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Progress and Problems in Large-Scale 
Atmospheric Dynamics 
Isaac M. Held 

1.1. Introduction 

A theory for the general circulation of the atmosphere has at its core a theory for the 

quasi-horizontal eddy fluxes of energy, angular momentum, and water vapor by the 

macro-turbulence of the troposphere, as well as a theory for the much smaller-scale 

convective motions that transport heat and water vertically, especially in the Tropics. A 

few of the many issues related to convective vertical fluxes are discussed in chapters 7, 8, 

10, and 11 in this volume. The focus in this chapter, and of chapters 2–6, 9, and 12, 

is primarily on the large-scale quasi-horizontal component of the problem. In the 

Tropics, fluxes by large- and small-scale eddies are so tightly coupled that one cannot 

easily discuss one without simultaneously discussing the other. But outside of the 

Tropics, one can hope that a focus on large-scale dynamics in isolation is a meaningful 

starting point, and it is on the extratropical circulation that I concentrate here. 

All of us would love to find a simple variational principle or “fundamental 

theorem of climate” that solves this problem in a single stroke, but I suspect that most 

of us are skeptical that such a principle exists. We assume, instead, that the best way of 

developing theories for a system of this complexity is to construct a hierarchy of models, 

of varying levels of comprehensiveness, chosen so as to capture the essential sources of 

complexity with minimal extraneous detail. When confronted with a theory claiming 

great generality, we expect to see a demonstration that it explains the behavior seen on 

a number of different levels of our model hierarchy. 

An analogy with the use of “model organisms” in biology is informative. Nature 

has provided us with just the kind of hierarchy, from bacteria to fruit fly to mouse, 

needed to build up an understanding of our own complex biology. We have no such 

ready-made hierarchy in climate research, and must instead design and build our own. 

See Held (2005) for an extended discussion of this analogy and the consequences of the 

fact that our climate hierarchy is a theoretical construct while the biological hierarchy is 

provided by nature. 
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What hierarchy of models should we study so as to best understand how global 

climate is controlled by external parameters and boundary conditions? The choice of 

models is centrally important. Only if, as a community, we have selected appropriate 

models to study collectively will our understanding accumulate efficiently. I personally 

do not feel that appropriate models can be selected in a systematic way; our physical 

intuition must guide us towards the most informative models. 

In this chapter I will refer to the classic two-layer quasigeostrophic (QG) model, 

moist QG models, and particular idealized dry and moist primitive-equation models on 

the sphere. The discussion revolves around the related problems of the poleward eddy 

heat flux, the effect of latent heat release on midlatitude eddies, and distinctions between 

the dynamics of the upper and lower troposphere. Considerable space is devoted to the 

simplest of these models, the two-layer QG model, in an especially simple horizontally 

homogeneous configuration. 

I find this model of homogeneous QG turbulence useful from several perspectives, 

but there is no claim that the theory for the eddy fluxes in this model is of direct 

quantitative relevance to the atmosphere. When we talk about the need for a model 

hierarchy, we are implicitly assuming that the more idealized members of this hierarchy 

are missing some important ingredients, but that, in spite of these limitations, an 

understanding of these simpler models is a useful stepping stone to an understanding 

of their more complex relatives. 

1.2. The Two-Layer QG Model 

The two-layer QG system provides us with what may be our simplest turbulent “climate” 

model. The state of this model is determined by the streamfunctions for the non-

divergent component of the horizontal flow in two layers of fluid, meant to represent 

the flow in the upper (ψ1) and lower (ψ2) troposphere, the (eastward, northward) 

components of the velocity being (u, v) = (−∂ψ/∂y, ∂ψ/∂x). In the meteorological 

context we can think of two isentropic layers of ideal gas with different entropies, or 

potential temperatures θ , with  θ1> θ2 so as to represent a gravitationally stable system. 

Hydrostatic and geostrophic balance combine to create Margules’ relation between 

the perturbations to the height of the interface between the two layers, η, and the 

difference between the two streamfunctions. In a Boussinesq fluid (with all potential 

temperatures assumed to be small perturbations away from a constant θ0) this relation is 

f (ψ1−ψ2) = −g ∗ η, where  g ∗ ≡ g (θ1− θ2)/θ0 is the reduced gravity and f the Coriolis 

parameter. The dynamics reduces to the advection by these non-divergent flows of a 

scalar, the QG potential vorticity qk , within each layer, where 

qk = ∇2ψk + (−1)kλ−2(ψ1−ψ2) +βy; k = 1, 2 [1.1] 
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and λ is the radius of deformation, defined by λ2 = g ∗H/ f 2, with  H the resting depth 

of the two layers (assumed to be equal here). The final term in (1.1), with β a constant, 

is an approximation to the all-important vorticity gradient due to the increase in the 

radial component of the vorticity of solid body rotation with increasing latitude y. 

When relating this two-layer picture to a continuously stratified atmosphere, we think 

of (g ∗H)1/2 → N H , with  N2 = (g/θ)∂θ/∂z and −η as proportional to the vertically 

averaged potential temperature. 

A simple way of creating a statistically steady state is to force the system with 

mass exchange between the two layers, this model’s version of radiative heating, 

arranged so as to relax the interface to a “radiative equilibrium” shape with a zonally 

symmetric meridional slope. This mass exchange can be expressed in terms of potential 

vorticity sources in the two layers. One also invariably includes two types of dissipation: 

small-scale diffusion is needed to mop up the vorticity variance that cascades to small­

scales; and surface friction, damping the low-level vorticity, is needed to remove energy 

in a non-scale selective manner. Energy does not cascade to small scales in this model 

and cannot be removed realistically with horizontal diffusion. 

