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Fibonacci Numbers,

the Golden Ratio, and

Laws of Nature?

Mathematics required:
high school algebra, geometry, and trigonometry; concept of
limits from precalculus

Mathematics introduced:
difference equations with constant coefficients and their solu-
tion; rational approximation to irrational numbers; continued
fractions

1.1 Leonardo Fibonacci
Leonardo of Pisa (1175–1250), better known to later Italian mathemati-
cians as Fibonacci (Figure 1.1), was born in Pisa, Italy, and in 1192
went to North Africa (Bugia, Algeria) to live with his father, a customs
officer for the Pisan trading colony. His father arranged for the son’s
instruction in calculational techniques, intending for Leonardo to be-
come amerchant. Leonardo learned theHindu-Arabic numerals (Figure
1.2) from one of his “excellent” Arab instructors. He further broadened
his mathematical horizons on business trips to Egypt, Syria, Greece,
Sicily, and Provence. Fibonacci returned to Pisa in 1200 and published a
book in 1202 entitled Liber Abaci (Book of the Abacus), which contains a
compilation of mathematics known since the Greeks. The book begins
with the first introduction to theWestern business world of the decimal
number system:

These are the nine figures of the Indians: 9, 8, 7, 6, 5, 4, 3,
2, 1. With these nine figures, and with the sign 0, which in
Arabic is called zephirum, any number can be written, as will
be demonstrated.

Since we have ten fingers and ten toes, one may think that there
should be nothingmore natural than to count in tens, but that was not
the case in Europe at the time. Fibonacci himself was doing calculations
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Figure 1.1. Statue of Fibonacci in a cemetery in Pisa. (Photograph by Chris Tung.)

Figure 1.2. The Hindu-Arabic numerals.

using the Babylonian system of base 60! (It is not as strange as it
seems; the remnant of the sexagesimal system can still be found in our
measures of angles and time.)

The third section of Liber Abaci contains a puzzle:

A certain man put a pair of rabbits in a place surrounded on all
sides by a wall. Howmany pairs of rabbits can be produced from
that pair in a year if it is supposed that each month each pair
begets a new pair which from the second month on becomes
productive?
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Figure 1.3. Branching of plant every month after a shoot is two months old.

In solving this problem, a sequence of numbers, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, . . . , emerges, as we will show in amoment. This sequence is now
known as the Fibonacci sequence.

The above problem involving incestuous rabbits is admittedly unre-
alistic, but similar problems can be phrased in more plausible contexts:
A plant (tree) has to grow two months before it branches, and then it
branches every month. The new shoot also has to grow for twomonths
before it branches (see Figure 1.3). The number of branches, including
the original trunk, is, if one counts from the bottom in intervals of one
month’s growth: 1, 1, 2, 3, 5, 8, 13, . . . . The plant Achillea ptarmica, the
“sneezewort,” is observed to grow in this pattern.

The Fibonacci sequence also appears in the family tree of honey bees.
The male bee, called the drone, develops from the unfertilized egg of
the queen bee. Other than the queen, female bees do not reproduce.
They are the worker bees. Female bees are produced when the queen
mates with the drones. The queen bee develops when a female bee is
fed the royal jelly, a special form of honey. So a male bee has only one
parent, a mother, while a female bee, be it the queen or a worker bee,
has both a mother and a father. If we count the number of parents and
grandparents and great grandparents, etc., of a male bee, we will get
1, 1, 2, 3, 5, 8, . . . , a Fibonacci sequence.

Let’s return to the original mathematical problem posed by
Fibonacci, which we haven’t yet quite solved. We actually want to solve
it more generally, to find the number of pairs of rabbits n months
after the first pair was introduced. Let this quantity be denoted by Fn.
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Figure 1.4. Rabbits in the Fibonacci puzzle. The small rabbits are
nonproductive; the large rabbits are productive.

We assume that the initial pair of rabbits is one month old and that we
count rabbits just before newborns arrive.

One way to proceed is simply to enumerate, thus generating a se-
quence of numbers. Once we have a sufficiently long sequence, we
would hopefully be able to see the now famous Fibonacci pattern
(Figure 1.4).

After one month, the first pair becomes two months old and is
ready to reproduce, but the census is taken before the birth. So F1 = 1,
but F2 = 2; by the time they are counted, the newborns are already
one month old. The parents are ready to give birth again, but the
one-month-old offspring are too young to reproduce. Thus F3 = 3.
At the end of three months, both the original pair and its offspring
are productive, although the births are counted in the next period.
Thus F4 = 5. A month later, an additional pair becomes productive.
The three productive pairs add three new pairs of offspring to the
population. Thus F5 = 8. At fivemonths, there are five productive pairs:
the first-generation parents, four second-generation adults, and one
third-generation pair born in the second month. Thus F6 = 13. It now
gets more difficult to keep track of all the rabbits, but one can use
the aid of a table to keep account of the ages of the offspring. With
some difficulty, we obtain the following sequence for the number of
rabbit pairs afternmonths, forn = 0,1,2,3,4,5,6,7,8,9,10,11,12, . . . :
1,1,2,3,5,8,13,21,34,55,89,144,233,377, . . . .
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This is the sequence first generated by Fibonacci. The answer to his
original question is F12 = 233.

