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1 
Introduction 

A dynamic asset pricing model is refutable empirically if it restricts the 
joint distribution of the observable asset prices or returns under study. A 
wide variety of economic and statistical assumptions have been imposed to 
arrive at such testable restrictions, depending in part on the objectives and 
scope of a modeler’s analysis. For instance, if the goal is to price a given 
cash-flow stream based on agents’ optimal consumption and investment 
decisions, then a modeler typically needs a fully articulated specification 
of agents’ preferences, the available production technologies, and the con-
straints under which agents optimize. On the other hand, if a modeler is 
concerned with the derivation of prices as discounted cash flows, subject 
only to the constraint that there be no “arbitrage” opportunities in the econ-
omy, then it may be sufficient to specify how the relevant discount factors 
depend on the underlying risk factors affecting security prices, along with 
the joint distribution of these factors. 

An alternative, typically less ambitious, modeling objective is that of test-
ing the restrictions implied by a particular “equilibrium” condition arising 
out of an agent’s consumption/investment decision. Such tests can often 
proceed by specifying only portions of an agent’s intertemporal portfolio 
problem and examining the implied restrictions on moments of subsets of 
variables in the model. With this narrower scope often comes some “robust-
ness” to potential misspecification of components of the overall economy 
that are not directly of interest. 

Yet a third case is one in which we do not have a well-developed theory 
for the joint distribution of prices and other variables and are simply at-
tempting to learn about features of their joint behavior. This case arises, for 
example, when one finds evidence against a theory, is not sure about how to 
formulate a better-fitting, alternative theory, and, hence, is seeking a better 
understanding of the historical relations among key economic variables as 
guidance for future model construction. 

1 
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2 1. Introduction 

As a practical matter, differences in model formulation and the decision 
to focus on a “preference-based” or “arbitrage-free” pricing model may also 
be influenced by the availability of data. A convenient feature of financial 
data is that it is sampled frequently, often daily and increasingly intraday as 
well. On the other hand, macroeconomic time series and other variables 
that may be viewed as determinants of asset prices may only be reported 
monthly or quarterly. For the purpose of studying the relation between as-
set prices and macroeconomic series, it is therefore necessary to formulate 
models and adopt econometric methods that accommodate these data lim-
itations. In contrast, those attempting to understand the day-to-day move-
ments in asset prices—traders or risk managers at financial institutions, for 
example—may wish to design models and select econometric methods that 
can be implemented with daily or intraday financial data alone. 

Another important way in which data availability and model specifica-
tion often interact is in the selection of the decision interval of economic 
agents. Though available data are sampled at discrete intervals of time— 
daily, weekly, and so on—it need not be the case that economic agents make 
their decisions at the same sampling frequency. Yet it is not uncommon for 
the available data, including their sampling frequency, to dictate a mod-
eler’s assumption about the decision interval of the economic agents in the 
model. Almost exclusively, two cases are considered: discrete-time models typ-
ically match the sampling and decision intervals—monthly sampled data 
mean monthly decision intervals, and so on—whereas continuous-time mod-
els assume that agents make decisions continuously in time and then im-
plications are derived for discretely sampled data. There is often no sound 
economic justification for either the coincidence of timing in discrete-time 
models, or the convenience of continuous decision making in continuous-
time models. As we will see, analytic tractability is often a driving force be-
hind these timing assumptions. 

Both of these considerations (the degree to which a complete economic 
environment is specified and data limitations), as well as the computational 
complexity of solving and estimating a model, may affect the choice of es-
timation strategy and, hence, the econometric properties of the estimator 
of a dynamic pricing model. When a model provides a full characterization 
of the joint distribution of its variables, a historical sample is available, and 
fully exploiting this information in estimation is computationally feasible, 
then the resulting estimators are “fully efficient” in the sense of exploit-
ing all of the model-implied restrictions on the joint distribution of asset 
prices. On the other hand, when any one of these conditions is not met, 
researchers typically resort, by choice or necessity, to making compromises 
on the degree of model complexity (the richness of the economic environ-
ment) or the computational complexity of the estimation strategy (which 
often means less econometric efficiency in estimation). 
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3 1.1. Model Implied Restrictions 

With these differences in modelers’ objectives, practical constraints on 
model implementation, and computational considerations in mind, this 
book: (1) characterizes the nature of the restrictions on the joint distribu-
tions of asset returns and other economic variables implied by dynamic asset 
pricing models (DAPMs); (2) discusses the interplay between model formu-
lation and the choice of econometric estimation strategy and analyzes the 
large-sample properties of the feasible estimators; and (3) summarizes the 
existing, and presents some new, empirical evidence on the fit of various 
DAPMs. 

