Chapter 6

The Market for Currency Futures

P. Sercu,
International Finance: Theory into Practice

Overview
Overview

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
 The general MinVar problem
 The delta hedge
 The cross hedge

Conclusion: pros and cons
Overview

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
 The general MinVar problem
 The delta hedge
 The cross hedge

Conclusion: pros and cons
Overview

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
 The general MinVar problem
 The delta hedge
 The cross hedge

Conclusion: pros and cons
Overview

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
 The general MinVar problem
 The delta hedge
 The cross hedge

Conclusion: pros and cons
Overview

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
 The general MinVar problem
 The delta hedge
 The cross hedge

Conclusion: pros and cons
Outline

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
- The general MinVar problem
- The delta hedge
- The cross hedge

Conclusion: pros and cons
Handling Default Risk in Forward Markets

◊ **Issues**
 ▶ Default risk—limited by right of offset to $\tilde{S}_T - F_{t,T}$
 ▶ Illiquidity: early settlement is a favor, not a right

◊ **Forwards: Standard Ways of Reducing Default Risk**
 ▶ towards firms: credit agreements, security
 ▶ towards firms: restricted use
 ▶ towards banks: credit lines
 ▶ towards all: short lives; rolling over

◊ **New gimmicks**
 ▶ start with small collateral, covering 1-day risk instead of N
 ▶ [variable collateral:] every day: ask new collateral (or release old) depending on change mkt value—OR:
 ▶ [mk2mkt:] every day, settle yesterday’s contract, “buy” a new one
Handling Default Risk in Forward Markets

◊ **Issues**
 ▶ Default risk—limited by right of offset to $\tilde{S}_T - F_{t,T}$
 ▶ Illiquidity: early settlement is a favor, not a right

◊ **Forwards: Standard Ways of Reducing Default Risk**
 ▶ towards firms: credit agreements, security
 ▶ towards firms: restricted use
 ▶ towards banks: credit lines
 ▶ towards all: short lives; rolling over

◊ **New gimmicks**
 ▶ start with small collateral, covering 1-day risk instead of N
 ▶ [variable collateral:] every day: ask new collateral (or release old) depending on change mkt value—OR:
 ▶ [mk2mkt:] every day, settle yesterday’s contract, “buy” a new one
Handling Default Risk in Forward Markets

◇ **Issues**

- Default risk—limited by right of offset to $\tilde{S}_T - F_{t,T}$
- Illiquidity: early settlement is a favor, not a right

◇ **Forwards: Standard Ways of Reducing Default Risk**

- towards firms: credit agreements, security
- towards firms: restricted use
- towards banks: credit lines
- towards all: short lives; rolling over

◇ **New gimmicks**

- start with small collateral, covering 1-day risk instead of N
- [variable collateral:] every day: ask new collateral (or release old) depending on change mkt value—OR:
- [mk2mkt:] every day, settle yesterday’s contract, “buy” a new one
Variable collateral / Mk2Mkt: Example

<table>
<thead>
<tr>
<th>data</th>
<th>Variable Collateral</th>
<th>Periodic Recontracting</th>
</tr>
</thead>
<tbody>
<tr>
<td>time 0:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{0,3} = 40$</td>
<td>Smitha buys forward USD 1m at $F_{0,3} = 40$</td>
<td>Smitha buys forward USD 1m at $F_{0,3} = 40$</td>
</tr>
<tr>
<td>$r_{0,3} = 3%$</td>
<td>Market value of old contract is $\frac{38m - 40m}{1.02} = -1.961m$</td>
<td>Market value of old contract is $\frac{38m - 40m}{1.02} = -1.961m$</td>
</tr>
<tr>
<td>Smitha puts up T-bills worth at least 1.961m</td>
<td></td>
<td>Smitha buys back the old contract for 1.961m and signs a new contract at $F_{1,3} = 38$.</td>
</tr>
<tr>
<td>time 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{1,3} = 38$</td>
<td>Market value of old contract is $\frac{36m - 38m}{1.01} = -3.960m$</td>
<td>Market value of old contract is $\frac{36m - 38m}{1.01} = -1.980m$</td>
</tr>
<tr>
<td>$r_{1,3} = 2%$</td>
<td>Smitha increases the T-bills put up to at least 3.960m</td>
<td>Smitha buys back the old contract for 1.980m and signs a new contract at $F_{2,3} = 36$.</td>
</tr>
<tr>
<td>time 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{2,3} = 36$</td>
<td>Smitha pays the promised INR 40m for the USD 1m, and gets back her T-bills</td>
<td>Smitha pays the promised INR 36m for the USD 1m</td>
</tr>
<tr>
<td>$r_{2,3} = 1%$</td>
<td>(adjusted for time value:)</td>
<td></td>
</tr>
<tr>
<td>time 3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{3,3} = S_3 = 34$</td>
<td>$\frac{36m - 38m}{1.01} = -1.980m$</td>
<td></td>
</tr>
<tr>
<td>$r_{3,3} = 0%$</td>
<td>Smitha pays the promised INR 40m for the USD 1m</td>
<td></td>
</tr>
<tr>
<td>total paid:</td>
<td>INR 40m</td>
<td></td>
</tr>
</tbody>
</table>

- time 3: 36m
- time 2: 1.980 \times 1.01 = 2m
- time 1: 1.961 \times 1.02 = 2m
- total: 40m
Outline

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
 The general MinVar problem
 The delta hedge
 The cross hedge

Conclusion: pros and cons
How Futures Differ from Forwards

♦ Feature#1: Marking to Market

▷ Mk2Mkt using undiscounted change of price

Example:

