Chapter 4
Understanding Forward Rates for Foreign Exchange
Overview

Introduction to Forward Rates

Links Between Forex & Money Markets
FX & MM Transactions: Ins & Outs
The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
Arbitrage and the LOP
Shopping around under CIP
Infrequently asked Questions on CIP

Market Value of Forward Contract
The formula
Implication 1: Value at Maturity
Implication 2: Value at Inception
Implication 3: F is a risk-adjusted expectation or CEQ
Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
Overview

Introduction to Forward Rates

Links Between Forex & Money Markets
FX & MM Transactions: Ins & Outs
The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
Arbitrage and the LOP
Shopping around under CIP
Infrequently asked Questions on CIP

Market Value of Forward Contract
The formula
Implication 1: Value at Maturity
Implication 2: Value at Inception
Implication 3: F is a risk-adjusted expectation or CEQ
Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
Overview

Introduction to Forward Rates

Links Between Forex & Money Markets
 FX & MM Transactions: Ins & Outs
 The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
 Arbitrage and the LOP
 Shopping around under CIP
 Infrequently asked Questions on CIP

Market Value of Forward Contract
 The formula
 Implication 1: Value at Maturity
 Implication 2: Value at Inception
 Implication 3: F is a risk-adjusted expectation or CEQ
 Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
Overview

Introduction to Forward Rates

Links Between Forex & Money Markets
 FX & MM Transactions: Ins & Outs
 The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
 Arbitrage and the LOP
 Shopping around under CIP
 Infrequently asked Questions on CIP

Market Value of Forward Contract
 The formula
 Implication 1: Value at Maturity
 Implication 2: Value at Inception
 Implication 3: F is a risk-adjusted expectation or CEQ
 Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
Overview

Introduction to Forward Rates

Links Between Forex & Money Markets
 FX & MM Transactions: Ins & Outs
 The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
 Arbitrage and the LOP
 Shopping around under CIP
 Infrequently asked Questions on CIP

Market Value of Forward Contract
 The formula
 Implication 1: Value at Maturity
 Implication 2: Value at Inception
 Implication 3: F is a risk-adjusted expectation or CEQ
 Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
Outline

Introduction to Forward Rates

Links Between Forex & Money Markets
 FX & MM Transactions: Ins & Outs
 The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
 Arbitrage and the LOP
 Shopping around under CIP
 Infrequently asked Questions on CIP

Market Value of Forward Contract
 The formula
 Implication 1: Value at Maturity
 Implication 2: Value at Inception
 Implication 3: F is a risk-adjusted expectation or CEQ
 Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
How Forward Rates are Quoted

Quotes: Two conventions: Outright \((F) \) vs. swap rate \((F - S) \)—see e.g. Globe and Mail

<table>
<thead>
<tr>
<th></th>
<th>$1 U.S. in Cdn $</th>
<th>Cdn $1 in U.S.</th>
<th>swap rates (in cents US or Cdn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spot</td>
<td>1.3211</td>
<td>0.7569</td>
<td>—</td>
</tr>
<tr>
<td>1 month</td>
<td>1.3218</td>
<td>0.7565</td>
<td>+0.07</td>
</tr>
<tr>
<td>2 months</td>
<td>1.3224</td>
<td>0.7562</td>
<td>+0.13</td>
</tr>
<tr>
<td>3 months</td>
<td>1.3229</td>
<td>0.7559</td>
<td>+0.18</td>
</tr>
<tr>
<td>6 months</td>
<td>1.3246</td>
<td>0.7549</td>
<td>+0.35</td>
</tr>
<tr>
<td>12 months</td>
<td>1.3266</td>
<td>0.7538</td>
<td>+0.55</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5 years</td>
<td>1.3579</td>
<td>0.7364</td>
<td>+3.68</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10 years</td>
<td>1.5446</td>
<td>0.6875</td>
<td>+13.36</td>
</tr>
</tbody>
</table>

"at a premium", or "above par" \(+ \) "at a discount", or "below par" \(- \)

\((a \text{ premium}) \) \((a \text{ discount}) \)

Which is used where? Traders traditionally quoted swap rates. Newspapers have stopped the practice.

Sometimes one uses “p” (= premium), “d” (= discount) instead of “+”, “−”, or one entirely omits the indication.
How Forward Rates are Quoted

Quotes: Two conventions: Outright (F) vs. swap rate ($F - S$)—see e.g. Globe and Mail

<table>
<thead>
<tr>
<th></th>
<th>1 U.S. in Cdn $</th>
<th>Cdn $1 in U.S.</th>
<th>swap rates (in cents US or Cdn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spot</td>
<td>1.3211</td>
<td>0.7569</td>
<td>—</td>
</tr>
<tr>
<td>1 month</td>
<td>1.3218</td>
<td>0.7565</td>
<td>+0.07</td>
</tr>
<tr>
<td>2 months</td>
<td>1.3224</td>
<td>0.7562</td>
<td>+0.13</td>
</tr>
<tr>
<td>3 months</td>
<td>1.3229</td>
<td>0.7559</td>
<td>+0.18</td>
</tr>
<tr>
<td>6 months</td>
<td>1.3246</td>
<td>0.7549</td>
<td>+0.35</td>
</tr>
<tr>
<td>12 months</td>
<td>1.3266</td>
<td>0.7538</td>
<td>+0.55</td>
</tr>
<tr>
<td>5 years</td>
<td>1.3579</td>
<td>0.7364</td>
<td>+3.68</td>
</tr>
<tr>
<td>10 years</td>
<td>1.5446</td>
<td>0.6875</td>
<td>+13.36</td>
</tr>
</tbody>
</table>

"at a premium", or "above par" "at a discount", or "below par" (a premium) (a discount)

Which is used where? Traders traditionally quoted swap rates. Newspapers have stopped the practice.

Sometimes one uses “p” (= premium), “d” (= discount) instead of “+”, “−”, or one entirely omits the indication.
How we denote risk-free returns

Effective return = simple percentage difference between start and end value, as % of start value

<table>
<thead>
<tr>
<th>$T - t$</th>
<th>V_t</th>
<th>V_T</th>
<th>$r_{t,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 month</td>
<td>100</td>
<td>102</td>
<td>2%</td>
</tr>
<tr>
<td>5 years</td>
<td>1000</td>
<td>1500</td>
<td>50%</td>
</tr>
</tbody>
</table>

Interest rate = annualized (“p.a.”) version of r. Needs to de-annualized into an effective return.

Examples: 3 months at 6% p.a. means ...