We briefly expand on the interplay between model formulation and 
econometric analysis to set the stage for the remainder of the book. 

1.1. Model Implied Restrictions 

Let Ps denote the set of “payoffs” at date s that are to be priced at date t , 
for s > t , by an economic model (e.g., next period’s cum-dividend stock 
price, cash flows on bonds, and so on),1 and let πt : Ps → R denote 
the pricing function, where Rn denotes the n-dimensional Euclidean space. 
Most DAPMs maintain the assumption of no arbitrage opportunities on the 
set of securities being studied: for any qt +1 ∈ Pt +1 for which Pr{qt+1 ≥ 0}=1, 
Pr({πt (qt+1) ≤ 0} ∩ {qt +1 > 0}) = 0.2 In other words, nonnegative payoffs at 
t + 1 that are positive with positive probability have positive prices at date t . 
A key insight underlying the construction of DAPMs is that the absence 
of arbitrage opportunities on a set of payoffs Ps is essentially equivalent to 
the existence of a special payoff, a pricing kernel qs 

∗, that is strictly positive 
(Pr{q ∗ > 0} =  1) and represents the pricing function πt ass 

πt (qs ) = E qsq ∗ | It , (1.1)s 

for all qs ∈ Ps , where It denotes the information set upon which expecta-
tions are conditioned in computing prices.3 

1 At this introductory level we remain vague about the precise characteristics of the 
payoffs investors trade. See Harrison and Kreps (1979), Hansen and Richard (1987), and 
subsequent chapters herein for formal definitions of payoff spaces. 

2 We let Pr{·} denote the probability of the event in brackets. 
∗3 The existence of a pricing kernel q that prices all payoffs according to (1.1) is equiva-

lent to the assumption of no arbitrage opportunities when uncertainty is generated by discrete 
random variables (see, e.g., Duffie, 2001). More generally, when It is generated by contin-
uous random variables, additional structure must be imposed on the payoff space and pricing 
function πt for this equivalence (e.g., Harrison and Kreps, 1979, and Hansen and Richard, 
1987). For now, we focus on the pricing relation (1.1), treating it as being equivalent to the 
absence of arbitrage. A more formal development of pricing kernels and the properties of q ∗ 

is taken up in Chapter 8 using the framework set forth in Hansen and Richard (1987). 
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4 1. Introduction 

This result by itself does not imply testable restrictions on the prices 
of payoffs in Pt +1, since the theorem does not lead directly to an empir-
ically observable counterpart to the benchmark payoff. Rather, overiden-
tifying restrictions are obtained by restricting the functional form of the 
pricing kernel q ∗ or the joint distribution of the elements of the pricing en-s 
vironment (Ps , qs 

∗ , It ). It is natural, therefore, to classify DAPMs according to 
the types of restrictions they impose on the distributions of the elements of 
(Ps , qs 

∗ , It ). We organize our discussions of models and the associated esti-
mation strategies under four headings: preference-based DAPMs, arbitrage-
free pricing models, “beta” representations of excess portfolio returns, and 
linear asset pricing relations. This classification of DAPMs is not mutually 
exclusive. Therefore, the organization of our subsequent discussions of spe-
cific models is also influenced in part by the choice of econometric methods 
typically used to study these models. 

1.1.1. Preference-Based DAPMs 

The approach to pricing that is most closely linked to an investor’s portfolio 
problem is that of the preference-based models that directly parameterize 
an agent’s intertemporal consumption and investment decision problem. 
Specifically, suppose that the economy being studied is comprised of a finite 
number of infinitely lived agents who have identical endowments, informa-
tion, and preferences in an uncertain environment. Moreover, suppose that 
At represents the agents’ information set and that the representative con-
sumer ranks consumption sequences using a von Neumann-Morgenstern 
utility functional 

∞ � 
E β tU (ct ) � A0 . (1.2) 

t =0 

In (1.2), preferences are assumed to be time separable with period utility 
function U and the subjective discount factor β ∈ (0, 1). If the representa-
tive agent can trade the assets with payoffs Ps and their asset holdings are 
interior to the set of admissible portfolios, the prices of these payoffs in 
equilibrium are given by (Rubinstein, 1976; Lucas, 1978; Breeden, 1979) 

