Copyrighted Material

CHAPTER 1

The Properties of Materials

FORCES: DYNAMICS AND STATICS

We all have some intuitive idea about the mechanics of the world around
us, an idea built up largely from our own experience. However, a proper
scientifi understanding of mechanics has taken centuries to achieve. Isaac
Newton was of course the founder of the science of mechanics; he was the
firs to describe and understand the ways in which moving bodies behave.

Introducing the concepts of inertia and force, he showed that the behav-
ior of moving bodies could be summed up in three laws of motion.

1) The law of inertia: An object in motion will remain in motion
unless acted upon by a net force. The inertia of an object is its
reluctance to change its motion.

2) The law of acceleration: The acceleration of a body is equal to
the force applied to it divided by its mass, as summarized in the
equation

F = ma, (1.1)

where F is the force; m, the mass; and a, the acceleration.

3) The law of reciprocal action: To every action there is an equal
and opposite reaction. If one body pushes on another with a given
force, the other will push back with the same force in the opposite
direction.

To summarize with a simple example: if I give a push to a ball that is initially
at rest (fig 1.1a), it will accelerate in that direction at a rate proportional to
the force and inversely proportional to its mass. The great step forward in
Newton’s scheme was that, together with the inverse square law of gravity, it
showed that the force that keeps us down on earth is one and the same with
the force that directs the motion of the planets.

All this is a great help in understanding dynamic situations, such as
billiard balls colliding, guns firin bullets, planets circling the sun, or frogs
jumping. Unfortunately it is much less useful when it comes to examining
what is happening in a range of no-less-common everyday situations. What
is happening when a book is lying on a desk, when a light bulb is hanging
from the ceiling, or when I am trying to pull a tree over? (See fig 1.1b.) In all
of these static situations, it is clear that there is no acceleration (at least until
the tree does fall over), so the table or rope must be resisting gravity and the
tree must be resisting the forces I am putting on it with equal and opposite
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Figure 1.1. Forces on objects in dynamic and static situations. In dynamic situa-
tions, such as a pool ball being given a push with a cue (a), the force, F, results in the
acceleration, a, of the ball. In static situations, such as a tree being pulled sideways
with a rope (b), there is no acceleration.

reactions. But how do objects supply that reaction, seeing as they have no
force-producing muscles to do so? The answer lies within the materials
themselves.

Robert Hooke (1635-1703) was the firs to notice that when springs,
and indeed many other structures and pieces of material, are loaded, they
change shape, altering in length by an amount approximately proportional
to the force applied, and that they spring back into their original shape after
the load is removed (fig 1.2a). This linear relationship between force and
extension is known as Hooke’s law.

What we now know is that all solids are made up of atoms. In crystalline
materials, which include not only salt and diamonds but also metals, such
as iron, the atoms are arranged in ordered rows and columns, joined by stiff
interatomic bonds. If these sorts of materials are stretched or compressed,
we are actually stretching or compressing the interatomic bonds (fig 1.2b).
They have an equilibrium length and strongly resist any such movement. In
typically static situations, therefore, the applied force is not lost or dissipated
or absorbed. Instead, it is opposed by the equal and opposite reaction force
that results from the tendency of the material that has been deformed
to return to its resting shape. No material is totally rigid; even blocks of
the stiffest materials, such as metals and diamonds, deform when they are
loaded. The reason that this deformation was such a hard discovery to make
is that most structures are so rigid that their deflectio is tiny; it is only when
we use compliant structures such as springs or bend long thin beams that the
deflectio common to all structures is obvious.

The greater the load that is applied, the more the structure is deflected
until failure occurs; we will then have exceeded the strength of our structure.
In the case of the tree (fig 1.1b), the trunk might break, or its roots pull out
of the soil and the tree accelerate sideways and fall over.

INVESTIGATING THE MECHANICAL PROPERTIES OF MATERIALS

The science of elasticity seeks to understand the mechanical behavior of
structures when they are loaded. It aims to predict just how much they
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Figure 1.2. When a tensile force is applied to a perfectly Hookean spring or
material (a), it will stretch a distance proportional to the force applied. In the
material this is usually because the bonds between the individual atoms behave like
springs (b), stretching and compressing by a distance that at least at low loads is
proportional to the force applied.
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Figure 1.3. In a tensile test, an elongated piece of a material is gripped at both ends
(a) and stretched. The sample is usually cut into a dumbbell shape so that failure does
not occur around the clamps, where stresses can be concentrated. The result of such
atestis a graph of stress against strain (b), which shows several important mechanical
properties of the material. The shaded area under the graph is the amount of elastic
energy the material can store.

should deflec under given loads and exactly when they should break. This
will depend upon two things. The properties of the material are clearly
important—a rod made of rubber will stretch much more easily than one
made of steel. However, geometry will also affect the behavior: a long, thin
length of rubber will stretch much more easily than a short fat one.