<table>
<thead>
<tr>
<th>convention</th>
<th>formula</th>
<th>$r_{t,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple interest</td>
<td>$(1 + 3/12 \times 0.06) - 1$</td>
<td>0.01500</td>
</tr>
<tr>
<td>comp., annual</td>
<td>$(1 + 0.06)^{3/12} - 1$</td>
<td>0.01467</td>
</tr>
<tr>
<td>comp., monthly</td>
<td>$(1 + 1/12 \times 0.06)^3 - 1$</td>
<td>0.01507</td>
</tr>
<tr>
<td>comp., daily</td>
<td>$(1 + 1/360 \times 0.06)^90 - 1$</td>
<td>0.01511</td>
</tr>
<tr>
<td>cont. comp</td>
<td>$e^{0.06 \times 3/12} - 1$</td>
<td>0.01511</td>
</tr>
<tr>
<td>banker’s discount</td>
<td>$(1 - 3/12 \times 0.06)^{-1} - 1$</td>
<td>0.01523</td>
</tr>
</tbody>
</table>
How we denote risk-free returns

◊ **Effective return** = simple percentage difference between start and end value, as % of start value

<table>
<thead>
<tr>
<th></th>
<th>$T - t$</th>
<th>V_t</th>
<th>V_T</th>
<th>$r_{t,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 month</td>
<td>100</td>
<td>102</td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>5 years</td>
<td>1000</td>
<td>1500</td>
<td></td>
<td>50%</td>
</tr>
</tbody>
</table>

◊ **Interest rate** = annualized (“p.a.”) version of r. Needs to de-annualized into an effective return.

Examples: 3 months at 6% p.a. means ...

<table>
<thead>
<tr>
<th>convention</th>
<th>formula</th>
<th>$r_{t,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple interest</td>
<td>$(1 + 3/12 \times 0.06) - 1 = 0.01500$</td>
<td></td>
</tr>
<tr>
<td>comp., annual</td>
<td>$(1 + 0.06)^{3/12} - 1 = 0.01467$</td>
<td></td>
</tr>
<tr>
<td>comp., monthly</td>
<td>$(1 + 1/12 \times 0.06)^3 - 1 = 0.01507$</td>
<td></td>
</tr>
<tr>
<td>comp., daily</td>
<td>$(1 + 1/360 \times 0.06)^{90} - 1 = 0.01511$</td>
<td></td>
</tr>
<tr>
<td>cont. comp</td>
<td>$e^{0.06 \times 3/12} - 1 = 0.01511$</td>
<td></td>
</tr>
<tr>
<td>banker’s discount</td>
<td>$(1 - 3/12 \times 0.06)^{-1} - 1 = 0.01523$</td>
<td></td>
</tr>
</tbody>
</table>
How we denote risk-free returns

Effective return = simple percentage difference between start and end value, as % of start value

<table>
<thead>
<tr>
<th>$T - t$</th>
<th>V_t</th>
<th>V_T</th>
<th>$r_{t,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 month</td>
<td>100</td>
<td>102</td>
<td>2%</td>
</tr>
<tr>
<td>5 years</td>
<td>1000</td>
<td>1500</td>
<td>50%</td>
</tr>
</tbody>
</table>

Interest rate = annualized (“p.a.”) version of r. Needs to de-annualized into an effective return.

Examples: 3 months at 6% p.a. means ...

<table>
<thead>
<tr>
<th>convention</th>
<th>formula</th>
<th>$r_{t,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple interest</td>
<td>$(1 + 3/12 \times 0.06) - 1 = 0.01500$</td>
<td></td>
</tr>
<tr>
<td>comp., annual</td>
<td>$(1 + 0.06)^{3/12} - 1 = 0.01467$</td>
<td></td>
</tr>
<tr>
<td>comp., monthly</td>
<td>$(1 + 1/12 \times 0.06)^3 - 1 = 0.01507$</td>
<td></td>
</tr>
<tr>
<td>comp., daily</td>
<td>$(1 + 1/360 \times 0.06)^{90} - 1 = 0.01511$</td>
<td></td>
</tr>
<tr>
<td>cont. comp</td>
<td>$e^{0.06 \times 3/12} - 1 = 0.01511$</td>
<td></td>
</tr>
<tr>
<td>banker’s discount</td>
<td>$(1 - 3/12 \times 0.06)^{-1} - 1 = 0.01523$</td>
<td></td>
</tr>
</tbody>
</table>
How we denote risk-free returns

- **Effective return** = simple percentage difference between start and end value, as % of start value

Examples

<table>
<thead>
<tr>
<th>$T - t$</th>
<th>V_t</th>
<th>V_T</th>
<th>$r_{t,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 month</td>
<td>100</td>
<td>102</td>
<td>2%</td>
</tr>
<tr>
<td>5 years</td>
<td>1000</td>
<td>1500</td>
<td>50%</td>
</tr>
</tbody>
</table>

- **Interest rate** = annualized ("p.a.") version of r. Needs to de-annualized into an effective return.

Examples: 3 months at 6% p.a. means ...

<table>
<thead>
<tr>
<th>convention</th>
<th>formula</th>
<th>$r_{t,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple interest</td>
<td>$(1 + 3/12 \times 0.06) - 1 = 0.01500$</td>
<td></td>
</tr>
<tr>
<td>comp., annual</td>
<td>$(1 + 0.06)^{3/12} - 1 = 0.01467$</td>
<td></td>
</tr>
<tr>
<td>comp., monthly</td>
<td>$(1 + 1/12 \times 0.06)^3 - 1 = 0.01507$</td>
<td></td>
</tr>
<tr>
<td>comp., daily</td>
<td>$(1 + 1/360 \times 0.06)^{90} - 1 = 0.01511$</td>
<td></td>
</tr>
<tr>
<td>cont. comp</td>
<td>$e^{0.06 \times 3/12} - 1 = 0.01511$</td>
<td></td>
</tr>
<tr>
<td>banker’s discount</td>
<td>$(1 - 3/12 \times 0.06)^{-1} - 1 = 0.01523$</td>
<td></td>
</tr>
</tbody>
</table>
Outline

Introduction to Forward Rates

Links Between Forex & Money Markets
FX & MM Transactions: Ins & Outs
The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
Arbitrage and the LOP
Shopping around under CIP
Infrequently asked Questions on CIP

Market Value of Forward Contract
The formula
Implication 1: Value at Maturity
Implication 2: Value at Inception
Implication 3: F is a risk-adjusted expectation or CEQ
Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
The ins & outs of FX & MM Transactions

Assume perfect markets, in this chapter. (See next chapter for imperfections.)

Time-subscripted HC, FC refer to amounts of a currency; $t = \text{now}$, $T = \text{future}$.