<table>
<thead>
<tr>
<th>price; r</th>
<th>40; $r=0.03$</th>
<th>38; $r=0.02$</th>
<th>36; $r=0.01$</th>
<th>34; $r=0.00$</th>
</tr>
</thead>
<tbody>
<tr>
<td>fwd, mk2mk</td>
<td>– [\frac{38-40}{1.02} = -1.961]</td>
<td>[\frac{36-38}{1.01} = -1.980]</td>
<td>buy at 36</td>
<td></td>
</tr>
<tr>
<td>futures</td>
<td>– $38 - 40 = -2.000$</td>
<td>$36 - 38 = -2.000$</td>
<td>$34 - 36 = -2.000$</td>
<td>and then buy at 34</td>
</tr>
</tbody>
</table>

▷ loser pays winner via margin accounts held with broker / clearing members

▷ payment based on settlement price – or trade price in case of exit/entry during the day

▷ reduces loser’s incentive to run away, and counterpart’s loss if loser still runs away

♦ Feature#2: Clearing Corporation

▷ central counterpart between buyer and seller ⇒ guarantor

▷ also nets a player’s purchases against sales
How Futures Differ from Forwards

◊ **Feature#1: Marking to Market**

▷ Mk2Mkt using **undiscounted** change of price

Example:

<table>
<thead>
<tr>
<th>price; (r)</th>
<th>40; (r=0.03)</th>
<th>38; (r=0.02)</th>
<th>36; (r=0.01)</th>
<th>34; (r=0.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fwd, mk2mk</td>
<td>–</td>
<td>(\frac{38-40}{1.02} = -1.961)</td>
<td>(\frac{36-38}{1.01} = -1.980)</td>
<td>buy at 36</td>
</tr>
<tr>
<td>futures</td>
<td>–</td>
<td>(38 - 40 = -2.000)</td>
<td>(36 - 38 = -2.000)</td>
<td>(34 - 36 = -2.000) and then buy at 34</td>
</tr>
</tbody>
</table>

▷ loser pays winner via margin accounts held with broker / clearing members

▷ payment based on settlement price – or trade price in case of exit/entry during the day

▷ reduces loser’s incentive to run away, and counterpart’s loss if loser still runs away

◊ **Feature#2: Clearing Corporation**

▷ central counterpart between buyer and seller ⇒ guarantor

▷ also nets a player’s purchases against sales
How Futures Differ from Forwards

◇ Feature#1: Marking to Market
 ▶ Mk2Mkt using undiscounted change of price

Example:

<table>
<thead>
<tr>
<th>price; r</th>
<th>40; r=0.03</th>
<th>38; r=0.02</th>
<th>36; r=0.01</th>
<th>34; r=0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>fwd, mk2mk</td>
<td>–</td>
<td>(\frac{38-40}{1.02} = -1.961)</td>
<td>(\frac{36-38}{1.01} = -1.980)</td>
<td>buy at 36</td>
</tr>
<tr>
<td>futures</td>
<td>–</td>
<td>(38 - 40 = -2.000)</td>
<td>(36 - 38 = -2.000)</td>
<td>(34 - 36 = -2.000) and then buy at 34</td>
</tr>
</tbody>
</table>

▷ loser pays winner via margin accounts held with broker / clearing members
▷ payment based on settlement price – or trade price in case of exit/entry during the day
▷ reduces loser’s incentive to run away, and counterpart’s loss if loser still runs away

◇ Feature#2: Clearing Corporation
 ▶ central counterpart between buyer and seller ⇒ guarantor
 ▶ also nets a player’s purchases against sales
How Futures Differ from Forwards

◊ **Feature#3: initial margin; maintenance**
 ▶ *initial margin*—interest bearing
 ▶ small losses can accumulate until *maintenance margin* is reached; then a *margin call* is issued
 ▶ failure to pay up = order to close out

Example

Nick Leeson had accumulated losses *ad* GBP 800m—Barings’ entire equity—but the Singapore Exchange lost “only” 50m:
 – 500m was paid as m-to-m with Barings’ money
 – 250m was paid as m-to-m with other customers’ money
The balance was lost by Simex while liquidating (immense price pressure).

◊ **Feature#4: organized markets**
 ▶ Fwd: OTC—so no info on prices, volumes; just an informal snapshot around noon
 ▶ Futures: formal exchanges. CME/CBOT, Eurex, LIFFE, etc
 ▶ More and more via computerized PLOB or mixed system
How Futures Differ from Forwards

◊ **Feature#3: initial margin; maintenance**
 ▶ initial margin—interest bearing
 ▶ small losses can accumulate until maintenance margin is reached; then a margin call is issued
 ▶ failure to pay up = order to close out

Example

Nick Leeson had accumulated losses *ad* GBP 800m—Barings’ entire equity—but the Singapore Exchange lost “only” 50m:
 − 500m was paid as m-to-m with Barings’ money
 − 250m was paid as m-to-m with other customers’ money
The balance was lost by Simex while liquidating (immense price pressure).

◊ **Feature#4: organized markets**
 ▶ Fwd: OTC—so no info on prices, volumes; just an informal snapshot around noon
 ▶ Futures: formal exchanges. CME/CBOT, Eurex, LIFFE, etc
 ▶ More and more via computerized PLOB or mixed system
How Futures Differ from Forwards

1.1. Organized markets

1. What are Currency Futures

- **Forward contracts:**
 - decentralized pricing. OTC, market makers.
 - No information on when a transaction took place, and at what price.
 - No secondary market.

- **Futures contracts:**
 - organized exchanges. Price results from centralized meeting of demand & supply.
 - "open outcry" system (US, LIFFE, MATIF)
 - computerized Public Limit Order Book (many continental European exchanges).
 - price and transaction information.
 - secondary market.