Radiative equilibrium is a solution of these equations, with no flow in the lower 

layer and zonal flow in the upper layer, with the Coriolis force acting on the vertical 

shear U = u1− u2 between the two layers balancing the pressure gradients created by 

the radiative equilibrium interface slope. This flow is unstable in the absence of the 

dissipative terms, when the isentropic slope is large enough to overcome β and reverse 

the sign of the north-south potential vorticity gradient in one of the layers. In flows with 

temperature decreasing (interface slope rising) with increasing y, this reversal occurs 

in the lower layer. If the relative vorticity gradient of the zonal flow is negligible as 

compared to β, the criterion is the classic one discussed by Phillips more than half 

a century  ago:  ξ ≡ U/(βλ2)> 1. (The supercriticality ξ is the two-layer counterpart 

to the parameter Sc used in chapter 3.) The existence of this critical slope presents us 

with a problem, since analogous models of inviscid baroclinic instability in continuously 

stratified atmospheres are unstable for any nonzero vertical shear (or isentropic slope). 

(In multilayer models, the critical interfacial slope is simply proportional to the depth 

of the lowest layer.) We will need to return to this point. 

Phillips (1956) constructed the first “general circulation model,” or “climate 

model,” based on two-layer QG dynamics. Nowadays we might instead refer to this 

work as modeling the statistically steady state of a baroclinically unstable jet on a 

β-plane. Whatever we call it, this model still captures an impressive subset of 

the dynamics of the midlatitude storm tracks. Phenomena have been discovered in the 

solutions of these equations that have then been searched for and found in the 

atmosphere. The coherent baroclinic wave packets described in Lee and Held (1993) 

are an example from my own research. (Unfortunately, it is not obvious in reading 

that paper that we first encountered these wave packets while experimenting with the 

two-layer QG system.) 
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As long as the dissipative terms are linear, a theory for the time-mean geostrophic 

flow in this model reduces to a theory for the poleward eddy potential vorticity fluxes 

in the two layers, Pk ≡ v ′ ′ , where an overbar refers to the zonal mean and a prime kqk

to deviations from this mean. We can relate these fluxes to the eddy momentum fluxes 

Mk ≡ vk
′u′ 

k and the thickness (heat) fluxes Tk ≡ vk 
′ η′ (where T1 = T2 ≡ T from Margules’ 

relation), 

P1 = −  
∂M1 + f T /H ; P2 = −  

∂M2 − f T /H. [1.2]
∂y ∂y 

The two potential vorticity fluxes cannot fully determine the three fluxes (M1, M2, T ); 

therefore, the eddy thickness and momentum fluxes are more than we need to know if we 

are only interested in the mean zonal flow and the interface displacement (temperature). 

The most fundamental limitation of QG dynamics is that it assumes a reference 

static stability; in this two-layer model the potential temperature difference between 

the two layers is fixed. One is perilously close to throwing the baby out with the bath 

water in such a theory. What could be more fundamental to a theory of climate than an 

understanding of the mean stratification of the atmosphere? But perhaps we can develop 

theories for the QG fluxes, and then use these outside of the QG framework to help as 

needed in determining the static stability. We illustrate this kind of argument below. 

1.3. Eddy Closure in the Two-Layer Model 

What is the scale of the typical energy-containing eddy in this two-layer QG model? 

Linear theory points to the radius of deformation, as it is the zonal scale of the 

most rapidly growing linear waves. A classic assumption (Stone 1972) is that the 

nonlinearity of the flow isotropizes the eddies in the horizontal and imprints this scale 

on the meridional as well as zonal eddy structure, and on eddy mixing lengths as 

well. An interesting implication is that there seems to be potential for scale separation 

in the horizontal, since this scale would then be independent of the mean flow 

inhomogeneity in the direction of the flux, in contrast to the situation in most laboratory 

turbulent flows. 

If there is scale separation, one is justified in thinking in terms of local rather than 

global theories for the eddy fluxes. An example of a global theory is an approach referred 

to as baroclinic adjustment, in analogy with convective adjustment for gravitational 

instability (e.g., Stone 1978a). Since the instability of the flow can be thought of as due to 

the reversal in sign of the lower-layer potential vorticity gradient, suppose that the eddy 

fluxes are just sufficient to bring this gradient back to zero. Given a value of the radiative 

equilibrium shear and the width of the unstable region LQ , the magnitude of the eddy 

potential vorticity flux required to destroy the gradient is proportional to L2 (since the Q 

rate of change of the mean gradient is proportional to the second derivative of the eddy 

flux). LQ is a global piece of information. However, as LQ is increased in numerical 
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simulations, the eddy potential vorticity fluxes are found to grow more slowly than L2 
Q 

and eventually to asymptote to values independent of LQ (Pavan and Held 1996). While 

baroclinic adjustment does not work in two-layer QG flows with large LQ , it may very  

well be an adequate, indeed a very useful, approximation for the case of narrow regions 

of instability. 

An example of a local theory is simple diffusion of potential vorticity, with a 

diffusivity determined by aspects of the local environment. We cannot expect a truly 

local diffusive theory to be exact. The relationship between eddy flux and environment 

must be nonlocal over the scale of the eddies at least. Additional nonlocality is 

introduced if the production and dissipation of the eddies are not colocated. For 

example, the simplest diffusive picture does not work when applied locally in longitude 

in the zonally asymmetric midlatitude storm tracks (Marshall and Shutts 1981; Illari 

and Marshall 1983). Eddies are preferentially generated in the strongly baroclinic zones 

at the jet entrance regions and decay downstream in the jet exit regions. It is only 

when one averages zonally over these regions of predominant eddy growth and eddy 

decay that one has a reason to expect a local, diffusive picture to hold in some 

approximate sense. 

