>2.34</td>
<td>2.66</td>
</tr>
<tr>
<td>1.2500</td>
<td>0.41</td>
<td>1.12</td>
<td>1.57</td>
<td>1.91</td>
</tr>
<tr>
<td>1.2750</td>
<td>0.25</td>
<td>0.67</td>
<td>1.05</td>
<td>1.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike/C Fr.</th>
<th>Sep 1.5781</th>
<th>Dez 1.6000</th>
<th>Mar 1.6250</th>
<th>Jun 1.6500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5750</td>
<td>2.60</td>
<td>3.06</td>
<td>3.41</td>
<td>3.65</td>
</tr>
<tr>
<td>1.6000</td>
<td>0.23</td>
<td>0.37</td>
<td>0.47</td>
<td>0.53</td>
</tr>
<tr>
<td>1.6250</td>
<td>0.22</td>
<td>0.25</td>
<td>0.30</td>
<td>0.34</td>
</tr>
<tr>
<td>1.6500</td>
<td>0.21</td>
<td>0.23</td>
<td>0.26</td>
<td>0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike/C/$</th>
<th>Sep 1.2917</th>
<th>Dez 1.3000</th>
<th>Mar 1.3250</th>
<th>Jun 1.3500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2750</td>
<td>2.74</td>
<td>4.01</td>
<td>5.12</td>
<td>6.02</td>
</tr>
<tr>
<td>1.3000</td>
<td>1.02</td>
<td>2.61</td>
<td>3.73</td>
<td>4.66</td>
</tr>
<tr>
<td>1.3250</td>
<td>0.42</td>
<td>1.63</td>
<td>2.66</td>
<td>6.54</td>
</tr>
<tr>
<td>1.3500</td>
<td>0.26</td>
<td>1.01</td>
<td>1.87</td>
<td>2.66</td>
</tr>
</tbody>
</table>

*Kassamittelkurs: **1.2235**; Rp/$ 100,000 $; Cent/$ 100,000 C*

Quelle: UBS
Assume genuine uncertainty: 0 < prob(excse) < 1.

◊ **Calls: lobos**

- \(C_t > \frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}} \) because ...
 - \(C_t \rightarrow \) [the above] if ...
 - \(C_t > 0 \) because ...
 - \(C_t \rightarrow 0 \) if ...
 - \(C_{t}^{am} \geq C_t \) because ...
 - \(C_{t}^{am} = C_t \) if

Summary: \(C_{t}^{am} \geq C_t > \max \left(\frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}, 0 \right) \).

- \(C_{t}^{am} > \max(S_t - X, 0) = IV \) because ...

Note: if \(r > r^* = 0 \), the first bound subsumes the second one:

\[
C_{t}^{am} > \max \left(\frac{S_t}{1+r_{t,T}^*}, 0 \right) > \max(S_t - X, 0) = IV
\]

⇒ when \(r > r^* = 0 \), early exercise is ...
Assume genuine uncertainty: $0 < \text{prob(excse)} < 1$.

◦ **Calls: lobos**

$C_t > \frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}$ because ...

$C_t \to [\text{the above}]$ if ...

$C_t > 0$ because ...

$C_t \to 0$ if ...

$C_{am}^{t} \geq C_t$ because ...

$C_{am}^{t} = C_t$ if

Summary:

$C_{am}^{t} \geq C_t > \text{Max}\left(\frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}, 0\right)$.

$C_{am}^{t} > \text{Max}(S_t - X, 0) = IV$ because ...

Note: if $r > r^* = 0$, the first bound subsumes the second one:

$C_{am}^{t} > \text{Max}\left(S_t - \frac{X}{1+r_{t,T}}, 0\right) > \text{Max}(S_t - X, 0) = IV$

⇒ when $r > r^* = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: \(0 < \text{prob(excse)} < 1\).

◊ **Calls: lobos**

\[C_t > \frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}} \]

because ...

\[C_t \rightarrow \text{[the above]} \text{ if ...} \]

\[C_t > 0 \text{ because ...} \]

\[C_t \rightarrow 0 \text{ if ...} \]

\[C_t^{am} \geq C_t \text{ because ...} \]

\[C_t^{am} = C_t \text{ if} \]

Summary: \(C_t^{am} \geq C_t > \text{Max} \left(\frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}, 0 \right) \).

\[C_t^{am} > \text{Max}(S_t - X, 0) = IV \text{ because ...} \]

Note: if \(r > r^* = 0 \), the first bound subsumes the second one:

\[C_t^{am} > \text{Max} \left(S_t - \frac{X}{1 + r_{t,T}}, 0 \right) > \text{Max}(S_t - X, 0) = IV \]

\[\Rightarrow \text{ when } r > r^* = 0, \text{ early exercise is ...} \]
Assume genuine uncertainty: $0 < \text{prob(excse)} < 1$.

◊ **Calls: lobos**

◇ $C_t > \frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}$ because ...