Feature#5: Standardized contracts

- **contract size** (far smaller than OTC currency)
- **expiry dates:** e.g. monthly (≤ 3mo), mar/jun/sept/dec (< 12mo), annual (12 to 4 mo)

Rate:GBP	IMM	62,500	Other exchanges
USD:EUR	IMM	125,000	LIFFE, PBOT, SIMEX, MACE, FINEX
EUR:USD	OM-S	50,000	EUREX
USD:CHF	IMM	125,000	LIFFE, MACE, PBOT
USD:AUD	IMM	100,000	PBOT, EUREX
NZD:USD	NZFE	50,000	
USD:NZD	NZFE	100,000	
USD:JPY	IMM	12,500,000	LIFFE, TIFFE, MACE, PBOT, SIMEX
USD:CAD	IMM	100,000	PBOT, MACE
How Futures Differ from Forwards

1. What are Currency Futures

- **Forward contracts**:
 - decentralized pricing. OTC, market makers.
 - No information on when a transaction took place, and at what price.
 - No secondary market.

- **Futures contracts**:
 - organized exchanges. Price results from centralized meeting of demand & supply.
 - "open outcry" system (US, LIFFE, MATIF)
 - computerized Public Limit Order Book (many continental European exchanges).
 - price and transaction information.
 - secondary market.

- **Feature#5: Standardized contracts** to stop fragmentation and facilitate secondary dealing
 - contract size (far smaller than OTC currency)
 - expiry dates: e.g. monthly (≤ 3mo), mar/jun/sept/dec (< 12mo), annual (12 to 4 mo)

FUTURES PRICES

<table>
<thead>
<tr>
<th>CURRENCY</th>
<th>Lifetime</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Settle</th>
<th>Change</th>
<th>High</th>
<th>Low</th>
<th>Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAPAN YEN (CME)</td>
<td>— 12.5 million yen ; $ per yen (.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept</td>
<td>.9458</td>
<td>.9466</td>
<td>.9386</td>
<td>.9389</td>
<td>—.0046</td>
<td>9540</td>
<td>.7945</td>
<td>73,221</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>.9425</td>
<td>.9470</td>
<td>.9393</td>
<td>.9396</td>
<td>—.0049</td>
<td>9529</td>
<td>.7970</td>
<td>3,455</td>
<td></td>
</tr>
<tr>
<td>Mr94</td>
<td>.9417</td>
<td>.0051</td>
<td>.9490</td>
<td>.8700</td>
<td></td>
<td></td>
<td></td>
<td>318</td>
<td></td>
</tr>
</tbody>
</table>

Est vol 28,844; vol Wed 36,595; open int 77,028, + 1.820

<table>
<thead>
<tr>
<th>Rate</th>
<th>at</th>
<th>Q (FC)</th>
<th>Other exchanges</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD:GBP</td>
<td>IMM</td>
<td>62,500</td>
<td>PBOT, LIFFE, SIMEX, MACE</td>
</tr>
<tr>
<td>USD:EUR</td>
<td>IMM</td>
<td>125,000</td>
<td>LIFFE, PBOT, SIMEX, MACE, FINEX</td>
</tr>
<tr>
<td>EUR:USD</td>
<td>OM-S</td>
<td>50,000</td>
<td>EUREX</td>
</tr>
<tr>
<td>USD:CHF</td>
<td>IMM</td>
<td>125,000</td>
<td>LIFFE, MACE, PBOT</td>
</tr>
<tr>
<td>USD:AUD</td>
<td>IMM</td>
<td>100,000</td>
<td>PBOT, EUREX</td>
</tr>
<tr>
<td>NZD:USD</td>
<td>NZFE</td>
<td>50,000</td>
<td></td>
</tr>
<tr>
<td>USD:NZD</td>
<td>NZFE</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>USD:JPY</td>
<td>IMM</td>
<td>12,500,000</td>
<td>LIFFE, TIFFE, MACE, PBOT, SIMEX</td>
</tr>
<tr>
<td>USD:CAD</td>
<td>IMM</td>
<td>100,000</td>
<td>PBOT, MACE</td>
</tr>
</tbody>
</table>
How Futures Differ from Forwards

<table>
<thead>
<tr>
<th>FUTURES PRICES [...] CURRENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAPAN YEN (CME)</td>
</tr>
<tr>
<td>Sept</td>
</tr>
<tr>
<td>Dec</td>
</tr>
<tr>
<td>Mr94</td>
</tr>
</tbody>
</table>

Est vol 28,844; vol Wed 36,595; open int 77,028, + 1.820

◊ **Feature#5: Standardized contracts** to stop fragmentation and facilitate secondary dealing

▷ contract size (far smaller than OTC currency)

▷ expiry dates: e.g. monthly (≤ 3mo), mar/jun/sept/dec (< 12mo), annual (12 to 4 mo)

<table>
<thead>
<tr>
<th>Rate</th>
<th>at</th>
<th>Q (FC)</th>
<th>Other exchanges</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD:GBP</td>
<td>IMM</td>
<td>62,500</td>
<td>PBOT, LIFFE, SIMEX, MACE</td>
</tr>
<tr>
<td>USD:EUR</td>
<td>IMM</td>
<td>125,000</td>
<td>LIFFE, PBOT, SIMEX, MACE, FINEX</td>
</tr>
<tr>
<td>EUR:USD</td>
<td>OM-S</td>
<td>50,000</td>
<td>EUREX</td>
</tr>
<tr>
<td>USD:CHF</td>
<td>IMM</td>
<td>125,000</td>
<td>LIFFE, MACE, PBOT</td>
</tr>
<tr>
<td>USD:AUD</td>
<td>IMM</td>
<td>100,000</td>
<td>PBOT, EUREX</td>
</tr>
<tr>
<td>NZD:USD</td>
<td>NZFE</td>
<td>50,000</td>
<td></td>
</tr>
<tr>
<td>USD:NZD</td>
<td>NZFE</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>USD:JPY</td>
<td>IMM</td>
<td>12,500,000</td>
<td>LIFFE, TIFFE, MACE, PBOT, SIMEX</td>
</tr>
<tr>
<td>USD:CAD</td>
<td>IMM</td>
<td>100,000</td>
<td>PBOT, MACE</td>
</tr>
</tbody>
</table>
Outline

The Market for Currency Futures

P. Sercu, *International Finance: Theory into Practice*

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
 - The general MinVar problem
 - The delta hedge
 - The cross hedge

Conclusion: pros and cons
Effect of Mk2Mkt on Futures Prices

Q: Does Mk2Mkt drive a wedge between futures and forward prices?
A: Yes, downward—but it’s absolutely tiny.