To understand the behavior of materials, therefore, we need to be able
separate the effects of geometry from those of the material properties. To
see how this can be done, let us examine the simplest possible case: a tensile
test (fig 1.3a), in which a uniform rod of material, say a rubber band, is
stretched.

The Concept of Stress

If it takes a unit force to stretch a rubber band of a given cross-sectional
area a given distance, it can readily be seen that it will take twice the
force to give the same stretch to two rubber bands set side by side or to
a single band of twice the thickness. Resistance to stretching is therefore
directly proportional to the cross-sectional area of a sample. To determine
the mechanical state of the rubber, the force applied to the sample must



Copyrighted Material

THE PROPERTIES OF MATERIALS 7

consequently be normalized by dividing it by its cross-sectional area. Doing
so gives a measurement of the force per unit area, or the intensity of the
force, which is known as stress and which is usually represented by the
symbol o, so that

o=P/A, (1.2)

where P is the applied load and A the cross-sectional area of the sam-
ple. Stress is expressed in SI units of newtons per square meter (N m~2)
or pascals (Pa). Unfortunately, this unit is inconveniently small, so most
stresses are given in kPa (Nm~2 x 10%), MPa (Nm~2 x 10°), or even GPa
(Nm™2 x 10°).

The Concept of Strain

If it takes a unit force to stretch a rubber band of a given length by a given
distance, the same force applied to two rubber bands joined end to end or to
a single band of twice the length will result in twice the stretch. Resistance
to stretching is therefore inversely proportional to the length of a sample.
To determine the change in shape of the rubber as a material in general,
and not just of this sample, the deflectio of the sample must consequently
be normalized by dividing by its original length. This gives a measure of
how much the material has stretched relative to its original length, which is
known as strain and which is usually represented by the symbol, ¢, so that

e=dL/L, (1.3)

where dL is the change in length and L the original length of the sample.
Strain has no units because it is calculated by dividing one length by another.

It is perhaps unfortunate that engineers have chosen to give the everyday
words stress and strain such precise definition in mechanics, since doing
so can confuse communications between engineers and lay people who are
used to the vaguer uses of these words. As we shall see, similar confusion can
also be a problem with the terms used to describe the mechanical properties
of materials.

DETERMINING MATERIAL PROPERTIES

Many material properties can be determined from the results of a tensile
test once the graph of force against displacement has been converted with
equations 1.2 and 1.3 into one of stress versus strain. Figure 1.3b shows the
stress-strain curve for a typical tough material, such as a metal. Like many,
but by no means all, materials, this one obeys Hooke’s law, showing linear
elastic behavior: the stress initially increases rapidly in direct proportion to
the strain. Then the material reaches a yield point, after which the stress
increases far more slowly, until finall failure occurs and the material breaks.
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The f rst important property that can be derived from the graphs is the
stiffness of the material, also known as its Young’s modulus, which is
represented by the symbol E. Stiffness is equal to the initial slope of the
stress-strain curve and so is given mathematically by the expression

E =do/de (1.4)
or by the original force-displacement curve
F_ LdP (15)
 AdL” '

Stiff materials therefore have a high Young’s modulus. Compliance is the
inverse of stiffness, so compliant materials have a low Young’s modulus. In
many materials, the slope of the curve changes as the material is stretched.
For such materials one can distinguish between the initial stiffness and the
tangent stiffness, which is the slope at higher strains.

The second important property that can be derived is the strength, or
breaking stress, of the material; this is simply the maximum value of stress,
Omax, along the y-axis. Breaking stress can alternatively be calculated from
the original force-displacement curve using the formula

Omax = Pmax/A- (16)

Strong materials have a high breaking stress, whereas weak ones have a
low breaking stress. The yield stress, oyiclq, can also be read off the graph,
being the stress at which it stops obeying Hooke’s law and becomes more
compliant; this is the point at which the slope of the graph falls.

A third useful property of a material is its extensibility, or breaking
strain, &, which is simply the maximum value of strain along the
x-axis. Breaking strain can alternatively be calculated from the original
force-displacement curve using the formula

Emax = (Lmax - L)/L (17)

The yield strain can also be determined from this curve, being the strain at
which the slope of the graph falls.

A further material property that can be derived by examining the shape of
the stress-strain curve is its susceptibility or resistance to breakage. A brittle
material, such as glass, will not have a yield region but will break at the end of
the straight portion (fig 1.4), whereas a tough material, such as a metal, will
continue taking on load at strains well above yield before finall breaking.