$C_t \rightarrow [\text{the above}]$ if ...

◇ $C_t > 0$ because ...

$C_t \rightarrow 0$ if ...

◇ $C_{t_{am}} \geq C_t$ because ...

$C_{t_{am}} = C_t$ if

Summary: $C_{t_{am}} \geq C_t > \text{Max} \left(\frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}, 0 \right)$.

◇ $C_{t_{am}} > \text{Max}(S_t - X, 0) = IV$ because ...

Note: if $r > r^* = 0$, the first bound subsumes the second one:

$C_{t_{am}} > \text{Max} \left(S_t - \frac{X}{1 + r_{t,T}}, 0 \right) > \text{Max}(S_t - X, 0) = IV$

⇒ when $r > r^* = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: $0 < \text{prob(excse)} < 1$.

◊ **Calls: lobos**

▶ $C_t > \frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}$ because ...

\[C_t \to \text{[the above]} \text{ if ...} \]

▶ $C_t > 0$ because ...

\[C_t \to 0 \text{ if ...} \]

▶ $C_t^{am} \geq C_t$ because ...

\[C_t^{am} = C_t \text{ if} \]

Summary: $C_t^{am} \geq C_t > \text{Max} \left(\frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}, 0 \right)$.

▶ $C_t^{am} > \text{Max}(S_t - X, 0) = IV$ because ...

Note: if $r > r^* = 0$, the first bound subsumes the second one:

\[C_t^{am} > \text{Max} \left(S_t - \frac{X}{1 + r_{t,T}}, 0 \right) > \text{Max}(S_t - X, 0) = IV \]

⇒ when $r > r^* = 0$, early exercise is ...
Assume genuine uncertainty: $0 < \text{prob(excse)} < 1$.

◊ **Calls: lobos**

- $C_t > \frac{S_t}{1+r^*_t,T} - \frac{X}{1+r_t,T}$ because ...
 - $C_t \rightarrow$[the above] if ...

- $C_t > 0$ because ...
 - $C_t \rightarrow 0$ if ...

- $C^\text{am}_t \geq C_t$ because ...
 - $C^\text{am}_t = C_t$ if

Summary:

$$C^\text{am}_t \geq C_t > \text{Max} \left(\frac{S_t}{1+r^*_t,T} - \frac{X}{1+r_t,T}, 0 \right).$$

- $C^\text{am}_t > \text{Max}(S_t - X, 0) = IV$ because ...

Note: if $r > r^* = 0$, the first bound subsumes the second one:

$$C^\text{am}_t > \text{Max} \left(S_t - \frac{X}{1 + r_t,T}, 0 \right) > \text{Max}(S_t - X, 0) = IV$$

⇒ when $r > r^* = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: $0 < \text{prob(excse)} < 1$.

◊ **Calls: lobos**

▷ $C_t > \frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}$ because ...

$C_t \rightarrow [\text{the above}]$ if ...

▷ $C_t > 0$ because ...

$C_t \rightarrow 0$ if ...

▷ $C_{am}^t \geq C_t$ because ...

$C_{am}^t = C_t$ if

Summary: $C_{am}^t \geq C_t > \text{Max} \left(\frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}, 0 \right)$.

▷ $C_{am}^t > \text{Max}(S_t - X, 0) = IV$ because ...

Note: if $r > r^* = 0$, the first bound subsumes the second one:

$$C_{am}^t > \text{Max} \left(S_t - \frac{X}{1 + r_{t,T}}, 0 \right) > \text{Max}(S_t - X, 0) = IV$$

\Rightarrow when $r > r^* = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: 0 < prob(excse) < 1.

◊ **Calls: lobos**

▷ $C_t > \frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}$ because ...

$C_t \to \text{[the above]}$ if ...

▷ $C_t > 0$ because ...

$C_t \to 0$ if ...

▷ $C_{tam} \geq C_t$ because ...

$C_{tam} = C_t$ if

Summary: $C_{tam} \geq C_t > \text{Max} \left(\frac{S_t}{1+r_{t,T}^*} - \frac{X}{1+r_{t,T}}, 0 \right)$.

▷ $C_{tam} > \text{Max}(S_t - X, 0) = IV$ because ...

Note: if $r > r^* = 0$, the first bound subsumes the second one:

$C_{tam} > \text{Max} \left(S_t - \frac{X}{1 + r_{t,T}}, 0 \right) > \text{Max}(S_t - X, 0) = IV$

⇒ when $r > r^* = 0$, early exercise is ...
Assume genuine uncertainty: $0 < \text{prob(excse)} < 1$.

