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Models, Agent-Based Models,  
and the Modeling Cycle 1 
1.1 Introduction, Motivation, and Objectives 

Welcome to a course in agent-based modeling (or “individual-based” modeling, as the ap­
proach is called in some fields). Why is it important to learn how to build and use agent-based 
models (ABMs)? Let’s look at one real model and the difference it has made. 

1.1.1 A Motivational Example: Rabies Control in Europe 

Rabies is a viral disease that kills great numbers of wild mammals and can spread to domestic 
animals and people. In Europe, rabies is transmitted mainly by red fox. When an outbreak 
starts in a previously rabies-free region, it spreads in “traveling waves”: alternating areas of 
high and low infection rates. 

Rabies can be eradicated from large areas, and new outbreaks can be controlled, by im­
munizing foxes: European governments have eradicated rabies from central Europe by manu­
facturing rabies vaccine, injecting it into baits, and spreading the baits from aircraft. However, 
this program is extremely expensive and works only if new outbreaks are detected and con­
tained. Key to its cost-effectiveness are these questions: What percentage of wild foxes need to 
be vaccinated to eliminate rabies from an area, and what is the best strategy for responding to 
outbreaks? 

Models have long been applied to such epidemiological problems, for wildlife as well as 
people. Classical differential equation models of the European rabies problem predicted that 
70% of the fox population must be vaccinated to eliminate rabies. Managers planned to re­
spond to new outbreaks using a “belt vaccination” strategy (which has worked well for other 
epidemics, including smallpox): not vaccinating the outbreak location itself but a belt around 
it, the width of which was usually determined by the limited emergency supply of vaccine. 
The 70% vaccination strategy did succeed, but the rabies problem has several characteristics 
suggesting that an agent-based modeling approach could make important contributions: the 
spread of rabies has important patterns in space as well as time, and is driven by individual be­
havior (in this case, the use of stationary territories by most fox but long-distance migration by 
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young foxes). Hence, Florian Jeltsch and colleagues developed a simple ABM that represented 
fox families in stationary home ranges and migration of young foxes (Jeltsch et al. 1997). This 
model accurately simulated the spread of rabies over both space and time. 

Dirk Eisinger and Hans-Hermann Thulke then modified the ABM specifically to evaluate 
how the distribution of vaccination baits over space affects rabies control (Thulke and Eisinger 
2008, Eisinger and Thulke 2008, Eisinger et al. 2005). Their ABM indicated that eradication 
could be achieved with a vaccination rate much lower than 70%, a result that could save mil­
lions of euros and was confirmed by the few case studies where actual vaccination coverage 
was monitored. The reason for the lower vaccination rate predicted by the ABM is that the 
“wave” spread of rabies emerges from local infectious contacts that actually facilitate eradica­
tion. The ABM of Eisinger and Thulke also indicated that the belt vaccination strategy for 
outbreaks would fail more often than an alternative: compact treatment of a circle around the 
initial outbreak. Because the ABM had reproduced many characteristics of real outbreaks and 
its predictions were easy to understand, rabies managers accepted this result and began—suc­
cessfully—to apply the compact vaccination strategy. 

The rabies example shows that agent-based modeling can find new, better solutions to many 
problems important to our environment, health, and economy—and has already done so. The 
common feature of these problems is that they occur in systems composed of autonomous 
“agents” that interact with each other and their environment, differ from each other and over 
space and time, and have behaviors that are often very important to how the system works. 

1.1.2 Objectives of Chapter 1 

This chapter is your introduction to modeling and agent-based modeling. We get started by 
clarifying some basic ideas about modeling. These lessons may seem trivial at first, but they are 
in fact the very foundation for everything else in this course. Learning objectives for chapter 1 
are to develop a firm understanding of: 

What models are, and what modeling is—why do we build models anyway? 
The modeling cycle, the iterative process of designing, implementing, and analyzing 
models and using them to solve scientific problems. 
What agent-based models are—how are ABMs different from other kinds of model, and 
why would you use them? 

1.2 What Is a Model? 

A model is a purposeful representation of some real system (Starfield et al. 1990). We build 
and use models to solve problems or answer questions about a system or a class of systems. 
In science, we usually want to understand how things work, explain patterns that we have 
observed, and predict a system’s behavior in response to some change. Real systems often are 
too complex or develop too slowly to be analyzed using experiments. For example, it would 
be extremely difficult and slow to understand how cities grow and land uses change just with 
experiments. Therefore, we try to formulate a simplified representation of the system using 
equations or a computer program that we can then manipulate and experiment on. (To formu­
late a model means to design its assumptions and algorithms.) 