8 possible transactions in spot/forward/money markets:

<table>
<thead>
<tr>
<th>Output amount</th>
<th>= Input amount \times multiplic. factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>sell FX spot</td>
<td></td>
</tr>
<tr>
<td>buy FX spot</td>
<td></td>
</tr>
<tr>
<td>sell FX forward</td>
<td></td>
</tr>
<tr>
<td>buy FX forward</td>
<td></td>
</tr>
<tr>
<td>HC term deposit</td>
<td></td>
</tr>
<tr>
<td>HC term loan</td>
<td></td>
</tr>
<tr>
<td>HC term deposit</td>
<td></td>
</tr>
<tr>
<td>HC term loan</td>
<td></td>
</tr>
</tbody>
</table>
Getting our act together into a diagram

1.21

1/1.21

110

1/110

1.10

1/1.10

1210

100

end here

121 000

start here

1331

What have we learned?
Outline

Introduction to Forward Rates

Links Between Forex & Money Markets
FX & MM Transactions: Ins & Outs
The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
Arbitrage and the LOP
Shopping around under CIP
Infrequently asked Questions on CIP

Market Value of Forward Contract
The formula
Implication 1: Value at Maturity
Implication 2: Value at Inception
Implication 3: F is a risk-adjusted expectation or CEQ
Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
Two Key Results—for Perfect Markets

If Covered Interest Parity—CIP—holds, \(\text{ie} \)

\[
F_{t,T} = S_t \frac{1 + r_{t,T}}{1 + r_{t,T}^*} - \quad \text{(IRP or CIP)}
\]

Then

\(\diamond \) **[No-Arb:]** there are no arbitrage opportunities

\(\triangleright \) (With spreads, this will be weakened into an inequality.)

\(\diamond \) **[Shopping Around:]** shopping-around calculations are pointless

\(\triangleright \) (Thus, shopping-around becomes relevant only because of market imperfections)
Two Key Results—for Perfect Markets

If Covered Interest Parity—CIP—holds, ie

\[
F_{t,T} = S_t \frac{1 + r_{t,T}}{1 + r_{t,T}^*} - \text{(IRP or CIP)}
\]

Then

- [No-Arb:] there are no arbitrage opportunities
 - (With spreads, this will be weakened into an inequality.)

- [Shopping Around:] shopping-around calculations are pointless
 - (Thus, shopping-around becomes relevant only because of market imperfections)
Two Key Results—for Perfect Markets

If Covered Interest Parity—CIP—holds, \(ie \)

\[
F_{t,T} = S_t \frac{1 + r_{t,T}}{1 + r^*_{t,T}} - \text{(IRP or CIP)}
\]

Then

\[\text{[No-Arb:]} \text{ there are no arbitrage opportunities} \]

\[\text{(With spreads, this will be weakened into an inequality.)} \]

\[\text{[Shopping Around:]} \text{ shopping-around calculations are pointless} \]

\[\text{(Thus, shopping-around becomes relevant only because of market imperfections)} \]
Previous data—\(S_t = 100, r_{t,T} = 0.21, r^*_{t,T} = 0.10 \). From CIP, we should have

\[
F_{t,T} = 100 \frac{1.21}{1.10} = 110
\]

(next 3 slides;) if not, there is an arb opp

(2 more slides:) if so, there is no need to check for small differences in outcomes
Previous data—$S_t = 100$, $r_{t,T} = 0.21$, $r_{t,T}^* = 0.10$. From CIP, we should have

$$F_{t,T} = 100 \frac{1.21}{1.10} = 110$$

(next 3 slides;) if not, there is an arb opp

(2 more slides:) if so, there is no need to check for small differences in outcomes
The Row to Hoe

Previous data—\(S_t = 100, r_{t,T} = 0.21, r^*_{t,T} = 0.10 \). From CIP, we should have

\[
F_{t,T} = 100 \frac{1.21}{1.10} = 110
\]

- (next 3 slides:) if not, there is an arb opp
- (2 more slides:) if so, there is no need to check for small differences in outcomes
No-arb 1: with CIP, a roundtrip breaks even

Note: the first three steps form a synthetic forward purchase.
No-arb 2a: without CIP, there’s an arb opp

HC_t

1/100

100

FC_t

1/1.21

1.21

1/1.10

1.10

what if 1/111?

HC_T

111?

FC_T
No-arb 2b: without CIP, there’s an arb opp

HC_t

1/100

100

FC_t

1/1.21

1.21

1/1.10

1.10

what if
1/109?

109?

HC_T

what if 1/109?
In perfect mkts, shopping around is pointless.

Deposits: \(HC \) v swapped \(FC \). (This is why CIP is called CIP.)
In perfect mkts, shopping around is pointless

Try out all 4×3 trips!
Causality?

CIP in itself has no causality, but you can append stories:

– interest rates: Fisher’s story
– forward rate: (risk-adjusted) expected future spot rate

... and end with a theory on the spot rate:

\[S_t \]

\[r^{*},T \]

\[r_{t,T} \]

\[F_{t,T} \]

business conditions (incl risk), abroad

expected inflation, abroad

business conditions (incl risk), home

expected inflation, home

expected spot rate

risks of future spot rate

What have we learned?
Causality?

CIP in itself has no causality, but you can append stories:

- **interest rates**: Fisher’s story
- **forward rate**: (risk-adjusted) expected future spot rate

... and end with a theory on the spot rate:

\[
\begin{align*}
S_t &= r^*_{t,T} + S_t \\
F_{t,T} &= r_{t,T} + \text{expected inflation, abroad} \\
&\quad + \text{business conditions (incl risk), abroad} \\
&\quad + \text{expected spot rate} \\
&\quad + \text{risks of future spot rate} \\
\end{align*}
\]
CIP and the swap rate

- **Fact 1:** Sign of swap rate depends just on $r - r^*$:

 \[
 F_{t,T} - S_t = S_t \left[\frac{1 + r_{t,T}}{1 + r^*_{t,T}} - 1 \right],
 \]

 \[
 = S_t \left[\frac{1 + r_{t,T}}{1 + r^*_{t,T}} - \frac{1 + r^*_{t,T}}{1 + r^*_{t,T}} \right],
 \]

 \[
 = S_t \left[\frac{r_{t,T} - r^*_{t,T}}{1 + r^*_{t,T}} \right];
 \]

 \[
 \Rightarrow \frac{\partial \cdot}{\partial S_t} = \left[\frac{r_{t,T} - r^*_{t,T}}{1 + r^*_{t,T}} \right] \approx r_{t,T} - r^*_{t,T}.
 \]

- **Fact 2:** Swap rate has low sensitivity to S:

 Traditionally, $r - r^*$ is small: short $T - t$, low p.a. interest.

