






4 � 1 INTRODUCTION  

opposite to the predicted direction cannot happen spontaneously. Hence, 

thermodynamics is widely applied to predict yields in chemical industry and to 

understand reactions in nature. For example, at 258C, if the pH of an aqueous 

solution is 5 (meaning that Hþ activity is 10�5 M), we know that the OH� activity 

of the solution must be 10�9 M. 

However, thermodynamics is not enough. It cannot predict the time to reach 

equilibrium, or even whether the equilibrium state will ever be reached. Some 

equilibria may never be reached (and we also hope so). For example, if the uni­

verse reached equilibrium, there would be no light elements such as hydrogen, 

helium, lithium, beryllium, and boron, because they would react to form Fe. It 

is the high activation energy for these reactions that prevents them from hap­

pening. Some equilibria take such a long time that practically it can be said that 

the reaction is not happening, such as homogenization of a zoned crystal at 

room temperature. Other equilibria take place slowly, such as weathering of rocks 

under surface conditions. Some equilibria are rapidly reached, such as acid–base 

reactions in water. 

Consider, for another example, a diamond ring. Thermodynamically the dia­

mond crystal is unstable, and should convert to graphite, or react with oxygen in 

air to become carbon dioxide. Graphite in itself is also unstable in air and should 

burn in air to become carbon dioxide. Nonetheless, kinetically the reaction is 

very slow because of the strong C–C bonds in diamond and graphite. Breaking 

these bonds requires high activation energy (this concept is explored in detail 

later) and does not happen at room temperature, except in the presence of a 

strong oxidant. Or one could also say that the reaction is extremely slow at room 

temperatures, and, for practical purposes, it can be regarded that ‘‘a diamond is 

forever.’’ 

A beauty of thermodynamics is that it is not concerned with the detailed 

processes, and its predictions are independent of such details. Thermodynamics 

predicts the extent of a reaction when equilibrium is reached, but it does not 

address or care about reaction mechanism, i.e., how the reaction proceeds. For 

example, thermodynamics predicts that falling tree leaves would decompose 

and, in the presence of air, eventually end up as mostly CO2 and H2O. The 

decomposition could proceed under dry conditions, or under wet conditions, or 

in the presence of bacteria, or in a pile of tree leaves that might lead to fire. The 

reaction paths and kinetics would be very different under these various condi­

tions. Because thermodynamics does not deal with the processes of reactions, it 

cannot provide insight on reaction mechanisms. 

In a similar manner, in thermodynamics, often it is not necessary to know the 

detailed or actual species of a component. For example, in thermodynamic 

treatment, dissolved CO2 in water is often treated as H2CO3(aq), although most 

of the dissolved CO2(aq) is in the form of molecular CO2(aq) and only about 

0.2–0.3% of dissolved CO2(aq) is in the form of H2CO3(aq). Another example is 

for dissolved SiO2 in water. In thermodynamic treatment, SiO2(aq) is commonly 
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[87Sr] ¼ [87Sr]0 þ [87Rb]0{1 � exp(�k1t)}, (1-48b) 

[87Sr] ¼ [87Sr]0 þ [87Rb]{exp(k1t) �1}, (1-48c) 

where k1 ¼ l87. 

The most important geologic applications of radioactive decay and radiogenic 

growth are to determine the age of materials and events, in a branch of geochem­

istry called geochronology. Unlike  the  forward problems of calculating the concen­

tration evolution with time given the initial conditions, in geochronology, the age 

and the initial conditions are inferred from what can be observed today. These 

inverse problems are especially important in geology. Equations of type Equation 

1-47a to 1-47d are the basic equations for dating. For example, in 14C dating,  an  

equation of type Equation 1-47a is used. For 40K–40Ar dating, it is often assumed 

that [40Ar]0 is known (often assumed to be zero) and hence age can be determined. 

To use Equation 1-47c for dating, one has to overcome the difficulty that there 

are two unknowns, the initial amount of 143Nd and the age. With this in mind, 

the most powerful method in dating, the isochron method, is derived. To obtain 

the isochron equation, one divides Equation 1–47c by the stable isotope of the 

product (such as 144Nd): 

143Nd 143Nd 147Sm 
144Nd 

¼ 
144Nd 

þ 
144Nd 

(ek2t � 1), (1-49) 
0 

where (143Nd/144Nd), (147m/144Nd), (4He/3He), and (147Sm/3He) are present-day 

ratios that can be measured. Equation 1-49 is referred to as an isochron equation, 

which is the most important equation in isotope geochronology. Its application 

is as follows. A rock usually contains several minerals. If they formed at the same 

time (hence isochron, where iso means same and chron means time), which ex­

cludes inherited minerals in a sedimentary or metamorphic rock, and if they have 

the same initial isotopic ratio (143Nd/144Nd)0, then a plot of y ¼ (143Nd/144Nd) 

versus x ¼ (147Sm/144Nd) would yield a straight line. The slope of the straight line 

is (ek2t � 1) and the intercept is (143Nd/144Nd)0. From the slope, the age t can be 

calculated. From the intercept, the initial isotopic ratio is inferred. Comparison 

of Equations 1-47c and 1-49 reveals the importance of dividing by 144Nd: dif­

ferent minerals formed from a common source (such as a melt) would rarely have 

the same [143Nd]0 concentration, but they would have the same isotopic ratio 

(143Nd/144Nd)0. Hence, Equation 1-47c would not yield a straight line (because 

the ‘‘intercept’’ is not a constant), but Equation 1-49 would yield a straight 

line. The use of radioactive decay and radiogenic growth in geochronology 

and thermochronology is covered more extensively in Chapter 5. 

A good example of a first-order (pseudo-first-order) chemical reaction is the 

hydration of CO2 to form carbonic acid, Reaction 1-7f, CO2(aq) þH2O(aq) ? 

H2CO3(aq). Because this is a reversible reaction, the concentration evolution is 

considered in Chapter 2. 
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1.3.5.3 Second-order reactions 

Most elementary reactions are second-order reactions. There are two types of 

second-order reactions: 2A ? C and A þB ? C. The first type (special case) of 

second-order reactions is 

2A ! C: (1-50) 

The reaction rate law is 

dx=dt ¼ k[A]2 ¼ k([A]0 �2x)2: (1-51) 

The solution can be found as follows: 

dx=([A]0 �2x)2 ¼ k dt: (1-51a) 

Then 

�d([A]0 �2x)=([A]0 �2x)2 ¼2k dt: (1-51b) 

Then 

1=([A]0 �2x) �1=[A]0 ¼2kt: (1-51c) 

That is 

1=[A] �1=[A]0 ¼2kt: (1-52) 

Or 

[A] ¼ [A]0 =(1 þ2k[A]0t): (1-53) 

The concentration of the reactant varies with time hyperbolically. 