LOADING, UNLOADING, AND ENERGY STORAGE

A fina useful aspect of stress-strain graphs is that the area under the curve
equals the energy, W, that is needed to stretch a unit volume of the material
to a given strain. This factor is given in units of joules per cubic meter (J m~3,
which is dimensionally the same as Nm™2). Under the linear part of the
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Figure 1.4. Contrasting stress-strain graphs of brittle and tough materials. The
tough material shows appreciable stretching after yield.

stress-strain curve, this energy equals half the stress times the strain, so
W, =o¢/2.
But strain equals stress divided by stiffness, so
W, =o(0/E)/2 = o*/2E. (1.8)

The elastic storage capability, W;, of a material is the amount of energy
under the curve up to the point at which yield occurs and is given by the
equation

We = 004/ 2E - (1.9)

The amount of energy an elastic material can store, therefore, increases with
its yield stress but decreases with its stiffness, because stiffer materials do not
stretch as far for a given stress. So the materials that store most energy are
ones that are strong but compliant.

In a perfectly elastic material, all of this energy would be stored in
the material and could be recovered if it were allowed to return to its
original length. However, no materials are perfectly elastic; the percentage
of energy released by a material, known as its resilience, is never 100% and
falls dramatically in tough materials after yield, since yield usually involves
irreversible damage to the sample. The resilience of a material can be readily
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Figure 1.5. The results of loading/unloading tests for (a) a perfectly elastic material,
(b) a perfectly plastic material, (c) an elastic-plastic material, and (d) a viscoelastic
material.

measured using a modifie tensile test in which the sample is stretched to a
point before yield occurs and then allowed to return to its rest length. The
unloading curve will always be below the loading curve. The resilience is
the percentage of the area under the unloading curve divided by the area
under the loading curve; the percentage of energy that is lost is known as
the hysteresis and is the remainder of 100% minus the resilience.
Loading/unloading tests can be used to differentiate between different
sorts of materials. In a perfectly elastic material (fig 1.5a), the unloading
curve follows the loading curve exactly, there is no hysteresis, and the
material returns to its original shape after the test. In a perfectly plastic
material, on the other hand (fig 1.5b), the material will be permanently
deformed by the load, and all the energy put into it will be dissipated. Tough
materials often show elastic-plastic behavior (fig 1.5¢), acting elastically
before and plastically after yield, in which case the sample will return only
part of the way to its original shape and some energy will be dissipated in
deforming it permanently. Finally, even before yield, materials often show
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viscoelastic behavior (fig 1.5d), in which energy is lost as they deform, just
as it does in liquids, due to internal friction. The amount of energy lost and
hence the shape of the loading/unloading curve will vary with the speed at
which the test is carried out, as we shall see in Chapter 3, but unlike with
elastic-plastic behavior, the material will eventually return to its original
shape.

THE EFFECT OF DIRECTION

Many engineering materials, such as metals, plastics, and concrete, are
essentially homogenous and have the same material properties in all direc-
tions. These are said to be isotropic. Many other materials, on the other
hand, particularly those with a complex internal structure (including many if
not most biological materials), have very different mechanical properties in
different directions. These materials are said to be anisotropic, and to fully
characterize them, materials tests must be carried out in all three planes.

CHANGES IN SHAPE DURING AXIAL LOADING

When a typical material sample is put into axial loading, that is, being
stretched or compressed, it does not only get longer or shorter; it also
gets narrower or thicker, necking or bulging under the load (fig 1.6). As
a consequence, in a tensile test the load will be spread over a smaller area,
and so the actual stress in the sample will be greater than the stress given
by dividing the load by the original area. The shape of the sample will
also be elongated by more than the value given by dividing the change in
length by the original area. In other words, both the stress and the strain
will be underestimated. In most engineering materials, which deform by no
more than 0.1-1% of their original length before they break, this is not a
great problem. Engineers usually do not bother to try and calculate the true
stress and true strain in their samples. Instead they use the convention of
ignoring the change in shape and instead calculating what are known as
engineering stress and engineering strain from the original dimensions of
the sample. With such small changes in shape, the error would in any case
be small.

For many biological materials, on the other hand, strains can be far
greater, reaching values up to 10, meaning stretches of 1000%! In these cases
the differences between true stress and strain and engineering stress and
strain can be very great indeed. However, because it is difficul to measure
changes in shape during the course of materials tests, even biologists usually
use engineering stress and strain, although, as we shall see, measuring
the actual changes in shape can also provide other information about the
material.

The degree to which a material necks or bulges when stretched or
compressed is given by its Poisson’s ratio, which is denoted by the symbol
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Figure 1.6. Shape changes during loading. If a specimen (a) is stretched (b), it will
also tend to get narrower, whereas if it is compressed (c), it will tend to bulge
outwards.

v and calculated using the equation

lateral strain

V=—""">7"" (1.10)
axial strain

For engineering materials that are isotropic, v is usually between 0.25 and
0.33. The upper theoretical limit for v is supposed to be 0.5, since at this
value the volume of material will be unchanged as it is stretched; if the length
increases by 1%, both the thickness and width will decrease by 0.5%, and the
total volume will remain the same. If the lateral strain in both directions
were greater than half the longitudinal strain, it would result in the volume
decreasing when a material was stretched and increasing when compressed,

which would seem to be physically improbable.