But there are many ways of representing a real system (a city or landscape, for example) in 
a simplified way. How can we know which aspects of the real system to include in the model 
and which to ignore? To answer this question, the model’s purpose is decisive. The question 
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we want to answer with the model serves as a filter: all those aspects of the real system consid­
ered irrelevant or insufficiently important for answering this question are filtered out. They are 
ignored in the model, or represented only in a very simplified way. 

Let us consider a simple, but not trivial, example: Did you ever search for mushrooms in 
a forest? Did you ask yourself what the best search strategy might be? If you are a mushroom 
expert, you would know how to recognize good mushroom habitat, but let us assume you are 
a neophyte. And even the mushroom expert needs a smaller-scale search strategy because 
mushrooms are so hard to see—you often almost step on them before seeing them. 

You might think of several intuitive strategies, such as scanning an area in wide sweeps 
but, upon finding a mushroom, turning to smaller-scale sweeps because you know that mush­
rooms occur in clusters. But what does “large” and “small” and “sweeps” mean, and how long 
should you search in smaller sweeps until you turn back to larger ones? 

Many animal species face similar problems, so it is likely that evolution has equipped them 
with good adaptive search strategies. (The same is likely true of human organizations searching 
for prizes such as profit and peace with neighbors.) Albatross, for example, behave like mush­
room hunters: they alternate more or less linear long-distance movements with small-scale 
searching (figure 1.1). 

The common feature of the mushroom hunter and the albatross is that their sensing radius 
is limited—they can only detect what they seek when they are close to it—so they must move. 
And, often the items searched for are not distributed randomly or regularly but in clusters, so 
search behavior should be adaptive: it should change once an item is found. 

Why would we want to develop a model of this problem? Because even for this simple 
problem we are not able to develop quantitative mental models. Intuitively we find a search 
strategy which works quite well, but then we see others who use different strategies and find 
more mushrooms. Are they just luckier, or are their strategies better? 

Now we understand that we need a clearly formulated purpose before we can formulate 
a model. Imagine that someone simply asked you: “Please, model mushroom hunting in the 
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Figure 1.1 
Flight path of a female wandering 
albatross (Diomedea exulans) feeding in 
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forest.” What should you focus on? On different mushroom species, different forests, identifi­
cation of good and bad habitats, effects of hunting on mushroom populations, etc.? However, 
with the purpose “What search strategy maximizes the number of mushrooms found in a 
certain time?” we know that 

We can ignore trees and vegetation; we only need to take into account that mushrooms are 
distributed in clusters. Also, we can ignore any other heterogeneity in the forest, such as 
topography or soil type—they might affect searching a little, but not enough to affect the 
general answer to our question. 
It will be sufficient to represent the mushroom hunter in a very simplified way: just a mov­
ing “point” that has a certain sensing radius and keeps track of how many mushrooms it 
has found and perhaps how long it has been since it found the last one. 

So, now we can formulate a model that includes clusters of items and an individual “agent” 
that searches for the items in the model world. If it finds a search item, it switches to smaller-
scale movement, but if the time since it found the last item exceeds a threshold, it switches 
back to more straight movement to increase its chance of detecting another cluster of items. If 
we assume that the ability to detect items does not change with movement speed, we can even 
ignore speed. 

Figure 1.2 shows an example run of such a model, our simple Mushroom Hunt model. In 
chapter 2 you will start learning NetLogo, the software platform we use in this book, by pro­
gramming this little model. 

This searching problem is so simple that we have good idea of what processes and behaviors 
are important for modeling it. But how in general can we know whether certain factors are 
important with regard to the question addressed with a model? The answer is: we can’t! That 
is, exactly, why we have to formulate, implement (program in the computer), and analyze a 
model: because then we can use mathematics and computer logic to rigorously explore the 
consequences of our simplifying assumptions. 

Our first formulation of a model must be based on our preliminary understanding of how 
the system works, what the important elements and processes are, and so on. These prelimi­
nary ideas might be based on empirical knowledge of the system’s behavior, on earlier mod­
els addressing similar questions, on theory, or just on . . . imagination (as in the mushroom 

Figure 1.2 
Path of a model agent searching for items that 
are distributed in clusters. 
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hunting example). However, if we have no idea whatsoever of how the system works, we can­
not formulate a model! For example, even though scientists are happy to model almost every­
thing, so far there seems to be no explicit model of human consciousness, simply because we 
have no clue what consciousness really is and how it emerges. 