πt (qs ) = E ms−t qs | At , (1.3)s 

where ms−t = βU ′(cs )/U ′(ct ) is the intertemporal marginal rate of substi-s 
tution of consumption (MRS) between dates t and s. For a given parame-
terization of the utility function U (ct ), a preference-based DAPM allows the 
association of the pricing kernel q ∗ with ms−t .s s 
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5 1.1. Model Implied Restrictions 

To compute the prices πt (qs ) requires a parametric assumption about 
the agent’s utility function U (ct ) and sufficient economic structure to deter-

tmine the joint, conditional distribution of ms− and qs . Given that prices are s 
set as part of the determination of an equilibrium in goods and securities 
markets, a modeler interested in pricing must specify a variety of features of 
an economy outside of securities markets in order to undertake preference-
based pricing. Furthermore, limitations on available data may be such that 
some of the theoretical constructs appearing in utility functions or budget 
constraints do not have readily available, observable counterparts. Indeed, 
data on individual consumption levels are not generally available, and ag-
gregate consumption data are available only for certain categories of goods 
and, at best, only at a monthly sampling frequency. 

For these reasons, studies of preference-based models have often fo-
cused on the more modest goal of attempting to evaluate whether, for a 
particular choice of utility function U (ct ), (1.3) does in fact “price” the 

tpayoffs in Ps . Given observations on a candidate ms− and data on asset s 
returns Rs ≡ {qs ∈ Ps : πt (qs ) = 1}, (1.3) implies testable restrictions 
on the joint distribution of Rs , ms−t , and elements of At . Namely, for each t 

ts -period return rs , E [ms− rs − 1|At ] = 0, for any rs ∈ Rs (see, e.g., Hansen s 
and Singleton, 1982). An immediate implication of this moment restriction 

tis that E [(ms− rs − 1)xt ] = 0, for any xt ∈ At .4 These unconditional mo-s 
ment restrictions can be used to construct method-of-moments estimators 

t tof the parameters governing ms− and to test whether or not ms− prices the s s 
securities with payoffs in Ps . This illustrates the use of restrictions on the 
moments of certain functions of the observed data for estimation and infer-
ence, when complete knowledge of the joint distribution of these variables 
is not available. 

An important feature of preference-based models of frictionless mar-
kets is that, assuming agents optimize and rationally use their available in-
formation At in computing the expectation (1.3), there will be no arbitrage 
opportunities in equilibrium. That is, the absence of arbitrage opportunities 
is a consequence of the equilibrium price-setting process. 

1.1.2. Arbitrage-Free Pricing Models 

An alternative approach to pricing starts with the presumption of no ar-
bitrage opportunities (i.e., this is not derived from equilibrium behavior). 
Using the principle of “no arbitrage” to develop pricing relations dates back 
at least to the key insights of Black and Scholes (1973), Merton (1973), Ross 

4 This is an implication of the “law of iterated expectations,” which states that E [ys ] = 
E [E (ys |At )], for any conditioning information set At . 
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6 1. Introduction 

(1978), and Harrison and Kreps (1979). Central to this approach is the ob-
servation that, under weak regularity conditions, pricing can proceed “as if” 
agents are risk neutral. When time is measured continuously and agents can 
trade a default-free bond that matures an “instant” in the future and pays the 
(continuously compounded) rate of return rt , discounting for risk-neutral 
pricing is done by the default-free “roll-over” return e − ∫t

s ru du . For example, 
if uncertainty about future prices and yields is generated by a continuous-
time Markov process Yt (so, in particular, the conditioning information set 
It is generated by Yt ), then the price of the payoff qs is given equivalently by 

� ∗ 
� � − ∫s

t ru duπt (qs ) = E qs qs | Yt = E Q e qs | Yt , (1.4) 

where E Q denotes expectation with regard to the “risk-neutral” conditional t 
distribution of Y . The term risk-neutral is applied because prices in (1.4) 
are expressed as the expected value of the payoff qs as if agents are neutral 
toward financial risks. 