 This is why traders used to quote swap rates: if you change S, the required change in the swap rate is tiny relative to spreads.
CIP and the swap rate

<table>
<thead>
<tr>
<th></th>
<th>spot</th>
<th>forward</th>
<th>swap rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>level₀</td>
<td>100.0</td>
<td>100.0 × 1.003333/1.002500 = 100.0831</td>
<td>0.0831</td>
</tr>
<tr>
<td>level₁</td>
<td>100.5</td>
<td>100.5 × 1.003333/1.002500 = 100.5835</td>
<td>0.0835</td>
</tr>
<tr>
<td>change</td>
<td>0.5</td>
<td>0.5004</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Analytically:

\[
\text{change} \approx (0.003333 - 0.002500) \times 0.5 = 0.000416.
\]
CIP and the swap rate

Example

\(T - t = 1/12, \) p.a. simple interest 4% (home), 3% (foreign)

<table>
<thead>
<tr>
<th></th>
<th>spot</th>
<th>forward</th>
<th>swap rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>level(_0)</td>
<td>100.0</td>
<td>100.0 (\times \frac{1.003333}{1.002500}) = 100.0831</td>
<td>0.0831</td>
</tr>
<tr>
<td>level(_1)</td>
<td>100.5</td>
<td>100.5 (\times \frac{1.003333}{1.002500}) = 100.5835</td>
<td>0.0835</td>
</tr>
<tr>
<td>change</td>
<td>0.5</td>
<td>0.5004</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Analytically:

\[
\text{change} \approx (0.003333 - 0.002500) \times 0.5 = 0.000416.
\]
CIP and taxes

"Neutral" taxes do not affect decisions

- neutral: there is just one income number, including interest income plus capgains, minus interest paid and caplosses

Example \((S=100, r=0.21, r^*=0.10)\)

<table>
<thead>
<tr>
<th></th>
<th>Invest CLP 100</th>
<th>Invest NOK 1 hedged</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial investment</td>
<td>100</td>
<td>1 \times 100 = 100</td>
</tr>
<tr>
<td>final value</td>
<td>100 \times 1.21 = 121</td>
<td>[1 \times 1.10] \times 110 = 121</td>
</tr>
<tr>
<td>income</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>interest</td>
<td>21</td>
<td>[1 \times 0.10] \times 110 = 11</td>
</tr>
<tr>
<td>capgain</td>
<td>0</td>
<td>110 – 100 = 10</td>
</tr>
<tr>
<td>taxable</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>tax (33.33 %)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>after-tax income</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

From CIP:

\[
F \times (1 + r^*) = S \times (1 + r),
\]

\[
capgain + foreign interest = F - S + Fr^* = Sr = domestic interest.
\]
CIP and taxes

◇ **“Neutral” taxes do not affect decisions**

▷ neutral: there is just one income number, including interest income plus capgains, minus interest paid and caplosses

Example \((S=100, \ r=0.21, \ r^*=0.10)\)

<table>
<thead>
<tr>
<th></th>
<th>Invest CLP 100</th>
<th>Invest NOK 1 hedged</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial investment</td>
<td>100</td>
<td>1 \times 100 = 100</td>
</tr>
<tr>
<td>final value</td>
<td>(100 \times 1.21 = 121)</td>
<td>([1 \times 1.10] \times 110 = 121)</td>
</tr>
<tr>
<td>income</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>interest</td>
<td>21</td>
<td>([1 \times 0.10] \times 110 = 11)</td>
</tr>
<tr>
<td>capgain</td>
<td>0</td>
<td>110 – 100 = 10</td>
</tr>
<tr>
<td>taxable</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>tax (33.33 %)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>after-tax income</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

From CIP:

\[
F \times (1 + r^*) = S \times (1 + r),
\]

\[
capgain + \text{foreign interest} = F - S + Fr^* = Sr = \text{domestic interest}.
\]
CIP and taxes

"Neutral" taxes do not affect decisions

Neutral: there is just one income number, including interest income plus capgains, minus interest paid and caplosses

Example \((S=100, \ r=0.21, \ r^* = 0.10)\)

<table>
<thead>
<tr>
<th></th>
<th>Invest CLP 100</th>
<th>Invest NOK 1 hedged</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial investment</td>
<td>100</td>
<td>1 \times 100 = 100</td>
</tr>
<tr>
<td>final value</td>
<td>100 \times 1.21 = 121</td>
<td>[1 \times 1.10] \times 110 = 121</td>
</tr>
<tr>
<td>income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>income</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>interest</td>
<td>21</td>
<td>[1 \times 0.10] \times 110 = 11</td>
</tr>
<tr>
<td>capgain</td>
<td>0</td>
<td>110 - 100 = 10</td>
</tr>
<tr>
<td>taxable</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>tax (33.33 %)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>after-tax income</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

From CIP: \(F \times (1 + r^*) = S \times (1 + r)\),

\[\text{capgain + foreign interest} = F - S + Fr^* = Sr = \text{domestic interest}.\]
Introduction to Forward Rates

Links Between Forex & Money Markets
FX & MM Transactions: Ins & Outs
The Matrix: a Diagram of Markets

The Law of 1 Price: Covered Interest Parity
Arbitrage and the LOP
Shopping around under CIP
Infrequently asked Questions on CIP

Market Value of Forward Contract
The formula
Implication 1: Value at Maturity
Implication 2: Value at Inception
Implication 3: $F = CEQ \left(\frac{S_T}{S_0} \right)$
Implication 4: (ir)relevance of hedging?

What have we learned in this chapter?
Who wants to know a contract’s MktVal?

◊ Why do we care?

▶ Valuation in financial statements or internal reports
▶ Negotiating an early termination:
 – speculator—wants to lock in gains, or cut losses
 – hedger—underlying hedged position is gone
 – default—file claim for damages
▶ Theory of options:
 – value of unconditional purchase (sale) is lower bound for value option to purchase (sell)
 – needed to explain early exercise issue in American-style option

NOTE: “a contract” means a purchase of FC 1.
Who wants to know a contract’s MktVal?

◊ **Why do we care?**

▶ Valuation in financial statements or internal reports

▶ Negotiating an early termination:
 – speculator—wants to lock in gains, or cut losses
 – hedger—underlying hedged position is gone
 – default—file claim for damages

▶ Theory of options:
 – value of unconditional purchase (sale) is lower bound for value option to purchase (sell)
 – needed to explain early exercise issue in American-style option

NOTE: “a contract” means a purchase of FC 1.
Who wants to know a contract’s MktVal?

◊ Why do we care?

▷ Valuation in financial statements or internal reports

▷ Negotiating an early termination:
 – speculator—wants to lock in gains, or cut losses
 – hedger—underlying hedged position is gone
 – default—file claim for damages

▷ Theory of options:
 – value of unconditional purchase (sale) is lower bound for value option to purchase (sell)
 – needed to explain early exercise issue in American-style option

NOTE: “a contract” means a purchase of FC 1.
Who wants to know a contract’s MktVal?

◊ Why do we care?