Because the assumptions in the first version of a model are experimental, we have to test 
whether they are appropriate and useful. For this, we need criteria for whether the model can 
be considered a good representation of the real system. These criteria are based on patterns 
or regularities that let us identify and characterize the real system in the first place. Stock 
market models, for example, should produce the kinds of volatility and trends in prices we see 
in real markets. Often we find that the first version of a model is too simple, lacks important 
processes and structures, or is simply inconsistent. We thus go back and revise our simplifying 
assumptions. 

1.3 The Modeling Cycle 

When thinking about a model of a mushroom hunter (or albatross), we intuitively went 
through a series of tasks. Scientific modeling means to go through these tasks in a system­
atic way and to use mathematics and computer algorithms to rigorously determine the conse­
quences of the simplifying assumptions that make up our models. 

Being scientific always means iterating through the tasks of modeling several times, because 
our first models can always be improved in some way: they are too simple or too complex, or 
they made us realize that we were asking the wrong questions. It is therefore useful to view 
modeling as iterating through the “modeling cycle” (figure 1.3). Iterating does not mean that 
we always go through the full cycle; rather, we often go through smaller loops, for example be­
tween problem formulation and verbal formulation of the model. The modeling cycle consists 
of the following tasks: 

Figure 1.3 
the modeling cycle (from 
Grimm and railsback 2005).

 Formulate the 
question 

Assemble 
hypotheses 

Choose model 
structure 

Implement the 
model 

Analyze the 
model 

Communicate 
the model 
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1. Formulate the question. We need to start with a very clear research question because this 
question then serves as the primary compass and filter for designing a model. Often, for­
mulating a clear and productive question is by itself a major task because a clear question 
requires a clear focus. For complex systems, getting focused can be difficult. Very often, 
even our questions are only experimental and later we might need to reformulate the ques­
tion, perhaps because it turned out to be not clear enough, or too simple, or too complex. 

The question in our Mushroom Hunt model is: What search strategy maximizes the 
rate of finding items if they are distributed in clusters? 

2. Assemble hypotheses for essential processes and structures. Agent-based modeling is “naive” 
(DeAngelis et al. 1994) in the sense that we are not trying to aggregate agents and what 
they are doing in some abstract variables like abundance, biomass, overall wealth, demo­
graphic rates, or nutrient fluxes. Instead, we naively and directly represent the agents and 
their behavior. We create these agents, put them in a virtual environment, then let the vir­
tual world run and see what we can learn from it. (It is important, though, to ask ourselves: 
is it possible to answer our question using a more aggregated and thus simpler model?) 

Usually we have to formulate many hypotheses for what processes and structures are 
essential to the question or problem we address. We can start top-down and ask ourselves 
questions such as: What factors have a strong influence on the phenomena of inter­
est? Are these factors independent or interacting? Are they affected by other important 
factors? We might draw so-called influence diagrams, or flow charts, or just caricatures 
of our system and question. But whatever technique we prefer, this task has to combine 
existing knowledge and understanding, a “brainstorming” phase in which we wildly 
hypothesize, and, most importantly, a simplification phase. 

We have to force ourselves to simplify as much as we can, or even more. The modeling 
cycle must be started with the most simple model possible, because we want to develop 
understanding gradually, while iterating through the cycle. A common mistake of begin­
ners is to throw too much into the first model version—usually arguing that all these 
factors are well known and can’t possibly be ignored. Then, the answer of the modeling 
expert is: yes, you might be right, but—let us focus on the absolute minimum number of 
factors first. Put all the other elements that you think might need to be in the model on 
your “wish list” and check their importance later. 

The reason for this advice is this: just our preliminary understanding of a system is not 
sufficient for deciding whether things are more or less important for a model. It is the 
very purpose of the model to teach us what is important. So, it is wise to have a model 
implemented as soon as possible, even if it is ridiculously simple. But the simpler the 
model is, the easier it is to implement and analyze, and the sooner we are productive. The 
real productive phase in a modeling project starts when we get the modeling cycle run­
ning: assumptions—implementation—analyses—interpretation—revised assumptions, 
and so on. 