The second type (general case) of second-order reactions is 

A þB ! C: (1-54) 

The reaction rate law is 

dx=dt ¼ k[A][B] ¼ k([A]0 � x)([B]0 � x): (1-55) 

If [A]0 ¼ [B]0, The solution is the same as Equation 1-53. For [A]0 = [B]0, the so­

lution can be found as follows: 

dx={([A]0 � x)([B]0 � x)} ¼ k dt: (1-56) 

u dx=([A]0 � x) � u dx=([B]0 � x) ¼ k dt, where u ¼1=([B]0 � [A]0):


u ln {([A]0 � x)=[A]0} � u ln {([B]0 � x)=[B]0} ¼ �kt:


ln{([A]0 � x)=[A]0} � ln{([B]0 � x)=[B]0} ¼ �k([B]0 � [A]0)t


x ¼ [A]0[B]0(q �1)=(q[A]0 � [B]0), where q ¼ exp{�k([B]0 � [A]0)t}: (1-57)
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Figure 1-1 compares the concentration evolution with time for zeroth-, first-, and 

the first type of second-order reactions. Table 1-2 lists the solutions for concen­

tration evolution of most elementary reactions. 

1.3.5.4 Half-lives and mean reaction times 

A simple way to characterize the rate of a reaction is the time it takes for the 

concentration to change from the initial value to halfway between the initial and 

final (equilibrium). This time is called the half-life of the reaction. The half-life is 

often denoted as t1/2. The longer the half-life, the slower the reaction. The half-life 

is best applied to a first-order reaction (especially radioactive decay), for which 

the half-life is independent of the initial concentration. For example, using the 

decay of 147Sm as an example, [147Sm] ¼ [147Sm]0 exp(�kt) (derived above). Now, 

by definition, 

[147Sm] ¼ [147Sm]0 =2 at  t ¼ t1=2: 

That is, 

[147Sm]0 =2 ¼ [147Sm]0 exp(�kt1=2): 

Solving t1/2, we obtain 

t1=2 ¼ ( ln 2)=k: (1-58) 

For reactions with a different order, the half-life depends on the initial concen­

trations. For example, for a second-order reaction, 2A ? product, with d[A]/ 

dt ¼�2k[A], then 

t1=2 ¼1={2k[A]0}: (1-59) 

That is, the higher the initial concentration, the shorter the half-life! This 

counterintuitive result is due to the reaction rate being proportional to the 

square of the concentration, meaning that the rate increases more rapidly than 

the concentration itself. Nonetheless, for [A] to reach 0.01 M, it takes a longer 

time starting from 0.2 M than starting from 0.1 M by the extra time for [A] to 

attain from 0.2 to 0.1 M. The half-lives of various reactions are listed in Table 1-2. 

The mean reaction time or reaction timescale (also called relaxation timescale; 

relaxation denotes the return of a system to equilibrium) is another characteristic 

time for a reaction. Roughly, the mean reaction time is the time it takes for the 

concentration to change from the initial value to 1/e toward the final (equilib­

rium) value. The mean reaction time is often denoted as t (or tr where subscript 

‘‘r’’ stands for reaction). The rigorous definition of t is through the following 

equation (Scherer, 1986; Zhang, 1994): 

dx x
dt 
¼ 1

t 
� x 

, (1-60) 
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where x is the reaction rate progress parameter, x? is the value of x at t ¼? (i.e., as 

the reaction reaches completion or equilibrium). An equivalent definition is 

t ¼�dt/d ln|x � x?|. The longer the mean reaction time, the slower the reaction 

is. By this definition, the mean reaction time may vary as the reaction goes on. 

Because the mean reaction time is defined using the reaction rate, the rate law 

can be directly compared with the definition of t so as to find t. Hence, even 

though the definition is more complicated than the half-life, obtaining the mean 

reaction time is often simpler. For a first-order reaction, t is independent of the 

initial concentration. Still using the decay of 147Sm as an example, 

dx=dt ¼�d[147Sm]=dt ¼ l147[147Sm]: 

Because x? ¼ [147Sm]0 and x ¼ [147Sm]0 � [147Sm], we have (x? � x) ¼ [147Sm]. 

Hence, 

dx=dt ¼ l147(x1 � x): (1-61) 

By definition dx/dt ¼ (x? � x)/t; therefore, 

t ¼1=l147: (1-62) 

The above simple formula is one of the reasons why some authors prefer the use 

of the mean reaction time (or relaxation timescale) instead of the half-life. The 

mean reaction time is longer than the half-life. 

For a second-order reaction, the mean reaction time is not so simple. For exam­

ple, for reaction 2A ? product, dx/dt ¼ k[A]2. Because x? ¼ [A]0/2, and x ¼ ([A]0 � 
[A])/2, then (x? � x) ¼ [A]/2. Therefore, dx/dt ¼ k[A]2 ¼ [A]/(2t). Simplification 

leads to 

t ¼1=(2k[A]): (1-63) 

The mean reaction time during a reaction varies as the concentration varies 

if the reaction is not a first-order reaction. Expressions of mean reaction time of 

various types of reactions are listed in Table 1-2. In practice, half-lives are of­

ten used in treating radioactive decay reactions, and mean reaction times are 

often used in treating reversible chemical reactions. 

1.3.6 Dependence of reaction rate constant on temperature; 
Arrhenius equation 

Experimental data show that the reaction rate constant depends on temperature, 

and often in the following form: 

k ¼A exp[�E=(RT)], (1-64) 

where k is the reaction rate constant for a reaction, T is temperature (always in 

kelvins), R is the universal gas constant (8.314 J mol�1 K�1; in older books and 
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Figure 1-2 Rate coefficients (Borders and Birks, 1982) for gas-phase reaction NO þO3 ¼
NO2 þO2. Two data points with large errors are excluded. (a) k versus T; (b) ln k versus 
1000/T to linearize the plot. 

journal articles, the value 1.9872 cal mol�1 K�1 is used), E is called the activation 

energy (in J or cal), and A is called the preexponential parameter (for lack of a 

better name) and is also the value of k as T approaches ?. The relation was first 

discovered by the Swedish chemist Svante August Arrhenius (1859–1927), and 

hence bears the name Arrhenius equation. Because the activation energy E and the 

gas constant R often occur together as E/R (which has the dimension of tem­

perature), (E/R) is often grouped together in this book, and the Arrhenius 

equation is hence in the form of k ¼A exp(�B/T). 

Given the Arrhenius equation for a reaction, i.e., given the preexponential 

factor A and the activation energy E as well as the applicable temperature range, 

k can be found at any temperature within the range. The calculation is not com­

plicated but one must (i) maintain consistency between units, and (ii) be espe­

cially careful about the unit of temperature (which must be converted to kelvins). 

On the other hand, given experimental data of k versus T at several tempera­

tures (either you made the measurements or there are literature data), one can 

use the data to obtain the Arrhenius equation by regression. Then the Arrhenius 

equation can be used for both interpolation (which is usually reliable) and ex­

trapolation. Caution must be exercised for extrapolation because if an equation 

is extrapolated too far outside the data coverage (in this case, the temperature 

range), the error might be greatly amplified, and the activation energy E might 

change with temperature (see Figure 1-17 in a later section; see also Lasaga, 

1998). 

Example 1.1 If E ¼250 kJ/mol, A ¼1010 s�1, and the applicable temperature 

range is 270 to 1000 K, find k at 5008C. 
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Solution: First, convert temperature to Kelvin scale: T ¼773.15 K. Because it is 

within the range of 270 to 1000 K, the formula k ¼A exp[�E/(RT)] can be 

used. Use R ¼8.314 J mol�1 K�1. To make sure all units are consistent, E must 

be in J/mol (instead of kJ/mol). That is, E ¼250,000 J/mol. Using the for­

mula, one finds that k ¼1.288 � 10�7 s�1 ¼ 4.065 yr�1. 

