
Chapter One


Understanding Animal Behavior 

The subject of this book is animal behavior. What is animal behavior, and what 
does it mean to understand animal behavior? As we shall see in this chapter, there 
are several answers to these questions, depending on research tradition and what 
one intends to understand. At the same time, different theories of behavior have 
much the same scope: 

•	 They deal with how the animal as a whole interacts with its physical, ecologi­
cal and social environment, in particular through reception of sensory stimula­
tion and behavioral actions such as motor patterns, pheromone release, change 
in body coloration and so forth. 

•	 They want to explain, predict or control what animals do. 
•	 They consider situations in which internal factors such as memory and physi­

ological states are not easily accessible. 

Besides our theoretical interests, there are great practical demands for knowledge 
of behavior. People who work with animals, such as zookeepers, farmers, animal 
trainers, veterinarians and conservationists, constantly need such knowledge. 

Ethology and comparative psychology are two major research traditions dealing 
with behavior. Within these disciplines, it has been and still is important to ex­
plore behavior as a function of external stimuli and readily observable factors such 
as species, age and sex. Internal factors such as physiological states and memory, 
on the other hand, are studied indirectly or inferred from observations of behavior, 
history of events and the passage of time. The reason for this difference is that in 
almost all situations in which we encounter animal behavior, it is relatively easy to 
monitor and control the external situation and to record behavior, but the access to 
internal factors is usually limited. However, ignoring internal factors undoubtedly 
has shortcomings. First, it is clear that external factors are not alone in causing 
behavior. An animal can react quite differently to the same piece of food, e.g., de­
pending on hunger and memory of experiences with similar food items. Second, it 
is difficult to reconstruct behavior mechanisms from pure observations of behavior, 
and physiological knowledge about internal mechanisms may greatly facilitate the 
development of behavior models. 

But what is the proper compromise between the complexity of nervous system 
and body physiology and the need for understanding at the behavioral level? The 
role of internal factors in models of behavior has been and still is a matter of much 
discussion. The most famous of these debates is the confrontation between be­
haviorists, who attempted to avoid internal factors altogether, and cognitive psy­
chologists, who instead encouraged theorizing about internal processes (Leahey 
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Figure 1.1 A newly hatched cuckoo chick dumps the eggs of its foster parents. The proxi­
mate causes of this behavior are not the same as its ultimate causes. The proxi­
mate explanation is that touch­sensitive receptors on the back of the chick elicit 
a behavior sequence that eventually results in eviction of the eggs. The ultimate, 
or evolutionary explanation is that chicks whose genes coded for this behavior 
survived better than chicks without such genes, since the former did not share 
the foster parents’ efforts with foster siblings. Reproduced from Davies (1992) 
by permission of artist David Quinn. 

2004; Skinner 1985; Staddon 2001; see Section 1.3.5). We will discuss this issue 
at length in Chapter 6. In short, our position is that internal factors are vital for 
understanding behavior, but at the same time we side with behaviorists (and, of 
course, ethologists) in their focus on behavior and regard their contribution to the 
understanding of behavior as very significant. 

In this chapter we first consider the different kinds of explanations that have been 
considered for behavior. We then introduce the reader to major theories of behav­
ior, focusing on their structure and the causal factors invoked to explain behavior. 
Finally, we introduce neural networks models, which we will explore in this book 
as a potential framework for understanding behavior. 

1.1 THE CAUSES OF BEHAVIOR 

In biology, two types of causal explanations are generally recognized: proximate 
and ultimate explanations (Baker 1938; Mayr 1961). Proximate explanations ap­
peal to motivational variables, experiences and genotype as the cause of behavior. 
Ultimate explanations refer to selection pressures and other factors that cause the 
evolution of behavior. These two kinds of causal explanations are independent and 
complementary, serving different purposes: one cannot replace the other. To clar­
ify this concept, Lorenz (1981; §1.6) offers the following example. The ultimate 
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cause of cars is, of course, traveling. If the engine breaks, however, the ultimate 
cause cannot start it again: we need to know how the engine works (proximate 
causes). Figure 1.1 gives another example of this distinction, in the context of be­
havior. Note that, in principle, we can learn independently about proximate and 
ultimate causes. However, the two are also related (since behavior is a result of 
evolution and influences evolution), and we probably will learn faster about one by 
also considering the other. 

A more detailed set of explanations was suggested Niko Tinbergen in defining 
the scope of ethology (Tinbergen 1963). Rather than distinguishing just between 
proximate and ultimate causes, he argued that four questions must be answered to 
understand behavior. These are usually summarized as follows: 

1. What causes a behavior to appear at a given moment and how does the be­
havioral machinery work? 

2. How does behavior develop during an individual’s lifetime? 
3. What is the evolutionary history of the behavior? 
4. How does the behavior contribute to survival and reproduction? 

The first two questions are about the proximate explanation. Splitting it in two al­
lows us to study behavior mechanisms at one time separately from how they change 
with time, an advantage on which we will capitalize. Tinbergen’s third question 
aims at a description of evolutionary change and does not refer to any causal ex­
planation. The fourth question, as it is expressed, does not strictly refer to a causal 
explanation but to so­called final or functional explanations. These, with a leap of 
logic, invoke the effects of a behavior (contribution to survival and reproduction) 
as the cause of the behavior itself. In practice, however, the fourth question often 
covers true causal studies of the outcome of evolution, i.e., studies of how natural 
selection and other factors can modify behavior in an evolving population. Addi­
tional discussion of explanations of animal behavior can be found in Alcock and 
Sherman (1994), Dewsbury (1992, 1999), and Hogan (1994a). In this book we 
consider three kinds of causal explanations closely related to Tinbergen’s: 

1. Motivation 
2. Ontogeny 
3. Evolution 

To us, understanding behavior means having answers to all of these questions, and 
this book is organized after this classification. The three explanations consider the 
causation of different phenomena and invoke different causes as follows. 

A motivational explanation refers to individual behavior, and the goal is to pre­
dict behavior from variables such as external stimulation and internal physiological 
states and to understand the behavior mechanism (Hogan 1994a). The term moti­
vation refers to generally reversible and often short­term changes in behavior. An 
example is how animals use behavior to regulate food and water intake. Other 
examples include mechanisms of perception, decision making, motor control, etc. 
These topics are covered in Chapter 3. 

Ontogeny refers to the development of the behavior mechanism during an in­
dividual’s lifetime. The causes of ontogeny are the genotype and all the experi­
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Figure 1.2 An idealized behavior map associating motivational state (external and internal 
factors) with behavioral responses. 

ences the individual has. The changes that occur include changes in the structure 
of the nervous system and memory changes, leading to generally long­term and 
less reversible changes in behavior (Hogan 1994a). Particular phenomena include 
learning, maturation, genetic predispositions and the development of the nervous 
system. Chapter 4 is dedicated to learning and other ontogenetic phenomena. 

Lastly, evolution of behavior (or any other trait) occurs in a population of individ­
uals and is manifested by changes in the population’s gene pool (Futuyma 1998). 
Causes of genetic changes include mutations, recombination, natural selection and 
chance. Selection may stem from the abiotic environment, from other species and 
from the behavior of conspecifics. These are the topics of Chapter 5. In species 
with culture, additional factors would have to be considered, but this is beyond the 
scope of this book. 

1.2 A FRAMEWORK FOR MODELS OF BEHAVIOR 

1.2.1 The behavior map: From motivational state to response 

Central to this book and a starting point for most of our discussions is the assump­
tion that behavior can be described and predicted based on knowledge about rele­
vant motivational variables. These are simply the variables that enter motivational 
explanations of behavior. For instance, feeding behavior may be caused by the 
presence of food stimuli in combination with hunger, as illustrated in Figure 1.2. 
Research on behavior is partly about identifying motivational variables, and today, 
many are known, including physiological variables such as hormone levels and ex­
ternal variables such as the shape and color of objects, the structure of mating calls, 
etc. The collection of all motivational variables at a given time is the animal’s mo­
tivational state. A complete description of behavior assigns a behavioral response 
to each possible motivational state. Mathematically, we can express this notion 



5 UNDERSTANDING ANIMAL BEHAVIOR 

Table 1.1 How the behavior map enters different explanations of behavior. 