- **Calls: lobos**
 - $C_t > \frac{S_t}{1+r^{*}_{i,T}} - \frac{X}{1+r_{i,T}}$ because ...
 - $C_t \to \text{[the above]}$ if ...
 - $C_t > 0$ because ...
 - $C_t \to 0$ if ...
 - $C_t^{am} \geq C_t$ because ...
 - $C_t^{am} = C_t$ if
 - **Summary:** $C_t^{am} \geq C_t > \text{Max} \left(\frac{S_t}{1+r^{*}_{i,T}} - \frac{X}{1+r_{i,T}}, 0 \right)$.
 - $C_t^{am} > \text{Max}(S_t - X, 0) = IV$ because ...

Note: if $r > r^{*} = 0$, the first bound subsumes the second one:

$$C_t^{am} > \text{Max} \left(S_t - \frac{X}{1 + r_{i,T}}, 0 \right) > \text{Max}(S_t - X, 0) = IV$$

⇒ when $r > r^{*} = 0$, early exercise is ...
Assume genuine uncertainty: \(0 < \text{prob(excse)} < 1\).

\[C_t > \frac{S_t}{1+r^{*}_{t,T}} - \frac{X}{1+r_{t,T}} \]

because ...

\[C_t \rightarrow \text{[the above]} \text{ if ...} \]

\[C_t > 0 \text{ because ...} \]

\[C_t \rightarrow 0 \text{ if ...} \]

\[C_{t}^{am} \geq C_t \text{ because ...} \]

\[C_{t}^{am} = C_t \text{ if} \]

Summary: \(C_{t}^{am} \geq C_t > \text{Max} \left(\frac{S_t}{1+r^{*}_{t,T}} - \frac{X}{1+r_{t,T}}, 0 \right) \).

\[C_{t}^{am} > \text{Max}(S_t - X, 0) = \text{IV} \text{ because ...} \]

Note: if \(r > r^{*} = 0 \), the first bound subsumes the second one:

\[C_{t}^{am} > \text{Max} \left(S_t - \frac{X}{1 + r_{t,T}}, 0 \right) > \text{Max}(S_t - X, 0) = \text{IV} \]

\(\Rightarrow \text{when } r > r^{*} = 0 \), early exercise is ...

\[\Rightarrow \text{when } r > r^{*} = 0 \], early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: $0 < \text{prob(exercise)} < 1$.

◊ Puts: lobos

$P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r_{t,T}^*}$ because ...

$P_t \rightarrow \text{[the above]}$ if ...

$P_t > 0$ because ...

$P_t \rightarrow 0$ if ...

$P_t^{am} \geq P_t$ because ...

$P_t^{am} = P_t$ if

Summary: $P_t^{am} \geq P_t \geq \text{Max} \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r_{t,T}^*}, 0 \right)$.

$P_t^{am} > \text{Max}(X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$P_t^{am} > \text{Max} \left(X - \frac{S_t}{1+r_{t,T}^*}, 0 \right) > \text{Max}(X - S_t, 0) = IV$

⇒ when $r^* > r = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: 0 < prob(exercise) < 1.

◊ Puts: lobos

▷ $P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^{*}_{t,T}}$ because ...

$P_t \to \text{[the above]}$ if ...

▷ $P_t > 0$ because ...

$P_t \to 0$ if ...

▷ $P_{tam} \geq P_t$ because ...

$P_{tam} = P_t$ if

Summary: $P_{tam} \geq P_t > \text{Max} \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^{*}_{t,T}}, 0 \right)$.

▷ $P_{tam} > \text{Max}(X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$P_{tam} > \text{Max} \left(X - \frac{S_t}{1+r^{*}_{t,T}}, 0 \right) > \text{Max}(X - S_t, 0) = IV$

⇒ when $r^* > r = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: $0 < \text{prob(ercise)} < 1$.

Puts: lobos

- $P_t > \frac{X}{1+r,t} - \frac{S_t}{1+r^*,t}$ because ...

 $P_t \to \text{[the above]}$ if ...

 $P_t > 0$ because ...

 $P_t \to 0$ if ...

- $P^\text{am}_t \geq P_t$ because ...

 $P^\text{am}_t = P_t$ if

 Summary: $P^\text{am}_t \geq P_t > \text{Max} \left(\frac{X}{1+r,t} - \frac{S_t}{1+r^*,t}, 0 \right)$.

- $P^\text{am}_t > \text{Max}(X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$$P^\text{am}_t > \text{Max} \left(X - \frac{S_t}{1 + r^*,t}, 0 \right) > \text{Max}(X - S_t, 0) = IV$$

\Rightarrow when $r^* > r = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: $0 < \text{prob(exrcise)} < 1$.

◊ **Puts: lobos**

- $P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^*_{t,T}}$ because ...

 - $P_t \to [\text{the above}]$ if ...

- $P_t > 0$ because ...

 - $P_t \to 0$ if ...

- $P_{am}^t \geq P_t$ because ...

 - $P_{am}^t = P_t$ if

Summary: $P_{am}^t \geq P_t > \max \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^*_{t,T}}, 0 \right)$.