If we had decided to count rabbits after the newborns arrive instead
of before, we would have to deal with three types of rabbits: newborns,
one-month-olds, and mature (two-month-old or older) rabbits. In this
case, the Fibonacci sequence would have shifted by one, to: 1, 2, 3,
5, 8, 13, 21, 34, 55, 89, 144, 233, . . . . The initial 1 is missing, which,
however, can be added back if we assume that the first pair introduced
is newborn. It then takes two months for them to become productive.
The discussion below works with either convention.

To find Fn for a general positive integer n, we hope that we can see a
pattern in the sequence of numbers already found. A sharp eye can now
detect that any number in the sequence is always the sum of the two
numbers preceding it. That is,

Fn+2 = Fn+1 + Fn, for n = 0,1,2,3, . . . . (1.1)

A second way of arriving at the same recurrence relationship is more
preferable, because it does not depend on our ability to detect a pattern
from a partial list of answers:

Let Fn(k) be the number of k-month-old rabbit pairs at time n. These
will become (k + 1)-month-olds at time n+ 1. So,

Fn+1(k + 1) = Fn(k).

The total number of pairs at time n+ 2 is equal to the number at n+ 1
plus the newborn pairs at n+ 2:

Fn+2 = Fn+1 + new births at time n+ 2.

The number of new births at n+ 2 is equal to the number of pairs that
are at least onemonth old at n+ 1, and so:

New births at n+ 2 = Fn+1(1) + Fn+1(2) + Fn+1(3) + Fn+1(4) + · · ·
= Fn(0) + Fn(1) + Fn(2) + Fn(3) + · · ·
= Fn.

Therefore,

Fn+2 = Fn+1 + Fn,

which is the same as Eq. (1.1). This recurrence equation is also called
the renewal equation. It uses present and past information to predict
the future. Mathematically it is a second-order difference equation.



6 Chapter 1. Fibonacci Numbers

To solve Eq. (1.1), we try, as we generally do for linear difference
equations whose coefficients do not depend on n,

Fn = λn,

for some as yet undetermined constant λ. When we substitute the trial
solution into Eq. (1.1), we get

λn+2 = λn+1 + λn.

Canceling out λn, we obtain a quadratic equation,

λ2 = λ + 1, (1.2)

which has two roots (solutions):

λ1 = 1
2
(1 +

√
5) and λ2 = 1

2
(1 −

√
5) = − 1

λ1
.

Thus λn
1 is a solution, and so is λn

2. By the principle of linear super-
position, the general solution is

Fn = aλn
1 + bλn

2, (1.3)

where a and b are arbitrary constants. If you have doubts on the validity
of the superposition principle used, I encourage you to plug this general
solution back into Eq. (1.1) and see that it satisfies that equation no
matter what values of a and b you use. Of course these constants need
to be determined by the initial conditions. We need two such auxiliary
conditions since we have two unknown constants. They are F0 = 1 and
F1 = 1. The first requires that a + b = 1, and the second implies that
λ1a + λ2b = 1. Together, they uniquely determine the two constants.
Finally, we find:

Fn = 1√
5

(
1 + √

5
2

)n+1

− 1√
5

(
1 − √

5
2

)n+1

, n = 0,1,2,3, . . . .

(1.4)

With the irrational number
√
5 in the expression, it is surprising that

Eq. (1.4) would always yieldwhole numbers, 1, 1, 2, 3, 5, 8, 13, . . . , when
n goes from 0, 1, 2, 3, 4, 5, . . . , but you can verify that amazingly it does.
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1.2 The Golden Ratio
The number λ1 = 1

2

(
1 + √

5
)
is known as the Golden Ratio. It has also

been called the Golden Section (in an 1835 book by Martin Ohm) and,
since the 16th century, the Divine Proportion. It is thought to reflect the
ideal proportions of nature and to even possess some mystical powers.
It is an irrational number, now denoted by the Greek symbol �:

� = 1.6180339887 . . . .

It does have some very special, though not so mysterious, properties.
For example, its square,

�2 = 2.6180339887 . . . ,

is obtainable by adding 1 to �. Its reciprocal,

1/� = 0.6180339887 . . . ,

is the same as subtracting 1 from �. These properties are notmysterious
at all, if we recall that � is a solution of Eq. (1.2).

In terms of �, the general solution (1.3) can be written as

Fn = a�n + b
(

− 1
�

)n

.

Since � > 1, the second term diminishes in importance as n increases,
so that for n >> 1,

Fn ≈ a�n.