Given a diffusivity D and radiative relaxation time τ , we should not expect to 

reach the LQ-independent asymptotic regime until LQ 2> Dτ , or (L Q/L )2> (τ/T), 

where L and T are eddy length and time scales. The resulting scales are large compared 

to the radius of the Earth. But we do not need to be in this asymptotic regime to apply a 

diffusive theory; all that is required is scale separation LQ > L . As in many applications 

of WKB-like theories, one can even hope that the local theory is adequate when LQ ≈ L . 

The simplest scaling for the diffusivity is that suggested by Stone (1972): 

D ∼ V L  ∼ Uλ, where the eddy velocity scale V has been chosen proportional to the 

mean vertical shear U over the depth of the atmosphere. The assumption V ∼ U is 

equivalent to assuming that the eddy kinetic energy is proportional to the mean available 

potential energy (the increase in potential energy due to the interface slope) within 

a region of width λ. This diffusivity is itself proportional to the interface slope, or 

horizontal temperature gradient. If we can use this diffusivity for the sensible heat 

flux, following Stone, we obtain a heat flux proportional to the square of this gradient. 

Numerical experiments in the homogeneous limit described below clearly indicate that 

the eddy fluxes in this two-layer QG model are even more sensitive to the horizontal 

gradient; they also give us some guidance on how to incorporate β into the theory. 

1.4. The Homogeneous Limit 

Given the potential for a local theory, one is led to artificially create a truly homogeneous 

environment in which to study eddy fluxes in the simplest possible context. QG theory 

allows one to do this in an elegant way by assuming that there is a uniform zonal flow 
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in both layers, and, therefore, a uniform vertical shear and uniform potential vorticity 

gradients. One then assumes that the total flow consists of this environment, plus eddies 

constrained to be doubly periodic. One can think of this geometry as a generalization of 

the familiar QG β-plane to the case with potential vorticity gradients of opposite sign in 

the two layers. 

In this geometry, the eddy fluxes are horizontally homogeneous. Therefore, 

according to (1.2), the potential vorticity fluxes reduce to the eddy thickness (heat) flux 

and are equal and opposite in the two layers. The momentum fluxes must also vanish 

if the climate is unique, since the equations are symmetric with respect to reflection in 

y, and the momentum fluxes change sign upon reflection. The central simplification 

is that one can study how the eddy fluxes are controlled by environmental parame­

ters without simultaneously being concerned with the effect of these eddy fluxes on 

their environment. 

A problem immediately arises from the inverse energy cascade, a cascade to larger 

rather than smaller scales. Calculations show unambiguously that the dominant eddy 

scale in the fully turbulent statistically steady state is generally larger than the radius of 

deformation due to this inverse cascade. It is useful to rearrange the two vertical degrees 

of freedom of this model into the barotropic (ψ1+ ψ2) and the baroclinic (ψ1− ψ2) 

modes. The picture of the energy flows as a function of wavenumber in this modal 

basis has been described by Rhines (1977), Salmon (1978, 1980), and Larichev and Held 

(1995). The barotropic mode is energized by transfer from the baroclinic mode near 

the radius of deformation. The inverse cascade takes place in the barotropic mode, and 

energy is dissipated by surface friction on the scales to which this cascade carries the 

energy. If the cascade is extensive, the barotropic mode dominates the kinetic energy, 

so that the baroclinic potential vorticity (dominated on large scales by the thickness 

variations) can then be thought of as advected passively by the barotropic mode (since 

it does not induce the flow by which it is advected). The available potential energy, or 

thickness variance, is generated on these large energy-containing scales by extraction 

of energy from the environmental potential energy through downgradient thickness 

(heat) fluxes, just as in two-dimensional downgradient turbulent diffusion of a passive 

scalar, and cascades to smaller scales back towards the radius of deformation, completing 

the cycle. 

Albeit directly applicable only for a rather special situation, it is striking how little 

this homogeneous turbulence picture has left in it that bears any resemblance to the 

scales and concepts familiar from linear theory. 

As in Kolmogorov’s classic work on the direct cascade of energy in three­

dimentional turbulence, the key element of the two-dimensional inverse cascade, as 

described by Kraichnan (1971), is the rate of transfer of energy through the spectrum, ε. 

Together with the wavenumber k, ε determines the energy level of the flow and the 

characteristic time scale of the eddies. The key question is the scale at which the inverse 

energy cascade is halted. 
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At this point we take advantage of the insight of Rhines (1975) that the presence of 

an environmental barotropic vorticity gradient β can effectively stop the cascade, given 

the property of the Rossby wave dispersion relation that larger waves have larger intrinsic 

phase speeds (β/k2). When these phase speeds become comparable to the characteristic 

velocity of the flow, the eddies morph into linear waves. Stopping the cascade in this 

way produces a flow that is simultaneously marginally turbulent and marginally wave­

like, an elegant qualitative description of midlatitude eddies. From β and ε one forms 

length and time, or velocity, scales, or one can proceed directly to a diffusivity with units 

of length2/time, 

D ∼ ε3/5β−4/5 . [1.3] 

Surface friction must eventually remove energy from the model. In the presence of β, 

the flow forms zonal jets that store the energy until it is dissipated. Sensitivity of the 

diffusivity to the strength of surface friction might then modify this scaling to the extent 

that the structure of this jet reservoir feeds back on the eddy statistics. In the absence of 

β, the strength of surface friction must play a direct role in the scaling (Thompson and 

Young 2006), since it is then the only process that can stop the inverse cascade. 