For the purpose of viewing data and for regression, the Arrhenius equation is 

often rewritten in the following form: 

ln k ¼ ln A þ [�E=(RT)]: (1-65) 

By letting y ¼ ln k, x ¼1/T, constant ln A ¼ a, and constant (�E/R) ¼ b, then the 

above equation becomes 

y ¼ a þ bx: (1-66) 

Hence, the exponential Arrhenius equation has been transformed to a linear 

equation. Figure 1-2 shows kinetic data in k versus T (Figure 1-2a) and in ln k 

versus 1/T (Figure 1-2b). Actually, 1000/T instead of 1/T is often used so that the 

numbers on the horizontal axis are of order 1, which is the same relation except 

now the slope is 0.001E/R. Because the linear relation is so much simpler and 

more visual, geochemists and many other scientists love linear equations be­

cause data can be visually examined for any deviation or scatter from a linear 

trend. Hence, they take extra effort to transform a relation to a linear equation. 

As will be seen later, many other equations encountered in geochemistry are also 

transformed into linear equations. 

Linear regression Given experimental data (xi, yi), where i ¼1, 2, . . . , n, fitting the 

data to an equation, such as y ¼ a þ bx, where a and b are parameters to be ob­

tained by fitting, is not as trivial as one might first think. By plotting the data, 

one can always draw by hand a straight line that fits the data. Nowadays with 

help from graphing or spreadsheet programs, the task is simple if one does not 

want to pay much attention to data uncertainties. However, experimental data 

always have uncertainties. For example, every temperature measurement may 

have some error, or there may be temperature fluctuations during an experiment, 

and each estimate of the reaction rate coefficient may have a large error. Fur­

thermore, the error for one experiment may differ from that of another. To treat 

errors in a rigorous fashion, more advanced linear regression algorithms must be 

used (see below). 

For a given data set of (xi, yi), where i ¼1, 2, . . . , n, the simplest non-eyeball fit 

of the data, which is usually what graphing programs and spreadsheet programs 

use, can be obtained as follows. First calculate the average of xi’s and yi’s (the 

averages are denoted as x̄ and y�): 
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n X 
x ¼ (x1 þ x2 þ � � � þ xn)=n � xi =n, (1-67) 

i ¼ 1 
n 

y ¼ yi =n: (1-68) 
i ¼ 1 

X 

Then a and b can be calculated: P n 

b ¼ i ¼1 
n 

(xi�x)(yi�y) 
, (1-69a) P

i ¼ 1(xi � x)2 

a ¼ y�bx: (1-69b) 

In the above simple fit, the implicit assumptions are that (i) xi values have no 

errors, and (ii) all yi values have identical error. The above fit cannot account for 

different errors in yi, nor errors in xi, nor correlations in the errors. Therefore, data 

with high accuracy would not be emphasized as they deserve, and data with large 

uncertainty would not be deemphasized. To account for data uncertainties, more 

advanced programs must be used, and the best is by York (1969). Most radiogenic 

isotope geochemists use such a program for fitting isochrons, but other geo­

chemists do not necessarily do that. If a program treats all errors perfectly and the 

fit equation is y ¼ a þ bx, and x is switched with y and the data are refitted, the 

equation would be exactly x ¼ (y �a)/b ¼�a/b þ (1/b)y. 

Example 1.2 The following data are from Besancon (1981) for Fe–Mg dis­

ordering reaction between M1 and M2 sites of an orthopyroxene. The errors 

are estimated from the number of experimental data points for each deter­

mination and whether there are enough points between the initial state and 

the final equilibrium state. 

T (K) k (s�1) 1000/T ln k 

873 	 3 1.24 �10�5�
1.6 1.1453 	 0.0039 �11.30 	 0.47 

973 	 3 2.45�10�4�
1.4 1.0276 	 0.0032 �8.31 	0.34 

1023 	3 0.00295 �
3 0.9774 	 0.0029 �5.83 	1.10 

1073 	3 0.00677 �
2 0.9318 	 0.0026 �5.00 	0.69 

Solution: If simple linear least-squares fitting is used, the result is ln k ¼ 
23.576 �30,559/T (dashed line in Figure 1-3). If York’s linear least-squares 

fitting program is used, the resulting equation is ln k ¼21.762 �29.029/T 

(solid line in Figure 1-3). The more advanced fit emphasizes and passes 

through data with smaller error bars, as expected. 
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Figure 1-3 Comparison of simple least-squares fitting (dashed 
line) versus weighted least-squares fitting (solid line) that accounts 
for all individual errors and correlations. The data are Fe–Mg dis­
ordering rate coefficients in an orthopyroxene from Besancon 
(1981). Errors are estimated from the paper. The equation of the 
dashed line is y ¼23.576 �30.559x. The equation of the solid line 
is y ¼21.762 � 29.029x. The solid line goes through the data point 
with the smallest error within its errors, but the simple fit does not. 

1.3.7 Nonisothermal reaction kinetics 

Except for radioactive decays, other reaction rate coefficients depend on tem­

perature. Hence, for nonisothermal reaction with temperature history of T(t), the 

reaction rate coefficient is a function of time k(T(t)) ¼ k(t). The concentration 

evolution as a function of time would differ from that of isothermal reactions. 

For unidirectional elementary reactions, it is not difficult to find how the con­

centration would evolve with time as long as the temperature history and hence 

the function of k(t) is known. To illustrate the method of treatment, use Reaction 

2A ? C as an example. The reaction rate law is (Equation 1-51) 

dx=dt ¼ k[A]2 ¼ k([A]0 �2x)2, 

where x|t¼0 ¼0 and k is a function of t. Rearranging the above leads to 

dx=(k dt) ¼ ([A]0 �2x)2, (1-70a) 

Define 

ðt 

a ¼ k dt: (1-70b) 
0 

Hence, a|t¼0 ¼0, and da ¼ k dt. Therefore, Equation 1-70a becomes 

dx=(da) ¼ ([A]0 �2x)2: (1-70c) 
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The above equation is equivalent to Equation 1-51 by making a equivalent to 

kt. Hence, the solution can be obtained similar to Equation 1-53 as follows: 

[A] ¼ [A]0 =(1 þ2[A]0a): (1-70d) 

In general, for unidirectional elementary reactions, it is easy to handle non-

isothermal reaction kinetics. The solutions listed in Table 1-2 for the con­

centration evolution of elementary reactions can be readily extended to 

nonisothermal reactions by replacing kt with a ¼ $ k dt. The concepts of half-life 

and mean reaction time are not useful anymore for nonisothermal reactions. 