Level of explanation 

Motivation Ontogeny Evolution 

Question	 What are the properties of How is the behavior How does evolution 
the behavior map? map determined? change behavior maps? 

Causes External stimuli and Genes, experiences Environment (physical, 
internal states biological, social), 

mutations, chance 

Effects A behavioral response A behavior map	 Genetic code to develop 
a behavior map 

Important Internal states of the body Memory and nervous Gene frequencies 
states and nervous system system connectivity and genotypes 

with a function m that establishes a mapping from the set of motivational states X 
to the set of responses R. The latter contains the behavioral repertoire and other 
responses, such as hormone secretion. If we use x and r to refer to a single state 
and response, respectively, we can write 

r = m(x)	 (1.1) 

We will refer to m as the behavior map. This expression may sound technical, but 
it actually refers to something familiar to all students of behavior. For instance, the 
concepts of stimulus­response relationship, decision rule or response gradient are 
all examples of behavior maps. That is, they can be all written in the form of equa­
tion (1.1) with appropriate choices of the input and output spaces and of the map 
function m. We use the expression behavior map for several reasons. First, it is not 
linked to any modeling tradition, but we can identify a behavior map in all theories 
of behavior. Second, the concept of a behavior map provides a sharp definition 
of what we mean by “understanding behavior” at different levels of explanation 
(Table 1.1). Third, our book explores neural networks as behavior maps. 

The behavior map may be stochastic rather than deterministic. This means that a 
probability is assigned to each possible behavioral response rather than predicting 
exactly which one will occur. Whether true stochasticity occurs in behavior is 
a largely an unresolved problem (see, e.g., Dawkins & Dawkins 1974). Rather 
than attempting to solve this difficult issue, we note that stochastic factors may 
be included in the formalism above. For instance, we can include motivational 
variables that vary at random (Chapter 3). 

1.2.2 The state­transition equation: Changes in motivational state 

In addition to knowledge of the behavior map, if we want to predict sequences of 
behavior, we also need to know how the motivational state changes with time. Such 
changes may reflect changes in the environment (e.g., in the availability of a given 
food source) or changes within the animal (e.g., altered hormone levels). This book 
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studies the impact of both external and internal factors. However, with respect to 
state changes, we are mainly interested in changes within the animal: first, because 
they are caused by processes in the animal whereas most changes to external states 
occur independent of the individual; and, second, because internal states allow the 
animal to organize its behavior in time and to detect temporal patterns in sensory 
input (Chapter 3). 

Formally, changes in state can be described by means of equations of the form 

x(t + 1) = M(x(t), r(t)) (1.2) 

This equation simply says that the state at time t + 1 is a function of the state at 
time t and of the response of the system at time t (discrete rather than continuous 
time is considered for simplicity). In systems theory (Metz 1977; Minsky 1969), 
equation (1.2) is known as a state­transition equation, whereas equation (1.1) is 
the system’s response function, or output function. Examples of state­transition 
equations will be seen below, as well as in later chapters. 

1.2.3 The behavior map in ontogeny and evolution 

In summary, motivational explanations consider the properties of a particular be­
havior map, i.e., how behavioral responses are caused by motivational states. A 
full understanding of motivational process also requires an understanding of mo­
tivational state transitions. Ontogenetic and evolutionary explanations of behavior 
deal with different causes and effects. 

In ontogenetic explanations, the effect is a behavior map, and the causes are an 
individual’s genes and experiences. Thus ontogeny considers how the map devel­
ops and changes during an individuals life. It also covers the nature­nurture issue. 
One can express mathematically the behavior map as a function of the genotype g 
and the history of experiences h: 

m = f (g, h) (1.3) 

However, we prefer an approach based on state. An animal does not store its en­
tire history; instead, its experiences result in a change to state variables W that 
determine the properties of the behavior map. Formally, we can write 

m = f (W ) (1.4) 

Most models of ontogeny and learning, including those based on neural networks, 
are of this kind. Note that the state variables of ontogenetic process are different 
from those of motivational process. The most obvious state variable in ontogeny 
is memory, and learning is a key mechanism for memory changes (memory state 
transitions). The state transition equation may be complex and depend on current 
state, genotype, motivational state and response. 

Finally, to understand the genetic evolution of behavior, we have to consider 
evolutionary dynamics and a new class of state variables: the genes. Changes 
in gene frequencies and genotypes g are caused by the physical, ecological and 
social environment, as well as by mutations and other mechanisms that generate 
new genotypes. Evolution does not change the behavior map directly: the effect of 
genetic evolution is rather a genetic program for developing a behavior map. 
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1.2.4 Requirements on models of behavior 

In summary, to understand behavior we need ways of describing behavior maps and 
state­transition equations. Ideally, models of behavior should fulfill the following 
requirements: 

•	 Versatility: We observe great diversity in behavior both between species and, 
on a less dramatic scale, within species. The basic structure of a general model 
of behavior should allow for a diversity of behavior maps to be formed. 

•	 Robustness: Regardless what explanation we seek, the mechanisms should 
display some robustness; otherwise, behavior would be vulnerable to any ge­
netic or environmental disturbance. Thus small disturbances should not cause 
any major changes in performance. 

•	 Learning: Learning from experience is a general feature of animal behavior. 
The model should allow learning, which should integrate realistically with the 
behavior map. 

•	 Ontogeny: The behavior system of an individual develops in a sequence of 
events in which genes, the developing individual and the environment interact. 
The structure of the model should allow for gradual development of a behavior 
map from scratch to an adult form. 

•	 Evolution: For evolution to occur, genetic variation must exist that affects 
the development of behavior mechanisms. In a model, it should be possible 
to specify how genes control features of behavior maps and learning mech­
anisms. In addition, a model should allow the evolution of nervous systems 
from very simple forms to the complexities seen in, e.g., birds and mammals. 

1.3 THE STRUCTURE OF BEHAVIOR MODELS 

A diversity of behavior models exists, often developed for particular purposes such 
as the study of learning or perception. Important contributions to animal behavior 
theory come from the ethological tradition (McFarland 1974a; McFarland & Hous­
ton 1981; Simmons & Young 1999) and from comparative psychology (Mackintosh 
1994) but also from neuroscience (Cacioppo et al. 2000; Gazzaniga 2000; Kandel 
et al. 2000) and computer science (Wilson & Keil 1999). Here we consider dif­
ferent modeling traditions from the point of view of model structure. By structure 
we simply mean the basic machinery of the model, e.g., how a motivational model 
generates the response from motivational variables. So far we have not provided 
any structures to the models we have considered. Adding structure to a model 
of behavior includes making assumptions about features of real animals, such as 
sense organs, central processes, memory, motor control and what are the available 
responses. What this means in practice will become clear in the following. 

1.3.1 Operational and physiological models 

What structure we need depends, of course, on our aims. We may distinguish 
roughly between operational and physiological models. An operational model aims 
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to describe behavior realistically, but its structure is not intended to resemble the 
internal structure of animals. Such models are often referred to as black­box models 
to indicate lack of concern about underlying mechanisms. A physiological model, 
on the other hand, attempts to take into account more of the physiology that pro­
duces behavior, e.g., body and nervous system physiology. 

As will become clear in the following, the majority of models, both of human 
and of animal behavior, are operational models. Operational models are easier 
to build because only input­output relationships need to be described accurately 
and because we have fewer constraints on how to achieve such relationships. For 
instance, we may use the latest computer algorithm for pattern recognition instead 
of figuring out how a bunch of interconnected neurons can recognize anything. This 
is legitimate so long as we do not claim that agreement with observations implies 
identity of internal structure. Another factor favoring operational models is that 
physiology is more difficult to observe or control compared with behavior. 

A crucial difference between physiological and operational models, and indeed 
the whole point in distinguishing them, is that the structure of physiological mod­
els is not inferred solely from behavioral observations but is at least partly based 
on knowledge of physiology. There are several motives for doing this. One is to 
understand the neurophysiology of behavior. Another is the belief that a physio­
logical model can be a more accurate behavioral model because its structure more 
closely mirrors the internal structure of animals. 

In the following we consider the structure of behavior models from major re­
search traditions, i.e., what behavior maps and state equations are used. We also 
discuss the extent to which models are operational or physiological. This will al­
low us, throughout this book, to compare neural networks with other modeling 
traditions, highlighting differences and similarities. 