Many biological materials behave in rather odd ways, however; being
anisotropic they may have different Poisson’s ratios in different directions.
As we shall see later in the book, some biological materials also have very
high Poisson’s ratios, whereas others, such as cork, have values near zero; it
is even possible to design materials with negative Poisson’s ratios, materials
that expand laterally when stretched.

SHEAR

We have seen how the axial stresses of tension and compression deform
materials, but materials can also be deformed by a different kind of stress,
shear stress. Shear stress acts parallel to a material’s surface (fig 1.7),
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Figure 1.7. Shear stress deforms a square piece of material (a) into a rhombus shape
(b) with shear strain y.

tending to deform a rectangle into a parallelogram, a deformation known
as shear strain.

Shear Stress

Just as for axial stresses, the shear stress, which is denoted by 7, is a
measurement of the intensity of the shear force and is therefore given by
the expression

T =F/A, (1.11)

where F is the shearing force that has been applied, and A is the area parallel
to that force over which the force is applied. The units of shear stress are the
same as those of axial stress: newtons per square meter (N m~2), or pascals
(Pa). Note that if a unit of material is put into shear (fig 1.7b), the right-
hand element being pushed upward, an equal and opposite shear force must
act downward on the left-hand face for the element to be in equilibrium.
However, if those were the only forces on the element, they would form a
couple, spinning the material counterclockwise. Therefore two other shear
stresses are set up, a stress on the top surface acting toward the right, and
one on the lower surface acting toward the left.

Shear Strain
Just as axial stresses cause axial strains, so shear stresses set up shear strains,

which are the change in the angles within the elements, denoted by y
(fig 1.7). Shear strains are expressed in radians, which, being ratios of the
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angular displacement relative to a portion of the full circumference, are
dimensionless, just like axial strains.

Determining Material Properties in Shear

The shear properties of a material can be determined by carrying out direct
shear tests or torsion tests (see chapters 3 and 10), the results of which
can be worked up just like the results of axial tests to give a graph of shear
stress against shear strain. The most important shear property, the shear
modulus, G, is determined similarly to Young’s modulus, using the equation

G =dt/dy. (1.12)

The Relationship between Axial Forces and Shear

At firs glance it seems as if axial and shear forces are quite different,
unconnected forces. However, if we look at what happens during axial and
shear loading, it becomes apparent that they are inextricably linked. In
tensile and compressive tests, a square element at 45° to the loading will
be sheared (fig 1.8a—c), whereas in a shear test, a square element at 45° to
the loading will be stretched in one direction and compressed in the other
(fig 1.8d,e). The amount of shear produced by a tensile test depends on the
Poisson’s ratio of the material: materials with a larger v will contract more
laterally than those with a smaller v, so the shear strain caused by a given
tensile strain will be greater. For this reason materials with a high Poisson’s
ratio will have a relatively lower shear modulus, G, compared with their
Young’s modulus, E. It can be readily shown by a geometrical argument
(Gere, 2004) that E and G are related by the expression

G = 7]5 (1.13)

2(1+v)

so the shear modulus G is typically between 1/3 and 1/2 of the Young’s
modulus of a material, depending on its Poisson’s ratio. Note that this
expression is valid only for isotropic materials and so should #not be used
for biological materials, where it can prove highly misleading!

PERFORMING MATERIAL TESTS

Many of the mechanical properties of a material can therefore be readily
determined by carrying out one of two sorts of mechanical tests in which
materials are put into axial loading: tensile tests and compressive tests. Both
of these are most conveniently carried out in universal testing machines on
specially prepared samples.
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Figure 1.8. The relationship between axial and shear strains. If a square element at
45° (a) is stretched (b) or compressed (c), it will be sheared into a rhombus. Similarly
if a square element at 45° (d) is sheared (e), it will be stretched and compressed into
a rectangle.

Tensile Tests

For a tensile test, the test piece typically has a “dumbbell” form (fig 1.3a)
with a relatively long, thin central portion and broad shoulders at each end.
The sample is gripped firml at its shoulders by two clamps: the lower one
is mounted in the base of the machine; the upper one is attached via a
load cell to a movable crosshead. To carry out the test, the crosshead is
driven upward at a constant speed, while the force required to stretch the
sample is measured by the load cell. This data is transferred to a computer
that produces a readout of force versus deflectio and, given the original
dimensions of the sample, has the ability to calculate its material properties.
It is assumed (fairly accurately) that all the stretching has occurred in the
narrow central section of the sample. The widening at the ends ensures
that the sample breaks in this central section and not at the clamps, where
stresses can be concentrated.