▷ Valuation in financial statements or internal reports

▷ Negotiating an early termination:
 – speculator—wants to lock in gains, or cut losses
 – hedger—underlying hedged position is gone
 – default—file claim for damages

▷ Theory of options:
 – value of unconditional purchase (sale) is lower bound for value option to purchase (sell)
 – needed to explain early exercise issue in American-style option

NOTE: “a contract” means a purchase of FC 1.
The valuation formula

- A forward contract has two legs, each of which can be thought of as a promissory note:
 - (asset:) you receive a PN from the bank \(ad \) FC1
 - (liability:) you write a PN to the bank \(ad \) HC \(F_{t_0,T} \)

- So the contract’s value is equal to the net value of this small portfolio.

Example \((S=100, r=0.21, r^*=0.10; F_{t_0,T}=115)\)

<table>
<thead>
<tr>
<th></th>
<th>value in NOK</th>
<th>value in CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>asset (NOK 1 at (T))</td>
<td>1/1.10 = 0.90909</td>
<td>0.9090909 \times 100 = 90.909</td>
</tr>
<tr>
<td>liability (CLP 115 at (T))</td>
<td>115/1.21 = 95.041</td>
<td></td>
</tr>
<tr>
<td>net</td>
<td>–4.132</td>
<td></td>
</tr>
</tbody>
</table>

- Generalisation

\[
\text{Market value of forward purchase at } F_{t_0,T} = \left(\frac{1}{1 + r^*_t} \times S_t \right) - \frac{F_{t_0,T}}{1 + r_t}.
\]
The valuation formula

- A forward contract has two legs, each of which can be thought of as a promissory note:
 - (asset:) you receive a PN from the bank \(ad \) FC \(1 \)
 - (liability:) you write a PN to the bank \(ad \) HC \(F_{t0,T} \)

- So the contract’s value is equal to the net value of this small portfolio.

Example \((S=100, r=0.21, r^* = 0.10; F_{t0,T} = 115)\)

<table>
<thead>
<tr>
<th></th>
<th>value in NOK</th>
<th>value in CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>asset (NOK 1 at (T))</td>
<td>(1/1.10 = 0.90909)</td>
<td>(0.9090909 \times 100 = 90.909)</td>
</tr>
<tr>
<td>liability (CLP 115 at (T))</td>
<td></td>
<td>(115/1.21 = 95.041)</td>
</tr>
<tr>
<td>net</td>
<td>-4.132</td>
<td></td>
</tr>
</tbody>
</table>

- Generalisation

\[
\text{Market value of forward purchase at } F_{t0,T} = \frac{1}{1 + r_t^* T} \times S_t - \frac{F_{t0,T}}{1 + r_t T}.
\]
The valuation formula

- A forward contract has two legs, each of which can be thought of as a promissory note:
 - (asset:) you receive a PN from the bank \(ad \) FC 1
 - (liability:) you write a PN to the bank \(ad \) HC \(F_{t_0,T} \)

- So the contract’s value is equal to the net value of this small portfolio.

Example \((S=100, r=0.21, r^*=0.10; F_{t_0,T}=115)\)

<table>
<thead>
<tr>
<th></th>
<th>value in NOK</th>
<th>value in CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>asset (NOK 1 at (T))</td>
<td>1/1.10 = 0.90909</td>
<td>0.9090909 \times 100 = 90.909</td>
</tr>
<tr>
<td>liability (CLP 115 at (T))</td>
<td>115/1.21 = 95.041</td>
<td>115/1.21 = 95.041</td>
</tr>
<tr>
<td>net</td>
<td>-4.132</td>
<td>-4.132</td>
</tr>
</tbody>
</table>

Generalisation

\[
\text{Market value of forward purchase at } F_{t_0,T} = \left(\frac{1}{1 + r^*_t} \right) \times S_t - \left(\frac{F_{t_0,T}}{1 + r_t} \right).
\]
The valuation formula

- A forward contract has two legs, each of which can be thought of as a promissory note:
 - (asset:) you receive a PN from the bank \(ad \ FC_{1} \)
 - (liability:) you write a PN to the bank \(ad \ HC_{F_{t_{0},T}} \)

- So the contract’s value is equal to the net value of this small portfolio.

Example \((S=100, \ r=0.21, \ r^{*}=0.10; \ F_{t_{0},T}=115)\)

<table>
<thead>
<tr>
<th></th>
<th>value in NOK</th>
<th>value in CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>asset (NOK 1 at (T))</td>
<td>(1/1.10 = 0.90909)</td>
<td>(0.9090909 \times 100 = 90.909)</td>
</tr>
<tr>
<td>liability (CLP 115 at (T))</td>
<td></td>
<td>(115/1.21 = 95.041)</td>
</tr>
<tr>
<td>net</td>
<td></td>
<td>(-4.132)</td>
</tr>
</tbody>
</table>

- Generalisation

\[
\text{Market value of forward purchase at } F_{t_{0},T} = \left(\frac{1}{1 + r^{*}_{t,T}} \times S_{t} \right) - \frac{F_{t_{0},T}}{1 + r_{t,T}}.
\]
Alternative version of the formula

PV is just the PV of $F_{t,T} - F_{t_0,T}$, the locked-in “gain (±)” from a reversed purchase:

<table>
<thead>
<tr>
<th>Example ($S=100$, $r=0.21$, $r^*=0.10$; $F_{t_0,T}=115$)</th>
</tr>
</thead>
</table>

You bought at 115 and now you reverse (close out) at 110. Flows at T:

<table>
<thead>
<tr>
<th></th>
<th>flows in NOK</th>
<th>flows in CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>original purchase</td>
<td>NOK 1</td>
<td>CLP < 115 ></td>
</tr>
<tr>
<td>new sale</td>
<td>< NOK 1 ></td>
<td>CLP 110</td>
</tr>
<tr>
<td>net</td>
<td>NOK 0</td>
<td>< CLP 5 ></td>
</tr>
</tbody>
</table>

\[
\text{Market value of forward purchase at } F_{t_0,T} = \frac{1}{1 + r_{t,T}} \left[1 + \frac{r_{t,T}}{1 + r_{t,T}^*} S_t - \frac{F_{t_0,T}}{1 + r_{t,T}} \right] = F_{t,T} - F_{t_0,T} \frac{1}{1 + r_{t,T}}
\]
Alternative version of the formula

PV is just the PV of \(F_{t,T} - F_{t_0,T} \), the locked-in “gain (±)” from a reversed purchase:

Example \((S=100, r=0.21, r^* = 0.10; F_{t_0,T} = 115)\)

You bought at 115 and now you reverse (close out) at 110. Flows at \(T \):