1.3.2 Models with little or no structure 

Some models of behavior make few assumptions about internal structure, allowing 
any input­output relationship to be formed with equal ease. Such unconstrained 
models have been used mainly for descriptive purposes and in studies of the evo­
lution of behavior. A simple way of creating an unconstrained behavior map is 
to arrange motivational factors and behavioral responses in a look­up table, where 
each entry represents a particular input, and the content of the entry represents the 
behavioral output (Figure 1.3). It is possible to consider histories of events by in­
cluding one table entry for each possible history (including the current situation). 
Thus a look­up table can cover learning, but not in its usual sense of changing 
stimulus­response relationships or memory. Rather, the effect of a particular indi­
vidual history is to read out from the table one response instead of another. 

One way to describe more explicitly sequences of events is to arrange them in 
a tree structure. As time unfolds, one progresses along the tree, following one 
branch or another depending on what decisions are taken. Such tree models can 
describe histories of experiences and allow for a unique responses to each history. 
A particular kind of tree model has been developed within game theory, referred 
to as the extensive­form description of a game (Figure 1.4; Fudenberg & Tirole 
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Motivational state Behavior response 

Hungry 
Very hungry 

Hungry + food available 
Predator present 

. . . 

Look for food 
Look for food 

Feed 
Flee 
. . . 

Figure 1.3 A look­up table. By finding a particular motivational state in the table, the be­
havioral response is found. This particular example corresponds to the behavior 
map in Figure 1.2. 

Player 1 Player 1

Situation X Situation Y

Player 2 Player 2 Player 2 Player 2

Action A

Action A Action B

Action B

Action A Action B

Action A

Action A Action B

Action B

Action A Action B

Figure 1.4 An extensive­form description of a game between two individuals (“players”). 
Each player has two possible actions, labeled A and B. The top node indicates 
that the game can start in situation X or Y, which is outside the players’ con­
trol. Based on what situation occurs, player 1 decides whether to do action A 
or B. Based on player 1’s action, player 2 decides in turn. The extensive­form 
representation of games can also illustrate cases in which players have imperfect 
information about external situations or each other’s actions. 

1992). The extensive form is more refined than a simple tree because it can take into 
account both events observed by the player and those not observed. Both extensive­
form descriptions and look­up tables can be extended to continuous variables. In 
the case of look­up tables, for instance, the table becomes a function that translates 
a continuous input into outputs. 

Look­up tables dominate behavioral modeling in evolutionary biology, where 
the aim is to seek a behavior map that maximizes fitness (or some other currency 
such as rate of food intake) under given ecological or social conditions (Grafen 
1991). The table is more commonly called a strategy, but it retains the meaning 
of a prescription of how to behave in each possible situation. Constraints on what 
behavior maps can be implemented are often weak and are introduced in mainly two 
ways. First, behaviors may differ in the cost that is paid to perform them. Second, 
the set of available behaviors is often limited to obtain more sensible results (e.g., 
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a maximum running speed of preys and predators may be assumed). However, it is 
still true that all behavior maps, among those allowed, are assumed equally easy to 
form (e.g., Kamil 1998). 

Models with no structure offer complete flexibility but have also drawbacks. 
First, they offer no insight into mechanisms of behavior. Second, each response 
is set independently of others. Thus there is no a priori reason why responses to 
similar inputs should yield similar outputs. For the same reason, responding in 
novel situations is undetermined, because the corresponding entry does not exist 
in the look­up table. In contrast, animal behavior exhibits clear regularities as a 
function of similarity between stimuli or situations (Section 3.3). Models without 
structure are unrealistic also because storing the response to each possible history 
of events requires an enormous memory. Of course, animals do not recall their 
entire history when deciding what to do. Instead, their behavior mechanism goes 
through successive changes of state, and the current state depends partly on the 
history of events. A last drawback of these models is that each table entry must be 
programmed genetically because there is no place for learning. We will return to 
these issues several times in this book, particularly in Chapter 5 on evolution. 

1.3.3 Behavior as a function of motivational state 

In this section we consider models that attempt to predict behavior based on a lim­
ited number of motivational variables. The majority of motivational models are of 
this kind (e.g., Bolles 1975; McFarland 1971; McFarland & Houston 1981; Metz 
1977). Motivational variables generally are categorized as either external stimuli 
(input to the system) or internal factors (system state variables). External stimu­
lation can vary in many ways: different sense organs may be stimulated and each 
in many different ways. Examples of internal factors are water balance, hormone 
levels and memory. We shall elaborate on this distinction in Chapter 3. 

Relevant motivational variables typically are identified from observations of be­
havior, often combined with functional considerations (e.g., that body temperature 
must be maintained within limits for life to continue). The motivation state may 
also be identified from the animal’s recent history (e.g., hunger increases with the 
time since the last meal; Bolles 1975). Sometimes causal factors are induced from 
statistical analysis of observed data (Heiligenberg 1974; Wiepkema 1961) or by in­
voking physiological considerations. For instance, models of feeding and drinking 
may consider stretch receptors in the stomach, water uptake rates from the stomach 
and receptors that monitor cellular water levels in the blood or elsewhere in the 
body (McFarland & Baher 1968; Toates 1986, 1998). The concept of state, includ­
ing motivational state, today plays an important role also in evolutionary theory of 
animal behavior (Houston & McNamara 1999). 

Given that relevant variables have been identified, the next question is how to 
combine them in a model of behavior. This is the issue of structure. A simple and 
classical example of a mathematically defined behavior map is given by summa­
tion models of stimulus control. These attempt to predict the reaction to a com­
pound stimulus from knowledge of reactions to its components in isolation. For a 
compound made up of three stimuli, for instance, the model can be formalized as 
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Figure 1.5 Interaction of internal and external factors in eliciting courtship behavior in male 
guppies (Lebistes reticulatus). The external factor is the size of a female dummy 
(vertical axis), whereas the internal factor is readiness to mate, as inferred from 
male coloration. The three curves represent the induction of three different com­
ponents of courtship (pursuit of the female and two intensities of bending the 
body). From Baerends et al. (1955). 

follows. To describe which stimuli are present, we introduce the motivational state 
x = (x1, x2, x3), with xi = 1 if stimulus i is present and 0 otherwise. We then define 
responding to the compound stimulus as the sum of the effects of its component: 

r = W1x1 +W2x2 +W3x3 (1.5) 

where Wi is the response to stimulus i. Only present stimuli influence responding, 
since xi = 0 for absent ones. Note the separation between state variables, which 
describe which stimuli are present, and the model structure, which describes how 
to obtain the response from the state, i.e., through a weighted sum. Models with 
this structure are the so­called law of stimulus summation (Leong 1969; Lorenz 
1981; Seitz 1940–1941, 1943; Tinbergen 1951) and psychological models such as 
Rescorla and Wagner (1972) and Blough (1975). Note that some of the xi’s could 
be made to represent internal factors. In the latter case, external and internal factors 
would combine additively to produce the response. Of course, there are other ways 
in which factors can be combined (Figure 1.5; Krantz & Tversky 1971; McFarland 
& Houston 1981), and individual xi’s may not just take values of 0 and 1. 

Another important theoretical concept is that of thresholds. Consider first the 
issue of whether to perform a given behavior or not based on the value of a single 
motivational variable, e.g., whether to eat or not for a given hunger level. A com­
mon idea is that the behavior is performed if the motivational variable exceeds a 
threshold value T . Thresholds can also be applied to a combination of state vari­
ables such as the weighted sum in equation (1.5). That is, a response to a given 
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stimulus situation is assumed to occur if 
W1x1 +W2x2 +W3x3 > T (1.6) 

A more complex situation occurs when incompatible responses are motivated si­
multaneously (Ludlow 1980, 1976; McFarland 1989; McFarland & Sibly 1975). 
For instance, a hungry and thirsty animal cannot drink and eat at the same time. 
Usually, different behaviors or behavioral subsystems are assumed to “compete,” 
which means that the animal will show the behavior corresponding to the highest 
motivation (McFarland 1999). 