The potential energy extracted from the environment can be written in terms of 

the eddy potential vorticity flux in either layer, 

ε =
� 

UiPi = UP1 = −UP2 = UβD1(1 + ξ) = UβD2(ξ − 1), [1.4] 
i 

where U = U1− U2. We equate this production to the rate of energy transfer through 

the inverse energy cascade. We define a diffusivity in each layer as the eddy potential 

vorticity flux divided by the mean potential vorticity gradient. As β → 0, ξ → ∞, and  

D1 → D2 (see Vallis 1988). Equating D in (1.3) with either D1 or D2, in this limit 

we have 

D N H  
ε = 

T 2
, T ≡ 

f U  
, [1.5] 

where T−1 is often referred to as the Eady growth rate, though it does not enter here 

through any connection to linear theory. Combining with (1.3) one arrives at 

1 
D ∼ [1.6]

β2T 3 

or 

D ∼ ξ 3 . [1.7]
βλ3 

This is the scaling presented by Held and Larichev (1996). A more accurate fit to 

numerical experiments is provided by the modified formulation in Lapeyre and Held 

(2003), for which a satisfactory justification has yet to be provided. The proposal is 

simply to equate D with the lower-layer diffusivity D2, irrespective of the value of  β. 
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Figure 1.1. Comparing a theory for eddy heat fluxes in a homo­

geneous two-layer model with numerical simulations. Dots are the 

diffusivity, here non-dimensionalized by Uλ, computed numer­

ically in a 1024 × 1024 spectral simulation after Lapeyre and 

Held (2003), compared with the theoretical scaling provided by 

equation (1.8). The departures at large supercriticality are probably 

related to the finite size of the domain. 

(I return to the motivation for this assumption in section 1.9.) The result is 

D D ∼ ξ 3(1 − 1/ξ)3/2 or ∼ ξ 2(1 − 1/ξ)3/2 [1.8]
βλ3 Uλ 

This has the same ξ → ∞  limit as (1.7). The fit to the numerical results, for fixed 

strength of surface friction, is shown in Fig. 1.1. This form also has the advantage that 

the diffusivity vanishes as ξ → 1, consistent with the criterion for instability. This is 

my best shot at present for a qualitative explanation of the baroclinic eddy fluxes in 

this idealized homogeneous environment. As β → 0 and  ξ → ∞, the eddy length scale 

increases without bound in this theory, implying that some other scales, determined by 

the surface friction or the domain geometry, must come into play. 

Whether or not the details are right, this line of argument points to a flux 

that is very sensitive to environmental gradients: equation (1.7) yields a diffusivity 

proportional to the third power, a flux proportional to the fourth power, and an 

energy cycle ε proportional to the fifth power of the horizontal temperature gradient. 

Equation (1.8) only increases this sensitivity to ξ . In practice, this means that it is very 

hard, in this two-layer model, to change the gradient, to the extent that the system has 

difficulty supplying energy at the rate required. 

As the width of the unstable region increases, the flow typically makes a transition 

from one to two and then to multiple jets, with a storm track associated with each jet. 

One is tempted to assume that the homogeneous limit cannot be relevant to the one-jet 

case, but only begins to become appropriate for the case of two or more jets, the former 
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being too inhomogeneous. The implication would be that the theory is irrelevant for the 

Earth, which has only one eddy-driven jet per hemisphere. An argument along similar 

lines starts with the observation that momentum fluxes vanish in the homogeneous 

system, averaged over space or, presumably, averaged over time at each point in space. 

But momentum fluxes appear to play a significant role in the stabilization of flows in the 

troposphere, as encapsulated in the barotropic governor mechanism of James (1987). The 

essence of this mechanism is that as barotropic shears are generated by the momentum 

fluxes, they progressively interfere with the baroclinic production mechanism and 

thereby limit growth. 

My impression, in contrast, is that the equilibration mechanisms in one-jet 

and multiple-jet flows, and in this homogeneous model, are essentially the same, the 

dominant process being a generalized version of the barotropic governor, in which it is 

not only zonally averaged barotropic shears but the energy-containing barotropic mode, 

whether jet-like or not, that interferes with baroclinic production (see Salmon 1980). 

One does not need time-averaged momentum fluxes to create a barotropic governor; 

instantaneous shears are adequate. 

On the other hand, the approach to the homogeneous limit is not likely to be 

simple. For example, Lee (1997) has shown that eddy statistics undergo non-monotonic 

evolution as one increases the width of the unstable region so as to make the transition 

from one jet to two. Relatively little has been achieved with regard to how one might use 

the homogeneous limit as a starting point for inhomogeneous theory. See in this regard 

Pavan and Held (1997). 

1.5. Static Stability Maintenance 

A key question in general circulation theory is whether or not the slope of the mean 

isentropes in the troposphere is strongly constrained. The observed slope is close to 

the aspect ratio of the troposphere: an isentropic surface that is near the ground in 

the Tropics rises to the tropopause in polar latitudes. Is this a coincidence, or is this 

particular slope favored? 

Using the scaling from the previous section for the diffusivity due to baroclinic 

eddies, one can, in the spirit of Stone (1972), try to develop a theory for the static 

stability. In a stratified atmosphere, the expression (1.7) for the diffusivity, for example, 
−3/2implies that D ∼ 
3 

H
V , where  
H and 
V are the horizontal and vertical potential 

temperature gradients, respectively. To obtain the horizontal eddy heat flux H, one  

multiplies by another factor of 
H . To estimate the vertical eddy heat flux V (ignored 

in QG theory) one can assume that the total flux is aligned along isentropic surfaces, 

averaged over the troposphere, so that V
V ∼ H
H , or  V ∼ 
5 
H


−5/2. We next need to V 

assume that the static stability is maintained by a balance between this eddy vertical heat 

flux and the destabilization by radiation. If we just assume that radiation relaxes 
V 
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to zero on some specified time scale, and that the vertical scale of the eddies is fixed, 

then 
V ∼ V , resulting in the estimate 
V ∼ 
10/7 and D ∼ 
6/7. The point of this H H 

manipulation is not to make a case for this specific result, but to illustrate how allowing 

the stability to adjust to changing eddy fluxes can potentially alter the sensitivity of the 

fluxes to the horizontal temperature gradient. 