<table>
<thead>
<tr>
<th></th>
<th>flows in NOK</th>
<th>flows in CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>original purchase</td>
<td>NOK 1</td>
<td>CLP < 115 ></td>
</tr>
<tr>
<td>new sale</td>
<td>< NOK 1 ></td>
<td>CLP 110</td>
</tr>
<tr>
<td>net</td>
<td>NOK 0</td>
<td>< CLP 5 ></td>
</tr>
</tbody>
</table>

\[
\text{Market value of forward purchase at } F_{t_0,T} = \frac{1}{1 + r_t,T} \left(\frac{1 + r_t,T}{1 + r^*,T} S_t - \frac{F_{t_0,T}}{1 + r_t,T} \right)^{=F_{t,T}, \text{(CIP)}} = \frac{F_{t,T} - F_{t_0,T}}{1 + r_t,T}
\]
PV is just the PV of \(F_{t,T} - F_{t_0,T} \), the locked-in “gain (±)” from a reversed purchase:

Example \((S=100, r=0.21, r^*=0.10; F_{t_0,T}=115)\)

You bought at 115 and now you reverse (close out) at 110. Flows at \(T \):

<table>
<thead>
<tr>
<th></th>
<th>flows in NOK</th>
<th>flows in CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>original purchase</td>
<td>NOK 1</td>
<td>CLP < 115 ></td>
</tr>
<tr>
<td>new sale</td>
<td>< NOK 1 ></td>
<td>CLP 110</td>
</tr>
<tr>
<td>net</td>
<td>NOK 0</td>
<td>< CLP 5 ></td>
</tr>
</tbody>
</table>

\[
\text{Market value of forward purchase at } F_{t_0,T} = \frac{1}{1 + r_{t,T}} \left(1 + \frac{r_{t,T}}{1 + r^*_{t,T}} S_t \right) - \frac{F_{t_0,T}}{1 + r_{t,T}} \]

\[
= F_{t,T} - F_{t_0,T} \]

\[
= \frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}}
\]
Implication 1: Value at Maturity

If \(t = T \), then \(r_{T,T} = \ldots = r^*_{T,T} \); so

\[
\frac{S_t}{1 + r^*_{t,T}} - \frac{F_{t_0,T}}{1 + r_{t,T}} = \text{t=T}
\]

\[V_T = S_T - F_{t,T} \]

\[V_T = F_{t,T} - S_T \]
Implication 1: Value at Maturity

If \(t = T \), then \(r_{T,T} = \ldots = r_{T,T} \); so

\[
\frac{S_t}{1 + r_{t,T}^*} - \frac{F_{t0,T}}{1 + r_{t,T}} = \frac{t = T}{t = T}
\]

\[
V_T = S_T - F_{t,T}
\]

Buy forward

Sell forward
Understanding Forward Rates

P. Sercu, *International Finance: Theory into Practice*

Implication 2: Value at Inception

If $t_0 = t$, then

$$\frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}} = t$$

NOTES

- Holds only at the moment the contract is signed—otherwise the contract would be pointless.

- Major implication: at the moment of hedging, the value of an asset *per se* is the same as the value of the hedged asset.

$$\text{PV}(A + B \times \tilde{S}_T) = \frac{A + B \times F_{t,T}}{1 + r_{t,T}} :$$

- We replace \tilde{S}_T by $F_{t,T}$, and
- We discount at the risk-free rate
- ... meaning F is the certainty equivalent ("$F_{t,T} = \text{CEQ}_t(\tilde{S}_T)$")

CEQ(\tilde{S}_T): the certain (risk-free) amount that, to the market, is equivalent to the risky \tilde{S}_T.

\[\Delta\] holds only at the moment the contract is signed—otherwise the contract would be pointless.

\[\Delta\] Major implication: at the moment of hedging, the value of an asset *per se* is the same as the value of the hedged asset.
Implication 2: Value at Inception

If \(t_0 = t \), then

\[
\frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}} \quad t_0 = t
\]

NOTES

▷ holds only at the moment the contract is signed—otherwise the contract would be pointless

▷ Major!! implication: at the moment of hedging, the value of an asset \(\text{per se} \) is the same as the value of the hedged asset

\[
\text{PV}(A + B \times \tilde{S}_T) = \frac{A + B \times F_{t,T}}{1 + r_{t,T}}
\]

- we replace \(\tilde{S}_T \) by \(F_{t,T} \), and
- we discount at the risk-free rate
- ... meaning \(F \) is the certainty equivalent ("\(F_{t,T} = \text{CEQ}_t(\tilde{S}_T)\)"

\(\text{CEQ}(\tilde{S}_T) \): the certain (risk-free) amount that, to the market, is equivalent to the risky \(\tilde{S}_T \).
Implication 2: Value at Inception

If \(t_0 = t \), then

\[
\frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}}
\]

\(t_0 = t \)

NOTES

▷ holds only at the moment the contract is signed—otherwise the contract would be pointless

▷ Major!! implication: at the moment of hedging, the value of an asset \textit{per se} is the same as the value of the hedged asset

\[
PV(A + B \times \tilde{S}_T) = \frac{A + B \times F_{t,T}}{1 + r_{t,T}}
\]

– we replace \(\tilde{S}_T \) by \(F_{t,T} \), and

– we discount at the risk-free rate

– ... meaning \(F \) is the certainty equivalent ("\(F_{t,T} = CEQ_t(\tilde{S}_T) \)"")

\(CEQ(\tilde{S}_T) \): the certain (risk-free) amount that, to the market, is equivalent to the risky \(\tilde{S}_T \).
Implication 2: Value at Inception

If \(t_0 = t \), then

\[
\frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}} = t
\]

NOTES

▷ holds only at the moment the contract is signed—otherwise the contract would be pointless

▷ Major!! implication: at the moment of hedging, the value of an asset per se is the same as the value of the hedged asset

\[
\begin{align*}
\text{PV}(A + B \times \tilde{S}_T) &= \frac{A + B \times F_{t,T}}{1 + r_{t,T}} \\
&= A + B \times F_{t,T} - r_{t,T} \tilde{S}_T
\end{align*}
\]

– we replace \(\tilde{S}_T \) by \(F_{t,T} \), and
– we discount at the risk-free rate
– ... meaning \(F \) is the certainty equivalent ("\(F_{t,T} = \text{CEQ}_t(\tilde{S}_T) \)"")

\(\text{CEQ}(\tilde{S}_T) \): the certain (risk-free) amount that, to the market, is equivalent to the risky \(\tilde{S}_T \).
Implication 2: Value at Inception

If \(t_0 = t \), then

\[
\frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}} = t_0 = t
\]

NOTES

▷ holds only at the moment the contract is signed—otherwise the contract would be pointless

▷ Major!! implication: at the moment of hedging, the value of an asset *per se* is the same as the value of the hedged asset

\[
\text{PV}(A + B \times \tilde{S}_T) = \frac{A + B \times F_{t,T}}{1 + r_{t,T}}:
\]

- we replace \(\tilde{S}_T \) by \(F_{t,T} \), and
- we discount at the risk-free rate
- ... meaning \(F \) is the certainty equivalent ("\(F_{t,T} = \text{CEQ}_t(\tilde{S}_T) \)"

\(\text{CEQ}(\tilde{S}_T) \): the certain (risk-free) amount that, to the market, is equivalent to the risky \(\tilde{S}_T \).
Understanding Forward Rates
P. Sercu,
International Finance: Theory into Practice

Introduction

Links Between Markets

The LOP and CIP

MktVal of Forward Contract

The formula

Implic1: Value at Maturity

Implic2: Value at Inception

Implic3: \(F = CEQ_t(\tilde{S}_T) \)

Implic4: (ir)relevance of hedging?