The concept of thresholds and decision making can be generalized to decision 
boundaries in motivational state space. The motivational state x of the organism 
is represented as a point in a multidimensional state space, and to each point one 
response is assigned. Different regions in the space then are defined by setting 
decision boundaries. States within the same region yield the same behavior, but 
crossing a decision boundary leads to a change in behavior (McFarland 1999; Mc­
Farland & Houston 1981). 

To understand how behavior sequences are generated, we also need to consider 
how motivational state changes because the updated state will determine the subse­
quent responses (McFarland 1971). This is a complex problem that operates at var­
ious levels and time scales. Early theory of motivational state transitions was based 
on the drive concept (Hinde 1970). Each behavior was assumed to be controlled 
by a single internal factor (“drive”) that builds up with time and is reset to a low 
value each time the behavior is elicited. Since then, a diversity of state­transition 
mechanisms has been identified, and pure drives are probably rare. Modeling of 
motivational state­transitions and behavior sequences have benefited largely from 
applications of control theory and systems theory, yielding the most refined ap­
proach to date for modeling motivational processes (McFarland 1971; Metz 1977; 
Toates 1998; Toates & Halliday 1980). An important concept is that of feedback 
mechanisms (McFarland 1971; Toates 1998). Many behavioral processes can be 
regarded naturally as controlling internal as well as external variables important for 
survival and reproduction. For instance, a lizard may use behavior to regulate its 
body temperature by moving between warmer and colder places within its territory. 
Feedback allows systems to respond to state changes brought about by previous ac­
tions or the environment. Figure 1.6 depicts two block diagrams of mechanisms for 
motor control, one without a feed back loop and one with such a loop. 

However, control of behavior is not limited to feedback from consequences of 
behavior. Within animals, many state variables have been identified that participate 
in the generation of behavior sequences. How such states change depends very 
much on their nature and may involve processes intrinsic to the nervous system 
(e.g., internal clocks), physiological states and processes outside the nervous sys­
tem (e.g., hormones, water and energy status) and perceived external events and 
circumstances (e.g., social stimuli) or any combinations of these categories. 

1.3.3.1 Summary 

The concept of motivational state has proved useful, and models based on such a 
concept have been remarkably successful. An important contribution has been the 
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Figure 1.6 Outline of the eyeball and limb position­control systems illustrating the two prin­
ciples of open­loop and closed­loop control. The feedback loop in the limb con­
trol system allows correction of any deviation of the limb from the intended 
position. Reprinted by permission from McFarland (1971). 

establishment that behavior systems can be regarded as dynamical systems (McFar­
land 1971; McFarland & Houston 1981; Metz 1977) by complementing the equa­
tion that describes the behavior map (output function) with state­transition equa­
tions that update the motivational state (Houston & McNamara 1999; McFarland 
& Houston 1981). At least as they are applied today, however, models based on 
motivational state also have some weaknesses. First, applications of control theory 
to animal behavior have seldom considered learning (although learning to control is 
possible, see Sutton & Barto 1998; Widrow & Stearns 1985). Second, motivational 
factors are inferred from behavioral observations and sometimes from knowledge 
about body physiology, but the structure of the models is inferred from behav­
ioral observations only. The concept of response threshold, for instance, has been 
criticized, and it remains unclear whether it can describe animal decision making 
satisfactorily (Section 3.7). Third, in some cases it is unclear what insight is gained 
by viewing a given aspect of nervous system operation as a control problem (e.g., 
stimulus recognition). 

1.3.4 Animal learning theory 

Behavior­level models of learning have been developed mainly within psychology 
(Dickinson 1980; Mowrer & Klein 2001; Pearce 1997). These models tend to fo­
cus on changes in memory, which is assumed to consist of “associative strengths” 
between events, usually between one or more stimuli and one behavioral response 
(Dickinson 1980; Pearce 1997; Rescorla & Wagner 1972). In our words, these 
models study how the behavior map changes through learning. The associative 
strength between a stimulus and the response is usually written V . An important 
class of learning models predicts the change in associative strengths ΔV during re­
peated experimental trials where a stimulus is associated with an event such as the 
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delivery of food (classical or instrumental conditioning; Chapter 4). Under such 
conditions, V is assumed to change according to the following equation (or similar 
ones; Blough 1975; Bush & Mosteller 1951; Rescorla & Wagner 1972): 

ΔV = η(λ −V ) (1.7) 
where η regulates the speed of change, and λ is the maximum value that V can 
reach in the given experiment (influenced by such variables as stimulus intensity 
and the nature of the event paired with the stimulus, see Section 4.5). In systems 
theory terminology, equation (1.7) is a state­transition equation with associative 
strength as the state variable. To translate state into behavior, it is further assumed 
that the likelihood of responding to the stimulus is an increasing function of V : 

Pr(response) = f (V ) (1.8) 
In other words, V can be regarded as a tendency to respond. Note that this is the 
same problem of linking state to behavior that we discussed earlier in connection 
with motivational states. 

An interesting application of these models deals with the relative influence of 
several different stimuli on behavior. If stimulus 1, stimulus 2 and so on are present 
simultaneously, their total associative strength is assumed to be the sum of the 
associative strengths of the individual stimuli: 

VTOT = ∑Vi (1.9) 
i 

where Vi is the associative strength of stimulus i, and the sum extends over all 
stimuli present on a given experimental trial. Vi changes according to 

ΔVi = η(λ − VTOT) (1.10) 
To see more clearly how the model relates to the behavior map formalism, we 
proceed as above (see equation 1.5) and introduce the variables x1, x2, etc. such 
that xi = 1 if stimulus i is present, and xi = 0 if it is absent. We then can write the 
full model as a pair of equations:� 

Pr(response) = f (∑i Vixi) 
(1.11)

ΔVi = η (λ − ∑i Vixi)xi 

The first equation is the behavior map, and the second is the state­transition equa­
tion describing how the behavior map changes as a consequence of experiences. 
Note that the equation to calculate total associative strength is the same as the equa­
tion for calculating response in the summation models considered earlier (equation 
1.5), although the notation differs slightly. The focus on learning means that here 
the weights, or associative strengths, are included among state variables, i.e., those 
variables which can change. In equation (1.5) they were instead fixed parameters 
because the focus was on responding to different combinations of stimuli rather 
than learning. 

Learning models from animal learning theory are operational models. Their 
structure is inferred from behavioral observations. They focus on changes in as­
sociative strengths rather than behavior but make also predictions about behavior 
(otherwise, it would be impossible to test them). However, detailed assumptions on 
the response function f are seldom provided, and complex motivational situations 
are not studied. 
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1.3.5 Cognitive models 

By cognitive models we mean models in the style of cognitive psychology and com­
puter science (together often referred to as cognitive science) as it emerged from the 
late 1950s until today (Crevier 1993; Leahey 2004; Wilson & Keil 1999). The main 
feature of cognitive models is a strong focus on the representation and processing 
of information. Traditional cognitive science was aimed at humans, but today there 
is considerable research under the heading of animal cognition, including a jour­
nal by this name (Balda et al. 1998; Bekoff et al. 2002; Dukas 1998a; Gallistel 
1990; Mackintosh 1994; Pearce 1997; Shettleworth 1998). The classical research 
program of cognitive psychology argued that any intelligent organism or machine 
could be fully understood in terms of a program operating on stored information. 
Thus one could ignore what hardware is used practically, whether a computer or a 
brain (Neisser 1967). 

While the primary aim of cognitive models is to understand how the brain repre­
sents and processes information, they also predict behavior and are evaluated based 
on such predictions. In this respect, cognitive modeling is similar to animal learn­
ing theory (it could be argued that since the 1970s, the two fields have come pro­
gressively closer). The structure of cognitive models specifies both how memory 
is updated based on experiences (the state­transition equation) and how responses 
are decided on based on information stored in memory (the behavior map, or re­
sponse function). Typically, memory is described in functional terms as internal 
representation of knowledge about the world, e.g., knowledge of locations, angles, 
velocities, conditional probabilities (e.g., Gallistel 1990). Decisions and memory 
updates are “computational” in the specific sense of manipulation of symbols, very 
much in the sense of formal mathematics. The following two examples illustrate 
these typical aspects. 