Therefore the ratio of successive terms in the Fibonacci sequence ap-
proaches the Golden Ratio:

Fn+1

Fn
→ a�n+1

a�n = � = 1.6180339887 . . . , as n → ∞. (1.5)

(In fact, since this property about the ratio converging to the Golden
Ratio is independent of a and b, as long as a is not zero, it is satisfiedby all
solutions to the difference equation (1.1), including the Lucas sequence,
which is the sequence of numbers starting with F0 = 2 and F1 = 1: 2, 1,
3, 4, 7, 11, 18, 29, . . . ).
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For our later use, we also list the result

Fn+2

Fn
→ a�n+2

a�n = �2. (1.6)

As you may recall, an irrational number is a number that cannot be
expressed as the ratio m/n of two integers, m and n. Mathematicians
sometimes are interested in the rational approximation of an irrational
number; that is, finding two integers,mand n, whose ratio,m/n, gives a
good approximation of the irrational number with an error that is as
small as possible under some constraints. For example, the irrational
number π = 3.14159265 . . . can be approximated by the ratio 22/7 =
3.142857 . . . , with error 0.00126. This is the best rational approxima-
tion if n is to be less than 10. When we make m and n larger, the error
goes down rapidly. For example, 355/113 is a rational approximation
of π (with n less than 200) with an error of 0.000000266. We measure
the degree of irrationality of an irrational number by how slowly the
error of its best rational approximation approaches zero when we allow
mand n to get bigger and bigger. In this sense π is “not too irrational.”

From Eq. (1.5) we see that the value of � can thus be approxi-
mated by the rational ratio: 8/5 = 1.6, or 13/8 = 1.625, or 21/13 =
1.615385 . . . , or 34/21 = 1.619048 . . . , or 55/34 = 1.617647 . . . , or
89/55 = 1.618182 . . . , or 144/89 = 1.617978 . . . . The ratios of succes-
sive terms in the Fibonacci sequence will eventually converge to the
Golden Ratio. One therefore can use the ratio of successive Fibonacci
numbers as the rational approximation to the Golden Ratio. Such
rational ratios, however, converge to theGolden Ratio extremely slowly.
Thus we might say that the Golden Ratio is the most irrational of the
irrational numbers. (How do we know it is the most irrational of the
irrational numbers? A proof requires the use of continued fractions. See
exercise 2 for some examples.)

More importantly, the Golden Ratio has its own geometrical signifi-
cance, first recognized by the Greek mathematicians Pythagoras (560–
480 bc), and Euclid (365–325 bc). The Golden Ratio is the only positive
number that, when 1 is subtracted from it, equals its reciprocal. Euclid
in fact defined it, without using the name Golden Ratio, when he
studied the division of a line intowhat he called the “extreme andmean
ratio”:

A straight line is said to have been cut in extreme and mean
ratio when, as the whole line is to the greater segment, so is the
greater to the lesser.
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Figure 1.6. The Great Pyramid at Giza and the “Egyptian Triangle.”

(Does this sound like Greek to you? If so, you may find Figure 1.5
helpful. Consider the straight line abc, cut into two segments ab and
bc, in such a way that the “extreme ratio” abc/ab is equal to its “mean
ratio” ab/bc. Without loss of generality, let the length of small segment
bc be 1, and ab be x, so the whole line abc is 1 + x. The line is said
to be cut in extreme and mean ratio when (1 + x)/x = x/1; this is the
same as x2 = x + 1, which is Eq. (1.2). � is the only positive root of that
equation.)

Many authors reported that the ancient Egyptians possessed the
knowledge of the Golden Ratio even earlier and incorporated it in
the geometry of the Great Pyramid of Khufu at Giza, which dates to
2480 bc. Midhat Gazale, who was the president of AT&T-France, wrote
in his popular 1999 book,Gnomon: From Pharaohs to Fractals:

It was reported that theGreek historianHerodotus learned from
the Egyptian priests that the square of the Great Pyramid’s
height is equal to the area of its triangular lateral side.

Referring to Figure 1.6, we consider the upright right triangle formed
by the height of the pyramid (from its base to its apex), the slanted
height of the triangle on its lateral side (the length from the base
to the apex of the pyramid along the slanted lateral triangle), and a
horizontal line joining these two lines inside the base. We see that if
the above statement is true, then the ratio of the hypotenuse to the
base of that triangle is equal to the Golden Ratio. (Show this!) However,
as pointed out by Mario Livio in his wonderful 2002 book, The Golden
Ratio, Gazale was repeating an earlier misinterpretation by the English
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author John Taylor in his 1859 book, The Great Pyramid: Why Was It
Built and Who Built It, in which Taylor was trying to argue that the
construction of the Great Pyramid was through divine intervention.
What the Greek historian Herodotus (ca. 485–425 bc) actually said was:
“Its base is square, each side is eight plethra long and its height the
same.”One plethronwas 100Greek feet, approximately 101 English feet
(see Fischler, 1979; Markowsky, 1992).