- $P_{am}^t > \max(X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$$P_{am}^t > \max \left(X - \frac{S_t}{1 + r^*_{t,T}}, 0 \right) > \max(X - S_t, 0) = IV$$

⇒ when $r^* > r = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: $0 < \text{prob(exercise)} < 1$.

◊ **Puts: lobos**

$P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r_{t,T}^*}$ because ...

$P_t \rightarrow \text{[the above]}$ if ...

◊ $P_t > 0$ because ...

$P_t \rightarrow 0$ if ...

◊ $P_{t}^{am} \geq P_t$ because ...

$P_{t}^{am} = P_t$ if

Summary: $P_{t}^{am} \geq P_t > \text{Max} \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r_{t,T}^*}, 0 \right)$.

◊ $P_{t}^{am} > \text{Max}(X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$P_{t}^{am} > \text{Max} \left(X - \frac{S_t}{1 + r_{t,T}^*}, 0 \right) > \text{Max}(X - S_t, 0) = IV$

⇒ when $r^* > r = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: $0 < \text{prob(exercize)} < 1$.

◇ **Puts: lobos**

- $P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^{*}_{t,T}}$ because ...
- $P_t \rightarrow [\text{the above}]$ if ...
- $P_t > 0$ because ...
- $P_t \rightarrow 0$ if ...
- $P_{tam} \geq P_t$ because ...
- $P_{tam} = P_t$ if

Summary: $P_{tam} \geq P_t > \text{Max} \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^{*}_{t,T}}, 0 \right)$.

- $P_{tam} > \text{Max}(X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$P_{tam} > \text{Max} \left(X - \frac{S_t}{1 + r^{*}_{t,T}}, 0 \right) > \text{Max}(X - S_t, 0) = IV$

⇒ when $r^* > r = 0$, early exercise is ...
Lower Bounds on Prices & Implications

Assume genuine uncertainty: $0 < \text{prob(exercise)} < 1$.

◊ **Puts: lobos**

- $P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r_{t,T}}^*$
 because ...

 $P_t \to \text{[the above]}$ if ...

- $P_t > 0$ because ...

 $P_t \to 0$ if ...

- $P_t^\text{am} \geq P_t$ because ...

 $P_t^\text{am} = P_t$ if

 Summary: $P_t^\text{am} \geq P_t > \text{Max} \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r_{t,T}}^*, 0 \right)$.

- $P_t^\text{am} > \text{Max}(X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$$P_t^\text{am} > \text{Max} \left(X - \frac{S_t}{1 + r_{t,T}^*}, 0 \right) > \text{Max}(X - S_t, 0) = IV$$

\Rightarrow when $r^* > r = 0$, early exercise is ...
Assume genuine uncertainty: $0 < \text{prob(exercise)} < 1$.

\[P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r_{t,T}^*} \]

because ...

\[P_t \to \text{[the above]} \text{ if } \ldots \]

\[P_t > 0 \text{ because } \ldots \]

\[P_t \to 0 \text{ if } \ldots \]

\[P_{t}^{am} \geq P_t \text{ because } \ldots \]

\[P_{t}^{am} = P_t \text{ if } \]

Summary:

\[P_{t}^{am} \geq P_t > \text{Max} \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r_{t,T}^*}, 0 \right). \]

\[P_{t}^{am} > \text{Max}(X - S_t, 0) = IV \text{ because } \ldots \]

Note: if $r^* > r = 0$, the first bound subsumes the second one:

\[P_{t}^{am} > \text{Max} \left(X - \frac{S_t}{1 + r_{t,T}^*}, 0 \right) > \text{Max}(X - S_t, 0) = IV \]

⇒ when $r^* > r = 0$, early exercise is ...
Assume genuine uncertainty: $0 < \text{prob(exercise)} < 1$.

- **Puts: lobos**

 $P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^*_{t,T}}$ because ...

 $P_t \rightarrow [\text{the above}]$ if ...

 $P_t > 0$ because ...

 $P_t \rightarrow 0$ if ...

 $P^a_m \geq P_t$ because ...

 $P^a_m = P_t$ if

 Summary: $P^a_m \geq P_t > \max \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^*_{t,T}}, 0 \right)$.

 $P^a_m > \max (X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$$P^a_m > \max \left(X - \frac{S_t}{1 + r^*_{t,T}}, 0 \right) > \max (X - S_t, 0) = IV$$

\Rightarrow when $r^* > r = 0$, early exercise is ...
Assume genuine uncertainty: $0 < \text{prob(exercise)} < 1$.

Puts: lobos

- $P_t > \frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^*_{t,T}}$ because ...

 $P_t \to \text{[the above]}$ if ...

- $P_t > 0$ because ...

 $P_t \to 0$ if ...

- $P_{am}^t \geq P_t$ because ...

 $P_{am}^t = P_t$ if

Summary: $P_{am}^t \geq P_t > \text{Max} \left(\frac{X}{1+r_{t,T}} - \frac{S_t}{1+r^*_{t,T}}, 0 \right)$.