The first example is about the ability of desert ants, Cataglyphis bicolor, to navi­
gate in the absence of clear landmarks (Wehner & Flatt 1972; Wehner & Srinivasan 
1981). After long and tortuous wanderings searching for food, these ants are ca­
pable of aiming for their nest following an approximately straight path. Gallistel 
(1990) has proposed that ants achieve this by constantly calculating the direction 
and distance to the nest. Such calculations are based on solar heading, obtained 
from the visual system; the speed whereby the ant moves, possibly obtained from 
the brain’s motor command; and the sun’s current azimuth. The latter is com­
puted with the aid of an internal “solar ephemeris function” that describes the sun’s 
course and is based on an internal clock. These inputs allow the animal to com­
pute its position in a coordinate system from which direction and distance to the 
nest subsequently are computed. The model is illustrated in Figure 1.7 (further 
discussion in Chapter 6). 

A second example illustrates another cognitive approach, which considers that 
organisms live in an uncertain world and can learn about the world through observa­
tions. Many empirical studies have shown that animals and humans are sensitive to 
temporal correlations or contingencies apparent in their interaction with the outer 
world (Dickinson 1980; Mackintosh 1994; Shanks 1995). This has spawned the 
idea that the central nervous system operates as a “statistical machine” (Shanks 
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Figure 1.7 A cognitive model of navigation in the desert ant, Cataglyphis bicolor. Coordi­
nates x and y are internal variables describing the position of the ant relative to 
the nest (origin of the coordinate system). External inputs are the angle between 
the ant direction and the sun (α) and the ant speed S. An internal function cal­
culates the solar azimuth σ as a function of time of day. Output of the model 
is the bearing and distance from, home which are assumed to guide behavior. 
Reprinted from Gallistel (1990) by permission of C. R. Gallistel. 

1995). In such a system, memory would consist of conditional probabilities that 
are used in statistical decision making and are updated as a result of experiences. 

It should be clear from these examples that the elements of cognitive models are 
postulated because they are assumed to serve a function. Representations of ve­
locities, distances and conditional probabilities are there because the animal needs 
to navigate, find food, avoid predators, etc. This prominence of functional con­
siderations has two consequences for typical cognitive models. First, it blurs the 
distinction between proximate and ultimate explanations (Figure 1.1). However, 
that the function of memory is to store information is not an explanation of how 
memory works. Second, emphasis on function and symbolic information process­
ing discourages thinking of how nervous systems actually implement the proposed 
functions and computations (Chapter 6). Third, emphasis on function leads natu­
rally to the idea that what is computed is computed correctly. For these reasons, 
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some behavioral phenomena have so far benefited little from a cognitive approach 
either because it is difficult to know what is functional, because the computational 
content of a behavior is unclear (e.g., sleep) or because behavior is, in some condi­
tions, not functional. Examples of the latter include biases in responding to stimuli 
and other features of decision making (Chapter 3). 

Cognitive models typically are intermediate between operational and physiolog­
ical models. They aim at describing real mechanisms within the animal, at the level 
of symbolic information processing, but they are inferred from behavioral observa­
tions and functional arguments (Gallistel 1990; Leahey 2004). The extent to which 
this is legitimate is the subject of enduring debate. In contrast to the cognitive ap­
proach, most classical behaviorists held an extreme negative view and argued that 
assumptions about internal or mental variable were speculative and unscientific 
(Skinner 1985). For a critical examination of both positions, see Staddon (2001). 

1.3.6 Neuroethology 

Our overview of models of animal behavior would not be complete without men­
tioning neuroethology and similar research efforts (Ewert 1980; Ewert et al. 1983; 
Simmons & Young 1999). Neuroethology was born out of classical ethology as 
an effort to understand behavior based on detailed knowledge about the anatomy 
and physiology of nervous systems. It focuses on animals in general and usually 
on much simpler nervous systems than the human brain. It is hard to overrate the 
success of this research program. A number of behavior systems have been studied 
thoroughly. One example is studies of sensory processing and decision making in 
the frog retina and brain (Ewert 1980, 1985). Examples of other success stories are 
the motor control of swimming in the lamprey (Grillner et al. 1995) and pheromone 
searching in moths (Kennedy 1983). 

The purpose of neurophysiological models is not only to predict behavior but 
also to provide an understanding of how nervous systems operate. Pure neurophys­
iological models of behavior represent the opposite of pure black­box models. They 
are important because they give the real picture of behavior mechanisms. They are 
crucial for the neural network approach explored in this book by providing an im­
portant reference, independent of behavioral observations, of how to build models 
of behavior. To the student of behavior, the downside of neuroethological models 
lies in their complexity. Each model embodies many particular aspects of specific 
nervous systems, building on detailed knowledge that we are unlikely to ever have 
but for a few species. Complexity also makes these models impractical, in the sense 
that a considerable expertise is needed to understand each of them. Lastly, even the 
most detailed physiological and anatomical knowledge may not by itself reveal 
principles of operation. Today there is promising cooperation between neuroethol­
ogy and neural network research. Research on visuomotor coordination in frogs 
and toads is a good example (Cervantes­Péres 2003). Neural network research has 
produced tools that allow us to analyze findings from empirical neuroethology, in­
cluding theory, modeling techniques and computer simulation techniques. These, 
however, have seldom been used to develop simplified models that provide intuitive 
understanding of basic principles of behavior. 
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Figure 1.8 Functional scheme (top) and biological localization (bottom) of the neural net­
work responsible for a flight response in the crayfish. (Based on Wine & Krasne 
1982.) The network includes, at one end, touch receptors in the tail and, at the 
other end, motoneurons connecting to muscles. Interneurons process information 
from receptors and, if a tactile stimulus is strong enough, send to motoneurons 
a command that allows the crayfish to rapidly move away from the stimulus. 
Reprinted by permission from Simmons and Young (1999), Nerve Cells and An­
imal Behaviour (Cambridge University Press). 

1.4 NEURAL NETWORK MODELS 

This book explores neural networks as models of behavior, also known as artificial 
neural networks, connectionist networks or models, parallel distributed processing 
models and neurocomputers. We call them neural network models or sometimes 
just neural networks or networks when the meaning is clear. To avoid confusion 
between model and reality, we talk of biological neural networks or nervous sys­
tems in connection with real animals. In this section we offer a brief introduction 
to neural network models; the next chapter covers them more thoroughly. 

The basic feature of neural network models is that they are inspired by biological 
neural networks. As an illustrative example, Figure 1.8 portrays part of the nervous 
system of a crayfish. It consists of neurons connected together, often in a way that is 
consistent across individuals, forming a network of interacting cells. Some neurons 
are receptors; i.e., they transform physical stimuli such as oscillating air pressure 
(sound) into electrical or chemical signals that are communicated to other neurons. 
Other neurons are effectors; i.e., they represent the output of the nervous system to 
the body. Some effectors are connected to muscles (motoneurons), whereas others 
secrete chemicals that affect other cells in the body. Neurons that are neither recep­
tors nor effectors are generically called interneurons. Obviously, their organization 
is of paramount importance for nervous system operation. 
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Figure 1.9 Examples of feedforward artificial neural networks. Top left: A simple archi­
tecture where input nodes connect directly to a single output node. Top right: 
Network with multiple output nodes. Bottom: Network with an additional layer 
of nodes between input and output (“hidden nodes”). 

A neural network model can include all the features we see in Figure 1.8. It 
mimics the architecture of nervous systems by connecting elementary neuron­like 
units, referred to as nodes or units, into networks. Each node typically has links 
or connections with many other nodes. Nodes can stimulate or inhibit each other’s 
activity like neurons. Stimulation is entered into the network via artificial receptors 
and sense organs, and the activity of output units represents behavior patterns or 
muscle contractions (depending on the level of analysis). Although nervous sys­
tems are made up of many cells (about 1000 in nematode worms, many billions in 
birds and mammals), their modeling is simplified because their operation can often 
be described as the mass action of many essentially identical neurons with regular 
patterns of connectivity. 

Neural network models can have different architectures, working principles and 
aims. One popular architecture that will be studied many times in this book is the 
feedforward network consisting of a layer of input nodes, zero or more intermediate 
layers and a layer of output nodes (Figure 1.9, see also Figure 1.8). An important 
property of neural networks is that in addition to having an interpretation as model 
nervous systems, they are also mathematically defined models. Typically, the activ­
ity of each node is a number, either continuous (e.g., between 0 and 1) or discrete 
(e.g., 1 for “active” and 0 for “inactive”). We write as zi the activity of node i. The 
index i runs from 1 to N, the total number of nodes, and serves to identify each 
node. Node activity is assumed to be an increasing function f of the total input that 
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Table 1.2 A behavior map, interpreted as a simple model of feeding, that can be realized by 
a network with two input nodes and one output node. 