As we will see more formally in subsequent chapters, the risk attitudes 
of investors are implicit in the exogenous specification of the pricing kernel 

∗ q as a function of the state Yt and, hence, in the change of probability mea-
sure underlying the risk-neutral representation (1.4). Leaving preferences 
and technology in the “background” and proceeding to parameterize the 
distribution of q ∗ directly facilitates the computation of security prices. The 
parameterization of (Ps , qs 

∗ , Yt ) is chosen so that the expectation in (1.4) can 
be solved, either analytically or through tractable numerical methods, for 
πt (qs ) as a function of Yt : πt (qs ) = P (Yt ). This is facilitated by the adoption 
of continuous time (continuous trading), special structure on the condi-
tional distribution of Y , and constraints on the dependence of q ∗ on Y so 
that the second expectation in (1.4) is easily computed. However, similarly 
tractable models are increasingly being developed for economies specified 
in discrete time and with discrete decision/trading intervals. 

Importantly, though knowledge of the risk-neutral distribution of Yt is 
sufficient for pricing through (1.4), this knowledge is typically not sufficient 
for econometric estimation. For the purpose of estimation using historical 
price or return information associated with the payoffs Ps , we also need 
information about the distribution of Y under its data-generating or actual 
measure. What lie between the actual and risk-neutral distributions of Y 
are adjustments for the “market prices of risk”—terms that capture agents’ 
attitudes toward risk. It follows that, throughout this book, when discussing 
arbitrage-free pricing models, we typically find it necessary to specify the 
distributions of the state variables or risk factors under both measures. 

If the conditional distribution of Yt given Yt −1 is known (i.e., derivable 
from knowledge of the continuous-time specification of Y ), then so typically 
is the conditional distribution of the observed market prices πt (qs ). The 
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7 1.1. Model Implied Restrictions 

completeness of the specification of the pricing relations (both the distri-
bution of Y and the functional form of Ps ) in this case implies that one can 
in principle use “fully efficient” maximum likelihood methods to estimate 
the unknown parameters of interest, say θ0. Moreover, this is feasible using 
market price data alone, even though the risk factors Y may be latent (unob-
served) variables. This is a major strength of this modeling approach since, 
in terms of data requirements, one is constrained only by the availability of 
financial market data. 

Key to this strategy for pricing is the presumption that the burden of 
computing πt (qs ) = Ps (Yt ) is low. For many specifications of the distribution 
of the state Yt , the pricing relation Ps (Yt ) must be determined by numerical 
methods. In this case, the computational burden of solving for Ps while 
simultaneously estimating θ0 can be formidable, especially as the dimension 
of Y gets large. Have these considerations steered modelers to simpler data-
generating processes (DGPs) for Yt than they might otherwise have studied? 
Surely the answer is yes and one might reasonably be concerned that such 
compromises in the interest of computational tractability have introduced 
model misspecification. 

We will see that, fortunately, in many cases there are alternative esti-
mation strategies for studying arbitrage-free pricing relations that lessen 
the need for such compromises. In particular, one can often compute the 
moments of prices or returns implied by a pricing model, even though 
the model-implied likelihood function is unknown. In such cases, method-
of-moments estimation is feasible. Early implementations of method-of-
moments estimators typically sacrificed some econometric efficiency com-
pared to the maximum likelihood estimator in order to achieve substantial 
computational simplification. More recently, however, various approximate 
maximum likelihood estimators have been developed that involve little or 
no loss in econometric efficiency, while preserving computational tract-
ability. 

1.1.3. Beta Representations of Excess Returns 

One of the most celebrated and widely applied asset pricing models is the 
static capital-asset pricing model (CAPM), which expresses expected excess 
returns in terms of a security’s beta with a benchmark portfolio (Sharpe, 
1964; Mossin, 1968). The traditional CAPM is static in the sense that agents 
are assumed to solve one-period optimization problems instead of multi-
period utility maximization problems. Additionally, the CAPM beta pricing 
relation holds only under special assumptions about either the distributions 
of asset returns or agents’ preferences. 

Nevertheless, the key insights of the CAPM carry over to richer stochas-
tic environments in which agents optimize over multiple periods. There is 



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[8], (8)

Lines: 102 to

———
2.3094pt
———
Normal Page
PgEnds: TE

[8], (8)

� � 

� � 

8 1. Introduction 

an analogous “single-beta” representation of expected returns based on the 
representation (1.1) of prices in terms of a pricing kernel q ∗, what we refer 
to as an intertemporal CAPM or ICAPM.5 Specifically, setting s = t + 1, the 

∗ ∗benchmark return rt +1 = q ∗ 
1/πt (q 1) satisfies

6 
t + t +� ∗ 

� 
E rt 

∗
+1(rt +1 − rt+1) | It = 0, rt +1 ∈ Rt +1. (1.5) 