Tensile tests have three main pitfalls. The firs is that with relatively thick
samples of stiff materials, the rigidity of the sample may approach that of
the testing machine. When a test is carried out in this situation, the machine
itself will deform significantly meaning that the readout overestimates the
deflectio of the sample and stiffness is underestimated. There are three
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solutions to this problem: you can use a longer, narrower sample to reduce
its rigidity; you can attach an extensometer, which directly measures strain,
to the sample; or you can attach an electronic strain gauge to the sample
(Biewener, 1994). The second problem with tensile tests is the difficult

in producing the complex shape of the sample. Biological materials can
be prepared by cutting around a machined template, but doing so can
prove difficult particularly for samples cut from small pieces of tissue. The
third problem is that many biological materials, particularly the soft, wet,
and slippery ones, can prove extremely difficul to clamp. In such cases
biomechanists may resort to a range of techniques: using sandpaper to
roughen the clamps; freezing the clamps to harden the material within the
jaws; gluing the sample to the clamps using a cyanoacrylate glue that binds
to water; or simply wrapping the sample around purpose-built attachments.

Compressive Tests

Some of the problems of tensile tests can be overcome by carrying out
compressive tests, in which a relatively thicker rod of material is squashed
between two plates. The sample is much easier to machine because no ex-
panded ends are needed, but the sample and plates must both be machined
flat Because the sample is relatively thicker, it will also be more rigid than a
tensile sample, so it is much more likely that strain will have to be measured
with an extensometer. Compressive tests usually give values of stiffness very
similar to those of tensile tests, but as we shall see, materials often have very
different tensile and compressive strengths. Therefore to fully characterize
a material both tests may be needed.

Torsion Tests

The shear properties of materials can be determined using the sorts of
torsion tests we will examine more thoroughly in chapter 10.

Mechanical Testing with Homemade Equipment

Not everyone has access to a materials testing machine or can afford to
buy one. It may also be impossible to transport samples to the laboratory
(for instance, if you want to investigate the properties of wood in a tropical
rainforest). Finally, most commercially available testing machines are just
not sensitive enough to measure the material properties of structures
such as lengths of spider silk, which are very thin and compliant. For
these situations, it is often necessary to construct purpose-built apparatus,
which can work perfectly well. Nowadays, electronic force and displacement
transducers are fairly inexpensive and data logging into laptop computers is
fairly straightforward. However, in certain situations electronic equipment
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may not be practicable or affordable, and good results may instead be
achieved by purely mechanical means, either by measuring force with a
spring gauge or by hanging weights on the end of a sample. Whichever way
the forces are measured, though, it must be remembered that tests can be
divided into two main types. For larger samples, displacement-controlled
tests, in which the length of the sample is progressively altered while the
force required to do this is measured, are recommended. Not only is one
controlling the independent variable of the stress-strain curve, but these
tests are also fairly safe, since when the material breaks the only energy
released is that which is stored in the sample. In contrast, load-controlled
tests, such as those in which weights are hung on the end of a sample,
are very easy to perform, but failure of the sample can result in potentially
damaging deflectio of the clamps and of the mechanism that is applying
the load.

FAILURE AND BREAKING

As we have seen, it is relatively easy to explain how and why materials resist
being deformed; one just has to consider the forces set up between their
atoms. The fracture behavior of materials is more difficul to understand. It
might be expected that the strength of a piece of material will be directly
proportional both to the strength of its interatomic bonds and to its cross-
sectional area. Hence its breaking stress should be high and independent of
the sample size. However, most materials have much lower breaking stresses
than would be predicted from the strength of their chemical bonds, and
larger pieces of material often have far lower breaking stresses than small
ones. Brittle materials also tend to be much easier to break than tough ones,
even if they have the same breaking stress.

Throughout the last century, with the pioneering work of C. E. Inglis and
A. A. Griffit (recounted very clearly by Gordon [1968]), it has been shown
that to explain fracture, it is necessary to consider not only the overall stress
in materials but also the distribution of stress within the sample and the
changes in energy involved.