Input Desired output 

Values Interpretation Value Interpretation 

(0,0) Not hungry, no food 0 Don’t feed 

(0,1) Not hungry, food 0 Don’t feed 

(1,0) Hungry, no food 0 Don’t feed 

(1,1) Hungry, food 1 Feed 

the node receives from other nodes in the network, written yi. Thus 

zi = f (yi) (1.12) 

The total input, in turn, is computed as a weighted sum of the activities of other 
nodes. Formally, this is expressed as 

yi = ∑Wi jz j (1.13) 
i 

The number Wi j, called a weight, is the strength of the connection from node j 
to node i, akin to the strength of biological synapses. Absence of a connection 
between two nodes is indicated by Wi j = 0. Equations (1.12) and (1.13) are the 
basic building blocks of most neural network models. All nodes in the network 
operate based on such equations, possibly with different choices of the function 
f . One important exception is nodes that model receptors, whose activity should 
reflect the activity of the corresponding receptor in the stimulus conditions we want 
to model. When a node models a receptor, we often write its activity as x rather 
than z. Likewise, the activity of output nodes is often written as r. This agrees with 
the notation used earlier for behavior maps in general. 

As a simple example of behavioral modeling with a neural network, consider an 
animal that decides to feed or not based on hunger and availability of food. More 
precisely, the animal feeds when (1) it is hungry, and (2) food is available, but not 
when only one or none of these conditions is met. Our network model has two 
input nodes connected directly to one output node. The activity of input node i is 
xi (i = 1, 2), and the corresponding weight to the output node is Wi. We assume 
that the output node is active (which is interpreted as feeding) if the total input 
W1x1 + W2x2 overcomes a threshold θ . For simplicity, we assume that nodes are 
either active (xi = 1) or inactive (xi = 0). The first input node is active when the 
animal needs energy (“hunger” node); the second, when food is available (“food” 
node). There are thus four possible input patterns, and the network should react 
only to one (Table 1.2). This must be accomplished by tuning the three parameters 
W1, W2 and θ . The solution is simple: one of the weights must be less than θ/2, 
and the other must be greater than θ/2, with θ > 0. With such a choice, when both 
inputs are active, the output node receives an input of W1 +W2, which is larger than 
θ , as required to feed. If the food terminates, or if hunger ceases, one of the xi’s 
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falls to 0, and feeding stops. The network thus can decide whether to feed or not, 
integrating information about hunger and food availability. The model obviously is 
simplistic, and will be developed further in Chapter 3. Note, for instance, that the 
assumption of a “food” node does not explain why some stimuli are treated as food 
and others are not. A “hunger” node is more realistic because it may correspond to 
neurons sensitive to blood sugar levels, located, e.g., in the hypothalamus and liver 
of mammals (Toates 2001). 

The preceding example uses the simplest kind of network, featuring a number 
of input nodes connected directly to one output node (Figure 1.9, top left). Such a 
network is described fully by the single equation 

r = f 
� 
∑Wixi

�	
(1.14) 

i 

which is very similar (or exactly the same, depending on f ) to some of the etho­
logical and psychological models surveyed earlier. We will consider such a basic 
network numerous times. Usually, however, neural network models are a bit more 
complex. Additional output cells allow for more than one type of response, and the 
ability to form input­output relationships is enhanced significantly by adding one 
or more intermediate layers of nodes between the input and output nodes. Finally, 
recurrent connections (feedback loops) allow the network to handle time, i.e., to 
respond to temporal sequences of inputs and to organize output in time. 

1.4.1 Features of neural network models 

Neural network models have many features particularly appealing to students of 
behavior that we will try to communicate in this book. Here we provide a brief 
summary of such features, to be justified more fully in the following chapters. We 
first consider the list of requirements on page 7: 

•	 Versatility: Neural network models can implement practically any behavior 
map (Haykin 1999). A particular network may be fitted to many requirements, 
and additional flexibility is achieved by considering different network archi­
tectures. 

•	 Robustness: The operation of a neural network is seldom affected in major 
ways by damage to a small fraction of nodes or connections. The performance 
of each task is divided among many nodes, and memories are encoded over 
many connection weights (of course, this does not hold for very small net­
works or nervous systems). 

•	 Learning: Learning has been a prominent part of neural network research 
since its beginnings. Networks can learn by means of procedures that change 
connection weights either autonomously or under external guidance. From a 
physiological point of view, most training procedures have several or many 
unrealistic features, but progress in this area has been steady over the last few 
decades. 

•	 Ontogeny: Neural network models to date have not been applied system­
atically to problems of behavioral ontogeny. Some applications have been 
developed, with encouraging results (Chapter 4). 
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•	 Evolution: Various features of neural network models, such as architecture, 
learning rules and properties of connections and nodes, can be assumed to 
arise from different “genes.” Computer simulations of behavioral evolution 
can be set up to investigate what networks evolve to solve particular tasks. 
Such investigations are still at their beginnings. One obstacle is that we still 
ignore a lot about how genes control nervous system development. 

Other features of neural network models are also relevant to modeling behavior: 

•	 Structural constraints: The structure of these models essentially is based on 
knowledge of the nervous system: it is not inferred from observations of be­
havior or from functional considerations. In this sense, neural network models 
are unique among models of behavior. Such constraints, when used properly, 
can greatly diminish the danger of introducing processes that cannot have a 
counterpart in biological nervous systems. 

•	 Parallel processing: Processing in neural network is mainly parallel rather 
than sequential, as in digital computers. This means that the processes from 
reception of stimuli to responses can occur in much fewer cycles of operation, 
each consisting of many thousands or millions of simultaneous computations. 
This is an important step toward matching the abilities of nervous systems to 
react very quickly in a large range of conditions. 

•	 Generalization: In new situations, animals show systematic generalization 
based on similar past conditions, and this is a crucial part of their ability to 
confront the world. As a consequence of their structure, many network models 
generalize naturally. This is a great advantage compared with models that 
either ignore generalization (Section 1.3.2) or simply assume that it occurs 
(Section 3.3.3). 

•	 Definiteness and accessibility: Since neural network models are specified 
formally, they can be investigated in all details of operation. They can be stud­
ied with tools such as the theory of dynamical systems and computer simula­
tions or in much the same ways as neurophysiologists study nervous systems. 
For instance, one can study what happens when a specific part of the network 
is damaged or removed. This can bring insight into network operation and can 
also be compared with lesion studies in nervous systems. 

•	 Unifying power: Neural network models can be applied to all aspects of be­
havior: processing of stimuli, central processing and motor control. Neural 
networks can learn, and the substrate of memory (connection weights) is clear. 
Most approaches to behavior, on the other hand, are geared toward specific as­
pects (e.g., perception or cognition) and may have problems at producing a 
unified theory of behavior. 

1.4.2 A brief history 

The history of neural network models is rooted in attempts to understand the ner­
vous system and behavior, starting with the discovery by Santiago Ramòn y Cajal, 
Camillo Golgi and others at the end of the 19th century that the nervous system is 
composed of an intricate network of cells. Developments of neural network mod­
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Figure 1.10 Rosenblatt’s (1958; 1962) perceptron, as depicted by Minsky & Papert (1969). 
Each ϕ is assumed to be 0 or 1 depending on the result of a simple computa­
tion based on the state of a limited number of receptors. The summation unit 
Ω performs a weighted sum of the ϕ’s. If the sum is larger than a threshold 
value, the perceptron response Ψ is 1; if the sum is smaller than the threshold, 
the response is 0. Reprinted by permission from Minsky and Papert (1969). 
Perceptrons. The MIT Press. 

els, however, are also rooted in mathematics, theories for intelligent machines and 
philosophy (Crevier 1993; Minsky 1969; Wang 1995). 