Nevertheless, there is no denying that the physical dimensions of
the Great Pyramid as it stands now do give a ratio of hypotenuse
to base rather close to the Golden Ratio. The base of the pyramid is
approximately a square with sides measuring 756 feet each, and its
height is 481 feet. So the base of the upright right triangle is 756/2 = 378
feet, while the hypotenuse is, by the Pythagorean Theorem, 612 feet.
Their ratio is then 612/378 = 1.62, which is in fact quite close to the
Golden Ratio. The debate continues. All we can say is that, casting
aside the claims of some religious cults, there is no historical or arche-
ological evidence that the ancient Egyptians knew about the Golden
Ratio.

1.3 The Golden Rectangle and Self-Similarity
Anapplicationof Euclid’s subdivisionof a line is to construct a rectangle
with the proportion 1 : � as the ratio of its short to long side. This
rectangle is called the Golden Rectangle. Since some of the more familiar
proportions in human anatomy, such as the width to the height of
an adult face, or the length measured from the top of the head to the
navel and from the navel to the bottom of the feet, are roughly in the
ratio of 1 : �, speculations abound that artists and sculptors through
the ages consciously incorporated the Golden Ratio in their work (see
Figure 1.7). (See a critical discussion inMarkowsky [1992].)

We shall not be concerned with the subject of the Golden Ratio
in art and in defining beauty here. Instead we wish to briefly point
out another interesting property of the Golden Rectangle. A Golden
Rectangle can be subdivided into a square and a smaller rectangle
with the ratio of its short to long side equaling 1/� : 1 = 1 : � (since
� − 1 = 1/�). This is another Golden Rectangle! (See Figure 1.8.) The
latter can be subdivided, ad infinitum, into even smaller but similar
shapes. The resulting entity is self-similar. That is, if you zoom in on a
smaller rectangle—with even smaller rectangles and squares embedded
in it—and magnify it, it will look the same as the original, bigger
rectangle. The property that an object will look the same at all scales
is called self-similarity. This property is fundamental to the modern
concept of fractals. (See the exercises for some discussion on fractals.)
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Figure 1.7. Leonardo da Vinci’s Mona Lisa.
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Figure 1.8. Golden Rectangles AE = AB =1, AD = �, FC = � −1=1/�.

If we join the two opposite corners of each square using a quarter
circular arc and connect these arcs together (Figure 1.8), we will obtain
a pseudospiral, winding in the limit to a point, which is fancifully
called “the eye of God.” (The pseudospiral approximates verywell a true
logarithmic spiral, which is also called the equiangular spiral. At every
point on the logarithmic spiral the angle the tangent makes with the
line drawn to the center is always the same.) The logarithmic spiral
is self-similar, because it looks the same whatever the magnification.
This self-similar property of the spiral may be the reason why some
seashells are also in the shape of a logarithmic spiral (Figure 1.9), so
as to accommodate the growing body of the mollusk. As it grows, the
mollusk constructs larger and larger chambers (and seals off the smaller
chambers it no longer uses). Each new chamber has the same familiar
shape as the old one themollusk evacuates.

1.4 Phyllotaxis
Phyllotaxis is the study of leaf arrangements in plants. Fibonacci num-
bers are found to be “prevalent” in the phyllotaxis of various trees, in
seed heads, pinecones, and sunflowers. It is still an ongoing effort by
botanists and applied mathematicians to try to understand why this is
so from biological andmechanical perspectives.

As the stem of a plant grows upward, leaves sprout to its side,
with new leaves above the old ones. How are the new and old leaves
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Figure 1.9. The spiral of the Nautilus shell. (Photo courtesy of Bill Strange.)

arranged? Is there a pattern? Theophrastus (372–287 bc) appears to
have been the first to notice, in his writing Enquiries into Plants, that
there is indeed a pattern: “Those that have flat leaves have them in
a regular series.” The painter Leonardo da Vinci (1452–1519) and the
astronomer Johannes Kepler (1571–1630) also wrote on the subject.
Kepler in particular noted the connection between the Fibonacci num-
bers and leaf arrangements. In 1837, the Bravais brothers (Auguste,
a crystallographer, and Louis, a botanist) discovered that a new leaf
generally advances by the same angle from the previous leaf, and that
angle is usually close to 137.5◦. That is, if you look down from above
on the plant and measure the angle formed between a line drawn from
the stem to the leaf and a corresponding line for the next leaf, you will
find that there is generally a fixed angle, called the divergence angle. You
may think that the divergence angle should be something simple, such
as 180◦, so that the new leaf will be on the opposite side of the stem
from the older leaf, “to provide balance” for the plant. This turns out not
to be advantageous for the plant if it has many leaves, assuming that
the sun and rain come from above (vertically). This is because if leaf 0
and leaf 1 are arranged this way, leaf 2 will then be directly above
leaf 0, blocking its exposure to sun andmoisture.