What have we learned?

Implication 2: Value at Inception

If \(t_0 = t \), then

\[
\frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}} \quad t_0 = t
\]

NOTES

- holds only at the moment the contract is signed—otherwise the contract would be pointless

- Major!! implication: at the moment of hedging, the value of an asset *per se* is the same as the value of the hedged asset

\[
PV(A + B \times \tilde{S}_T) = \frac{A + B \times F_{t,T}}{1 + r_{t,T}}:
\]

- we replace \(\tilde{S}_T \) by \(F_{t,T} \), and
- we discount at the risk-free rate
- ... meaning \(F \) is the certainty equivalent ("\(F_{t,T} = CEQ_t(\tilde{S}_T) \)"")

\(CEQ(\tilde{S}_T) \): the certain (risk-free) amount that, to the market, is *equivalent* to the risky \(\tilde{S}_T \).
Implic3: F is a risk-adjusted expectation

- Two ways to value a unit FC TBill:
 - Way #1: General asset pricing approach:
 \[
 PV_t(\tilde{S}_T) = \frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{\tilde{S},t,T})}
 \]
 where \(E_t(\tilde{r}_{\tilde{S},t,T}) = \) the expected return, given risk of \(\tilde{S}_T\).
 - Way #2: value the hedged asset
 \[
 PV_t(\tilde{S}_T) = \frac{F_{t,T}}{1 + r_{t,T}} \left(= \frac{CEQ_t(\tilde{S}_T)}{1 + r_{t,T}} \right)
 \]
 - For completeness: Way #3: translated FC value: \(PV_t(\tilde{S}_T) = \frac{S_t}{1 + r_{t,T}}\).
 - Re-interpretation of CEQ as risk-adjusted expectation:
 \[
 \frac{F_{t,T}}{1 + r_{t,T}} = \frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{\tilde{S},t,T})},
 \]
 \[
 \Rightarrow F_{t,T} = E_t(\tilde{S}_T) \left(1 + r_{t,T} \right) \frac{1}{1 + E_t(\tilde{r}_{\tilde{S},t,T})}.
 \]
Implic3: F is a risk-adjusted expectation

◊ Two ways to value a unit FC TBill:

▷ Way #1: General asset pricing approach:

\[
 PV_t(\tilde{S}_T) = \frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{S,t,T})}
\]

where \(E_t(\tilde{r}_{S,t,T}) \) = the expected return, given risk of \(\tilde{S}_T \).

▷ Way #2: value the hedged asset

\[
 PV_t(\tilde{S}_T) = \frac{F_{t,T}}{1 + r_{t,T}} \left(= \frac{CEQ_t(\tilde{S}_T)}{1 + r_{t,T}} \right)
\]

▷ For completeness: Way #3: translated FC value:

\[
 PV_t(\tilde{S}_T) = \frac{S_t}{1 + r_{t,T}}.
\]

◊ Re-interpretation of CEQ as risk-adjusted expectation:

\[
 \frac{F_{t,T}}{1 + r_{t,T}} = \frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{S,t,T})},
\]

\[
 \Rightarrow F_{t,T} = E_t(\tilde{S}_T) \frac{1 + r_{t,T}}{1 + E_t(\tilde{r}_{S,t,T})}.
\]
Implic3: F is a risk-adjusted expectation

- Two ways to value a unit FC TBill:
 - Way #1: General asset pricing approach:
 \[PV_t(\tilde{S}_T) = \frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{S,t,T})} \]
 where \(E_t(\tilde{r}_{S,t,T}) \) = the expected return, given risk of \(\tilde{S}_T \).
 - Way #2: value the hedged asset
 \[PV_t(\tilde{S}_T) = \frac{F_{t,T}}{1 + r_{t,T}} \left(= \frac{CEQ_t(\tilde{S}_T)}{1 + r_{t,T}} \right) \]
 - For completeness: Way #3: translated FC value: \(PV_t(\tilde{S}_T) = \frac{S_t}{1 + r^*_{t,T}} \).

- Re-interpretation of CEQ as risk-adjusted expectation:
 \[\frac{F_{t,T}}{1 + r_{t,T}} = \frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{S,t,T})}, \]
 \[\Rightarrow F_{t,T} = E_t(\tilde{S}_T) \frac{1 + r_{t,T}}{1 + E_t(\tilde{r}_{S,t,T})}. \]
Implic3: F is a risk-adjusted expectation

- Two ways to value a unit FC TBill:
 - Way #1: General asset pricing approach:
 \[PV_t(\tilde{S}_T) = \frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{\tilde{S},t,T})} \]
 where \(E_t(\tilde{r}_{\tilde{S},t,T}) = \) the expected return, given risk of \(\tilde{S}_T \).
 - Way #2: value the hedged asset
 \[PV_t(\tilde{S}_T) = \frac{F_{t,T}}{1 + r_{t,T}} \left(= \frac{CEQ_t(\tilde{S}_T)}{1 + r_{t,T}} \right) \]
 - For completeness: Way #3: translated FC value:
 \[PV_t(\tilde{S}_T) = \frac{S_t}{1 + r_{t,T}^*} \cdot \]

- Re-interpretation of CEQ as risk-adjusted expectation:
 \[\frac{F_{t,T}}{1 + r_{t,T}} = \frac{E_t(\tilde{S}_T)}{1 + E_t(\tilde{r}_{\tilde{S},t,T})}, \]
 \[\Rightarrow F_{t,T} = E_t(\tilde{S}_T) \frac{1 + r_{t,T}}{1 + E_t(\tilde{r}_{\tilde{S},t,T})}. \]
Implication 4: (ir)relevance of hedging?

Does the zero initial value mean that hedging adds no value?

◊ Criterion of firm’s MktVal as the yardstick of relevance:
 ▶ takes into account effects of hedging on expected cash flow and risk
 ▶ MM’s criterion

◊ At t, adding a hedge does not add/destroy any value provided the firm’s other cash flows are unaffected.

◊ In many cases, the firm’s other cash flows are likely to be affected:
 ▶ avoiding direct/indirect costs of financial distress
 ▶ taxes
 ▶ better information to managers, to analysts
 ▶ ...
Implication 4: (ir)relevance of hedging?