Example (data):

3 dates (0, 1, T=2). \(F_{0,2} = 100, F_{1,2} = \begin{cases} 105, & p = \frac{1}{2} \\ 95, & p = \frac{1}{2} \end{cases}, \tilde{F}_{2,2} = \tilde{f}_{2,2} = \tilde{S}_3. \)

– \(f_{1,2} \) must be equal to \(T_{1,2} \) because ...

– Q: is \(f_{1,2} = F_{1,2} \)? We verify/falsify this conjecture.

<table>
<thead>
<tr>
<th>(F_{1,2})</th>
<th>HC flows: futures time 1</th>
<th>time 2</th>
<th>HC flows: forward time 1</th>
<th>time 2</th>
<th>difference time 1</th>
<th>time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>105 - 100 = +5</td>
<td>-105</td>
<td>0</td>
<td>-100</td>
<td>+5</td>
<td>-5</td>
</tr>
<tr>
<td>95</td>
<td>95 - 100 = -5</td>
<td>-95</td>
<td>0</td>
<td>-100</td>
<td>-5</td>
<td>+5</td>
</tr>
</tbody>
</table>

– Q rephrased: do investors mind/love/loathe the no-interest loan/deposit in the up/down state, resp.?

– assume risk neutrality
Effect of Mk2Mkt on Futures Prices

Q: Does Mk2Mkt drive a wedge between futures and forward prices?
A: Yes, downward—but it’s absolutely tiny.

Example (data):

3 dates (0, 1, T=2). \(F_{0,2} = 100, F_{1,2} = \begin{cases} 105, & p = 1/2 \\ 95, & p = 1/2 \end{cases} \), \(\tilde{F}_{2,2} = \tilde{f}_{2,2} = \tilde{S}_3 \).

- \(f_{1,2} \) must be equal to \(T_{1,2} \) because ...
- Q: is \(f_{0,2} = F_{1,2} \)? We ¿verify/falsify? this conjecture.

\[
\begin{array}{c|cc|cc|cc}
F_{1,2} & \text{HC flows: futures} & & \text{HC flows: forward} & & \text{difference} \\
& \text{time 1} & \text{time 2} & \text{time 1} & \text{time 2} & \text{time 1} & \text{time 2} \\
105 & 105 - 100 = +5 & -105 & 0 & -100 & +5 & -5 \\
95 & 95 - 100 = -5 & -95 & 0 & -100 & -5 & +5 \\
\end{array}
\]

- Q rephrazed: do investors mind/love/loathe the no-interest loan/deposit in the up/down state, resp.?
- assume risk neutrality
Effect of Mk2Mkt on Futures Prices

Q: Does Mk2Mkt drive a wedge between futures and forward prices?
A: Yes, downward—but it’s absolutely tiny.

Example (data):

3 dates (0, 1, T=2). $F_{0,2} = 100$, $F_{1,2} = \begin{cases} 105, & p = 1/2 \\ 95, & p = 1/2 \end{cases}$, $\tilde{F}_{2,2} = \tilde{f}_{2,2} = \tilde{S}_3$.

– $f_{1,2}$ must be equal to $T_{1,2}$ because ...
– Q: is $f_{0,2} = F_{1,2}$?? We ¿verify/falsify? this conjecture.

<table>
<thead>
<tr>
<th>$F_{1,2}$</th>
<th>HC flows: futures time 1</th>
<th>time 2</th>
<th>HC flows: forward time 1</th>
<th>time 2</th>
<th>difference time 1</th>
<th>time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>$105 - 100 = +5$</td>
<td>-105</td>
<td>0</td>
<td>-100</td>
<td>$+5$</td>
<td>-5</td>
</tr>
<tr>
<td>95</td>
<td>$95 - 100 = -5$</td>
<td>-95</td>
<td>0</td>
<td>-100</td>
<td>-5</td>
<td>$+5$</td>
</tr>
</tbody>
</table>

– Q rephrased: do investors mind/love/loathe the no-interest loan/deposit in the up/down state, resp.?
– assume risk neutrality
Effect of Mk2Mkt on Futures Prices

Q: Does Mk2Mkt drive a wedge between futures and forward prices?
A: Yes, downward—but it’s absolutely tiny.

Example (data):

3 dates (0, 1, T=2). \(F_{0,2} = 100, F_{1,2} = \begin{cases} 105, & p = 1/2 \\ 95, & p = 1/2 \end{cases} \), \(\tilde{F}_{2,2} = \tilde{f}_{2,2} = \tilde{S}_3 \).

- \(f_{1,2} \) must be equal to \(T_{1,2} \) because ...
- Q: is \(f_{0,2} = F_{1,2} \) ?? We ¿verify/falsify? this conjecture.

| \(F_{1,2} \) | HC flows: futures | \(F_{1,2} \) | HC flows: forward | \(F_{1,2} \) | difference |
|---|---|---|---|---|
| 105 | 105 − 100 = +5, −105 | 0, −100 | +5, −5 |
| 95 | 95 − 100 = −5, −95 | 0, −100 | −5, +5 |

- Q rephrased: do investors mind/love/loathe the no-interest loan/deposit in the up/down state, resp.?
- assume risk neutrality
Effect of Mk2Mkt on Futures Prices

Undo Mk2Mkt by borrowing 5 (down) or lending 5 (down). Costly? Profitable?