Generalizing this argument, we note that any divergence angle that
is an integer fraction of a circle, i.e., equal to 360 ◦/m, with m being
an integer, is also not optimal for the plant. This is because such an
arrangement of leaves is periodic; eventually some new leaves will be
directly above some older ones, and the pattern repeats for newer leaves.
For example, for m= 3, the fourth leaf will be directly above the first.
(Similarly, a divergence angle of 360 ◦ n/m will also not be optimal
because it is again periodic.) It would appear that the most optimal
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arrangement would be obtained if we replaced the integer m by an
irrational number—the more irrational the better. And the best number
would seem to be� = 1.618 . . . , theGoldenRatio, themost irrational of
all irrational numbers. And so, naturally, the divergence angle = 360◦/� =
222.5◦, which is the same as 360 − 222.5 = 137.5◦, measuring from the
other direction, would appear to be the optimal angle. The divergence
angle of 137.5◦ is called the Golden Angle.

Botanists define the phyllotactic ratio as the fractionof a circle through
which a new leaf turns from the previous (older) leaf. So in this case the
phyllotactic ratio is 1/� = 0.618 . . . . Since this is more than half of a
circle, onemaywant tomeasure the angle from the other direction (e.g.,
counterclockwise instead of clockwise). In that case the phyllotactic
ratio would be 1 − 1/� = 1/�2 = 0.382 . . . . Given the propensity of
botanists to list phyllotactic ratios as ratios of integers, it is not surpris-
ing that ratios of every other Fibonacci number show up in rational
approximation to the phyllotactic ratio of 1/�2, in the formof Eq. (1.6).
That is,

Phyllotactic ratio = 1
�2 ≈ Fn

Fn+2
, (1.7)

where Fn is one of the Fibonacci numbers. The phyllotactic ratio is the
ratio of every other Fibonacci number. If one measures the angle in the
other direction, e.g., clockwise rather than counterclockwise, one will
detect a different set of Fibonacci numbers:

Phyllotactic ratio = 1
�

≈ Fn
Fn+1

, (1.8)

according to Eq. (1.5). This may explain why three consecutive members
of the Fibonacci sequence are often found in the phyllotactic ratios of a
single plant, a situation that may appear mysterious at first sight.

The above argument applies to plants with many, many leaves (in
fact, an infinite number of leaves) and under the assumption that
the maximum exposure to the sun is the only determining factor for
the arrangement of leaves in a plant. Neither of these assumptions
is realistic. It remains unexplained why the prevalent tendency is for
realistic plants to have a divergence angle close to 137.5◦. Nevertheless,
if a plant must choose a fixed divergence angle, why not choose 137.5◦?
There is no better angle from which to choose. Now suppose a plant of
finite height (and with a finite number of leaves) grows leaves at this
fixed angle. Then what phyllotactic ratio would be observed? It would,
of course, be Eq. (1.7) or (1.8), depending on the direction from which
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you measure the angle. A plant with a larger number of leaves would
generally have a larger value of n, giving a better rational approximation
to the Golden Ratio than plants with fewer leaves.

Some examples of phyllotactic ratios for selected plants are given
below. A ratio of, e.g., 3/8means that in three turns of a circle onewould
find leaf 8 almost directly above leaf 0.

Apple, apricot, cherry, coast live oak, holly, plum 2/5
Pear, weeping willow, poplar 3/8
Pussy willow, almond 5/13

The above explanation of the phyllotactic ratio is somewhat unsatis-
factory because we have not explained why the divergence angle is
prevalently 137.5◦. Surely the preference for maximum exposure to
the overhead sun need not be absolute. There must be some other
constraints that we have not included in our arguments so far.

A better, though still controversial, argument goes a little deeper in
the developmental biology of plants, as we will consider in the next
section.

1.5 Pinecones, Sunflowers, and Other Seed Heads
Smith College Botanical Gardens maintains a very informative website
on phyllotaxis (http://www.maven.smith.edu/∼phyllo/). Recently, two
Smith College mathematics professors, Pau Atela and Christophe Golé,
along with a colleague, Scott Hotton fromMiami University, developed
a mathematical model (Atela, Golé, and Hotton, 2002) that can ex-
plain the prevalence of a particular divergence angle and the Fibonacci
phyllotaxis in seed heads.

A pinecone can be viewed as a “plant” with a very short stem on
which many “leaves” (scales) grow, with the newer scales develop-
ing near the tip (Figure 1.10). Sunflower heads and other seed heads
(Figure 1.11) are extreme versions of such a “plant,” where the arrange-
ment becomes two dimensional. The new “leaves” (florets) sprout near
the center, and as they grow older and bigger they are displaced radially
outward. New florets do not grow on top of the old, because then
the old florets would be completely blocked from the sun. Perhaps
in these cases, optimizing exposure to the sun may take on more im-
portance than in plants with long stems whose leaves are separated by
finite vertical distances. In such tightly packed plants, however, another
factor needs to be taken into account, that of the efficiency of packing
as the florets or seeds grow.