Does the zero initial value mean that hedging adds no value?

◊ Criterion of firm’s MktVal as the yardstick of relevance:
 ▶ takes into account effects of hedging on expected cash flow and risk
 ▶ MM’s criterion

◊ At t, adding a hedge does not add/destroy any value provided the firm’s other cash flows are unaffected.

◊ In many cases, the firm’s other cash flows are likely to be affected:
 ▶ avoiding direct/indirect costs of financial distress
 ▶ taxes
 ▶ better information to managers, to analysts
 ▶ ...
Implication 4: (ir)relevance of hedging?

Does the zero initial value mean that hedging adds no value?

- **Criterion of firm’s MktVal as the yardstick of relevance:**
 - takes into account effects of hedging on expected cash flow and risk
 - MM’s criterion

- **At t**, adding a hedge does not add/destroy any value provided the firm’s other cash flows are unaffected.

- In many cases, the firm’s other cash flows are likely to be affected:
 - avoiding direct/indirect costs of financial distress
 - taxes
 - better information to managers, to analysts
 - ...
Outline

Introduction to Forward Rates

Links Between Forex & Money Markets

The Law of 1 Price: Covered Interest Parity

Market Value of Forward Contract

What have we learned in this chapter?
What have we learned in this chapter?

- Forward quotes can be *outright* or in *swap-rate* format.

- The Matrix:
 - Spot, forward, and money markets are so closely related that we have to study them together.
 - In a perfect market one could eliminate one of them and not lose anything.

- The perfect replicability implies a no-arb result, Covered Interest Parity—no causality suggested, here:
 \[F_{t,T} = S_t \frac{1 + r_{t,T}}{1 + r_{t,T}^*}. \]

- CIP also implies that, in perfect markets, shopping-around is pointless.
What have we learned in this chapter?

- Forward quotes can be *outright* or in *swap-rate* format.
- The Matrix:
 - Spot, forward, and money markets are so closely related that we have to study them together.
 - In a perfect market one could eliminate one of them and not lose anything.
- The perfect replicability implies a no-arb result, Covered Interest Parity—no causality suggested, here:
 \[F_{t,T} = S_t \frac{1 + r_{t,T}}{1 + r_{t,T}^*}. \]
- CIP also implies that, in perfect markets, shopping-around is pointless.
What have we learned in this chapter?

- Forward quotes can be *outright* or in *swap-rate* format.
- The Matrix:
 - Spot, forward, and money markets are so closely related that we have to study them together.
 - In a perfect market one could eliminate one of them and not lose anything.
- The perfect replicability implies a no-arb result, Covered Interest Parity—no causality suggested, here:
 \[F_{t,T} = S_t \frac{1 + r_{t,T}}{1 + r^{*}_{t,T}}. \]
- CIP also implies that, *in perfect markets*, shopping-around is pointless.
What have we learned in this chapter?

- Forward quotes can be *outright* or in *swap-rate* format.
- The Matrix:
 - Spot, forward, and money markets are so closely related that we have to study them together.
 - In a perfect market one could eliminate one of them and not lose anything.
- The perfect replicability implies a no-arb result, Covered Interest Parity—no causality suggested, here:

 $$F_{t,T} = S_t \frac{1 + r_{t,T}}{1 + r_{t,T}^*}.$$

- CIP also implies that, in *perfect markets*, shopping-around is pointless.
What more have we learned in this chapter?

- Viewing an outstanding contract as a portfolio of two PNSs, one long and one short, we can easily value an outstanding contract as

\[
PV(\tilde{S}_T - F_{t0,T}) = \frac{S_t}{1 + r^*_{t,T}} - \frac{F_{t0,T}}{1 + r_{t,T}} = \frac{F_{t,T} - F_{t0,T}}{1 + r_{t,T}},
\]

... which simplifies to \(S_T - F_{t0,T}\) when \(t = T\), and to zero when \(t = t_0\).

- Zero initial value does not necessarily mean that hedging adds no value: other cash flows may be affected.

- The forward rate is also a risk-adjusted expectation, or certainty equivalent:

\[
F_{t,T} = E_t(\tilde{S}_T) \frac{1 + r_{t,T}}{1 + E_t(\tilde{r}_{S,t,T})}.
\]
What more have we learned in this chapter?

- Viewing an outstanding contract as a portfolio of two PNs, one long and one short, we can easily value an outstanding contract as

 \[PV(\tilde{S}_T - F_{t_0,T}) = \frac{S_t}{1 + r_{t,T}^*} - \frac{F_{t_0,T}}{1 + r_{t,T}} = \frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}}, \]

... which simplifies to \(S_T - F_{t_0,T} \) when \(t = T \), and to zero when \(t = t_0 \).

- Zero initial value does not necessarily mean that hedging adds no value: other cash flows may be affected.

- The forward rate is also a risk-adjusted expectation, or certainty equivalent:

 \[F_{t,T} = E_t(\tilde{S}_T) \frac{1 + r_{t,T}}{1 + E_t(\tilde{r}_{S_{t,T}})}. \]
What more have we learned in this chapter?

- Viewing an outstanding contract as a portfolio of two PNs, one long and one short, we can easily value an outstanding contract as

\[
PV(\tilde{S}_T - F_{t_0,T}) = \frac{S_t}{1 + r_{t,T}^*} - \frac{F_{t_0,T}}{1 + r_{t,T}} = \frac{F_{t,T} - F_{t_0,T}}{1 + r_{t,T}},
\]

... which simplifies to \(S_T - F_{t_0,T} \) when \(t = T \), and to zero when \(t = t_0 \).

- Zero initial value does not necessarily mean that hedging adds no value: other cash flows may be affected.

- The forward rate is also a risk-adjusted expectation, or certainty equivalent:

\[
F_{t,T} = E_t(\tilde{S}_T) \frac{1 + r_{t,T}}{1 + E_t(\tilde{r}_{S,t,T})}.
\]
What more have we learned in this chapter?

- Viewing an outstanding contract as a portfolio of two PNs, one long and one short, we can easily value an outstanding contract as

\[
PV(\tilde{S}_T - F_{t_0, T}) = \frac{S_t}{1 + r_{t,T}} - \frac{F_{t_0, T}}{1 + r_{t,T}} = \frac{F_{t, T} - F_{t_0, T}}{1 + r_{t,T}},
\]

... which simplifies to \(S_T - F_{t_0, T} \) when \(t = T \), and to zero when \(t = t_0 \).

- Zero initial value does not necessarily mean that hedging adds no value: other cash flows may be affected.

- The forward rate is also a risk-adjusted expectation, or certainty equivalent:

\[
F_{t, T} = E_t(\tilde{S}_T) \frac{1 + r_{t,T}}{1 + E_t(\tilde{r}_{S,t,T})}.
\]