- $P_{am}^t > \text{Max}(X - S_t, 0) = IV$ because ...

Note: if $r^* > r = 0$, the first bound subsumes the second one:

$$P_{am}^t > \text{Max} \left(X - \frac{S_t}{1 + r^*_{t,T}}, 0 \right) > \text{Max}(X - S_t, 0) = IV$$

\Rightarrow when $r^* > r = 0$, early exercise is ...
Put-Call Parity — European Options!

Note the replication possibilities:

\[\tilde{S}_T - X + \tilde{P}_T = \tilde{C}_T \Rightarrow \text{synth call} \]
\[\tilde{S}_T + \tilde{P}_T - \tilde{C}_T = X \Rightarrow \text{synth HC PN} \]
\[X - \tilde{S}_T + \tilde{C}_T = \tilde{P}_T \Rightarrow \text{synth put} \]
\[X - \tilde{P}_T + \tilde{C}_T = \tilde{S}_T \Rightarrow \text{synth FC PN} \]
Put-Call Parity

- **A no-arb relation**: if at T: $C_T - P_T = S_T - X$, by arb there must be parity also at t:

 $$C_t - P_t = \frac{F_{t,T} - X}{1 + r_{t,T}} = \frac{S_t}{1 + r_{t,T}^*} - \frac{X}{1 + r_{t,T}}$$

 (Put-Call Parity—Eur. options only!)

- **Three implications**
 - **At-the-forward (ATF)**: if $X = F_{t,T}$ then
 $$C_t = P_t,$$
 i.e. ATF puts and calls have equal prices.
 - **At-the-money (ATM)**: if $X = S_t$ then
 $$C_t - P_t = S_t \frac{r_{t,T} - r^* t, T}{(1 + r_{t,T})(1 + r_{t,T}^*)} > 0 \text{ if } r_{t,T} = r^* t, T.$$
 i.e. ATM call (=upward potential) is more valuable than put (downward potential) if $F_{t,T} > S_t$ (i.e. FC “strong”) & vv.
 - As soon as we have a Call option price model, PCParity implies the Put option pricing model.
Put-Call Parity

◇ **A no-arb relation:** if at T: $C_T - P_T = S_T - X$, by arb there must be parity also at t:

$$C_t - P_t = \frac{F_{t,T} - X}{1 + r_{t,T}} = \frac{S_t}{1 + r_{t,T}^*} - \frac{X}{1 + r_{t,T}}$$

(Put-Call Parity—Eur. options only!)

◇ **Three implications**

▷ **At-the-forward (ATF):** if $X = F_{t,T}$ then

$$C_t = P_t,$$

i.e. ATF puts and calls have equal prices

▷ **At-the-money (ATM):** if $X = S_t$ then

$$C_t - P_t = S_t \frac{r_{t,T} - r_{t,T}^*}{(1 + r_{t,T})(1 + r_{t,T}^*)} > 0 \text{ if } r_{t,T} = r_{t,T}^* \text{, } T.$$

i.e. ATM call (=upward potential) is more valuable than put (downward potential) if $F_{t,T} > S_t$ (i.e. FC “strong”) & vv.

▷ As soon as we have a Call option price model, PCParity implies the Put option pricing model.
Put-Call Parity

◊ **A no-arb relation:** if at T: $C_T - P_T = S_T - X$, by arb there must be parity also at t:

$$C_t - P_t = \frac{F_{t,T} - X}{1 + r_{t,T}} = \frac{S_t}{1 + r_{t,T}^*} - \frac{X}{1 + r_{t,T}}$$

(Put-Call Parity—Eur. options only!)

◊ **Three implications**

▷ **At-the-forward (ATF):** if $X = F_{t,T}$ then

$$C_t = P_t,$$

i.e. ATF puts and calls have equal prices

▷ **At-the-money (ATM):** if $X = S_t$ then

$$C_t - P_t = S_t \frac{r_{t,T} - r^* t, T}{(1 + r_{t,T})(1 + r_{t,T}^*)} > 0 \text{ if } r_{t,T} = r^* t, T.$$

i.e. ATM call (=upward potential) is more valuable than put (downward potential) if $F_{t,T} > S_t$ (i.e. FC “strong”) & vv.

▷ **As soon as we have a Call option price model, PCParity implies the Put option pricing model.**
Put-Call Parity

♦ **A no-arb relation:** if at T: $C_T - P_T = S_T - X$, by arb there must be parity also at t:

\[
C_t - P_t = \frac{F_{t,T} - X}{1 + r_{t,T}} = \frac{S_t}{1 + r^*_{t,T}} - \frac{X}{1 + r_{t,T}}
\]

(Put-Call Parity—Eur. options only!)