Let’s first state what we would like to explain. First is the divergence
angle, of course: How does a plant know to pick 137.5◦? Second is
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Figure 1.10. A pinecone viewed from the top. In this view, your
eyes will pick up 8 counterclockwise spirals and 13 clockwise
spirals. (Photo by Rolf Rutishauster, University of Zurich,
Switzerland, and used by permission; also courtesy of Atela &
Golé, http://math.smith.edu/phyllo.)

a phenomenon that is more apparent in tightly packed seed heads
than in leaf arrangements on a branch, and that is the appearance
of clockwise and counterclockwise spirals, whose numbers follow the
Fibonacci sequence. In Figure 1.10 we show a pinecone. Looking at
the pinecone from the top, your eye will pick up spirals. There are
actually two sets of spirals in this picture: 8 counterclockwise and 13
clockwise. These spirals are called parastichies, and we say that this
pinecone has a parastichy number of (8, 13). These, mysteriously, are two
consecutive numbers in the Fibonacci sequence. Even larger parastichy
numbers can be found in sunflower heads. Most common are (34, 55),
but larger sunflowers with parastichy numbers of (55, 89), (89, 144), and
even (144, 233) have been seen. In a way these are artificial patterns
that our eyes pick up; an individual scale (or floret) does not move
along such a spiral as it grows away from the center of the stem. It
is just that our eyes tend to connect the scales closest to each other
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Figure 1.11. The seed head of the coneflower, a
member of the daisy family. Note the apparent
clockwise and counterclockwise spirals picked up
by your eyes. (Photo by Tim Stone and used by
permission.)

to form a pattern, and the same scale can be a member of both a
counterclockwise spiral and a clockwise spiral. That our eyes will pick
up these counter-rotating spirals in consecutive Fibonacci numbers in
closely packed points separated by 137.5◦ was shown in 1907 by the
German mathematician G. van Iterson. It is easier for you to show
this by simulation, i.e., to plot these points on a sheet of paper or
generate them on a computer monitor, than it is for us to prove it
mathematically. This simulation is done in Figure 1.12,where the florets
numbered higher are older.

1.6 The Hofmeister Rule
The patterns we see in large sunflower seed heads are actually already
present when the sunflower’s blossom is only 2 mm in diameter. In
other plants, an electron microscope is needed to see these patterns
present in their small shoot tips, called meristems (Figure 1.13). A meri-
stem is the growing tip of a plant, which is usually dome shaped.
Around the apex of a meristem, cells develop that will later grow to
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Figure 1.12. In this simulation, points are placed
successively at a divergence angle of d = 137.5◦, then
moved radially as they grow larger. When they are
packed close together, our eyes pick up counter-
rotating spirals: 8 counterclockwise and 13 clockwise in
the example shown in the bottom panel. (Courtesy of
Atela & Golé, http://math.smith.edu/phyllo.)
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300300  µµmm300 µm

Figure 1.13. The meristem of Norway Spruce (top) has spiral
parastichy (8, 13). These are primordia of needles. The meri-
stem of artichoke (bottom) has spiral parastichy (34, 55).
The primordia are future hairs in the artichoke heart. (Photo
of Norway spruce by Rolf Rutishauser, University of Zurich,
Switzerland, and used by permission; photo of artichoke
courtesy of Jacques Dumais, http://math.smith.edu/phyllo.)
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become leaves, petals, or florets. These “embryonic leaves” are called
primordia. At the stage of their generation, the primordial bulges
are crowded together. In 1868, from his microscopic study of plant
meristems, the botanist Wilhem Hofmeister proposed that a new pri-
mordium always forms in the least crowded spot along the meristem
ring. This is now known as the Hofmeister rule. The location of that
least crowded spot will depend on how fast the older primordia move
away from the apex as they grow. It is not yet agreed how they know to
move away “tomake room” for new primordia.

1.7 A Dynamical Model
In the mathematical model of Atela, Golé, and Hotton (2002), the
essential features of primordial placement and growth are represented
by the set of divergence angles {d1, d2, d3, . . .} and the magnification
factors on the successive distance of the primordium from the center
of the apex, G > 1, as it grows away from the apex. (Refer to Figure 1.12,
but allow the angles d to be different and arbitrary.)