The most often encountered thermal history by geologists is continuous 

cooling from a high temperature to room temperature (such as cooling of vol­

canic rocks, plutonic rocks, and metamorphic rocks). One of the many ways to 

approximate the cooling history is as follows: 

T ¼T0=(1 þ t=tc), (1-70e) 

where T0 is the initial temperature and tc is the time for temperature to cool from 

the initial temperature to half of the initial temperature. (Other temperature 

versus time functions are discussed in later chapters.) Because k depends on 

temperature as A exp[�E/(RT)], the dependence of k on time may be expressed as 

follows: 

K ¼A exp[�E(1 þ t=tc)=(RT0)] ¼A exp[�E=(RT0)] exp [�Et=tcRT0)]: (1-70f) 

Let k0 ¼A exp[�E/(RT0)], meaning the initial value of the rate coefficient, and 

t ¼ tc(RT0/E). Then the expression of k becomes 

k ¼ k0 e�t=t: (1-70f) 

That is, k decreases with time exponentially with a timescale of t. Therefore, a can 

be found to be 

ðt 

a ¼ k dt ¼ k0t(1 � e�t=t): (1-70g) 
0 

If the reaction occurs at high temperature, but the rate at room temperature is 

negligible (i.e., negligible reaction even for 4 billion years), the integration can be 

carried out to t ¼?, leading to 

a ¼ k0t: (1-70h) 

Therefore, under the conditions of continuous cooling and negligible reaction 

rate at room temperatures, the degree of the reaction is equivalent to that at the 

high temperature T0 (where the rate coefficient is k0) for a finite duration of 

t ¼ tc(RT0/E). An example of calculations is shown below. 
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Example 1.3 For a first-order reaction A ? B, k ¼ exp(�6.00 �25,000/T) s�1. 

Suppose the temperature history is given by T ¼1400/(1 þ t/1000), where T is 

in K and t is in years. The initial concentration of A is [A]0 ¼0.1 mol/L. Find 

the final concentration of A after cooling to room temperature. 

Solution: The initial temperature T0 ¼1400 K. The rate coefficient at T0 can be 

found to be 

k0 ¼ exp(�6:00 �25,000=T0) s  � 1 ¼4:35�10�11 s�1 ¼0:00137, y�1: 

The cooling timescale tc ¼1000 years. The activation energy is 25,000R. 

Hence, the timescale for k to decrease is 

t ¼1000 � 1400=25, 000 ¼56 years: 

Hence, 

a ¼ k0t ¼0:077: 

From Table 1-2, replacing kt by a, it can be found that the concentration 

[A] ¼ [A]0e�a ¼0:1�0:926 ¼0:0926 mol=L: 

This concludes the solution. 

Additionally, we can also estimate whether the reaction at room tem­

perature is significant. At 298 K, k ¼ exp(�6.00 �25,000/298) s�1 ¼9.1 � 
10�40 s�1 ¼2.88 �10�32 yr�1. Even if the sample has been at this temperature 

for the whole age of the Earth, kt would be of the order 1.3 �10�22, and 

e�kt ¼1. The extent of the reaction at room temperature is negligible. 

The above analyses show that it is fairly easy to deal with temperature variation 

for unidirectional elementary reaction kinetics containing only one reaction rate 

coefficient. Analyses similar to the above will be encountered often and are very 

useful. However, if readers get the impression that it is easy to treat temperature 

variation in kinetics in geology, they would be wrong. Most reactions in geology 

are complicated, either because they go both directions to approach equilibrium, 

or because there are two or more paths or steps. Therefore, there are two or more 

reaction rate coefficients involved. Because the coefficients almost never have 

the same activation energy, the above method would not simplify the reaction 

kinetic equations enough to obtain simple analytical solutions. 

1.3.8 More complicated homogeneous reactions 

A reversible reaction can go both forward and backward, depending on the initial 

concentrations of the species. Most chemical reactions are reversible. For ex­

ample, Reactions 1-6 to 1-12 are all reversible. 

A chain reaction is accomplished by several sequential steps. Chain reactions are 

also known as consecutive reactions or sequential reactions. For a chain reaction, 
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the slowest step is the rate-limiting step. For example, the decay of 238U to  206Pb 

is a chain reaction. Nuclear hydrogen burning by the PP I chain process is also a 

chain reaction. 

If a reaction can be accomplished by two or more paths, the paths are called 

parallel paths and the reaction is called a parallel reaction. The overall reaction rate 

is the sum of the rates of all the reaction paths. The fastest reaction path is the 

rate-determining path. For nuclear hydrogen burning, the PP I chain is one path, 

the PP II chain is another path, and the CNO cycle is yet another path. 

A branch reaction is when the reactants may form different products. It is similar 

to a parallel reaction in that there are different paths, but unlike a parallel re­

action in that the different paths lead to different products for a branch reaction 

but to the same product (eventually) for a parallel reaction. For example, 40K 

undergoes a branch reaction, one branch to 40Ar and the other to 40Ca. 

For bimolecular second-order reactions and for trimolecular reactions, if the 

reaction rate is very high compared to the rate to bring particles together by 

diffusion (for gas-phase and liquid-phase reactions), or if diffusion is slow com­

pared to the reaction rate (for homogenous reaction in a glass or mineral), or if 

the concentrations of the reactants are very low, then the reaction may be lim­

ited by diffusion, and is called an encounter-controlled reaction. 

An example of branch reactions is discussed in Section 1.7.2. The quantitative 

treatment of the kinetics of other reactions is complicated, and is the subject of 

Chapter 2. 

1.3.9 Determination of reaction rate laws, 
rate constants, and mechanisms 

Reaction rate laws are determined experimentally. For reactions known to be 

elementary reactions, it is necessary to experimentally determine the rate con­

stant. For other reactions that may or may not be elementary, it is necessary to 

experimentally determine the reaction rate law and the rate constant. If the 

reaction rate law conforms to that of an elementary reaction, i.e., for reaction 

aA þ bB ? products, the reaction rate law is dx/dt ¼ k[A]a[B]b, then the reaction is 

considered consistent with an elementary reaction, but other information to 

confirm that no other steps occur is necessary to demonstrate that a reaction is 

elementary. It is possible that a reaction has the ‘‘right’’ reaction rate law, but is 

shown later to be nonelementary based on other information. 

1.3.9.1 Determination of the reaction rate constant 

Be is the lightest nuclide that decays by electron capture and hence is the best 

nuclide to demonstrate whether or not the decay constant for electron capture 

depends on the chemical environment and pressure. (The decay constants for 

a-decay and b-decay through emission of an electron or a positron from the 

7
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Figure 1-4 (a) Logarithm of the activity of 7Be (counts per minute) in Be(OH)2 versus 
time to demonstrate that the decay is a first-order reaction and that the decay con­
stant is 0.012977 day�1 (or half-life is 53.41 days). Error is about the size of the points. (b) 
ln(A/A0) þ0.012977t versus t to compare the decay constant of 7Be in different com­
pounds. The error bars are at the 2s level. The data indicate that the decay constant of 7Be 
depends on the chemical environment. Data from Huh (1999). 

nucleus do not depend on temperature, pressure and chemical environment 

because these are processes inside the nucleus. The decay constant for b-decay 

through electron capture may depend on these factors because they may affect 

the behavior of K-shell electrons and, hence, their probability to be captured.) 

Because the variation of decay constant for electron capture may impact on the 

accuracy of the 40K–40Ar dating method, the accurate determination of the decay 

constant of 7Be is of special interest. Huh (1999) determined the rate constant for 

the decay of 7Be to 7Li. The reaction is known to be a first-order reaction with the 

rate law of d[7Be]/dt ¼�k[7Be], where [7Be] can be the concentration of 7Be, or the 

activity of 7Be, or the total number of 7Be atoms. Hence, the task is to determine 

the value of decay constant k. Huh (1999) measured the variation of 7Be activity 

(proportional to concentration) with time. The data can be fit by the exponential 

decay equation similar to Equation 1-47a: 

[7Be] ¼ [7Be]0e�lt , 

or 

A ¼A0e�lt , 

where A is activity of 7Be and equals l[7Be]. Figure 1-4a shows the decay data in 

the compound Be(OH)2 plotted as ln A versus t. The decay constant of 7Be in 

Be(OH)2 is found to be 0.012977 day�1. 