Equation (1.5) has several important implications for the role of r ∗ 
1 in asset t +

return relations, one of which is that rt 
∗
+1 is a benchmark return for a single-

beta representation of excess returns (see Chapter 11): 

� � � ∗ 
� 

E rj,t +1 | It − rt
f = βj t E rt +1 | It − rt

f 
, (1.6) 

where 

Cov rj,t +1, rt 
∗
+1 | It 

βj t = � 
Var rt 

∗
+1 | It 

� , (1.7) 

and rt
f is the interest rate on one-period riskless loans issued at date t . In  

words, the excess return on a security is proportional to the excess return 
on the benchmark portfolio, E [rt 

∗
+1 − rt

f | It ], with factor of proportionality 
βj t , for all securities j with returns in Rt +1. 

It turns out that the beta representation (1.6), together with the rep-
resentation of r f in terms of qt 

∗
+1,7 constitute exactly the same information 

as the basic pricing relation (1.1). Given one, we can derive the other, and 
vice versa. At first glance, this may seem surprising given that econometric 
tests of beta representations of asset returns are often not linked to pricing 
kernels. The reason for this is that most econometric tests of expressions 
like (1.6) are in fact not tests of the joint restriction that r f = 1/E [q ∗ |It ]t t +1
and rt 

∗
+1 satisfies (1.6). Rather tests of the ICAPM are tests of whether a 

proposed candidate benchmark return r β 
1 satisfies (1.6) alone, for a given t +

information set It . There are an infinite number of returns r β that satisfy t 
(1.6) (see Chapter 11). The return r ∗ 

1, on the other hand, is the unique t +

5 By defining a benchmark return that is explicitly linked to the marginal rate of substitu-
tion, Breeden (1979) has shown how to obtain a single-beta representation of security returns 
that holds in continuous time. The following discussion is based on the analysis in Hansen and 
Richard (1987). 

6 Hansen and Richard (1987) show that when the pricing function πt is nontrivial, 
Pr{πt (qt

∗
+1) = 0} = 0, so that rt 

∗
+1 is a well-defined return. Substituting r ∗ into (1.1) gives 

∗E [rt 
∗
+1rt +1 | It ] = {E [q ∗2 

t +1 | It ]}−1 , for all rt +1 ∈ Rt +1. Since rt+1 is one such return, (1.5) 
follows. 

7 The interest rate rt
f can be expressed as 1/E [q ∗ |It ] by substituting the payoff qt +1 = 1t +1

into (1.1) with s = t + 1. 
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9 1.1. Model Implied Restrictions 

return (within a set that is formally defined) satisfying (1.5). Thus, tests of 
single-beta ICAPMs are in fact tests of weaker restrictions on return distri-
butions than tests of the pricing relation (1.1). 

Focusing on a candidate benchmark return rt 
β 
+1 and relation (1.6) (with 

β rt +1 in place of rt 
∗
+1), once again the choices made regarding estimation and 

testing strategies typically involve trade-offs between the assumptions about 
return distributions and the robustness of the empirical analysis. Taken by 
itself, (1.6) is a restriction on the conditional first and second moments of 
returns. If one specifies a parametric family for the joint conditional distri-
bution of the returns r j,t +1 and rt 

β 
+1 and the state Yt , then estimation can 

proceed imposing the restriction (1.6). However, such tests may be com-
promised by misspecification of the higher moments of returns, even if the 
first two moments are correctly specified. There are alternative estimation 
strategies that exploit less information about the conditional distribution 
of returns and, in particular, that are based on the first two conditional mo-
ments for a given information set It , of returns. 

1.1.4. Linear Pricing Relations 

Historically, much of the econometric analysis of DAPMs has focused on 
linear pricing relations. One important example of a linear DAPM is the 
version of the ICAPM obtained by assuming that βj t in (1.6) is constant 
(not state dependent), say βj . Under this additional assumption, βj is the 
familiar “beta” of the j th common stock from the CAPM, extended to allow 
both expected returns on stocks and the riskless interest rate to change over 
time. The mean of 

β uj,t +1 ≡ rj,t+1 − rt
f − βj rt +1 − rt

f (1.8) 

conditioned on It is zero for all admissible rj . Therefore, the expression in 
(1.8) is uncorrelated with any variable in the information set It ; E [uj,t +1xt ] 
= 0, xt ∈ It . Estimators of the βj and tests of (1.6) can be constructed based 
on these moment restrictions. 