The development of neural network models started in earnest in 1943 when War­
ren McCulloch and Walter Pitts described how arbitrary logical operations could 
be carried out by networks of nodes (so­called formal neurons) that could either 
respond or not respond to an input, computed as the weighted sum of the activation 
state of other nodes in the network (McCulloch & Pitts 1943). This way of comput­
ing the total input to a node has stayed in practically all later neural network models. 
An important aspect of McCulloch and Pitts’ work was that neural processing could 
be formulated mathematically. Six years later, Donald Hebb published his famous 
book, The Organization of Behavior, which, among other things, includes a theory 
of how connection strengths between nerve cells may act as memory and how such 
memory may change as a consequences of experiences (Hebb 1949). Perhaps the 
first full­blown neural network model was designed and simulated on computers 
by Frank Rosenblatt (1958, 1962). His “perceptron” is depicted in Figure 1.10. An 
important aspect of Rosenblatt’s work was providing the perceptron with a learning 
algorithm that allowed it to solve a wide range of classification problems, whereby 
each of many input patterns should be assigned to one of two categories. Bernard 
Widrow and Marcian Hoff further developed learning algorithms introducing a gen­
eral procedure for training two­layer networks (Widrow & Hoff 1960), to be known 
later as the δ rule (Section 2.3.2). 

The early enthusiasm for neural network models was subdued in 1969 by Min­
sky and Papert’s book, Perceptrons, pointing out some severe limitations of per­
ceptrons. Perceptrons cannot solve all categorization problems, and some that are 
solvable in principle are very hard to solve in practice (Chapter 2). The authors 
also suggested that multilayer networks would suffer from similar limitations, but 
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this turned out to be incorrect. Minsky and Papert also acknowledged that recurrent 
networks (with feedback loops) could be much more capable (Chapters 2 and 3) but 
did not discuss them for several reasons. One was a desire to compare parallel com­
puters (i.e., neural networks) with traditional serial computers; recurrent networks 
have both serial and parallel elements and thus were set aside. The perceptron was 
also chosen for its relative mathematical simplicity, which made a comprehensive 
analysis feasible. The book is nevertheless very interesting and contains many in­
sights about neural networks that may also apply to biological nervous systems. 

The 1980s saw a series of important publications that inspired a new wave of 
research into neural network theory and applications. Efficient learning algorithms 
for multilayer networks were made widely known, such as the now­celebrated 
back­propagation algorithm, and it was shown that multilayer feedforward net­
works could overcome some limitations of perceptrons (Ackley et al. 1985; Haykin 
1999; Rumelhart et al. 1986). Recurrent networks were also studied, and it was de­
scribed how information could be stored in recurrent networks (Amit 1989; Cohen 
& Grossberg 1983; Hopfield 1982). Kohonen (1982) also published his results on 
self­organizing maps, showing how simple learning rules could organize networks 
based on experience without external guidance. Crucial to the diffusion of neural 
networks into cognitive psychology was the two­volume book, Parallel Distributed 
Processing: Explorations in the Microstructures of Cognition edited by James Mc­
Clelland and David Rumelhart (1986; Rumelhart & McClelland 1986b). 

To date, the study of artificial neural network has generated an extensive body 
of theory (e.g., Arbib 2003; Haykin 1999). Neural networks have proved to be 
a powerful explanatory tool applied to a wide variety of phenomena such as per­
ception, concept learning, the development of motor skills, language acquisition in 
humans and studies of amnesia and brain damage (Arbib 2003; Churchland 1995; 
Churchland & Sejnowski 1992; McClelland & Rumelhart 1986). Recent progress 
has occurred along several lines. One is the study of more powerful and/or bio­
logically realistic network architectures, e.g., recurrent networks that can handle 
time (Elman 1990; Jordan 1986). Fundamental areas of research are how networks 
can be trained to solve a specific task and how they can learn from experiences 
without explicit supervision. From the present perspective, an important issue is 
the development of more biologically realistic learning mechanisms. Many meth­
ods for training networks are not realistic because they are external to the network 
rather than built into the network itself, but significant improvements have been 
achieved (Chapters 2 and 4). This is one area that needs more research, and it is 
important to recognize that besides all the progress, a number of issues remain to 
be resolved. Other areas in need of further research are, for instance, the genetic 
control of network development and how unrealistic retroactive interference (new 
learning destroying earlier memories) can be tackled (French 1999). 

The preceding sketch of the history of neural network models is, of course, far 
from complete. The development of neural network models, for instance, has also 
benefited from the gains in our understanding of neurophysiology. Examples are 
the discovery of receptive fields in visual perception (Hubel & Wiesel 1962) and the 
study of learning in invertebrates (Kandel et al. 2000; Morris et al. 1988). There are 
also engineering applications that are of potentially great interest to biology and be­
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havior, such as research into robotics (McFarland & Bösser 1993; Nolfi & Floreano 
2000; Webb 2001). Designing functional robots based on neural networks forces 
the engineer to think about design issues similar to the ones evolution has tackled 
in animals. This is often revealing for biologists because it highlights problems 
of design that otherwise may be ignored or considered trivial. For instance, biolo­
gists and psychologists often step over the problem of recognizing stimuli based on 
retinal images. This is a far from trivial task that people working with robots are 
forced to consider. Readers who are interested in a more complete history of neural 
network models are referred to Arbib (2003) and Haykin (1999). 

1.4.3 Neural network models in animal behavior research 

It may seem obvious that students of animal behavior should have embraced neural 
network models, but this has not been the case. The situation is rather the op­
posite. With some exceptions, neural network models have been ignored among 
ethologists, behavioral ecologists and animal psychologists. For instance, they are 
absent from most textbooks on animal behavior. The most important exception, of 
course, is neuroethologists (Cliff 2003; Simmons & Young 1999), but their focus is 
not primarily on general theories of behavior in the sense discussed in this chapter. 
Neural networks are now increasingly popular in neuroscience (e.g., Dayan & Ab­
bott 2001), where recent and important advances on our understanding of learning 
rely extensively on neural network models (Chapter 4). 

Of course, students of animal behavior have thought regularly about the neu­
ral machinery underlying behavior. For example, both Ivan Pavlov and Edward 
Thorndike speculated on the nervous structures behind their behavioral observa­
tions. The concept of connectionism, now often used as a label for neural network 
research, can also be traced back to these pioneers (Kandel et al. 2000; Mowrer & 
Klein 2001). Less often recognized are a number of network­like models by etholo­
gists and animal psychologists (Baerends 1971; Blough 1975; Fentress 1976; Hinde 
1970; Horn 1967; Sutherland 1959; Thompson 1965). Figure 1.11 shows three 
such models. Baerend’s (1971) model at top left is similar to Rosenblatt’s per­
ceptron (Figure 1.10) and continues the tradition of ethological summation models 
(Section 1.3.3). The response arises from the weighted sum of signals from “eval­
uation units” (E), which in turn analyze signals from receptors (R). The model by 
Blough (1975; discussed in Chapter 3) has a similar structure and also rediscovers 
Widrow and Hoff’s learning rule first published in 1960. Figure 1.11 also shows 
Thompson’s model from 1965. Its aim was to illustrate how generalization (sim­
ilar responses to different stimuli) can arise from the fact that similar stimuli are 
processed by partially overlapping sets of neurons. This is a classical idea, present 
in Pavlov (1927), as well as in current neural network models (Chapter 3). The 
last model in the figure is Sutherland’s intriguing model from as early as 1959. 
It depicts a multilayer network with adjustable connections around the same time 
as Rosenblatt published his work on perceptrons (Sutherland 1959, 1964; Suther­
land & Mackintosh 1971). It is interesting that these early efforts by biologist and 
psychologists developed with little or no contact with that part of the artificial in­
telligence community that in the same years actively pursued neural networks. 
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Figure 1.11 Early network­like models. Left: Barends’s (1971) model (redrawn); R is a 
receptor in the receptive field of unit E, which evaluates the input received; S 
sums signals from the E units. Middle: Thompson’s (1965) suggestion of neu­
ral circuitry underlying generalization, whereby physically distinct stimuli (A 
and B) may activate overlapping sets of neurons, thus eliciting similar behavior 
(smaller circles are inhibitory neurons). Reprinted by permission from Mostof­
sky, ed., Stimulus Generalization. © 1965 by the Board of Trustees of the Le­
land Stanford Jr. University. Right: Sutherland’s model of learning (Sutherland 
1959, 1964; Sutherland & Mackintosh 1971). Ai is an analyzer that examines 
stimuli along a stimulus dimension. R is a response unit that can be attached to 
different analyzers. Solid lines are existing response attachments, dashed lines 
represent further possible attachments. In this figure, A1 analyzes brightness 
and discriminates between black (B) and white (W), whereas A2 discriminates 
between horizontal (H) and vertical (V) orientation. Learning is assumed to 
consist of (1) learning to use analyzers relevant for the discrimination and (2) 
learning to attach the right response to the relevant analyzers. 