It is difficult to formalize this task of the modeling cycle. One important help is heu­
ristics for modeling: rules of thumb that are often, but not always, useful for designing 
models. We point out these heuristics throughout this book; use the index to find them. 
Compilations of modeling heuristics can be found in Starfield et al. (1990) and Grimm 
and Railsback (2005, chapter 2). And—in part III of this book we present pattern-oriented 
modeling, a very important strategy for formalizing both this and the next step in the 
modeling cycle. 

For the Mushroom Hunt model we assume that the essential process is switching 
between relatively straight large-scale “scanning” movement and small-scale searching, 
depending on how long it has been since the hunter last found an item. 
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3. Choose scales, entities, state variables, processes, and parameters. Once we choose some 
simplifying assumptions and hypotheses to represent our system of interest, it is time to sit 
down and think through our model in detail. We thus produce a written formulation of the 
model. Producing and updating this formulation is essential for the entire modeling pro­
cess, including delivery to our “clients” (our thesis committee, journal reviewers, research 
sponsors, etc.). In chapter 3, we will start using a very helpful protocol for doing this. 

This step, for the Mushroom Hunt model, includes specifying how the space that 
hunters move through is represented (as square grids with size equal to the area the 
hunter can search in one time step), what kinds of objects are in the model (one hunter 
and the items it searches for), the state variables or characteristics of the hunter (the time 
it has hunted and the number of items it has found, and the time since last finding an 
item), and exactly how the hunter searches. (Full details are provided when we imple­
ment the model in chapter 2.) 

4. Implement the model. This is the most technical part of the modeling cycle, where we use 
mathematics and computer programs to translate our verbal model description into an 
“animated” object (Lotka 1925). Why “animated”? Because, in a way, the implemented 
model has its own, independent dynamics (or “life”), driven by the internal logic of the 
model. Our assumptions may be wrong or incomplete, but the implementation itself is— 
barring software mistakes—always right: it allows us to explore, in a logical and rigorous 
way, the consequences of our assumptions and see whether our initial model looks useful. 

This task often is the most daunting one for neophytes in modeling, because they usu­
ally have no training in how to build software. Thus, our claim that the implementation 
always is “right” might sound ironic to beginners. They might struggle for months to get 
the implementation right—but only if they don’t take advantage of existing software plat­
forms for agent-based modeling. With the platform that we use in this book, NetLogo, 
you can often implement simple ABMs within a day or two, including the time to test 
your code and show that it is accurate. So please don’t panic! 

5. Analyze, test, and revise the model. While new modelers might think that designing a 
model and implementing it on the computer takes the most work, this task—analyzing 
a model and learning from it—is the most time-consuming and demanding one. With 
tools like NetLogo you will learn to quickly implement your own ABMs. But doing sci­
ence with ABMs requires much more. Much of this book will be devoted to this task: 
how can we learn from our models? In particular, we will try to put forward the research 
program of “individual-based ecology” (Grimm and Railsback 2005) and apply it to other 
sciences. This program is dedicated to learning about the real world: we do not just want 
to see what happens when we create some agents and make up their behaviors—we want 
to see what agent behaviors can explain and predict important characteristics of real 
systems. 

To answer the mushroom hunting question, we could analyze the model by trying a 
variety of search algorithms and parameter values to see which produces the highest rate 
of finding items. 

1.4 What Is Agent-Based Modeling? How Is It Different? 

Historically, the complexity of scientific models was often limited by mathematical tractabil­
ity: when differential calculus was the only approach we had for modeling, we had to keep 
models simple enough to “solve” mathematically and so, unfortunately, we were often limited 
to modeling quite simple problems. 
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With computer simulation, the limitation of mathematical tractability is removed so we can 
start addressing problems that require models that are less simplified and include more charac­
teristics of the real systems. ABMs are less simplified in one specific and important way: they 
represent a system’s individual components and their behaviors. Instead of describing a system 
only with variables representing the state of the whole system, we model its individual agents. 

ABMs are thus models where individuals or agents are described as unique and autono­
mous entities that usually interact with each other and their environment locally. Agents may 
be organisms, humans, businesses, institutions, and any other entity that pursues a certain 
goal. Being unique implies that agents usually are different from each other in such character­
istics as size, location, resource reserves, and history. Interacting locally means that agents usu­
ally do not interact with all other agents but only with their neighbors—in geographic space 
or in some other kind of “space” such as a network. Being autonomous implies that agents 
act independently of each other and pursue their own objectives. Organisms strive to survive 
and reproduce; traders in the stock market try to make money; businesses have goals such as 
meeting profit targets and staying in business; regulatory authorities want to enforce laws and 
provide public well-being. Agents therefore use adaptive behavior: they adjust their behavior to 
the current states of themselves, of other agents, and of their environment. 