Example

<table>
<thead>
<tr>
<th>state</th>
<th>case 1</th>
<th>case 2</th>
<th>case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>net time value</td>
<td>r</td>
</tr>
<tr>
<td>up</td>
<td>0</td>
<td>5 - 5 = 0.00</td>
<td>10</td>
</tr>
<tr>
<td>down</td>
<td>0</td>
<td>-5 + 5 = 0.00</td>
<td>10</td>
</tr>
<tr>
<td>E(.)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

◇ Case 1: market interest rate is zero. You don’t even notice interest-free deposits/loans. Conjecture acceptable.

◇ Case 2: market interest rate is a positive “constant”. You still don’t mind. Conjecture acceptable.

▷ f must be below F
▷ but general-eq simulations all suggest that effect is tiny
Effect of Mk2Mkt on Futures Prices

Undo Mk2Mkt by borrowing 5 (down) or lending 5 (down). Costly? Profitable?

<table>
<thead>
<tr>
<th>state</th>
<th>case 1</th>
<th>case 2</th>
<th>case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r)</td>
<td>net time value at (T)</td>
<td>(r)</td>
</tr>
<tr>
<td>up</td>
<td>0</td>
<td>(5 - 5 = 0.00)</td>
<td>10</td>
</tr>
<tr>
<td>down</td>
<td>0</td>
<td>(-5 + 5 = 0.00)</td>
<td>10</td>
</tr>
<tr>
<td>E(.)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- **Case 1**: market interest rate is zero. You don’t even notice interest-free deposits/loans. Conjecture acceptable.

- **Case 2**: market interest rate is a positive “constant”. You still don’t mind. Conjecture acceptable.

- **Case 3**: outflows financed at high rates, inflows deposited at low rates. You now dislike interest-free deposits/loans. Conjecture falsified.

\(f \) must be below \(F \)

but general-eq simulations all suggest that effect is tiny
Effect of Mk2Mkt on Futures Prices

Undo Mk2Mkt by borrowing 5 (down) or lending 5 (down). Costly? Profitable?

Example

<table>
<thead>
<tr>
<th>state</th>
<th>case 1 net time value</th>
<th>case 2 net time value at T</th>
<th>case 3 net time value at T</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>r (5 - 5 = 0.00)</td>
<td>r (5 \times 1.10 - 5 = 0.50)</td>
<td>r (5 \times 1.08 - 5 = 0.40)</td>
</tr>
<tr>
<td>down</td>
<td>$0 - 5 + 5 = 0.00$</td>
<td>$10 - 5 \times 1.10 + 5 = -0.50$</td>
<td>$8 - 5 \times 1.12 + 5 = -0.60$</td>
</tr>
<tr>
<td>E(.)</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.10</td>
</tr>
</tbody>
</table>

- **Case 1**: market interest rate is zero. You don’t even notice interest-free deposits/loans. Conjecture acceptable.
- **Case 2**: market interest rate is a positive “constant”. You still don’t mind. Conjecture acceptable.
- **Case 3**: outflows financed at high rates, inflows deposited at low rates. You now dislike interest-free deposits/loans. Conjecture falsified.
 - f must be below F
 - but general-eq simulations all suggest that effect is tiny
The long & short of it:

In a nutshell:

<table>
<thead>
<tr>
<th>interest</th>
<th>prices</th>
<th>Mk2Mkt means ...</th>
<th>concl</th>
</tr>
</thead>
<tbody>
<tr>
<td>down?</td>
<td>prices rise (±)</td>
<td>inflows, to be deposited</td>
<td>deposit at low rates</td>
</tr>
<tr>
<td>up?</td>
<td>prices fall (±)</td>
<td>outflows, to be financed</td>
<td>finance at high rates</td>
</tr>
</tbody>
</table>

To induce investors to hold futures contracts, futures prices must be lower than forward prices.

But ...

- correlation between Δr and Δf is lowish
- GenEq models suggest lowish price of risk
- reality confirms that $f \approx F$
The long & short of it:

In a nutshell:

interest down?	prices rise (±)	Mk2Mkt means inflows, to be deposited	concl
up?	prices fall (±)	outflows, to be financed	

To induce investors to hold futures contracts, futures prices must be lower than forward prices.

But ...

– correlation between Δr and Δf is lowish
– GenEq models suggest lowish price of risk
– reality confirms that $f \approx F$
The Market for Currency Futures

P. Sercu,
International Finance: Theory into Practice

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
- The general MinVar problem
- The delta hedge
- The cross hedge

Conclusion: pros and cons
What’s special?: Approximate hedging

✧ **Limited choice:**
 - only a few currencies (or grades / delivery points, for commodities)
 - only a few expiry dates

Almost surely there is no perfect hedge

✧ **How to deal with it?**
 - Chose a hedge ratio that reduces the remaining risk to a minimum
 - Let T_1 be the firm’s hedging horizon
 - Let $\tilde{y} := \tilde{C}_{T_1}$ be the firm’s cash flow at T_1, in HC
 - Let $T_2 (\geq T_1)$ be the expiry date of the hedge
 - Then: chose B_{t,T_1} so as to minimize $\text{var}(\tilde{y} - B_{t,T_1} [\tilde{f}_{T_1,T_2} - f_{t,T_2}])$
 - $=: \tilde{x}$

✧ **Solution**
 - This is a LS problem: $\min_B \text{var}(\tilde{e})$ with $\tilde{e} := \tilde{y} - B\tilde{x}$
 - So we get a regression-coeff solution: $B = \frac{\text{cov}(\tilde{y}, \tilde{x})}{\text{var}(\tilde{x})}$
What’s special?: Approximate hedging

- **Limited choice:**
 - only a few currencies (or grades / delivery points, for commodities)
 - only a few expiry dates