So why are neural network models often absent from current animal behavior 
theory? One reason could be that neural network research emerged mainly from 
the artificial intelligence community, with a strong focus on humans rather than 
animals in general. To date, much more neural network research is concerned with 
humans than with other animals. For instance, James McClelland, one the most 
productive scientist in the field, writes 

Connectionist cognitive modeling is an approach to understanding the mech­
anisms of human cognition through the use of simulated networks of simple, 
neuronlike processing units. (McClelland 1999; emphasis added) 

Without a look at history, the focus on humans does not seem motivated because 
it easier to understand the neural basis of behavior in organisms less complex than 
humans. Differences between research traditions may also have hindered the de­
velopment of neural network models of animal behavior. Most work in animal 
behavior is empirical, whereas neural network models emerged from a theoretical 
research community. Among students of animal behavior, the computer simulation 
techniques and formal mathematics that are so helpful in exploiting neural network 
models were not widely available. Terminological barriers might also have con­
tributed. For instance, the term adaptive in biology is used strictly to indicate a 
trait that evolved because it increases individual reproduction (fitness). In engi­
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neering and cognitive science the expression adaptive system has a broader scope 
and refers to any system that can change to better serve its purpose. Engineers 
thus may speak of adaptation when biologists would speak of learning. Another 
example is neural network theory referring to self­organization where ethologists 
would talk of learning or development and experimental psychologists of percep­
tual learning. Important terms such as reinforcement and association are also used 
in slightly different ways. 

In conclusion, traditional ethological and animal psychological thinking contains 
a number of seeds to neural network models, but the development of neural network 
theory has occurred mainly outside these disciplines. Neural network models still 
have not gained broad popularity in animal behavior research, but there is today a 
growing interest in neural networks, particularly among animal psychologists. 

1.4.4 The diversity of network models: Our approach 

To apply neural networks to animal behavior, we need to decide which particular 
models to use. This is not always easy. Neural network models come in many 
forms and purposes. There are biologically or psychologically motivated models 
with aims ranging from the very details of neural mechanisms to the highest mental 
functions in humans. There are models aimed primarily at machine intelligence and 
engineering applications with little concern for biological realism. The latter never­
theless can be of interest to modeling animal behavior for practical and theoretical 
reasons. In this book we try to use simple networks as long as they can account 
for the behavior we investigate. There are a number of reasons for this approach. 
First, complexity should not be introduced prematurely and without reason. We 
could try to include from the start all known details of nervous systems, but this 
would result in a model as difficult to understand as the real system. The only way 
to understand a complex structure is to start by abstracting pieces from it or study 
simplified models that are more readily analyzed. The crucial test of a simplified 
model is the extent to which it captures essential features of the behavior of real an­
imals. If it does, then the fact that the model is neurally inspired rather than based 
on some other metaphor should be considered a bonus rather than a hindrance. 

Second, we need models of animal behavior that are easy to understand and prac­
tical to use. We also need for general models as opposed to specific to a particular 
behavior and a particular species. The subject of animal behavior covers species 
with a nervous system made up of a few cells to the complexity of primate brains, 
and we know that many behavioral phenomena are surprisingly general. 

Third, the differences between network models should not be exaggerated. Start­
ing from a simple model such as Rosenblatt’s perceptron, we can add complexity 
gradually and in several ways. For instance, we can add more layers of nodes, 
recurrent connections and more complex node dynamics. We thus can obtain com­
plex models gradually from simple ones and study how their properties change 
in the process. This is also relevant when studying the evolution from simple to 
complex behavior (Chapter 5). 

In practice, our approach means that multilayer feedforward networks operating 
in discrete time are our first choice of model. Indeed, most applications of neu­
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ral networks are of this kind. If such models prove insufficient to analyze a given 
behavioral finding, we consider additional elements such as recurrent connections 
or dynamics in continuous time. Note that we do not deny the importance of de­
tailed models. If neural network models are to fulfill their promises, the future will 
contain simple, intuitive, general and practical models, as well as detailed models 
closer to real nervous systems. 

CHAPTER SUMMARY 

•	 “Behavior” is a legitimate level of analysis. It has theoretical importance in 
ethology, psychology, behavioral ecology and evolutionary biology and prac­
tical importance to many people working and living with animals in zoos, 
veterinary clinics, farms, etc. 

•	 Explaining behavior includes understanding how motivational factors control 
responding, how behavior develops during an individual’s lifetime and how 
evolution shapes behavior. Understanding of actual internal processes may 
also be important. 

•	 Most attempts to understand animal behavior have inferred models from be­
havioral observations and functional considerations. This is true for most of 
ethology, experimental psychology and cognitive psychology. A major excep­
tion is neuroethology, which studies how nervous systems generate behavior. 

•	 Neural network models offer a potential to develop models of behavior that are 
informed not only by behavioral observations but also by the actual structure 
of nervous systems. Can this result in increased knowledge about behavior? 
Our aim is to explore this question. 
We have also touched on some fundamental issues about how to model behav­• 
ior, from neurophysiology to “cognition.” On important issue is how to deal 
with animals’ internal states. We will return to these issues throughout this 
book and in the concluding chapter. 

FURTHER READING 

Ethological and biological theory of behavior: 

Eibl­Eibesfeldt I, 1975. Ethology: The Biology of Behavior. New York: Holt, 
Rinehart & Winston. 

Hinde RA, 1970. Animal Behaviour. Tokyo: McGraw­Hill Kogakusha, 2 edition. 
Krebs JR, Davies NB, 1987. An Introduction to Behavioural Ecology. London: 

Blackwell, 2 edition. 
McFarland DJ, 1999. Animal Behaviour: Psychobiology, Ethology and Evolu­

tion. Harlow, England: Longman, 3 edition. 

Neuroethology: 

Ewert JP, 1985. Concepts in vertebrate neuroethology. Animal Behaviour 33, 
1–29. 



29 UNDERSTANDING ANIMAL BEHAVIOR 

Simmons PJ, Young D, 1999. Nerve Cells and Animal Behaviour. Cambridge, 
England: Cambridge University Press, 2 edition. 

Animal learning theory, animal cognition, human cognition: 

Klein SB, 2002. Learning: Principles and Applications. New York: McGraw­
Hill, 4 edition. 

Mackintosh NJ, editor, 1994. Animal Learning and Cognition. New York: Aca­
demic Press. 

Pearce JM, 1997. Animal Learning and Cognition. Hove, East Sussex: Psychol­
ogy Press, 2 edition. 

Shanks DS, 1995. The Psychology of Associative Learning. Cambridge, En­
gland: Cambridge University Press. 

For the discussion between behaviorism and cognitive psychology: 

Leahey TH, 2004. A History of Psychology. Englewood Cliffs, NJ: Prentice­
Hall, 6 edition. 

Staddon JER, 2001. The New Behaviorism: Mind, Mechanism and Society. 
Hove, East Sussex: Psychology Press. 

Neural network models: 

Arbib MA, 2003. The Handbook of Brain Theory and Neural Networks. Cam­
bridge, MA: MIT Press, 2 edition. 

Churchland PM, 1995. The Engine of Reason, the Seat of the Soul: A Philosoph­
ical Journey into the Brain. Cambridge, MA: MIT Press. 

Churchland PS, Sejnowski T, 1992. The Computational Brain. Cambridge, MA: 
MIT Press. 

Dayan P, Abbott LF, 2001. Theoretical Neuroscience: Computational and Math­
ematical Modeling of Neural Systems. Cambridge, MA: MIT Press. 

Haykin S, 1999. Neural Networks: A Comprehensive Foundation. New York: 
Macmillan, 2 edition. 