To examine whether there are small differences in the decay constant of 7Be in 

different compounds, Figure 1-4b plots ln (A/A0) þ0.012977t versus t for 7Be 

decay in Be(OH)2, BeO, and dissolved Be2þ. If the decay constant of 7Be in 
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Figure 1-5 Determination of the order of hypothetical reactions with respect to species A. 
(a) The initial reaction rate method is used. The initial rate versus the initial concentra­
tion of A is plotted on a log–log diagram. The slope 2 is the order of the reaction with 
respect to A. The intercept is related to k. (b) The concentration evolution method is used. 
Because the exponential function (dashed curve) does not fit the data (points) well, the 
order is not 1. The solution for the second-order reaction equation (solid curve) fits the 
data well. Hence, the order of the reaction is 2. 

Be(OH)2 were the same as that in other compounds, they would all follow the 

same horizontal trend within error. Figure 1-4b shows that ln(A/A0) þ0.012977t 

versus t follows different trend for different compounds, indicating that the 

decay constant of 7Be depends on the kind of compound Be is in. The variation of 

the decay constant amounts to about 1.5%. Tossell (2002) raised doubt about 

the experimental results based on calculated electron density of Be in vari­

ous compounds, but the reliability of the theoretical calculation has not been 

verified. 

1.3.9.2 Determination of the reaction rate law 

For a reaction aA þ bB ? products, to determine the reaction rate law, one often-

used method is to vary the concentration of one species at a time and keep the 

concentration of the other species constant. This requires that each of the re­

actants (A and B) can be prepared in the pure form, and that the concentration 

can be varied freely and independently of the other species. For example, one 

may first fix the concentration of B at very high concentration (such as 1 M), 

and vary the concentration of A at low concentration levels but with a large 

concentration range (such as 0.001–0.01 M). A large range of concentration for 

A is necessary to develop an accurate reaction rate law. During the reaction, the 

concentration of B may be regarded as constant. The order of the reaction with 

respect to A can be determined using either of the following methods: 

(1) Initial rate method. If the initial production rate of the product can be deter­

mined directly as a function of the initial concentration of A, such as rate / [A]n , 

4 
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one finds the order of the reaction with respect to A to be n. Practically, this can be 

done by plotting ln(initial rate) versus ln[A], and the slope would be n, the order of 

the reaction. If the relation is not linear (which means the order is not defined), or 

if the slope is not an integer, then the reaction is not an elementary reaction. This 

method is called the initial rate method. Figure 1-5a shows an example of deter­

mining the order of a reaction using the initial rate method. 

(2) Concentration evolution method. If the rate cannot be directly measured, but 

the concentration evolution of A as a function of time can be measured, then the 

order of the reaction can be compared with theoretical solutions (Table 1-2). For 

example, if [A] ¼ [A]0 � kt, i.e., if [A] decreases linearly with t, then the order with 

respect to A is zero. If [A]/[A]0 ¼ exp(�kt), i.e., if ln[A] is linear to t, then the order 

with respect to A is 1. If [A]/[A]0 ¼1/(1 þ2k[A]0t), i.e., if 1/[A] is linear to t, then 

the order with respect to A is 2. Figure 1-5b shows an example of determining the 

order of a reaction using the concentration evolution method. 

After obtaining the order of the reaction with respect to A, one can fix the 

concentration of A at a very high concentration, and examine the order of the 

reaction with respect to B. In this way the complete reaction rate law can 

be developed. 

The above methods of investigating the order of the reaction with respect to 

each species independently, although simple and practical for many reactions 

(such as atmospheric reactions and aqueous reactions) studied by chemists and 

geochemists, is often difficult to apply to homogeneous reactions in a silicate 

melt or mineral because the concentration of each species may not be varied 

freely and independently. This will become clear later when the kinetics for the 

Fe–Mg order–disorder reaction in orthopyroxene and the interconversion reac­

tion between molecular H2O and OH groups in silicate melt are discussed. 

For very rapid reactions such as the ionization of H2O, it is difficult to deter­

mine the rate constants using conventional methods. One often-used method is 

the relaxation method. The system is initially at equilibrium under a given set of 

conditions. The conditions are then suddenly changed so that the system is no 

longer at equilibrium. The system then relaxes to a new equilibrium state. The 

speed of relaxation is measured, usually by spectrophotometry, and the rate con­

stants can be obtained. One technique to change the conditions is to increase 

temperature suddenly by the rapid discharge from a capacitor. This technique is 

called temperature-jump technique. 

1.3.9.3 Reaction mechanisms 

After obtaining the reaction rate law, if it does not conform to an elementary 

reaction, then the next step is to try to understand the reaction mechanism, i.e., 

to write down the steps of elementary reactions to accomplish the overall reaction. 

This task is complicated and requires experience. Establishing the mechanism for 

a homogeneous reaction is, in general, more like arguing a case in court, than a 
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mathematical proof. A few general rules are as follows. First, elementary reac­

tions are usually monomolecular or bimolecular. Only very rarely are they termole­

cular. Secondly, rate constants for elementary reactions increase with temperature 

roughly according to Arrhenius law, i.e., the activation energy E is positive and 

not a strong function of temperature. Thirdly, it might be necessary to examine 

whether the reaction rate is affected by light, whether there are color changes or 

other indications that might point to the formation of some intermediate spe­

cies, etc. It is from synthesizing all the experimental observations that a reaction 

mechanism may emerge. The proposed mechanism should have testable conse­

quences, such as measurable intermediate species, which can be investigated 

further to verify or reject the proposed mechanism. 

1.4 Mass and Heat Transfer 

The physical transport of mass from one position to another plays a significant to 

dominant role in many kinetic processes. For example, a zoned crystal becomes 

homogeneous through diffusion, and magma erupts through fluid flow. Diffu­

sion and fluid flow are two ways to accomplish the physical transport of masses, 

referred to as mass transfer. Besides pure mass transfer problems, mass transfer 

also plays an important role in many heterogeneous reactions (reactions in­

volving two or more phases). The following are some examples of mass transfer 

problems encountered in geology: 

� Homogenization of a zoned crystal through diffusion 

� The change of melt inclusion composition by diffusion through the


host mineral


� Diffusive loss of Ar from a mineral, affecting age determination (closure 

temperature) 

� Diffusive exchange of isotopes, affecting age determination (closure


temperature)


� Diffusive exchange of isotopes, affecting temperature determination


(thermometry)


� Diffusion in a temperature gradient (Soret diffusion) 

� Exchange of components between phases (heterogeneous reactions) 

� Spinodal decomposition of a phase into two phases (heterogeneous


reactions)


� Mass transfer during bubble growth in volcanic eruptions (heterogeneous 

reactions) 
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a b 

Figure 1-6 Two examples of random motion of particles, which will lead to net 
flux (a) to the right-hand side, and (b) from the center to all directions. 

� The transport of pollutant in river or in ground water: both diffusion and 

flow 

� Mass transfer during crystal growth or dissolution (heterogeneous


reactions)


In this section, we focus on diffusive mass transfer. The mathematical de­

scription of mass transfer is similar to that of heat transfer. Furthermore, heat 

transfer may also play a role in heterogeneous reactions such as crystal growth 

and melting. Heat transfer, therefore, will be discussed together with mass trans­

fer and examples may be taken from either mass transfer or heat transfer. 