STRESS CONCENTRATIONS AND NOTCH SENSITIVITY

Let us f rst examine the distribution of stress within a material that is being
stretched in a tensile test. If the test piece used is perfectly smooth and
free of internal f aws, the stresses will be evenly distributed throughout the
material and the strength of the sample will equal the breaking stress of the
material times its cross-sectional area. However, if there is a small scratch
or ridge in the surface, or a f aw within the material, the stresses will have
to divert around these obstructions, and stress concentrations will be set
up at their sides (fig 1.9a). The stress concentration factor will depend on
the shape of these imperfections. For a circular hole or semicircular notch,
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Figure 1.9. The effect of stress concentrations on the strength of materials. In a
brittle material, stress concentrations will form at the tip of cracks (a). Therefore the
strength of a piece of brittle material will fall rapidly (b, dashed line) if a notch is
introduced. In contrast, in tough materials the strength will fall only linearly (b, solid
line) in proportion to the length of the notch.

it has been calculated that the stress at the sides will be three times the
mean stress, whereas for an elliptical hole or semielliptical notch, the stress
concentration, C, is given by the formula

C =1+ (2rpe/1pa), (1.14)

where 7y, is the radius perpendicular to the force and ry, is the radius parallel
to it. The longer the crack and the smaller the crack tip, therefore, the
higher the stress concentration. Long, narrow cracks or holes oriented at
right angles to the applied force will therefore increase stress far more than
ones oriented parallel to it.

If a brittle material with a notch cut in its side is stretched, the stress at
its tip will increase more rapidly than in the material as a whole until the
breaking stress of the material is reached and a crack opens up; this opening
makes an even sharper notch, which quickly runs through the material. The
strength of a piece of brittle material will therefore fall rapidly with the size
of any f aws or notches at its surface, which is illustrated by a concave graph
of strength against notch size, such as that shown in f gure 1.9b. Such a
material can be said to be notch sensitive. One reason why large pieces of
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glass have a lower breaking stress than small ones is that they are more likely
to have larger, sharper notches.

In contrast, if a tough material with a notch cut into it is stretched,
the material will yield rather than break at the tip of the notch, deforming
markedly and so blunting the crack tip. As a consequence the strength of
a piece of tough material will fall slowly and linearly with notch length
(fig 1.9b) so that the strength is proportional to the area of intact tissue
at the end of the notch. Materials showing this sort of behavior are said to
be notch insensitive. Tough materials therefore show low notch sensitivity,
and brittle materials show high notch sensitivity.

ENERGY CHANGES AND THE WORK OF FRACTURE

The argument above based on stress concentrations works well qualitatively,
but it is less successful in quantitatively predicting and understanding the
behavior of tough materials. Another, even more useful, way of thinking
about what happens during failure is to look at the energy changes involved.

When an object breaks, interatomic bonds are broken, creating two new
surfaces; this process requires energy, and at firs glance it appears difficul
to understand where that energy might come from. Let us examine the
situation shown in figur 1.10, in which a plate of material of thickness ¢
and with a crack in it of length a is being stretched, producing an overall
tensile stress in the plate, o. Elastic energy is stored in the plate, but because
the stresses are being diverted around the tip of the crack, small areas above
and below the crack will be unstressed and will store no energy. Here it is
assumed that these areas have the shape of a right triangle, but this is just a
rough approximation. If the crack extends by a distance da, a greater volume
of material will become unstressed. The amount of elastic energy, W, that
this will release is equal to the energy stored per unit volume of material
(which we have seen from equation 1.8 is 62/2E) times the extra volume,
which from geometry can readily seen to be 2t a da.

Extending the crack increases its surface area by the amount 2¢ da, since
the crack has both an upper and lower surface, and if the surface energy
(in J m~2, the energy required to produce a unit area of new surface) of the
material is g, the surface energy required to extend the crack, W, is 2tg da.
For the crack to spontaneously extend, the energy released by unstressing
the material around the crack must at least equal the surface energy required
to extend it, so that

We = Ws
2s)
0%/2E x 2tada > 2tgda.
Therefore

o*>2Eg/a.
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Figure 1.10. The effect of increasing crack length on the volume of unstressed
material. If the crack extends a distance da, the material between the dashed and
solid lines becomes unstressed, releasing energy.

More sophisticated and precise analysis gives a slightly different figur
for o of

o > (2Eg/ma)®® (1.15)

At low stresses a crack cannot extend because not enough energy is released
from the relaxation around the crack tip to open the crack. Once o exceeds
the critical value, however, the crack can and will extend, and as it lengthens
it becomes more and more energetically favorable for it to do so. The crack
will run very rapidly across the material and break it. Note that the longer
the crack is initially, the lower the stress required to break the material. The
critical crack length a.i; can readily be obtained by rearranging 1.15 to give

deit = 2Eg /mo’. (1.16)

It is greater for stiffer materials and ones with higher surface energy and
decreases rapidly with the stress applied.