In a dynamical model, a primordium first forms at one point along
the edge of the circular apex and then moves radially away from the
center as the shoot grows. According to Hofmeister’s rule, the next
primordium is to be placed farthest away from the first one along the
apex ring. It is thus placed 180◦ away from it, on the other side of the
circle. The placement of the third primordium will depend on how
fast the first point is moving away from the edge of the apex. In the
extreme case, if the first point moves away from the apex very rapidly,
the third point should be placed close to where the first point was
originally placed, because that is where the third point is farthest away
from the second point; the location of the first point is by now too far
away to matter. In this case, the divergence angle for the third point is
180◦. In this extreme case, the primordia would occupy two radial lines,
with a divergence angle of 180◦. This yields a parastichy number (1,1).
Something interesting happens when we reduce the growth rate from
this extreme value. Then the original position of the first point is no
longer necessarily the least crowded spot for the placement of the third
point, because now the first point is in the way. The third point should
be placed around the apex ring at a location that minimizes its distance
from both the first and the second points. This then determines its
divergence angle to be somewhere between 180◦ and 90◦. The process
is continued for the placement of the fourth point along the apex
ring, which has to minimize its distance from all the preceding points.
The resulting divergence angle fluctuates a little as more and more
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points are placed and soon settles down to a fixed angle, i.e., d1 = d2 =
d3 = · · · = d. As G gets smaller (but still G > 1), the divergence angle
approaches the Golden Angle: d = 137.5◦. At the same time as the
divergence angle is getting closer to the Golden Angle, the parastichy
number first becomes (1, 2) or (2, 1), depending on the direction of
the spiral one is following. The branch (1, 2) then becomes (3, 2), then
(3, 5), . . . , (Fn, Fn+1), as G is slowly reduced, where Fn belongs to the
Fibonacci sequence.

The authors point out that when plants make the transition from
a vegetative state to a flowering state, the rate at which the primordia
are growing apart decreases, and that is when Fibonacci-like parastichy
is observed. It therefore appears that the observed appearance of
Fibonacci numbers and the Golden Angle may be dictated by the need
of the meristem to pack primordia efficiently when they are crowded
together.

Recently, a well-known applied mathematician, Professor Alan
Newell, and his graduate student Patrick Shipman at the University
of Arizona proposed a different model to explain the appearance of
Fibonacci numbers in the counter-rotating spirals on plants such as the
cactus. Starting with the observation that the spiral patterns are already
built into the plant at its earliest developmental stage, and further
observing that the tender tip of a growingplant is cappedby a thin outer
shell, they propose that the spiral pattern is formed as the shell buckles
into spiral ridges, so as to relieve mechanical stress. Their mathematical
model and analysis appear in the April 23, 2004, issue of Physical Review
Letters.

1.8 Concluding Remarks
Whenweobservenature,weoftenfind certainpatterns repeating them-
selves across a wide range of phenomena. Do these patterns reflect the
laws of nature? Science would givemore credence to those patterns that
can be explained by some physically or biologically basedmechanisms.
A way to test these mechanisms is to incorporate the hypotheses into
a mathematical model and then see if the model’s predictions agree
with observations. It appears that many of the reported sightings of
the Golden Ratio in nature may be the result of chance: There are
billions andbillions of plants and someof themevenby randomchance
would give the appearance of Fibonacci parastichy. However, given a
prevalent tendency for plants to follow such a pattern, it is a fruitful
area for botanists and mathematicians to build models for the purpose
of seeking answers to the question, “Why?”
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1.9 Exercises

1. A puzzle on inheritance

Fibonacci has this puzzle in Liber Abaci: A man whose end was
approaching summoned his sons and said, “Dividemymoney as I shall
prescribe.” To his eldest son, he said, “You are to have 1 bezant and a
seventh of what is left.” To his second son, he said, “Take 2 bezants
and a seventh of what remains.” To the third son, he said, “You are to
take 3 bezants and a seventh of what is left.” Thus he gave each son 1
bezant more than the previous son and a seventh of what remained,
and to the last son all that was left. After following their father’s instruc-
tions with care, the sons found that they had shared their inheritance
equally. How many sons were there, and how large was the estate?
Solve this puzzle.

2. Continued fractions

a. Show that the Golden Ratio can be expressed in the form of a
continued fraction:

� = 1 + 1

1 + 1

1 + 1

1 + 1

1 + 1
1 + . . . . . .

Hint: Start with the equation that the Golden Ratio satisfies: x2 =
x + 1. Divide by x to get x = 1 + 1/x. Substitute x = 1 + 1/x for the
x in the denominator, and repeat the process.

b. Show that
√
2 can be written in a continued fraction of the form

√
2 = 1 + 1

2 + 1

2 + 1
2 + . . . . . .

Hint: Write
√
2 = 1 + 1/x and show that x satisfies x2 = 2x + 1.

Divide by x to get x = 2 + 1/x. Substitute x = 2 + 1/x for the x in
the denominator, and repeat the process.
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c. You don’t need to do anything for this part. The irrational number
e = 2.71828 is defined by the limit

e = lim
n→∞(1 + 1/n)n.

Euler showed that it can be written in the following continued
fraction:

e = 2 + 1

1 + 1

2 + 2

3 + 3

4 + 4

5 + 5
6 + . . . . . .