This example illustrates how additional assumptions about one feature 
of a model can make an analysis more robust to misspecification of other 
features. In this case, the assumption that βj is constant permits estimation 
of βj and testing of the null hypothesis (1.6) without having to fully specify 
the information set It or the functional form of the conditional means of 
r j,t +1 and rt 

β 
+1. All that is necessary is that the candidate elements xt of It 

8used to construct moment restrictions are indeed in It .

8 We will see that this simplification does not obtain when the βj t are state dependent. 
Indeed, in the latter case, we might not even have readily identifiable benchmark returns rt 

β 
+1. 
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10 1. Introduction 

Another widely studied linear pricing relation was derived under the 
presumption that in a well-functioning—some say informationally efficient — 
market, holding-period returns on assets must be unpredictable (see, e.g., 
Fama, 1970). It is now well understood that, in fact, the optimal process-
ing of information by market participants is not sufficient to ensure un-
predictable returns. Rather, we should expect returns to evidence some 
predictability, either because agents are risk averse or as a result of the pres-
ence of a wide variety of market frictions. 

Absent market frictions, then, one sufficient condition for returns to 
be unpredictable is that agents are risk neutral in the sense of having linear 
utility functions, U (ct ) = u0 + uc ct . Then the MRS is ms−t = βs , where β iss 
the subjective discount factor, and it follows immediately from (1.3) that 

E [rs |It ] = 1/βs , (1.9) 

for an admissible return rs . This, in turn, implies that rs is unpredictable 
in the sense of having a constant conditional mean. The restrictions on 
returns implied by (1.9) are, in principle, easily tested under only minimal 
additional auxiliary assumptions about the distributions of returns. One 
simply checks to see whether rs − 1/βs is uncorrelated with variables dated 
t or earlier that might be useful for forecasting future returns. However, as 
we discuss in depth in Chapter 9, there is an enormous literature examining 
this hypothesis. In spite of the simplicity of the restriction (1.9), whether or 
not it is true in financial markets remains an often debated question. 

1.2. Econometric Estimation Strategies 

While the specification of a DAPM logically precedes the selection of an esti-
mation strategy for an empirical analysis, we begin Part I with an overview of 
econometric methods for analyzing DAPMs. Applications of these methods 
are then taken up in the context of the discussions of specific DAPMs. To 
set the stage for Part I, we start by viewing the model construction stage as 
leading to a family of models or pricing relations describing features of the 
distribution of an observed vector of variables zt . This vector may include 
asset prices or returns, possibly other economic variables, as well as lagged 
values of these variables. Each model is indexed by a K -dimensional vector 
of parameters θ in an admissible parameter space 
 ∈ RK . We introduce 
 

For instance, if It is taken to be agents’ information set At , then the contents of It may not 
be known to the econometrician. In this case the set of returns that satisfy (1.6) may also be 
unknown. It is of interest to ask then whether or not there are similar risk-return relations with 
moments conditioned on an observable subset of At , say It , for which benchmark returns 
satisfying an analogue to (1.6) are observable. This is among the questions addressed in 
Chapter 11. 
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11 1.2. Econometric Estimation Strategies 

because, for each of the DAPMs indexed by θ to be well defined, it may be 
necessary to constrain certain parameters to be larger than some minimum 
value (e.g., variances or risk aversion parameters), or DAPMs may imply 
that certain parameters are functionally related. The basic premise of an 
econometric analysis of a DAPM is that there is a unique θ0 ∈ 
 (a unique 
pricing relation) consistent with the population distribution of z. A primary 
objective of the econometric analysis is to construct an estimator of θ0. 

More precisely, we view the selection of an estimation strategy for θ0 as the 
choice of: 

•	 A sample of size T on a vector z t of observed variables, �zT ≡ (zT , zT −1, 
. . . , z1)′ . 

•	 An admissible parameter space 
 ⊆ RK that includes θ0. 
•	 A K -vector of functions D(z t ; θ)  with the property that θ0 is the unique 
element of 
 satisfying 

E [D(z t ; θ0)] = 0.	 (1.10) 

What ties an estimation strategy to the particular DAPM of interest is the 
requirement that θ0 be the unique element of 
 that satisfies (1.10) for the 
chosen function D. Thus, we view (1.10) as summarizing the implications 
of the DAPM that are being used directly in estimation. Note that, while the 
estimation strategy is premised on the economic theory of interest implying 
that (1.10) is satisfied, there is no presumption that this theory implies a 
unique D that has mean zero at θ0. In fact, usually, there is an uncountable 
infinity of admissible choices of D. 