Almost surely there is no perfect hedge

- **How to deal with it?**
 - Chose a hedge ratio that reduces the remaining risk to a minimum
 - Let T_1 be the firm’s hedging horizon
 - Let $\tilde{y} := \tilde{C}_{T_1}$ be the firm’s cash flow at T_1, in HC
 - Let $T_2 (\geq T_1)$ be the expiry date of the hedge
 - Then: chose B_{t,T_1} so as to minimize $\text{var}(\tilde{y} - B_{t,T_1} [\tilde{f}_{T_1,T_2} - f_{t,T_2}]) =: \tilde{x}$

- **Solution**
 - This is a LS problem: $\min_B \text{var}(\tilde{e})$ with $\tilde{e} := \tilde{y} - B\tilde{x}$
 - So we get a regression-coeff solution: $B = \frac{\text{cov}(\tilde{y}, \tilde{x})}{\text{var}(\tilde{x})}$
What’s special?: Approximate hedging

- **Limited choice:**
 - only a few currencies (or grades / delivery points, for commodities)
 - only a few expiry dates

 Almost surely there is no perfect hedge

- **How to deal with it?**
 - Chose a hedge ratio that reduces the remaining risk to a minimum
 - Let T_1 be the firm’s hedging horizon
 - Let $\tilde{y} := \tilde{C}_{T_1}$ be the firm’s cash flow at T_1, in HC
 - Let $T_2(\geq T_1)$ be the expiry date of the hedge
 - Then: chose B_{t,T_1} so as to minimize $\text{var}(\tilde{y} - B_{t,T_1} [\tilde{f}_{T_1,T_2} - f_{i,T_2}]) =: \tilde{x}$

- **Solution**
 - This is a LS problem: $\min_B \text{var}(\tilde{e})$ with $\tilde{e} := \tilde{y} - B\tilde{x}$
 - So we get a regression-coeff solution: $B = \frac{\text{cov}(\tilde{y},\tilde{x})}{\text{var}(\tilde{x})}$
Notes on the solution

◇ **Linear regression?**
 ▶ We do not assume \(\tilde{y} \) is linear in \(\tilde{f} \). Rather, we extract the linear component in an almost always nonlinear relation, because the hedge’s pay-off is linear in \(\tilde{f} \).
 ▶ Time series regression will not do, in general:
 - relation is changing over time
 - (\(\tilde{y} \) and) \(\tilde{f} \) are long-memory processes (\(\pm \) random walks)

◇ **Narrowed-down problem:** a contract with \(\tilde{y} = n_{t,T_1} \tilde{S}_{T_1} \)
 ▶ you should generally look at net exposure of *all* contracts
 ▶ even this broader view ignores correlations of non-contractual flows

Example

A firm once commissioned a hedging program for its commodity purchases, ignoring the fact that price increases were passed on to the consumers with a delay of about 2 weeks.

Their sales price was, to a large extent, a natural hedge. Their proposed policy would probably have *increased* risk.
Notes on the solution

- **Linear regression?**
 - We do not assume \tilde{y} is linear in \tilde{f}. Rather, we extract the linear component in a almost always nonlinear relation, because the hedge’s pay-off is linear in \tilde{f}.
 - Time series regression will not do, in general:
 - relation is changing over time
 - $(\tilde{y}$ and) \tilde{f} are long-memory processes (\pm random walks)

- **Narrowed-down problem:** a contract with $\tilde{y} = n_{t,T_1} \tilde{S}_{T_1}$
 - you should generally look at net exposure of all contracts
 - even this broader view ignores correlations of non-contractual flows

Example

A firm once commissioned a hedging program for its commodity purchases, ignoring the fact that price increases were passed on to the consumers with a delay of about 2 weeks.

Their sales price was, to a large extent, a natural hedge. Their proposed policy would probably have increased risk.
Notes on the solution

✧ **Linear regression?**

▷ We do not assume \tilde{y} is linear in \tilde{f}. Rather, we extract the linear component in a almost always nonlinear relation, because the hedge’s pay-off is linear in \tilde{f}.

▷ Time series regression will not do, in general:
 - relation is changing over time
 - (\tilde{y} and) \tilde{f} are long-memory processes (\pm random walks)

✧ **Narrowed-down problem:** a contract with $\tilde{y} = n_{t,T_1} \tilde{S}_{T_1}$

▷ you should generally look at net exposure of *all* contracts

▷ even this broader view ignores correlations of non-contractual flows

Example

A firm once commissioned a hedging program for its commodity purchases, ignoring the fact that price increases were passed on to the consumers with a delay of about 2 weeks.

Their sales price was, to a large extent, a natural hedge. Their proposed policy would probably have *increased* risk.
The narrow contractual-exposure problem

A standardized problem

- a unit inflow of FC e at T_1 — e.g. SEK (in USD/SEK)
- hedge contract is available for FC h, contract size one unit — e.g. EUR (in USD/EUR)

Solution: $B = \frac{\text{cov}(\tilde{f}^{(h)}_{T_1,T_2}, \tilde{S}^{(e)}_{T_1})}{\text{var}(\tilde{f}^{(h)}_{T_1,T_2})}$.

Case 1: perfect hedge: $e = h$, $T_1 = T_2$ so $\tilde{f}^{(h)}_{T_1,T_2} = \tilde{S}^{(e)}_{T_1}$

- regress \tilde{y} on itself, so $B = 1$
The narrow contractual-exposure problem

- **A standardized problem**
 - a unit inflow of FC e at T_1 — e.g. SEK (in USD/SEK)
 - hedge contract is available for FC h, contract size one unit — e.g. EUR (in USD/EUR)
 - Solution: $B = \frac{\text{cov}(\tilde{f}^{(h)}_{T_1,T_2}, \tilde{S}^{(e)}_{T_1})}{\text{var}(\tilde{f}^{(h)}_{T_1,T_2})}$.