This scaling suggests that the isentropic slope can be altered by modifying the 

horizontal temperature gradient, albeit with some difficulty: 
H/
V ∼ 
−
H 

3/7. If we use  

(1.8) instead of (1.7) the result is a much stronger constraint on the isentropic slope, 

when the system is in the proximity of the critical slope. But is this legitimate, given the 

seemingly artificial character of the two-layer model’s critical slope? 

As an alternative to thinking in two-layer terms, it has been suggested that one 

needs to couple the prediction of the static stability with a prediction of the tropopause 

height, and that by doing so one introduces a stronger constraint on the isentropic 

slope in the continuously stratified case (Held 1982). The essence of this argument 

can be understood by thinking of a continuously stratified QG model with fixed static 

stability and vertical shear; in this system the claim is that the distance that the eddy 

fluxes extend above the surface scales as h ∼ f 2∂U/∂z/(β N2), which is equivalent 

to ξ ∼ 1. See Thuburn and Craig (1997) for a critique of this claim, and Schneider (2004) 

and Schneider and Walker (2006), who provide strong support for a refined version of 

this argument (while simultaneously calling into question the relevance of continuously 

stratified QG theory). 

1.6. The Entropy Budget 

In a comparison of theories for the poleward heat flux with various scaling arguments, 

Barry et al. (2002) combine the Rhines scale-inverse energy cascade relation (1.3) with 

an estimate of ε from a global entropy budget, rather than an energy budget. It is useful 

to understand how these approaches are related, as the entropy perspective may be 

especially useful in the presence of latent heat release. 

Consider a dry atmosphere forced by the time-mean heating/cooling Q. The forc­

ing decreases the entropy at a rate determined by averaging Q/T over the atmosphere. 

(From this point on, the symbol T refers to temperature, not to an eddy time scale.) 

This is a decrease in entropy because Q creates temperature gradients by warming 

(cooling) regions that are already relatively warm (cool). In a steady state this entropy 

destruction is balanced by production due to irreversible processes, the dominant one 

in a dry atmosphere being the dissipation of kinetic energy (that is, the diffusion of 

momentum), the rate of kinetic energy dissipation being ε once again. We ignore 

radiative damping of transients due to the correlation in time between Q and T , which  

will create entropy, and we also ignore diffusion of temperature. The latter tends to be 

small because temperature, in balanced flows, cascades to small scales only at the surface 
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and not in the interior of the troposphere. Therefore, 

Q ε −
� 

≈ , [1.9]
T Tε 

where Tε is the average temperature at which the energy dissipation occurs and 

all integrations are over the mass of the atmosphere. We assume small departures 

of T and Tε from a reference temperature T0 as needed. 

Barry et al. (2002) estimate ε in their model by taking the distribution of Q as 

given. This may seem like one is giving oneself too much information, in that Q is 

dominated by the divergence of the eddy heat flux for which one is trying to develop a 

theory. But suppose one has a theory for the eddy diffusivity, and eddy heat or potential 

vorticity fluxes, that depends on ε. Given  ε, one determines the fluxes and temperatures, 

and therefore Q; one can then iterate to obtain self-consistency. A difficulty with 

this approach is that one loses the sense of a local theory, ε being determined by a 

global integral. 

But one can regain a local perspective by setting Q = ∇ · F , where  F is the flux of 

dry static energy, and then integrating by parts: 

ε 
� 

1 
� 

1 
� 

1 ∂ ln T
����− ≈ F · ∇T = F · ∇ ln T = FH . [1.10]

Tε T 2 T T ∂y M 

In the final expression, we have assumed that the climate is zonally symmetric, so that 

F is a vector in the y − z (or y − p) plane with horizontal component FH , and  have  

let M denote a coordinate that is constant on the surface along which F is aligned. One 

can now apply this locally, setting the local ε-density equal to the integrand. To see the 

connection with the QG arguments above, one needs to assume that M ≈ θ . Letting 

S be the isentropic slope, 

∂ ln T
�� R ∂ ln p

�� R ∂ ln p g
FH 

∂y 
��
θ 

= FH 
cp ∂y 

��
θ 

= FH 
cp 

S 
∂z 

= F H 
cpT 

S. [1.11] 

Substituting for FH ≈ cpv′T ′ and setting 

∂y θ 
S = −  [1.12]

∂z θ 

and (g/T)v′T ′ = D f ∂zU , we regain equation (1.5). For later reference, notice that the 

static stability makes its only appearance in this argument at the point when the mixing 

slope is set equal to the isentropic slope. 

Entropy and available potential energy budgets are not equivalent in general, 

but they are closely enough related that they lead to essentially the same scaling 

approximations. 
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1.7. Moist Eddies 

We would like our theories for midlatitude eddy fluxes to help us understand the 

implications of the increase in moisture content in the atmosphere that will accompany 

global warming. We would also like to make use of the seasonal cycle to test our theories 

for these eddy fluxes (e.g., Stone and Miller 1980), but these tests are not very convincing 

as long as one is ignoring the effects of latent heat release, which vary seasonally in 

tandem with the variations in the large-scale temperature gradients. The length scale 

of midlatitude eddies is observed to be larger in northern winter than in summer. Is 

this due to the larger eddy energies in winter, which result in a larger Rhines scale, 

or is it that eddies are smaller in summer because of a reduction in an effective static 

stability due to latent heat release? A central theoretical issue is whether there are ways of 

using concepts like moist entropy (Emanuel and Bister 1996) or moist available potential 

energy (Lorenz 1978) so as to carry some of the lines of argument developed for dry 

eddies over to the moist case. 

Lapeyre and Held (2004) construct a relatively simple moist model by adding a 

water vapor variable to the two-layer QG model. To obtain consistent energetics, they 

treat moisture in an analogous way to temperature (or thickness) by requiring the 

moisture field to be a small perturbation away from a prescribed mean value that is 

uniform within each layer. Despite this limitation, the form of this model’s energetics is 

of interest. Here I provide a brief sketch of QG moist energetics more generally, because 

it has a feature that is counterintuitive (for me) and may have interesting implications 

for how we think about moist eddies. 