Using ABMs lets us address problems that concern emergence: system dynamics that arise 
from how the system’s individual components interact with and respond to each other and 
their environment. Hence, with ABMs we can study questions of how a system’s behavior 
arises from, and is linked to, the characteristics and behaviors of its individual components. 
What kinds of questions are these? Here are some examples: 

How can we manage tropical forests in a sustainable way, maintaining both economic uses 

and biodiversity levels critical for forests’ stability properties (Huth et al. 2004)?
 
What causes the complex and seemingly unpredictable dynamics of a stock market? Are 

market fluctuations caused by dynamic behavior of traders, variation in stock value, or 

simply the market’s trading rules (LeBaron 2001, Duffy 2006)?
 
How is development of human tissue regulated by signals from the genome and the extracel­
lular environment and by cellular behaviors such as migration, proliferation, differentiation,
 
and cell death? How do diseases result from abnormalities in this system (Peirce et al. 2004)?
 
How do shorebird populations respond to loss of the mudflats they feed in, and how can 

the effects be mitigated cost-effectively (Goss-Custard et al. 2006)?
 
What drives patterns of land use change during urban sprawl, and how are they affected by
 
the physical environment and by management policies (Brown et al. 2004, Parker et al. 2003)?
 

ABMs are useful for problems of emergence because they are across-level models. Tradi­
tionally, some scientists have studied only systems, modeling them using approaches such 
as differential equations that represent how the whole system changes. Other scientists have 
studied only what we call agents: how plants and animals, people, organizations, etc. change 
and adapt to external conditions. ABMs are different because they are concerned with two 
(and sometimes more) levels and their interactions: we use them to both look at what happens 
to the system because of what its individuals do and what happens to the individuals because 
of what the system does. So throughout this course there will be a focus on modeling behavior 
of agents and, at the same time, observing and understanding the behavior of the system made 
up by the agents. 

ABMs are also often different from traditional models in being “unsimplified” in other 
ways, such as representing how individuals, and the environmental variables that affect them, 
vary over space, time, or other dimensions. ABMs often include processes that we know to be 
important but are too complex to include in simpler models. 
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The ability of ABMs to address complex, multilevel problems comes at a cost, of course. 
Traditional modeling requires mathematical skills, especially differential calculus and statis­
tics. But to use simulation modeling we need additional skills. This course is designed to give 
you three very important skills for using ABMs: 

A new “language” for thinking about and describing models. Because we cannot define 
ABMs concisely or accurately in the languages of differential equations or statistics, we 
need a standard set of concepts (e.g., emergence, adaptive behavior, interaction, sensing) 
that describe the important elements of ABMs. 
The software skills to implement models on computers and to observe, test, control, and 
analyze the models. Producing useful software is more complex for ABMs than for most 
other kinds of models. 
Strategies for designing and analyzing models. There is almost no limit to how complex 
a computer simulation model can be, but if a model is too complex it quickly becomes 
too hard to parameterize, validate, or analyze. We need a way to determine what entities, 
variables, and processes should and should not be in a model, and we need methods for 
analyzing a model, after it is built, to learn about the real system. 

Full-fledged ABMs assume that agents are different from each other; that they interact 
with only some, not all other agents; that they change over time; that they can have different 
“life cycles” or stages they progress through, possibly including birth and death; and that 
they make autonomous adaptive decisions to pursue their objectives. However, as with any 
model assumption, assuming that these individual-level characteristics are important is ex­
perimental. It might turn out that for many questions we do not explicitly need all, or even 
any, of these characteristics. And, in fact, full-fledged ABMs are quite rare. In ecology, for 
example, many useful ABMs include only one individual-level characteristic, local interac­
tions. Thus, although ABMs are defined by the assumption that agents are represented in 
some way, we still have to make many choices about what type of agents to represent and in 
what detail. 

Because most model assumptions are experimental, we need to test our model: we must 
implement the model and analyze its assumptions. For the complex systems we usually deal 
with in science, just thinking is not sufficient to rigorously deduce the consequences of our 
simplifying assumptions: we have to let the computer show us what happens. We thus have to 
iterate through the modeling cycle. 