♦ **Three implications**

▷ **At-the-forward (ATF):** if $X = F_{t,T}$ then

\[
C_t = P_t,
\]

i.e. ATF puts and calls have equal prices

▷ **At-the-money (ATM):** if $X = S_t$ then

\[
C_t - P_t = S_t \frac{r_{t,T} - r^* T}{(1 + r_{t,T})(1 + r^*_{t,T})} > 0 \text{ if } r_{t,T} = r^* T.
\]

i.e. ATM call (=upward potential) is more valuable than put (downward potential) if $F_{t,T} > S_t$ (i.e. FC “strong”) & vv.

▷ **As soon as we have a Call option price model, PCParity implies the Put option pricing model.**
Outline

Introduction

Puts and Calls
Some Jargon: IV, I-A-OTM, TV
Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage
Lower Bounds
(European) Put-Call Parity

Using Options (2): hedging
Advantages

Using Options (3): Speculation

What have we learned?

Summary
Are Options too Expensive?
Using Options 2: hedging

One-edged hedging of contractual exposure

- **C**hedged A/P
- **S**T

- **P**hedged A/R
- **S**T

- **Hedging exposures with big quantity risks**
 - Examples: Int tender, risky A/R etc, risky stock investments, reinsurance,
 - “Advantage”: no risk of two bad tidings—losing on the exposed position *and* on the hedge: OTM option not exercised
 - Dubious argument: option’s added flexibility is still 100% tied to Xrisk, not to quantity risk
Using Options 2: hedging

◇ One-edged hedging of contractual exposure

◇ “Hedging exposures with big quantity risks”

▷ Examples: Int tender, risky A/R etc, risky stock investments, reinsurance,

▷ “Advantage”: no risk of two bad tidings—losing on the exposed position and on the hedge: OTM option not exercised

▷ Dubious argument: option’s added flexibility is still 100% tied to X_{risk}, not to quantity risk
More on Options as hedges

- **Hedging nonlinear exposure**

 Example: exports as an option

 - your perifraxes can be sold either at home at EUR 1, or exported at USD 1 net (price takership).
 - Thus—see graph—\(V_T = 1 + \text{Max}(\tilde{S}_T - 1, 0) \), quite option-like

 ![Diagram](image)

 - Selling an option replaces this *potential* extra income by its (PV’d) CEQ, the premium income.
 - Naive forward hedging (USD 1 per perifrax) cannot remove the exposure at all.
More on Options as hedges

Hedging nonlinear exposure

Example: exports as an option

- your perifraxes can be sold either at home at **EUR 1**, or exported at **USD 1** net (price takership).
- Thus—see graph—\(V_T = 1 + \max(\tilde{S}_T - 1, 0) \), quite option-like

\[
\begin{align*}
\text{export} & \quad \text{optimal use} \\
\text{sell at home} & \quad \tilde{S}_T \\
1 & \quad 1
\end{align*}
\]

- Selling an option replaces this *potential* extra income by its (PV’d) **C\text{EQ}**, the premium income.
- Naive forward hedging (USD 1 per perifrax) cannot remove the exposure at all.
Hedging nonlinear exposure

Example: exports as an option

- your perifraxes can be sold either at home at EUR 1, or exported at USD 1 net (price takership).
- Thus—see graph—\(V_T = 1 + \max(\tilde{S}_T - 1, 0) \), quite option-like

- Selling an option replaces this potential extra income by its (PV’d) CEQ, the premium income.
- Naive forward hedging (USD 1 per perifrax) cannot remove the exposure at all.
Piecewise Linear Approximations & Options

Options (1): Concepts and Uses
P. Sercu, *International Finance: Theory into Practice*

Introduction
Institutional Aspects
Using Options (1): Arbitrage
Using Options (2): Hedging
Advantages
Using Options (3): Speculation
What have we learned?