1.4.1 Diffusion 

Diffusion is due to random particle motion in a phase. The random motion leads 

to a net mass flux when the concentration of a component is not uniform (more 

strictly speaking, when the chemical potential is not uniform). Hence, a zoned 

crystal can be homogenized through diffusion. Some examples of diffusion are 

shown in Figure 1–6. 

The phenomenological law that describes diffusion is 

J ¼ �D @C=@x, (1-71) 

where J is the diffusive flux, D is the diffusion coefficient (also referred to as 

diffusivity), C is the concentration, x is distance, @C/@x is the concentration 

gradient (a vector), and the negative sign means that the direction of diffusive 

flux is opposite to the direction of concentration gradient (i.e., diffusive flux goes 

from high to low concentration, but the gradient is from low to high concen­

tration). The above equation was first proposed by the German physiologist 

Adolf Fick (1829–1901) and hence bears the name Fick’s law (sometimes called 

Fick’s first law). The unit of D is length2/time, such as m2/s, mm2/s, and mm2/s 

(1 mm2/s ¼10�6 mm2/s ¼10�12 m2/s). The value of the diffusion coefficient is a 
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Table 1-3a Diffusion coefficients in aqueous solutions 

Dissolved gas D (m2/s) 
molecules D (m2/s) at 258C Ions at 258C 

Ar 2.00 �10�9 Hþ 9.1 �10�9 

Air 2.00 �10�9 Liþ 1.0 �10�9 

CO2 1.92 �10�9 Naþ 1.3 �10�9 

CO 2.03 �10�9 OH� 5.2 �10�9 

He 6.28 �10�9 Cl� 2.0 �10�9 

N2 1.88 �10�9 Br� 2.1 �10�9 

O2 2.10 �10�9 

Note. Molecular diffusivities from Cussler (1997, p. 112); ionic diffusivities from Pilling and Seakins 
(1995, p. 148). 

characterization of the ‘‘rate’’ of diffusion and, hence, is very important in 

quantifying diffusion. Many experimental studies have been carried out to de­

termine diffusivity. Typical values of diffusion coefficients are as follows: 

In gas, D is large, about 10 mm2/s in air at 298 K; 

In aqueous solution, D is small, about 10�3 mm2/s in water at 298 K; 

In silicate melts, D is small, about 10�5 mm2/s at 1600 K; 

In a solid, D is very small, about 10�11 mm2/s in silicate mineral at 1600 K. 

Diffusion coefficients of some ionic and molecular species are listed in Table 1–3. 

The diffusivities in Table 1–3 are molecular, ionic, or atomic diffusivities due to the 

random motion of particles excited by thermal energy. If a system is disturbed 

randomly, such as fish swimming in a lake, wave motion, boating, as well as other 

random disturbances, then mass transport may also be described by diffusion (eddy 

diffusion) on a scale larger than each perturbation, but the diffusivity may be sig­

nificantly larger. If not much activity happens in water, eddy diffusivity (or tur­

bulent diffusivity) would be only slightly higher than molecular diffusivity. In 

seawater, vertical turbulent diffusivity is about 10�5 m2/s (e.g., Gregg et al., 2003), 

4 orders of magnitude greater than molecular diffusivity. If the water is a main 

waterway for shipping, eddy diffusivity can be many orders of greater. For exam­

ple, eddy diffusivity may be as high as 70 m2/s. This and other concepts of diffu­

sion, such as self-diffusion, tracer diffusion, chemical diffusion, grain boundary 

diffusion, and  effective diffusion through a porous medium, are examined in Chapter 3. 
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Table 1-3b 18O diffusion coefficients in some minerals under hydrothermal conditions 
(PH2O ¼100 MPa) 

D along 
Mineral Direction D (m2/s) T range (K) other directions 

Albite Bulk exp(�29.10�10,719/T) 623–1073 

Anorthite Bulk exp(�25.00�13,184/T) 623–1073 

Orthoclase Bulk exp(�26.12�12,882/T) 623–1073 

Almandine Isotropic exp(�18.93�36,202/T) 1073–1273 

Apatite //c exp(�18.53�24,658/T) 823–1473 \c 3 orders slower 

Biotite \c exp(�20.82�17,110/T) 773–1073 //c 4 orders slower 

Muscovite \c exp(�18.68�19,626/T) 785–973 //c 4 orders slower 

Phlogopite \c exp(�18.08�21,135/T) 873–1173 //c 4 orders slower 

Calcite Bulk exp(�18.78�24,658/T) 673–1073 

Diopside //c exp(�22.62�27,174/T) 973–1523 \c 2 orders slower 

Hornblende //c exp(�25.33�20,632/T) 923–1073 \c 1 to 1.3 orders slower 

Richterite //c exp(�17.32�28,684/T) 923–1073 

Tremolite //c exp(�26.94�19,626/T) 923–1073 

Magnetite Isotropic exp(�21.77�22,645/T) 773–1073 

Quartz(a)  //c exp(�3.96�34,158/T) 773–823 \c 2 orders slower 

Quartz(b)  //c exp(�23.94�17,079/T) 873–1073 \c 2 orders slower 

Reference: Brady (1995).


Note. The direction of diffusion is the direction of fastest diffusion.


Although the diffusion coefficient is related to the diffusion ‘‘rate,’’ it is diffi­

cult to define a single diffusion ‘‘rate’’ during diffusion because the diffusion 

distance is proportional not to duration, but to the square root of duration: 

x / t1=2: (1-72) 
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Table 1-3c Ar diffusion coefficients in some minerals 

Mineral Orientation Shape model T range (K) D (m2/s) Tc (K) 

Hornblende Powder Sphere 773–1173 exp(�12.94�32,257/T) 770 

Phlogopite Powder Cylinder 873–1173 exp(�9.50�29,106/T) 646 

Biotite Powder Cylinder 873–1023 exp(�11.77�23,694/T) 554 

Orthoclase Powder Sphere 773–1073 exp(�13.48�21,685 /T) 529 

Note. The closure temperature Tc (see later discussion) depends on grain size and cooling rate; here 
it is calculated for a radius of 0.1 mm and a cooling rate of 5 K/Myr (Brady, 1995). Cylinder shape 
model means that the grains are treated as infinitely long cylinders with diffusion along the cross 
section (in the plane \c). 

The diffusion coefficient increases rapidly with temperature. The dependence 

of diffusivity on temperature also follows the Arrhenius relation, 

D ¼Ae�E=(RT), (1-73) 

where A is the preexponential factor and equals the value of D as T approaches ?, 

E is the activation energy, and R is the universal gas constant. 

Fick’s first law relates the diffusive flux to the concentration gradient but does 

not provide an equation to solve for the evolution of concentration. In general, 

diffusion treats problems in which the concentration of a component or species 

may change with both spatial position and time, i.e., C ¼C(x, t), where x de­

scribes the position along one direction. Therefore, a differential equation for 

C(x, t) must include differentials with respect to both t and x. That is, a partial 

differential equation is necessary to describe how C would vary with x and t. It  

can be shown that under simple conditions, the flux equation and mass con­

servation can be transformed to the following equation: 

@C @2C ¼D 
2 
: (1-74) 

@t @x

where C is a function of x and t, and D is assumed to be independent of C. This 

equation is called the diffusion equation, and is also referred to as Fick’s second 

law. The mathematics of diffusion is complicated and is discussed in Chapter 3. 