In fact, the surface energy of most materials, the energy that is required to
break the top layer of interatomic bonds, is very low, approximately 1] m~2,
so for a brittle material even tiny scratches can make it much weaker.
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In tough materials, the amount of energy needed to make new surfaces, or
the work of fracture, is far higher, because yielding may involve a wide range
of mechanisms that absorb energy; it may involve deforming the material
near the crack tip plastically, as in metals, or creating a rough fracture
surface with a much greater surface area, as in fiberglas and green wood.
Many different fracture tests may be used to calculate the work of fracture,
Wi, which is define as the energy to produce the crack, e, divided by the
crack’s area, A (not the total new area produced, which would be twice the
area of the crack) giving the expression

Wr=e/A. (1.17)

Work of fracture, like surface energy, therefore has the units Jm=2. The
critical crack length for a tough material is derived by substituting work of
fracture into equation 1.16 to give the expression

et = EWj/mo?. (1.18)

As we shall see, many biological materials have particularly sophisticated
toughening mechanisms.

MEASURING WORK OF FRACTURE

You might think it should be very easy to measure the work of fracture of a
biological material. All you would need to do would be to perform a simple
tensile test, and the work of fracture could be estimated from the area under
the stress-strain curve up to the point of failure. Unfortunately things are
not that simple. When a tensile piece is broken, some of the energy that was
stored elastically may not be used to break the material but may instead be
released explosively, making a snapping noise and flingin material about.
The area under the stress-strain curve will therefore overestimate the work
of fracture, and the error will be most severe when using long test specimens
that store more energy. The problem could be minimized by using a very
short test specimen, but machine compliance would then become a major
difficulty Instead, materials scientists have developed a range of tests to
measure the work of fracture, although each of these has its own limitations.

Controlled Cracking

One method of overcoming the loss of stored elastic energy is to carry out
a more controlled test in which the crack grows in a stable fashion. One
way of doing this is to sequentially load and unload a test piece that is
clamped asymmetrically in the testing machine. Examples of such methods
include the compact tension test (Vincent, 1992) and the double cantilever
beam (fig 1.11a). The specimen may be sequentially loaded and unloaded
several times, driving the crack across the specimen, between which actions
it should return to its original shape. The work of fracture can be calculated
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(a) (b) (c)

0
|

(d) (e)

Figure 1.11. Mechanical tests used to determine the work of fracture of materials:
(a) a double cantilever test, (b) a Tattersall and Tappin notch test, (c) a trouser tear
test, (d) a cutting test, and (e) an impact test.

by dividing the area between the loading and unloading curves by the area
of new crack formed. One problem with this test is that it can prove difficul
to drive the crack in the right direction, though this can be overcome by
cutting notches and guide slots to weaken the material in the required
direction. Another, more intractable problem is the difficult in machining
and clamping suitable samples. A similar test method is to carry out a
Tattersall and Tappin notch test (fig 1.11b; Tattersall and Tappin, 1966),
very slowly bending a sample that is cut in such a way as to drive a crack
gently through a beam.

Tearing and Peeling

Another method, which is useful for thin flexibl material samples, is to
carry out a trouser tear test (Vincent, 1992), in which two legs of a thin
specimen are pulled apart (fig 1.11c). The work of fracture is the area under
the force-deflectio curve divided by the area of the new crack formed.
A similar test can also be used to peel a narrow sliver of a material from the
rest. Unfortunately, although they are easy to perform, these tests are only
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really useful for materials that have preferred lines of failure, such as plant
tissues, in which longitudinal fiber constrain the cracks to run between
them; otherwise the tears are all too readily diverted in the wrong direction.

Cutting Tests

To overcome the problem of cracks moving in the wrong direction, several
different kinds of cutting test have recently been devised. Materials may
be cut through with a sharp blade (fig 1.11d), whether it be that of an
instrumented microtome (Atkins and Vincent, 1984), a guillotine (Atkins
and Mai, 1979), an inclined razor blade (Ang et al., 2008), or nail clippers
(Bonser et al., 2004). Alternatively, one can use the double blades of
a sharp pair of scissors (Darvell et al., 1996). In all of these cases the
fracture is constrained to run in the desired direction. All of these tests are
straightforward to perform, and the work of fracture is found by dividing
the energy needed to cut through the specimen by the area of the fracture
surface produced, although in scissor and guillotine tests, the friction of
the devices also must be taken into account. The tests can also detect
particularly tough regions of the material, such as fiber or veins, since the
force needed to cut through them is greater and allows their toughness to be
calculated separately. However, because the cuts constrain the direction of
the crack very precisely, these tests measure the minimum work of fracture
of the material and cannot detect how much toughening is given to the
material by the sorts of mechanisms that involve diverting the crack.