Table

<table>
<thead>
<tr>
<th>S_T</th>
<th>Cash Flow</th>
<th>Approx1</th>
<th>Approx2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>100.0</td>
<td>94.0</td>
<td>100.0</td>
</tr>
<tr>
<td>0.91</td>
<td>95.5</td>
<td>94.0</td>
<td>97.5</td>
</tr>
<tr>
<td>0.92</td>
<td>92.0</td>
<td>94.0</td>
<td>95.0</td>
</tr>
<tr>
<td>0.93</td>
<td>89.5</td>
<td>94.0</td>
<td>92.5</td>
</tr>
<tr>
<td>0.94</td>
<td>88.0</td>
<td>94.0</td>
<td>90.0</td>
</tr>
<tr>
<td>0.95</td>
<td>87.5</td>
<td>94.0</td>
<td>87.5</td>
</tr>
<tr>
<td>0.96</td>
<td>88.0</td>
<td>94.0</td>
<td>90.0</td>
</tr>
<tr>
<td>0.97</td>
<td>89.5</td>
<td>94.0</td>
<td>92.5</td>
</tr>
<tr>
<td>0.98</td>
<td>92.0</td>
<td>94.0</td>
<td>95.0</td>
</tr>
<tr>
<td>0.99</td>
<td>95.5</td>
<td>94.0</td>
<td>97.5</td>
</tr>
<tr>
<td>1.00</td>
<td>100.0</td>
<td>94.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1.01</td>
<td>105.5</td>
<td>104.0</td>
<td>110.0</td>
</tr>
<tr>
<td>1.02</td>
<td>112.0</td>
<td>114.0</td>
<td>120.0</td>
</tr>
<tr>
<td>1.03</td>
<td>119.5</td>
<td>124.0</td>
<td>130.0</td>
</tr>
<tr>
<td>1.04</td>
<td>128.0</td>
<td>134.0</td>
<td>140.0</td>
</tr>
<tr>
<td>1.05</td>
<td>137.5</td>
<td>144.0</td>
<td>150.0</td>
</tr>
<tr>
<td>1.06</td>
<td>148.0</td>
<td>154.0</td>
<td>160.0</td>
</tr>
<tr>
<td>1.07</td>
<td>159.5</td>
<td>164.0</td>
<td>170.0</td>
</tr>
<tr>
<td>1.08</td>
<td>172.0</td>
<td>174.0</td>
<td>180.0</td>
</tr>
<tr>
<td>1.09</td>
<td>185.5</td>
<td>184.0</td>
<td>190.0</td>
</tr>
<tr>
<td>1.10</td>
<td>200.0</td>
<td>194.0</td>
<td>200.0</td>
</tr>
</tbody>
</table>

Non-constant exposure

![Graph showing piecewise linear approximations and options](image)
Options (1): Concepts and Uses

- P. Sercu, *International Finance: Theory into Practice*

Outline

Introduction
- Puts and Calls
- Some Jargon: IV, I-A-OTM, TV
- Rational Exercising

Institutional Aspects

Using Options (1): Arbitrage
- Lower Bounds
 - (European) Put-Call Parity

Using Options (2): Hedging
- Advantages

Using Options (3): Speculation

What have we learned?
- Summary
- Are Options too Expensive?
Speculating on S or on σ_S

- **Speculation on S**
 - Bulls buy calls or sell puts, Bears buy puts or sell calls
 - Buying options limits your risk to the premium
 - ... but the chance of losing all is usually big ($\approx 50\%$, ATM)
 - Selling options is risky

- **Speculating on volatility**
 - Wait till T and cash in big-time—or so you hope

<table>
<thead>
<tr>
<th>prob(T)</th>
<th>expectation for C, P ($X=1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob(0.9)</td>
<td>your opinion 0.25 0.50 0.25 $E_{\text{you}}(C$ or $P) = 0.025$</td>
</tr>
<tr>
<td>prob(1.0)</td>
<td>mkt opinion 0.15 0.70 0.15 $E_{\text{mkt}}(C$ or $P) = 0.015$</td>
</tr>
<tr>
<td>prob(1.1)</td>
<td></td>
</tr>
</tbody>
</table>

- or cash in as soon as the market has seen the error of its ways and revalued the options—or so you hope
Speculating on S or on σ_S

- **Speculation on S**
 - Bulls buy calls or sell puts, Bears buy puts or sell calls
 - Buying options limits your risk to the premium
 ... but the chance of losing all is usually big ($\approx 50\%$, ATM)
 - Selling options is risky

- **Speculating on volatility**
 - Wait till T and cash in big-time—or so you hope

- or cash in as soon as the market has seen the error of its ways and revalued the options—or so you hope
Speculating on S or on σ_s

Speculation on S

- Bulls buy calls or sell puts, Bears buy puts or sell calls
- Buying options limits your risk to the premium
 ... but the chance of losing all is usually big ($\approx 50\%$, ATM)
- Selling options is risky

Speculating on volatility

- Wait till T and cash in big-time—or so you hope

<table>
<thead>
<tr>
<th>Straddle</th>
<th>Strangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob(0.9)</td>
<td>prob(1.0)</td>
</tr>
<tr>
<td>prob(1.1)</td>
<td>prob(1.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>expectation for C, P ($X=1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>your opinion</td>
</tr>
<tr>
<td>0.25</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>0.25</td>
</tr>
</tbody>
</table>

$E_{\text{you}}(C \text{ or } P) = 0.025$

$E_{\text{mkt}}(C \text{ or } P) = 0.015$

or cash in as soon as the market has seen the error of its ways and revalued the options—or so you hope
Speculating on S or on σ_S

- **Speculation on S**
 - Bulls buy calls or sell puts, Bears buy puts or sell calls
 - Buying options limits your risk to the premium
 - ... but the chance of losing all is usually big ($\approx 50\%$, ATM)
 - Selling options is risky

- **Speculating on volatility**
 - Wait till T and cash in big-time—or so you hope

 ![Diagram showing straddle and strangle options](image)

 - or cash in as soon as the market has seen the error of its ways and revalued the options—or so you hope
What have we learned in this chapter?

◊ **Chopped-up Forward Contracts**

- European options provide the **holder** with the positive part of the payoff of the comparable forward contract—below X for the **put**, above X for the **call**. The **writer** gets the negative parts.