1.5 Summary and Conclusions 

Agent-based modeling is no longer a completely new approach, but it still offers many excit­
ing new ways to look at old problems and lets us study many new problems. In fact, the use of 
ABMs is even more exciting now that the approach has matured: the worst mistakes have been 
made and corrected, agent-based approaches are no longer considered radical and suspicious, 
and we have convenient tools for building models. People like you are positioned to take ad­
vantage of what the pioneers have learned and the tools they built, and to get directly to work 
on interesting problems. 

In this first chapter our goal is to provide some extremely fundamental and important ideas 
about modeling and agent-based modeling. Whenever you find yourself frustrated with either 
your own model or someone else’s, in “big-picture” ways (What exactly does this model do? Is 
it a good model or not? Should I add this or that process to my model? Is my model “done”?), 
it could be useful to review these fundamental ideas. They are, in summary: 
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A model is a purposeful simplification of a system for solving a particular problem (or 
category of problems). 
We use ABMs when we think it is important for a model to include the system’s individu­
als and what they do. 
Modeling is a cycle of: formulating a precise question; assembling hypotheses for key pro­
cesses and structures; formulating the model by choosing appropriate scales, entities, state 
variables, processes, and parameters; implementing the model in a computer program; 
and analyzing, testing, and revising. 

Understanding this modeling cycle is so important that a recent review of modeling prac­
tice (Schmolke et al. 2010) concluded that explicitly thinking about and documenting each 
step in the cycle is the primary way we can improve how models are developed and used. 
Schmolke et al. then proposed a very useful format (“TRACE”) for documenting the entire 
cycle of developing, implementing, and analyzing a model. 

It is very important that you have a very basic understanding of these ideas from the start, 
but for the rest of part I we will focus on obtaining a basic understanding of how to implement 
models on the computer. In the rest of this course, however, we will come back to modeling 
ideas. As soon as you have some ability to program and analyze your own models and some 
understanding of how to use these modeling concepts, you will rapidly become a real modeler. 

1.6 Exercises 

1. One famous example of how different models must be used to solve different problems in 
the same system is grocery store checkout queues. If you are a customer deciding which 
queue to enter, how would you model the problem? What exact question would your 
model address? What entities and processes would be in the model? Now, if instead you 
are a store manager deciding how to operate the queues for the next hour or so, what 
questions would your model address and what would it look like? Finally, if you are a 
store designer and the question is how to design the checkout area so that 100 customers 
can check out per hour with the fewest employees, what things would you model? (Hint: 
think about queues in places other than stores.) 

2. For the following questions, what should be in a model? What kinds of things should be 
represented, what variables should those things have to represent their essential char­
acteristics, and what processes that change things should be in the model? Should the 
model be agent-based? If the question is not clear enough to decide, then reformulate the 
question to produce one that is sufficiently clear. 
a) How closely together should a farmer plant the trees in a fruit orchard?
 
b) How much of her savings should an employee put in each of the five investment 


funds in her retirement program? 
c) Should a new road have one, two, or three lanes in each direction? 
d) Is it acceptable to allow a small legal harvest of whales? 
e) To complete a bachelor’s degree in physics as soon as possible, what classes should a 

student register for this semester? 
f) How many trees per year should a timber company harvest? 
g) Banks make money by investing the money that their customers deposit, but they 

must also keep some money available as cash instead of invested. A bank can 
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fail if its customers withdraw more cash than the bank has available, or if their 
investments do not make enough money to meet expenses. Government regula­
tors require banks to keep a minimum percent of total deposits as cash that is not 
invested. To minimize bank failures, what should this minimum percent be? 

h) To maximize profit, how many flights per day should Saxon Airlines schedule be­
tween Frankfurt (their international hub) and Leipzig? 

i) To minimize system-wide delays and risk of accidents, how many flights per 
day should the European Aviation Administration allow between Frankfurt and 
Leipzig? 

j) Two new movies will open in theaters next weekend. One is based on a comic book 
series and features a superhero, special effects, car chases, and violence. The other is 
a romantic comedy starring a beautiful actress and a goofy but lovable actor. Which 
movie will make the most money next weekend? Over the next four weeks? Over 
the next five years? 

k) (Any other problems or questions from your studies, research, or experience in 
general, that might be the basis of a model or agent-based model.) 
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