Impact Tests

A f nal series of tests to measure work of fracture involves specimens being
struck by the impact of a moving pendulum and measuring the energy
required to snap them (Vincent, 1992). Typically a notched bar or rod of
material is mounted in one arm of the apparatus and is hit by the other
swinging pendulum (fig 1.11e). The specimen is broken transversely, the
energy required being supplied by the kinetic energy of the pendulum, which
consequently does not rise to so great a height after the impact as before.
The work of fracture is the change in potential energy of the pendulum
before and after the test divided by the cross-sectional area of the bar. This
test works well for many stiffer materials, but since the precise conditions
of loading are usually unknown, it is often hard to relate the results from
this test to those of the other tests. In particular, the impacts tend to be very
rapid, so less energy is used to break viscoelastic materials than in the other
slower methods, and the work of fracture is consequently underestimated.

Other Measurements of Work of Fracture

The work of fracture of a material is usually regarded as being the same thing
as its toughness. However, other, quite different definition of toughness
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Table 1.1
Properties of Some Man-Made and Biological Materials.

Material Stiffness Tensile Extensibility Strain  Resilience Work of

(MPa) Strength energy (%) fracture
(MPa) (MJm™?) (Jm™?)
Steel 200,000 400 0.008 1 100,000
-1,000,000
Glass 70,000 170 0.002 0.2 1-10
Concrete 100,000 5 0.00005 0.0001 3-40
Rubber 3 7 3 10 90
Resilin 2 4 2 4 93
Abductin 4 75-90
Elastin 1.2 2 1 0.8 75
Mucus 0.0002 0.0005 5 55
Mesoglea 0.001 1,200
Moth Silk 4000 2000 0.3 200 35
Tendon 2000 100 0.1 3 93
Keratin 3000 300 0.2 15,000
Cuticle 5000 60 0.01 0.3 2,000
Unlignifie 3,000 100 0.05 3,000
plant
cell wall
Wood 4,000 40 0.01 0.5 30,000
Bone 17,000 200 0.006 0.6 2,000
Dentine 15,000 50 0.003 0.1 500
Enamel 50,000 35 0.0005 0.02 200
Shell (nacre) 30,000 50 0.006 0.15 1600

are sometimes presented in papers. Some authors (see, for instance, Gosline
et al., 2002) present values for toughness with the units ] m~3. These values
were actually derived from the area under the stress-strain graphs and so
are more correctly measurements of the energy-storage capabilities of the
materials. It is better, therefore, to use the term work of fracture.

COMPARING THE PROPERTIES OF MATERIALS

All the complexity of the properties of materials and of materials testing
means that it is surprisingly complicated to compare the properties of
different materials. They can differ in their stiffness, their strength, their
ability to store and release energy, and in their toughness. Some materials
are also better at resisting tension, whereas others resist compression better;
and some materials have the same properties in all directions, whereas
with others, their performance depends on the direction in which they are
stressed.

A good way to get an instinctive idea of how to compare materials is to
think of some everyday objects familiar even to children. Jell-O has very
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low stiffness and strength and is also very brittle, making it easy for even
very young children to cut up and eat. Cookies, in contrast, are stiff but
not very strong, so a child can carry one around without breaking it yet
still readily bite into it. Toffees are both stiff and strong, although they can
be smashed to smithereens when hit by a hammer, showing that they are
brittle. To eat them a child has to put them whole into their mouth, before
softening them and dissolving them with their warm saliva. Pencils are stiff,
strong, and extremely tough, so they can take a lot of punishment without
breaking, although the brittle leads are easy to snap off. Rubber bands have
low stiffness, but they are very stretchy, so they are reasonably strong and
can store a lot of energy, which makes them ideal for use as slingshots.

What about “grown-up” materials? Well, steel is one of the most popular
materials in engineering because it is stiff, strong, and tough and so is ideal
for taking loads and resisting impacts. This is why it is used to make the
shells of cars. Glass is far less useful, because although it is almost as stiff and
strong as steel, it is extremely brittle and so shatters on impact. Concrete is
widely used to build walls and f oors because it is stiff and extremely strong
in compression, but because it cannot take tension, it cannot be used to
make the roofs of buildings without being reinforced with steel.

The properties of some important man-made materials and those of the
natural materials we will encounter in the next few chapters are shown for
ease of comparison in table 1.1. Perhaps the material that acts as the best
single benchmark is rubber, since we can deform it fairly easily by hand
and so get an intuitive feel for its properties. Most of its properties also,
have small integer values for stiffness and strength (in MPa), strain energy
(in MJm™3), and maximum strain. Some materials, such as mucus and
mesoglea, are more compliant than rubber, but most “rigid materials” are
thousands of times stiffer and tens of times stronger but many times less
extensible.

As we shall see in the next few chapters, it is practically impossible to
produce materials in which all the properties are maximized; in general,
the stiffer and stronger a material is, the less it can be stretched. There
is therefore no one “super” material that is ideal for all purposes, and
the mechanical design of organisms consists of making materials that are
suitable for a particular role and arranging them in the right way within the
body. That topic is what most of the rest of this book is about.