In a dry QG model the available potential energy (APE) is proportional to the 

variance of the interface displacement. This form follows from the QG thermodynamic 

equation of the form 

∂b = −N2 w − J (ψ, b). [1.13]
∂t 

We use the Boussinesq approximation for simplicity, with b the buoyancy; the final term 

represents horizontal advection by the geostrophic flow. The conversion of potential 

to kinetic energy is [bw], where brackets denote a global mean. One manipulates the 

buoyancy equation to have the same expression on the right-hand side by multiplying 

by b/N2 and averaging: 

∂APE 

∂t 
= −[wb]; APE ≡

� 
b2 

2N2

� 

. [1.14] 

In a moist QG model, one has instead, schematically, 

∂b = −N2 w − J (ψ, b) + L P , [1.15]
∂t 
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where P is the condensation rate and L the latent heat, and 

∂q = −(∂zQ)w − J (ψ, q) − P , [1.16]
∂t 

where q is now the moisture perturbation (not potential vorticity) and Q = Q(z) 

the reference moisture. Forming an equation for the buoyancy variance results in the 

term [P b] on the right-hand side, which we wish to avoid. One can eliminate P by 

forming a moist enthalpy equation for h ≡ b + Lq , but forming an equation for the 

variance of h generates a term proportional to [hw] rather than [bw]. One can try 

to remedy this problem by forming an equation for the variance of the moisture, but 

this reintroduces the precipitation on the right-hand side through [q P ]. The successful 

manipulation uses the variance of the saturation deficit, d = qs − q , where one assumes 

that precipitation occurs when saturation occurs, so that [d P  ] = 0. Here I describe 

the simplest case, in which qs is a constant, independent of temperature (the case in 

which the saturation vapor pressure is a function of temperature or bouyancy (b) is a  

bit more involved). We can then set this qs = 0 (recall that q is here the departure from 

the reference Q(z)). We finally obtain an equation of the form 

∂QAPE 1 
� 

h2 d2 � 

∂t 
= −[wb]; QAPE ≡ 

2 (N 2− L |∂zQ|) 
+ L |∂zQ| . [1.17] 

Thus, our moist available potential energy (QAPE) has one term proportional to 

the variance of the moist enthalpy, divided by a moist stability, plus an additional term 

proportional to the variance of the saturation deficit, or dew point depression. This form 

is presumably related to Lorenz’s general form for moist APE, specialized to the case of 

small interface displacements and small moisture deficits. The implications for moist 

energetics of the presence of the term proportional to the saturation deficit variance 

are obscure but intriguing. There is an energetic cost to an increase in undersaturation. 

I find it difficult to understand this statement intuitively. See Frierson et al. (2004) for 

an application of an analogous expression to a shallow-water model. 

The sources/sinks of QAPE also have additional terms not present in the dry 

case. Evaporation into unsaturated air and diffusion of water are both important sinks 

of QAPE and have no direct counterparts in the dry case. Unlike temperature, the 

water mixing ratio does cascade to small scales in this QG flow, so the diffusive 

loss of mixing-ratio variance is both significant and energetically important from the 

perspective of QAPE. There is an intriguing resemblance between these sinks of QAPE 

and the sources of irreversibility in a moist entropy budget. As discussed by Emanuel 

and Bister (1996) and Pauluis and Held (2002) for tropical convection, the efficiency of 

the kinetic energy cycle is reduced by diffusion of moisture, either due to a cascade of 

variance to small scales, or to evaporation into unsaturated air (microscopically, the 

latter is simply diffusion down the gradient between the saturated air in contact with 
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the liquid and the air a bit further removed). Equation (1.9) is replaced by 

ε ≈ −
� 

Q − R, [1.18]
Tε T 

where R is the positive definite generation of entropy due to diffusion of vapor, and Q 

now includes radiative cooling and surface evaporation plus surface sensible heating 

(but not latent heat release!). It is likely that the term R reduces the efficiency of 

midlatitude eddy dynamics substantially (especially in summer) just as it does the 

efficiency of tropical convection. 

How would latent heat release modify the kinds of scaling arguments described 

earlier? We can try to work from either a moist available potential energy or a moist 

entropy perspective, but the latter may be simpler, especially since the QG version of 

QAPE is undoubtedly too restrictive. Setting Q equal to the divergence of the eddy moist 

static energy flux, F , with horizontal component F H equal to the flux of moist enthalpy 

v′h′ = cp v′T ′+ Lv′q ′, we can write  

ε =
� 
v′h′ 1 ∂ ln(T)

���� − R, [1.19]
Tε T ∂y M 

where the derivative is taken along the mixing surface, defined by the direction of the 

eddy moist static energy flux. One can then diffuse moist enthalpy down the mean 

moist enthalpy gradient, and combine this expression with (1.3) or its equivalent. Thus, 

moisture and latent heat release affect the theory of Held and Larichev (1996) or Barry 

et al. (2002) in three ways: by reducing efficiency through the term R, by increasing 

the mixing slope (i.e., reducing the effective static stability), and by replacing the dry 

enthalpy by the moist enthalpy as the quantity being diffused. Without expressions for 

the mixing slope and the efficiency reduction, this is not a closed theory, but it gives us 

some feeling for what such a theory might look like. 

1.8. An Idealized Moist Model on the Sphere 

Does latent heat release reduce the mean length scale of the energy-containing eddies? 

The Eady model linear theory of Emanuel et al. (1987) indicates potential for a reduction 

by a factor of 2 or so. But if one thinks in terms of the Rhines scale, one might guess that 

a reduction in effective static stability likely increases the scale by increasing the eddy 

kinetic energy. 