For many of the estimation strategies considered, D can be reinter-
preted as the first-order condition for maximizing a nonstochastic population 
estimation objective or criterion function Q 0(θ) : 
 → R. That is, at θ0, 

∂Q 0 
(θ0) = E [D(z t ; θ0)] = 0.	 (1.11)

∂θ  

Thus, we often view a choice of estimation strategy as a choice of criterion 
function Q 0. For well-behaved Q 0, there is always a θ ∗ that is the global max-
imum (or minimum, depending on the estimation strategy) of the criterion 
function Q 0. Therefore, for Q 0 to be a sensible choice for the model at hand 
we require that θ ∗ be unique and equal to the population parameter vector 
of interest, θ0. A necessary step in verifying that θ ∗ = θ0 is verifying that D 
satisfies (1.10) at θ0. 

So far we have focused on constraints on the population moments of z 
derived from a DAPM. To construct an estimator of θ0, we work with the sam-
ple counterpart of Q 0(θ), QT (θ), which is a known function of �zT . (The sub-
script T is henceforth used to indicate dependence on the entire sample.) 
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12 1. Introduction 

The sample-dependent θT that minimizes QT (θ) over 
 is the extremum es-
timator of θ0. When the first-order condition to the population optimum 
problem takes the form (1.11), the corresponding first-order condition for 
the sample estimation problem is9 

∂Q T 

∂θ  
(θT ) = 

1 

T 

T � 

t =1 

D(z t ; θT ) = 0. (1.12) 

The sample relation (1.12) is obtained by replacing the population moment 
in (1.11) by its sample counterpart and choosing θT to satisfy these sample 
moment equations. Since, under regularity, sample means converge to their 
population counterparts [in particular, QT (·) converges to Q 0(·)], we expect 
θT to converge to θ0 (the parameter vector of interest and the unique min-
imizer of Q 0) as  T → ∞. 

As noted previously, DAPMs often give rise to moment restrictions of 
the form (1.10) for more than one D, in which case there are multiple 
feasible estimation strategies. Under regularity, all of these choices of D 
have the property that the associated θT converge to θ0 (they are consistent 
estimators of θ0). Where they differ is in the variance-covariance matrices 
of the implied large-sample distributions of θT . One paradigm, then, for 
selecting among the feasible estimation strategies is to choose the D that 
gives the most econometrically efficient estimator in the sense of having 
the smallest asymptotic variance matrix. Intuitively, the later estimator is 
the one that exploits the most information about the distribution of �zT in 
estimating θ0. 

Once a DAPM has been selected for study and an estimation strategy 
has been chosen, one is ready to proceed with an empirical study. At this 
stage, the econometrician/modeler is faced with several new challenges, 
including: 

1. The choice of computational method to find a global optimum to 
QT (θ). 

2. The choice of statistics and derivation of their large-sample proper-
ties for testing hypotheses of interest. 

3. An	 assessment of the actual small-sample distributions of the 
test statistics and, thus, of the reliability of the chosen inference 
procedures. 

The computational demands of maximizing QT can be formidable. When 
the methods used by a particular empirical study are known, we occasion-
ally comment on the approach taken. However, an in-depth exploration of 

9 In subsequent chapters we often find it convenient to define QT more generally as 
1/T 

�T 
1 DT (z t ; θT ) = 0, where DT (z t ; θ)  is chosen so that it converges (almost surely) to t =

D(z t ; θ), as  T → ∞, for all θ ∈ 
. 
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13 1.2. Econometric Estimation Strategies 

alternative algorithms for finding the optimum of QT is beyond the scope 
of this book. 

With regard to points (2) and (3), there are many approaches to testing 
hypotheses about the goodness-of-fit of a DAPM or the values of the pa-
rameters θ0. The criteria for selecting a test procedure (within the classical 
statistical paradigm) are virtually all based on large-sample considerations. 
In practice, however, the actual distributions of estimators in finite samples 
may be quite different than their large-sample counterparts. To a limited 
degree, Monte Carlo methods have been used to assess the small-sample 
properties of estimators θT . We often draw upon this literature, when avail-
able, in discussing the empirical evidence. 
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