In this section, some results are presented and explained but not derived. 

From the diffusion equation, it can be seen that if @2C/@x 2 ¼0, then @C/@t ¼0, 

meaning that the concentration at the position would not vary with time. 

Hence, if the initial concentration is uniform, the concentration would not 

change with time. If the initial concentration profile is linear and the con­

centrations at the two ends are not changed from linear distribution, because 
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@2C/@x 2 ¼0 for a linear profile, the concentration profile would remain as a linear 

profile. A linear profile is often the steady state for a diffusion-controlled profile. 

Some examples of concentration evolution (Crank, 1975) are shown and ex­

plained below. These are all often-encountered problems in diffusion. The pur­

pose of the examples and the qualitative discussion is to help readers develop 

familiarity and gain experience in treating diffusion in a qualitative fashion. 

1.4.1.1 Point-source diffusion 

Initially, a substance is concentrated at one point along a straight line that ex­

tends to infinity to both sides. For convenience, the position of the point is 

defined as x ¼0. One real-world problem is the spill of toxic substance into a 

narrow lake. This problem is called the one-dimensional (or 1-D) point-source 

problem. With time, the substance would diffuse out and be diluted. The con­

centration variation as a function of time is shown in Figure 1–7a. The mathe­

matical description of the concentration of the substance as a function of x 

and t is 

M 
C ¼

(4pDt)1=2
e�x2=4Dt ; (1-75) 

where M is the total initial mass at the point source. For the unit of C to be mass/ 

volume, the unit of M must be mass/area (such as kg/m2). Therefore, even though 

this is a 1-D diffusion problem, one must know the cross-section area of the spill 

(and the cross-section area is assumed to be constant for 1-D diffusion) so that 

mass per unit area of the cross section can be calculated. The concentration at the 

center (x ¼ 0) is C ¼M/(4pDt)1/2. That is, the center concentration is infinity at 

zero time, and decreases as (t)�1/2. 

If a substance is initially concentrated at one point and then diffuses into three 

dimensions (along a spherical radius r) such as Figure 1–6b, then, 

M 
C ¼

(4pDt)3=2
e�r2=4Dt , (1-76) 

where M is the total initial mass (in kg) at the point source. The concentration 

variation along r is shown in Figure 1–7b. This problem is called the three-

dimensional (or 3-D) point-source problem. The dispersion of the mass is more 

rapid compared to 1-D point-source diffusion. 

1.4.1.2 Half-space diffusion 

One example of half-space diffusion is the cooling of an oceanic plate. The 

oceanic plate when created at the mid-ocean ridge is hot, with a roughly uniform 

temperature of about 1600 K. It is cooled at the surface (quenched by ocean 

water) as it moves away from the ocean ridge. For simplicity, ignore complexities 
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Figure 1-7 Evolution of concentration profiles for (a) one-dimensional point-source dif­
fusion and (b) 3-D point-source diffusion. This calculation is made for M ¼ 100 kg/m2, and 
Deddy ¼10�4 m2/s (eddy diffusivity). In the 3-D case, C was much higher at the center 
at smaller times because initial mass distribution was at a point instead of a plane; but at 
greater times, the concentration dissipates much more rapidly. 

such as the intrusion of sheeted dikes, crystallization of the magma, and hy­

drothermal circulation. The surface temperature may be regarded as constant at 

ocean floor temperature (about 275 K). The plate thickness may be regarded as 

infinite. This problem with uniform initial temperature and a constant surface 

temperature is referred to as the (1-D) half-space diffusion problem. The evolu­

tion of temperature with time is diagrammed in Figure 1–8a. The low surface 

temperature gradually propagates into the interior of the oceanic plate. 

Another example of half-space diffusion problem is as follows. A thin-crystal 

wafer initially contains some 40Ar (e.g., due to decay of 40K). When the crystal is 

heated up (metamorphism), 40Ar will diffuse out and the surface concentration 

of 40Ar is zero. If the temperature is constant and, hence, the diffusivity is con­

stant, the problem is also a half-space diffusion problem. 

A third example is as follows. Initially a crystal has a uniform d18O. Then the 

crystal is in contact with a fluid with a higher d18O. Ignore the dissolution of the 

crystal in the fluid (e.g., the fluid is already saturated with the crystal). Then 18O 

would diffuse into the crystal. Because fluid is a large reservoir and mass transport 

in the fluid is rapid, d18O at the crystal surface would be maintained constant. 

Hence, this is again a half-space diffusion problem with uniform initial con­

centration and constant surface concentration. The evolution of d18O with time 

is shown in Figure 1–8b. 

1.4.1.3 Diffusion couple 

If two samples of different composition are placed together in contact, then 

diffusion will occur to bridge the compositional difference and homogenize the 
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Figure 1-8 Heat and mass diffusion in a semi-infinite medium in which the diffusion 
profile propagates according to square root of time. (a) The evolution of temperature 
profile of oceanic plate. The initial temperature is 1600 K. The surface temperature (at 
depth ¼ 0) is 275 K. Heat diffusivity is 1 mm2/s. (b) The evolution of d18O profile in a 
mineral. Initial d18O in the mineral is 1%. The surface d18O is  10%. D ¼10�22 m2/s. 

two samples. The concentration evolution is plotted in Figure 1–9. The diffusion-

couple profile may be regarded to consist of two profiles, one to the left (x <0) 

with a surface concentration that is the arithmetic average of the two initial 

concentrations, and one to the right (x >0), with the same surface concentra­

tion. The center composition gradually propagates into both sides. 

1.4.1.4 Homogenization of an oscillatorily zoned crystal 

Initially the concentration of a component in a crystal is a periodic function such 

as a sine (or cosine) function as follows: 

Cjt ¼0 ¼C0 þA sin(2px=l ), (1-77) 

where A is the amplitude of the concentration fluctuation and l is the periodicity. 

As time progresses, the concentration profile would stay as a periodic function, 

but the amplitude would decrease with time: 

C(x, t) ¼C0 þAe�4p2Dt=l2 
sin(2px=l ): (1-78) 

The new amplitude is Ae�4p2Dt=l2 , decreasing with time exponentially. The con­

centration evolution is diagrammed in Figure 1–10. 

1.4.1.5 Diffusion distance 

The diffusion profile is a smooth profile. Even if the initial concentration dis­

tribution is not smooth, diffusion smoothes out any initial discontinuities. 