Frierson et al. (2006, hereafter FHZ) have constructed an idealized moist general 

circulation model (GCM) on the sphere in part to address questions of this kind. 

The moist general circulation is generally addressed with comprehensive atmospheric 

climate models in which clouds, convection, and radiative transfer interact in a host 

of subtle ways that are only dimly appreciated, and in which there are sensitivities to 

resolution, time-stepping, and (often undocumented) details in the closure schemes 
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Figure 1.2. Poleward energy fluxes in moist and dry idealized 

models. Solid: total energy flux in moist model; dashed: dry static 

energy flux (and, therefore, total flux) in dry model; dash-dot: latent 

heat flux in moist model. (Provided by D. Frierson.) 

that makes it difficult to reproduce model results. In FHZ, the radiation is a function 

of temperature only, there is no condensate, and the boundary layer and convective 

closures are kept simple enough to encourage tests of reproducibility and sensitivity 

to resolution. In the simplest case, the model is run with large-scale condensation only, 

with no convective closure scheme. 

The initial results with the FHZ model show surprising insensitivity of the eddy 

scale to the amount of moisture in the atmosphere, and, therefore, to the amount of 

latent heat release. There is essentially no difference in the midlatitude eddy spectrum 

between the dry limit of this model and a control run with realistic moisture content. 

The dry static stability increases with increasing moisture to prevent large changes in 

moist stability, so the constancy of the eddy length scale is in disagreement with any 

theory based on an effective stability that scales with the dry stability. The Rhines scale, 

on the other hand, does predict the constancy of this scale as the moisture increases if, it 

turns out, one allows oneself to compute it at the position of the maximum eddy kinetic 

energy (FHZ). This latitude moves polewards as moisture increases, and the Rhines scale 

remains unchanged only because of the canceling effects of a reduction in eddy energy 

and a reduction in  β. But this does not explain whether the cancellation is a coincidence 

or a result of some dynamical constraint. 

The results in FHZ are also intriguing with respect to the question of the 

partitioning of the poleward heat flux between latent and sensible parts. As shown in 

Fig. 1.2, the total poleward flux in this model stays remarkably constant (to within 1%) 

as the amount of water vapor, and the poleward flux of latent energy, increases from 

the dry limit to a realistic value. A reduction in sensible flux cancels the increase in 

latent flux. It is sometimes argued (following Stone 1978b) that the total atmospheric 
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flux is more or less as large as it can possibly be, since the profile of outgoing infrared 

flux is much flatter than that of the absorbed solar flux. But analysis shows that there 

is substantial room for an increase in the FHZ model. In any case, why should the 

atmosphere be incapable of reversing the sign of the outgoing longwave gradient? 

It is not difficult to construct a model that does precisely this (D. Frierson, personal 

communication). 

I have recently examined this compensation in the comprehensive climate model 

when run in aqua-planet mode (over a uniform boundary condition of slab ocean 

with fixed heat capacity) of the Geophysical Fluid Dynamics Laboratory (GFDL) and 

find about 80%, rather than near perfect, compensation when the atmospheric CO2 

is doubled. My impression is that this level of compensation is typical in comprehen­

sive climate models (e.g., Manabe and Bryan 1985). We suspect that the key to the 

near-perfect cancellation in FHZ is the fact that the radiation is a function of 

temperature only. 

A final question that is addressed by the FHZ model is that of the role of latent 

heating, and moist convection more specifically, in maintaining the static stability in 

midlatitudes. The claim is that this idealized model supports the picture of Juckes 

(2000), who argues that the large-scale eddy fluxes are not capable of stabilizing 

the atmosphere to the point of preventing moist convection in the warm sectors of 

extratropical cyclones. A possible implication is that the mean static stability of the 

extratropical troposphere is maintained by this moist convection so that the favorable 

sectors of extratropical cyclones are moist neutral. The average moist stability of the 

atmosphere is then determined by the difference between the average boundary-layer 

moist enthalpy and the maximum value of this boundary-layer moist enthalpy within 

the eddies, or equivalently by the rms moist enthalpy in the boundary layer. The latter, in 

turn, is presumably determined by the large-scale eddy mixing length and the horizontal 

mean moist enthalpy gradient. 

Clearly, we have just scratched the surface of many central climatic questions 

involving the effects of moisture on the large-scale circulation, many of which are 

important in understanding global warming simulations. Idealized models of the moist 

general circulation are sorely needed to make contact with our even-more idealized dry 

models and with the high-end comprehensive models that play the predominant role 

when we apply climate models to real-world problems. 

1.9. Upper vs. Lower Tropospheric Dynamics 

There is an important qualitative distinction between the upper and lower troposphere 

that impacts the general circulation in numerous ways: the upper troposphere is more 

wave-like than the lower troposphere. This distinction must fundamentally be due to 

β, the environmental vorticity gradient. In the two-layer model, for example, β adds to 
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the contribution of vertical shear to the upper-layer potential vorticity gradient, while it 

tends to cancel this contribution in the lower layer. The result is that potential vorticity 

gradients are larger in magnitude in the upper than in the lower layer. These gradients 

create the restoring forces for Rossby waves. A disturbance of a given scale will propagate 

westward with respect to the upper-level flow more strongly than it will propagate 

eastward with respect to the lower-level flow (in the lower layer the potential vorticity 

gradient is negative, causing Rossby waves to propagate eastward rather than westward.) 

As one consequence, β pushes the steering level for baroclinic instabilities, where the 

phase speed matches the environmental flow, into the lower troposphere. 