- **Case 1: perfect hedge**: $e = h$, $T_1 = T_2$ so $\tilde{f}^{(h)}_{T_1,T_2} = \tilde{S}^{(e)}_{T_1}$
 - regress \tilde{y} on itself, so $B = 1$
The Delta hedge: \(e = h, T_2 > T_1 \)

Regression: \(\tilde{S}_{T_1}^{(e)} = A + B \tilde{f}_{T_1,T_2}^{(e)} + e \) where \(\tilde{f}_{T_1,T_2}^{(e)} \approx \tilde{F}_{T_1,T_2}^{(e)} = \tilde{S}_{T_1}^{1+\tilde{r}_{T_1,T_2}} \)

- Rule-of-thumb solution for regression:
 - If time-\(T_1 \) interest rates were known in advance, then so would be \(B \):

\[
S_{T_1}^{(e)} = \frac{1 + r_{T_1}^{(e)}}{1 + r_{T_1}} \frac{1 + r_{T_1}^{(e)}}{1 + r_{T_1}^{(e)}} S_{T_1}^{(e)}
\]

- quick-and-hardly-dirty solution: ignore variability, set \(B \) at the current level of \((1 + r^*)(1 + r)\) or even to unity

- If you do run time-series regression, do not use levels: long-memory variables!
 - either regress \(\Delta \tilde{S} = a + B \Delta \tilde{f} + \nu \)
 - or regress \(\Delta \tilde{S}/S = c + b \Delta \tilde{f}/f + \epsilon \) and compute \(B = b f/S \)

- If you do run TS regression, use computed \(F' \)s for the horizon you need, not observed \(f' \)s
 - easier to get synchronized data
 - avoids spurious changes in observed basis due to \(\Delta t \)
The Delta hedge: \(e = h, \, T_2 > T_1 \)

Regression: \(\tilde{S}^{(e)}_{T_1} = A + B \tilde{f}^{(e)}_{T_1,T_2} + e \) where \(\tilde{f}^{(e)}_{T_1,T_2} \approx \tilde{F}^{(e)}_{T_1,T_2} = \tilde{S}^{(e)}_{T_1} \frac{1 + \tilde{r}_{T_1,T_2}}{1 + \tilde{r}^{(e)}_{T_1,T_2}} \)

- **Rule-of-thumb solution for regression:**
 - If time-\(T_1 \) interest rates were known in advance, then so would be \(B \):

\[
\tilde{S}^{(e)}_{T_1} = \frac{1 + r^{(e)}_{T_1}}{1 + r_{T_1}} \frac{1 + r_{T_1}}{1 + r^{(e)}_{T_1}} \tilde{S}^{(e)}_{T_1} = B
\]

- quick-and-hardly-dirty solution: ignore variability, set \(B \) at the current level of \((1 + r^*) (1 + r)\) or even to unity

- **If you do run time-series regression, do not use levels:** long-memory variables!
 - either regress \(\Delta \tilde{S} = a + B \Delta \tilde{f} + \nu \)
 - or regress \(\Delta \tilde{S}/S = c + b \Delta \tilde{f}/f + \epsilon \) and compute \(B = b f/S \)

- **If you do run TS regression, use computed \(F' \)s for the horizon you need, not observed \(f' \)s
 - easier to get synchronized data
 - avoids spurious changes in observed basis due to \(\Delta t \)
The Delta hedge: $e = h, T_2 > T_1$

Regression: $\tilde{S}_{T_1}^{(e)} = A + B \tilde{f}_{T_1,T_2}^{(e)} + e$ where $\tilde{f}_{T_1,T_2}^{(e)} \approx \tilde{F}_{T_1,T_2}^{(e)} = \tilde{S}_{T_1}^{(e)} \frac{1+\tilde{T}_{T_1,T_2}}{1+\tilde{r}_{T_1,T_2}}$

Rule-of-thumb solution for regression:
- If time-T_1 interest rates were known in advance, then so would be B:

$$S_{T_1}^{(e)} \overset{\text{LHS varbl}}{=} \frac{1 + r_{T_1}^{(e)}}{1 + r_{T_1}} \frac{1 + r_{T_1}}{1 + r_{T_1}^{(e)}} S_{T_1}^{(e)} \overset{\text{RHS varbl}}{=} B!$$

- quick-and-hardly-dirty solution: ignore variability, set B at the current level of $(1 + r^*)(1 + r)$ or even to unity

If you do run time-series regression, do not use levels: long-memory variables!
- either regress $\Delta \tilde{S} = a + B \Delta \tilde{f} + \nu$
- or regress $\Delta \tilde{S}/S = c + b \Delta \tilde{f}/f + \epsilon$ and compute $B = b f/S$

If you do run TS regression, use computed F’s for the horizon you need, not observed f’s
- easier to get synchronized data
- avoids spurious changes in observed basis due to Δt
The cross hedge: \(e \neq h, \ t_1 = T_2 \)

Regression: \(\tilde{S}_{T_1}^{(e)} = A + B \tilde{S}_{T_1}^{(h)} + e \)

- If you do run time-series regression, do not use levels: long-memory variables!
 - either regress \(\Delta \tilde{S}^e = a + B \Delta \tilde{S}^h + \nu \)
 - or regress \(\Delta \tilde{S}^e / S^e = c + b \Delta \tilde{S}^h / S^h + \epsilon \) and compute \(B = b \ S^h / S^e \)

- If you do run TS regression and use a \(\Delta t \) which differs from \(T_1 - t \), make sure you pick up enough “cross”correlation
 - day’s move in SEK may not fully reflect day’s move in EUR: cross-correlation
 - solutions? – non-overlapping 2weekly or monthly observations? reduces nobs
 – daily obs on overlapping 2-weekly returns? Messy
 – Dimson or Scholes-Williams regression on daily data

- Rule-of-thumb solution for regression: \(\Delta \tilde{S}^e / S^e = c + b \Delta \tilde{S}^h / S^h + \epsilon \)
 and \(B = b \ S^h / S^e \) — why don’t we just guesstimate \(b = 1 \Rightarrow B = \frac{S^h}{S^e} ? \)
 - bias: can hold for all pairs of currencies only if \(R^2 = 1 \), so typical \(b \) must be < 1. But bias small for highly correlated pairs
 + no estimation error
The cross hedge: \(e \neq h, t_1 = T_2 \)