- Options being **zero-sum games**, the parties can agree only if the holder pays the writer a **premium**, which should be the risk-adjusted and discounted expected value.

◊ **Lower Bounds on prices.**

- As a European option provides the nice part of the comparable forwards, the value of the latter is a lower bound on the E option’s price.

- Zero is another lower bound.

- American options are worth at least the E option, and also at least the intrinsic value.

For some interest-rate combinations the latter bound can never be reached, or is unlikely to ever be reached.
What have we learned in this chapter?

◇ **Chopped-up Forward Contracts**

- European options provide the **holder** with the positive part of the payoff of the comparable forward contract—below X for the **put**, above X for the **call**. The **writer** gets the negative parts.

- Options being **zero-sum games**, the parties can agree only if the holder pays the writer a **premium**, which should be the risk-adjusted and discounted expected value.

◇ **Lower Bounds on prices.**

- As a European option provides the nice part of the comparable forwards, the value of the latter is a lower bound on the E option’s price.

- Zero is another lower bound.

- American options are worth at least the E option, and also at least the intrinsic value.

 For some interest-rate combinations the latter bound can never be reached, or is unlikely to ever be reached.
What have we learned in this chapter? cont’d

◊ **Put-Call Parity**
 - As (European!) puts & calls are bits & pieces of forwards, one can replicate a forward from options, or one option from forwards and the other option; or one can hedge.
 - Traders do this to balance their books or fill holes in the market.
 - The resulting no-arb constraint is called *Put-Call Parity*.

◊ **Using options**
 - Being broken-up forwards, options can be used for one-edged hedging, or hedging of non-constant exposures.
 - Because of its convexity an option can also be used to speculate on volatility, not just on the sign of ΔS.

Options (1):
Concepts and Uses
P. Sercu,
International Finance: Theory into Practice

Introduction
Institutional Aspects
Using Options (1): Arbitrage
Using Options (2): hedging
Using Options (3): Speculation
What have we learned?
Summary
Are Options too Expensive?
What have we learned in this chapter? cont’d

- **Put-Call Parity**
 - As (European!) puts & calls are bits & pieces of forwards, one can replicate a forward from options, or one option from forwards and the other option; or one can hedge.
 - Traders do this to balance their books or fill holes in the market.
 - The resulting no-arb constraint is called **Put-Call Parity**.

- **Using options**
 - Being broken-up forwards, options can be used for one-edged hedging, or hedging of non-constant exposures.
 - Because of its convexity an option can also be used to speculate on volatility, not just on the sign of ΔS.

Are Options too Expensive?

◊ The most expensive option is cheap
 ▶ The most expensive option is a VeryDeep ITM one,
 ▶ and it is priced as a forward,
 ▶ which cannot be controversially expensive.

◊ Outrageous Bid-ask Spreads?
 ▶ Bid-Ask for options is easily 5% or more. but ...
 ▶ cannot be compared to spread on forwards, since the premium
 is a levered net value while the forward is the price of one leg
 Example: If $F_t = 100$ and $F_{t0} = 98$ and $r \approx 0$ then the market value is
 2; and a 0.10% spread on F would already be a 5% spread on 2.
 ▶ In addition, hedging the option is much more costly and risky, to the bank, than hedging a forward

◊ Lack of Understanding
 ▶ You need to read the next chapter
Are Options too Expensive?

- **The most expensive option is cheap**
 - The most expensive option is a VeryDeep ITM one,
 - and it is priced as a forward,
 - which cannot be controversially expensive.

- **Outrageous Bid-ask Spreads?**
 - Bid-Ask for options is easily 5% or more. but ...
 - cannot be compared to spread on forwards, since the premium is a levered net value while the forward is the price of one leg
 - Example: If \(F_t = 100 \) and \(F_{t_0} = 98 \) and \(r \approx 0 \) then the market value is 2; and a 0.10% spread on \(F \) would already be a 5% spread on 2.
 - In addition, hedging the option is much more costly and risky, to the bank, than hedging a forward

- **Lack of Understanding**
 - You need to read the next chapter
Are Options too Expensive?

♦ **The most expensive option is cheap**
 ▶ The most expensive option is a VeryDeep ITM one,
 ▶ and it is priced as a forward,
 ▶ which cannot be controversially expensive.

♦ **Outrageous Bid-ask Spreads?**
 ▶ Bid-Ask for options is easily 5% or more. but ...
 ▶ cannot be compared to spread on forwards, since the premium is a levered net value while the forward is the price of one leg.

Example: If $F_t = 100$ and $F_{t_0} = 98$ and $r \approx 0$ then the market value is 2; and a 0.10% spread on F would already be a 5% spread on 2.
 ▶ In addition, hedging the option is much more costly and risky, to the bank, than hedging a forward

♦ **Lack of Understanding**
 ▶ You **need** to read the next chapter