Therefore, there is no well-defined diffusion front (except for some special cases), 
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Figure 1-9 The evolution of concentration profile in a diffusion 
couple of silicate melt. D ¼1 mm2/s. Initially, the concentration 
profile is a discontinuous step function. The profile then becomes 
smooth. 

and it is difficult to define a diffusion distance. Nonetheless, as duration of dif­

fusion increases, the diffusion profile becomes longer and its length is propor­

tional to square root of time (Figures 1–7 to 1–10). Hence, it is useful to define a 

characteristic diffusion distance similar to the definition of half-life. Un­

fortunately, unlike the case for radioactive decay or first-order reactions where 

there is a unique definition of half-life, in diffusion, there is no unique definition 

of characteristic diffusion distance. Some authors define the characteristic distance 

as xc ¼ (Dt)1/2, where xc means the characteristic diffusion distance (if it would 

cause no confusion, the subscript ‘‘c’’ is often dropped from the notation). This 

definition roughly corresponds to the midconcentration distance (see definition 

below). Others define xc ¼ (4Dt)1/2, and still others define xc ¼ (pDt)1/2. All for­

mulas state that the characteristic ‘‘diffusion distance’’ is proportional to (Dt)1/2. 
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Figure 1-10 The evolution of concentration profile of an oscilla­
torily zoned plagioclase crystal. D ¼10�24 m2/s. The width of each 
cycle is 0.02 mm. In 1.6 Myr, the crystal is nearly homogeneous. 
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To avoid confusion and maintain consistency, we need a unique definition 

of diffusion distance, similar to the concept of half-life. In this book, a midcon­

centration distance for diffusion (xmid) is defined. The midconcentration distance 

is the distance at which the concentration is halfway between the maximum and 

minimum along the profile at a specific time. For the half-space diffusion prob­

lem where xmid is best defined because there is a definite surface where diffusion 

commences and the surface concentration is constant, 

xmid ¼0:95387(Dt)1=2: (1-79) 

For the point source diffusion problem, 

xmid ¼ (4Dt ln 2)1=2 ¼1:6651(Dt)1=2: (1-80) 

For a diffusion couple, the definition of xmid requires some thinking because the 

mid-concentration of the whole diffusion couple is right at the interface, which 

does not move with time. This is because for a diffusion couple every side is 

diffusing to the other side. On the other hand, if a diffusion couple is viewed as 

two half-space diffusion problems with the interface concentration viewed as the 

fixed surface concentration, then, xmid equals 0.95387(Dt)1/2, the same as the 

half-space diffusion problem. 

Knowing that xmid ¼ a(Dt)1/2, one can also estimate the time required for dif­

fusion to reach some depth x (that is, for the concentration at that depth to be 

halfway between the initial and final concentrations) using 

t1=2 ¼ x 2 =(a2D): (1-81) 

Example 1.4 Knowing D ¼10�22 m2/s, for half-space diffusion, estimate the 

time for the depth of 1 mm to reach the midconcentration. 

Solution: Because a ¼0.95387 for half-space diffusion, 

t1=2 ¼ x 2 =(a2D) ¼ (10�6)2 =(0:953872�10�22) s  ¼348 yr: 

1.4.1.6 Microscopic view of diffusion 

Statistically, diffusion can be viewed as random walk of atoms or molecules. 

Consider diffusion in an isotropic crystal, such as Mg and Mn exchange in spinel 

for a case in which the only concentration gradient is along the x direction. 

Consider now two adjacent lattice planes (left and right) at distance l apart. If the 

jumping distance of Mg is l and the frequency of Mg ions jumping away from 

the original position is f, then the number of Mg ions jumping from left to right is 
1 nLf dt, and the number of Mg ions jumping from right to left is 1 nRf dt, where 6 6 

nL and nR are the number of Mg ions per unit area on the left-hand side plane 

and on the right-hand side plane. The factor 16 in the expressions is due to the fact 

that every ion jump can be decomposed to motion in six directions on three 
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orthogonal axes (left, right, up, down, front, back), and we are considering only 

one direction (from left to right or from right to left). The jumping frequency f 

is assumed to be the same from left to right or from right to left, i.e., random walk 

is assumed. Therefore, the net flux from the left plane to the right plane is 

J ¼ 6
1 (nL �nR)f : (1-82a) 

Since nL ¼ lCL and nR ¼ lCR, where CL and CR are the concentrations of Mg on the 

two planes, then 

J ¼ 1 
6 l(CL �CR)f : (1-82b) 

Now because 

CL �CR ¼� l 
@C 

@x 
(1-82c) 

we have 

J ¼� 1 
6l

2f 
qC 

qx 
: (1-82d) 

Comparing this with Fick’s law (Equation 1-71), we have 

D ¼ 1 
6l

2f : (1-82e) 

Thus, microscopically, the diffusion coefficient may be interpreted as one-sixth 

of the jumping distance squared times the overall jumping frequency. Since l is of 

the order 3 �10�10 m (interatomic distance in a lattice), the jumping frequency 

can be roughly estimated from D. For D &10�17 m2/s such as Mg diffusion in 

spinel at 14008C, the jumping frequency is 6D/l2 �700 per second. Because ion 

jumping requires a site to accept the ion, the jumping frequency in solids de­

pends on the concentration of vacancies and other defects. In liquids, the 

jumping frequency depends on the flexibility of the liquid structure, and is hence 

related to viscosity. 

For an anisotropic crystal, jumping frequencies in different directions may not 

be the same, and, hence, D along each crystallographic direction may be dif­

ferent. The relation between D and jumping frequency may be written as follows: 

Di ¼ l2fi, (1-82f) i 

where Di is diffusivity along a crystallographic direction i, li is the jumping dis­

tance along the direction, and fi is the jumping frequency along the direction. 

1.4.2 Convection 

Diffusion is one mode of mass transfer. If the phase is fluid or if the temperature is 

high for the solid to show fluid behavior, there is a second way to transfer mass, 
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which is fluid flow, sometimes referred to as convection, or convective mass 

transfer, or advection, depending on the authors and the problems at hand. 

(More strictly, especially in meteorology, advection means horizontal motion of 

gas and convection means vertical motion. However, the distinction is not al­

ways made.) There is mass flux due to fluid flow. In the case of unidirectional 

laminar flow along the x direction, the concentration variation as a function of x 

and t can be related through the following partial differential equation: 

@C @C 

@t 
¼ �u 

@x 
, (1-83) 

where u is the flow rate along the x-direction. Because diffusion is always present, 

the full equation in the presence of flow is called the convective diffusion 

equation and is as follows: 

@C @2C @C 

@t 
¼D 

@x2 
� u 

@x 
, (1-84) 

Convection enhances mass transfer. The general convective diffusion equation is 

not trivial to solve and will be dealt with later. 

1.5 Kinetics of Heterogeneous Reactions 

There are a variety of heterogeneous reactions. Most reactions encountered by 

geologists are heterogeneous reactions. The kinetic aspects of various heteroge­

neous reactions have been reviewed by a number of authors (Kirkpatrick, 1975, 

1981; Berner, 1978). Heterogeneous reactions may be classified as at least three 

different types. 

(1) The first and the simplest type is component exchange between phases 

without growth or dissolution of either phase. Examples include oxygen isotope 

exchange between two minerals, and Fe2þ–Mg2þ exchange between olivine and 

garnet or between olivine and melt. This is essentially a diffusion problem. 

(2) The second type is simple phase transitions in which one phase transforms 

into another of identical composition, e.g., diamond ? graphite, quartz ? coe­

site, and water ? ice. This type sounds simple, but it involves most steps of het­

erogeneous reactions, including nucleation, interface reaction, and coarsening. 

(3) The third and the most common type is complex phase transformations, 

including the following: (i) some components in a phase combine to form a new 

phase (e.g., H2O exsolution from a magma to drive a volcanic eruption; the 

precipitation of calcite from an aqueous solution, Ca2þþCO2
3 
� ? calcite; the 

condensation of corundum from solar nebular gas; and the crystallization of 

olivine from a basaltic magma), (ii) one phase decomposes into several phases 

(e.g., spinodal decomposition, or albite ? jadeite þquartz), (iii) several phases 

combine into one phase (e.g., melting at the eutectic point, or jadeite þ 
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