Regression: \(\tilde{S}_{T_1}^{(e)} = A + B \tilde{S}_{T_1}^{(h)} + e \)

- If you do run time-series regression, do not use levels: long-memory variables!
 - either regress \(\Delta \tilde{S}^e = a + B \Delta \tilde{S}^h + \nu \)
 - or regress \(\Delta \tilde{S}^e / S^e = c + b \Delta \tilde{S}^h / S^h + \epsilon \) and compute \(B = b S^h / S^e \)

- If you do run TS regression and use a \(\Delta t \) which differs from \(T_1 - t \), make sure you pick up enough “cross”correlation
 - day’s move in SEK may not fully reflect day’s move in EUR: cross-correlation
 - solutions? – non-overlapping 2weekly or monthly observations? reduces nobs
 – daily obs on overlapping 2-weekly returns? Messy
 – Dimson or Scholes-Williams regression on daily data

- Rule-of-thumb solution for regression: \(\ln \Delta \tilde{S}^e / S^e = c + b \Delta \tilde{S}^h / S^h + \epsilon \)
 and \(B = b S^h / S^e \) — why don’t we just guesstimate \(b = 1 \Rightarrow B = \frac{S^h}{S^e} ? \)
 - bias: can hold for all pairs of currencies only if \(R^2 = 1 \), so typical \(b \) must be \(< 1 \). But bias small for highly correlated pairs
 + no estimation error
The cross hedge: \(e \neq h, \ t_1 = T_2 \)

Regression: \(\tilde{S}_{T_1}^{(e)} = A + B \tilde{S}_{T_1}^{(h)} + e \)

- If you do run time-series regression, **do not use levels:** long-memory variables!
 - either regress \(\Delta \tilde{S}^e = a + B \Delta \tilde{S}^h + \nu \)
 - or regress \(\Delta \tilde{S}^e / S^e = c + b \Delta \tilde{S}^h / S^h + \epsilon \) and compute \(B = b \frac{S^h}{S^e} \)

- If you do run TS regression and use a \(\Delta t \) which differs from \(T_1 - t \), **make sure you pick up enough “cross”correlation**
 - day’s move in SEK may not fully reflect day’s move in EUR: cross-correlation
 - solutions? – non-overlapping 2weekly or monthly observations? reduces nobs
 – daily obs on overlapping 2-weekly returns? Messy
 – Dimson or Scholes-Williams regression on daily data

- **Rule-of-thumb solution for regression:** \(\ln \frac{\Delta \tilde{S}^e / S^e = c + b \Delta \tilde{S}^h / S^h + \epsilon} \) and \(B = b \frac{S^h}{S^e} \) — why don’t we just guesstimate \(b = 1 \Rightarrow B = \frac{S^h}{S^e} \) ?
 - bias: can hold for all pairs of currencies only if \(R^2 = 1 \), so typical \(b \) must be < 1. But bias small for highly correlated pairs
 + no estimation error
Outline

Handling Default Risk in Forward Markets: Old & New Tricks

How Futures Contracts Differ from Forwards

Effect of Marking to Market on Futures Prices

Hedging with Futures Contracts
 The general MinVar problem
 The delta hedge
 The cross hedge

Conclusion: pros and cons
Conclusion: pros and cons

◊ **Advantages of futures** include
 - Easy access: less (initial) margin is required than for forwards.
 - Low commissions, because of standardization.
 - Secondary market: Futures positions can be easily closed out.

◊ **Disadvantages of futures** include
 - Standardization. Choice: imperfect but cheap futures hedge vs
 more expensive, tailor-made forward hedge?
 - Ruin risk. Mk2Mkt can create severe short-term cash flow
 problems for a hedger.
 - Interest rate risk. The daily cash flows must be financed/deposited in the money markets at
 interest rates that are not known when the hedge is set up.
 - Limited menu of futures contracts.
 - Short maturities—less than one year.

⇒ Forward markets are still widely and mostly used by corporate
 hedgers, while futures *tend to attract relatively more* speculators.
Conclusion: pros and cons

◊ **Advantages of futures** include
 ▶ **Easy access**: less (initial) margin is required than for forwards.
 ▶ **Low commissions**, because of standardization.
 ▶ **Secondary market**: Futures positions can be easily closed out.

◊ **Disadvantages of futures** include
 ▶ **Standardization**. Choice: imperfect but cheap futures hedge vs more expensive, tailor-made forward hedge?
 ▶ **Ruin risk**. Mk2Mkt can create severe short-term cash flow problems for a hedger.
 ▶ **Interest rate risk**. The daily cash flows must be financed/deposited in the money markets at interest rates that are not known when the hedge is set up.
 ▶ **Limited menu** of futures contracts.
 ▶ **Short maturities**—less than one year.

⇒ Forward markets are still widely and mostly used by corporate hedgers, while futures tend to attract relatively more speculators.
Conclusion: pros and cons

◊ **Advantages of futures** include
 - **Easy access**: less (initial) margin is required than for forwards.
 - **Low commissions**, because of standardization.
 - **Secondary market**: Futures positions can be easily closed out.

◊ **Disadvantages of futures** include
 - **Standardization**. Choice: imperfect but cheap futures hedge vs. more expensive, tailor-made forward hedge?
 - **Ruin risk**. Mk2Mkt can create severe short-term cash flow problems for a hedger.
 - **Interest rate risk**. The daily cash flows must be financed/deposited in the money markets at interest rates that are not known when the hedge is set up.
 - **Limited menu** of futures contracts.
 - **Short maturities**—less than one year.

⇒ Forward markets are still widely and mostly used by corporate hedgers, while futures *tend to attract relatively more* speculators.