When waves on shear flows grow, they typically break when the flow perturbations 

u′ become comparable to u − c , the phase speed of the wave with respect to the 

environment. So eddies of the same amplitude will break first in the lower layer, and the 

upper layer will remain more linear. To the extent that they are determined by this kind 

of breaking criterion, eddy amplitudes should be larger in the upper than in the lower 

layer. The flow in each layer can be thought of as induced by the potential vorticity 

in both layers, but if the eddy amplitudes are larger aloft, the lower-layer flow will be 

primarily induced by the potential vorticity in the upper layer, while the upper-layer 

flow will be primarily self-induced, allowing more wave-like evolution. I suspect that 

this has something to do with the fact that the two-layer closure theory works best when 

based on lower-layer diffusion of potential vorticity, leading to equation (1.8). 

The distinction between upper- and lower-troposphere dynamics, with the latter 

more turbulent and the former more wave-like, is central to any discussion of eddy 

momentum fluxes. That the eddy momentum fluxes are almost entirely confined to the 

upper troposphere is a consequence of this distinction. Rossby waves propagating away 

from their midlatitude source on a positive potential vorticity gradient (as in the 

upper layer of a two-layer model) converge eastward (positive) angular momentum 

into midlatitudes; Rossby waves propagating on a negative vorticity gradient (as in 

the lower layer of the two-layer model) converge negative momentum into the source 

latitudes. Because almost all of the propagation in fact occurs in the upper troposphere, 

surface westerlies are generated in midlatitudes to remove the positive momentum flux 

convergence. If lower-tropospheric propagation were dominant, surface easterlies would 

be generated in midlatitudes. All of the profound consequences for the atmosphere and 

the oceans that follow from the existence of midlatitude surface westerlies result from 

this asymmetry between upper and lower tropospheres. 

The simplest picture of linear midlatitude eddies in the upper troposphere 

starts with a barotropic westerly point jet, u(y) = −�|y|, the corresponding vorticity 

distribution being a single contour separating two homogenized regions, with jump 


 = 2� across the contour. This flow supports the simplest Rossby edge waves with 

dispersion relation c = U −
/(2k). One can usefully speak of a capacity of this jet, 

the amplitude of the waves that can propagate along this contour without significant 

breaking. Using the criterion u′ ∼ u − c for overturning streamlines in the frame of 
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reference of the wave, one gets u′ ∼ 
/k. The corresponding trajectory displacements 

are also of the order of the inverse wavenumber k−1. If we now think of the homogenized 

regions on each side of this contour, and, therefore, the size of the jump 
, as having 

been created by the eddies themselves from the environmental gradient β, we are led to 

assume that 
 ∼ βk−1 = βL , or  u′ ∼ βL 2. The resulting relation between the eddy scale 

and eddy energy is just that proposed by Rhines, even though there is no association 

here with an inverse cascade. This picture may help us understand why it is the Rhines 

scale at the latitude of the jet that seems to be the relevant scale for the eddies in FHZ. 

The homogeneous turbulence theory outlined above can be thought of as 

consisting of three relations between three unknowns: the strength of the energy 

generation/dissipation ε, an eddy length scale  L , and an eddy velocity scale V (or a 

diffusivity V L ). The three relations are (1) an entropy or available potential energy 

budget that relates ε and D, (2) the Rhines scale relation between V and L , and  

(3) the turbulent cascade scaling ε ≈ V 3/L . (One can combine (2) and (3) to give 

equation (1.3).) In light of the results described by Schneider (2004) for a primitive-

equation model on the sphere in which the static stability adjusts to prevent a significant 

inverse cascade, it may be desirable to try to retain (1) and (2), but to replace (3) with 

a non-turbulent alternative, a choice made palatable by this alternative argument for 

the Rhines scale. 

A picture that emerges is of an upper-level waveguide fed by baroclinic eddy 

production, with an eddy sink given by the sloughing off of excess wave activity and 

fed by baroclinic eddy production that is, in turn, determined by the diffusion of low­

level PV (or heat) controlled by the upper-level eddy amplitudes. One can try to expand 

this picture into a theory for the zonally asymmetric storm tracks (see in this regard 

Swanson et al. [1997] and chapter 4 in this volume) in which the key new ingredient is 

the zonally varying capacity of the jet. 

While we have some useful pictures of upper-level dynamics that help us under­

stand the eddy momentum fluxes, and even some simple linear models that fit the eddy 

momentum fluxes quantitatively, given the low-level eddy stirring (DelSole 2001), our 

understanding of the location of the surface westerlies is far from complete. This is 

evident when we perturb the system and try to understand how and why the surface 

westerlies (and the associated eddy momentum flux convergence) move. An excellent 

example is provided by experiments in which the strength of the surface friction is 

modified; as the friction is weakened, the westerlies move poleward (Robinson 1997). 

Figure 1.3 is from unpublished work by G. Chen (personal communication, 2005), using 

the dry dynamical core benchmark of Held and Suarez (1994). The theory for this shift 

is still undeveloped. Robinson has suggested that a barotropic governor mechanism is 

the key: as the surface friction is reduced, surface winds and horizontal shears increase, 

and, it is argued, the resulting stabilization by these shears is larger on the equatorward 

side. How one would go about making this hypothesis quantitative and then testing it 

remains a challenge. 
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Figure 1.3. The near-surface zonal-mean wind field in the climate 

of an idealized dry general circulation model (GCM) for several 

values of the strength of the surface friction. The surface friction is a 

linear drag in the lower troposphere, with different relaxation times 

(0.5, 0.75, 1, 1.25, 1.5 days) in the different cases. The longer relax­

ation times produce stronger winds and a poleward displacement of 

the westerlies. (Provided by G. Chen.) 

Poleward displacement of the surface westerlies and storm tracks is also seen in 

global warming simulations. Several alternative explanations have been offered for this 

shift, some involving the increase in latent heat release. It will be a challenge to our 

theories, and our ability to develop the appropriate hierarchy of idealized models, to 

cleanly isolate the dynamics underlying this shift. 
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