The irrational number π can be written in a continued fraction as
(discovered by Brouncker):

π = 3 + 12

6 + 32

6 + 52

6 + 72

6 + . . . . . .

d. Truncate each of the continued fractions in (a), (b), and (c) at suc-
cessive levels to obtain a rational approximation and compare the
resulting approximation with the value of the original irrational
number. Note and compare the convergence rates of the successive
approximations for each irrational number in (a), (b), and (c).

3. The Hardy-Weinberg law in genetics

This law concerns the genetic make-up of a population from one gen-
eration to the next. It states that in sexually reproducing organisms,
in the absence of genetic mutation, factors (called alleles) determining
inherited traits are passed down unchanged from generation to gen-
eration. We want to show that the law is true. Consider the simple
case of only two alleles, A and B, in a gene. The probability of occur-
rence of the A gene in a population in generation n is pn, and that
of the B gene is qn. pn + qn = 1. These two alleles combine to form
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in the next generation AA or BB or AB, with probability p2n, q
2
n , and

2pnqn, respectively.

a. The probability of the occurrence of the Aalleles in the n+ 1 genera-
tion is denoted by pn+1 and that of the B alleles by qn+1. We write

pn+1 = f (pn, qn), qn+1 = g(pn, qn).

Find the functions f and g.
Hint: The probability of occurrence of AA in generation n+ 1 from
generation n is p2n. The probability is 100% that the individual with
the AA gene has the A allele. The probability is only 50% that an
individual with the AB gene will contribute an A allele to the next
generation.

b. Show that f = pn and g = qn, and therefore

pn+1 = pn = p and qn+1 = qn = q,

where p and q are independent of n.

4. Logarithmic spiral

Falcons flying to attack their prey on the ground follow a logarithmic
spiral instead of a straight line. This is because their eyes are on the two
sides of their head, and if they needed to cock their head to keep their
prey in their sight it would increase the air resistance. So they fly in
a trajectory keeping the same angle, 40◦, between its tangent and the
direct line to the prey. Show that the requirement of constant angles
yields a trajectory that is in the form of a logarithmic spiral, r = aebθ ,
where r is the radial distance to the prey and θ is the azimuthal angle.

5. Fractal dimensions

A mathematical way to generalize our intuitive way of defining the
number of dimensions is to define it as the scaling exponent d. If you
have a square, a two-dimensional object, and you divide its length
and width by a scaling factor—say 2—what you obtain is four smaller
squares. So, 4 = 2d. Solving, we get d = 2, and we conclude that the
dimension of the square is 2. If you divide a line into 2, you will get
two shorter lines: 2 = 2d. So the dimension of the line is 1. Similarly
d = 3 for a cube. Now consider the fractal shape called the Sierpinski
triangle (Figure 1.14). It is constructed in the following way: Start with
an equilateral triangle of solid color. Connect the midpoints of each of
its sides by a straight line. Take out the inverted triangle in the middle
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Figure 1.14. The Sierpinski triangle. (Bottom image courtesy of
Anthony W. Knapp.)

thus formed. We continue this process with the solid small triangles,
until we get the bottom figure in Figure 1.14. What is its dimension?
Determine it in the following way:

Divide each of its lengths by 2.Howmany smaller Sierpinski triangles
do you now have contained in the original larger triangle? Set that
number to 2d. Determine its dimension d.

6. Two-dimensional fractal lung and the Golden Tree

The blood vessels in a lung branch into ever smaller capillary vessels to
facilitate the exchange of oxygenwith the blood carried by the capillary
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vessels. One hypothesis is that the resulting form of the branching
maximizes the surface area covered by the vessels. We can test this
hypothesis with a very simple (and admittedly not too realistic) model
of a “lung” in two dimensions. Consider a blood vessel of unit length,
which branches into two vessels each of length f , with f < 1. The two
smaller vessels are 120◦ apart. Each of them then branches in the same
way, with the new branches reduced in length by the same factor f .
Repeat this process ad infinitum. We obtain then a fractal tree, which
is called the Golden Tree. For too small a reduction factor, say f = 0.5,
for example, you will find that large gaps of space remain that are not
covered by the branches of the tree. With too large a reduction factor,
say f = 0.7, you will find that the branches overlap. Find the optimal f
that yields an arrangement with the branches just about to touch. This
optimal f turns out to be 1/�.

Hint: Assume without loss of generality that the original stem of
length unity is oriented vertically, and branching occurs at the top
point of the stem. By graphing the tree, you will notice that because
of symmetry it suffices to find the condition for the main branches
to touch horizontally. They in fact touch at a point directly above the
first stem. The condition for touching is that the sum of the hori-
zontal projections of all branches with decreasing lengths starting with
the branch of length f 3 be equal to the horizontal projection of the
large branch of length f . That is,

f cos 30◦ = f 3 cos 30◦ + f 4 cos 30◦ + f 5 cos 30◦ + · · · .

Canceling the cosine factor and noting that the right-hand side is a
geometric series that you can sum up exactly, you will find an algebraic
equation for f .




