© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

Chapter One

Introduction

1.1 GENERAL COMMENTS

In this work we shall define the tangent spaces
TZ"(X)
and
TZ'(X)

to the spaces of O-cycles and of divisors on a smooth, n-dimensional complex
algebraic variety X. We think it may be possible to use similar methods to define
T Z?(X) for all codimensions, but we have not been able to do this because of one
significant technical point. Although the final definitions, as given in sections 7 and
8 below, are algebraic and formal, the motivation behind them is quite geometric.
This is explained in the earlier sections; we have chosen to present the exposition
in the monograph following the evolution of our geometric understanding of what
the tangent spaces should be rather than beginning with the formal definition and
then retracing the steps leading to the geometry.

Briefly, for O-cycles an arc in Z" (X) is given by a Z-linear combination of arcs in
the symmetric products X ), where such an arc is given by a smooth algebraic curve
B together with a regular map B — X% If ¢ is a local uniformizing parameter on
B we shall use the notation t — x1(t)+- - - +x4(¢) forthe arcin X, Arcsin Z"(X)
will be denoted by z(#). We set |z(¢)| = support of z(¢), and if 0 € B is a reference
point we denote by Z?X}(X) the subgroup of arcs in Z"(X) with lim;_¢ |z(?)| = x.
The tangent space will then be defined to be

TZ"(X) = {arcs in Z"(X)} / =y«,

where =« is an equivalence relation. Although we think it should be possible to
define =« axiomatically, as in differential geometry, we have only been able to do
this in special cases.

Among the main points uncovered in our study we mention the following:

(a) The tangent space to the space of algebraic cycles is quite different from—and
in some ways richer than—the tangent space to Hilbert schemes.

This reflects the group structure on Z” (X) and properties such as

i@(z) +20)) =) +7),

1.1
(b (=z()) = =7 (1),
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where z(r) and Z(¢) are arcs in Z”(X) with respective tangents z'(¢) and 7'(¢). As a
simple illustration, on a surface X an irreducible curve Y with a normal vector field
v may be obstructed in Hilb' (X)—e.g., the first order variation of ¥ in X given by
v may not be extendable to second order. However, considering ¥ in Z'(X) as a
codimension-1 cycle the first order variation given by v extends to second order. In
fact, it can be shown that both TZ!(X) and T Z"(X) are smooth, in the sense that
for p = 1, n every map Spec(C[e]/€?) — ZP(X) is tangent to a geometric arc in
ZP(X).

For the second point, it is well known that algebraic cycles in codimension p = 2
behave quite differently from the classical case p = 1 of divisors. It turns out
that infinitesimally this difference is reflected in a very geometric and computable
fashion. In particular,

(b) The differentials Q’)‘( /C for all degrees k with 1 < k < n necessarily enter
into the definition of T Z" (X).

Remark that a tangent to the Hilbert scheme at a smooth point is uniquely determined
by evaluating 1-forms on the corresponding normal vector field to the subscheme.
However, for Z" (X) the forms of all degrees are required when we want to evaluate
on a tangent vector, and it is in this sense that again the tangent space to the space of
0-cycles has aricher structure than the Hilbert scheme. Moreover, we see in (b) that
the geometry of higher codimensional algebraic cycles is fundamentally different
from that of divisors.

A third point is the following: For an algebraic curve one may give the definition
of TZ'(X) either complex-analytically or algebro-geometrically with equivalent
end results. However, it turns out that

(¢c) Forn 2 2, evenifone is only interested in the complex geometry of X the field
of definition of an arc z(t) in Z" (X) necessarily enters into the description of
Z/(0).

Thus, although one may formally define 7' Z" (X) in the analytic category, itis only in
the algebraic setting that the definition is satisfactory from a geometric perspective.
One reason is the following: Any reasonable set of axiomatic properties on first
order equivalence of arcs in Z" (X )—including (1.1) above—Ieads for n = 2 to the
defining relations for absolute Kéhler differentials (cf. section 6.2 below). However,
only in the algebraic setting is it the case that the sheaf of Kéhler differentials over C
coincides with the sheaf of sections of the cotangent bundle (essentially, one cannot
differentiate an infinite series term by term using Kéhler differentials). For subtle
geometric reasons, (b) and (c) turn out to be closely related.

(d) A fourth significant difference between divisors and higher codimensional
cycles is the following: For divisors it is the case that

If 2y, =rat O for a sequence uy, tending to 0, then 7o =y 0.

For higher codimension this is false; rational equivalence has an intrinsic “grain-
iness” in codimension = 2. If one enhances rational equivalence by closing it up
under this property, one obtains the kernel of the Abel-Jacobi map. As will be seen in
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the text, this graininess in codimension = 2 manifests itself in the tangent spaces to
cycles in that absolute differentials appear. This is related to the spread construction
referred to later in this introduction.

(e) Although creation/annihilation arcs are present for divisors on curves, they
play a relatively inessential role. However, for n 2 2 it is crucial to under-
stand the infinitesimal behavior of creation/annihilation arcs as these rep-
resent the tangencies to “irrelevant” rational equivalences which, in some
sense, are the key new aspects in the study of higher codimensional cycles.

One may of course quite reasonably ask:
Why should one want to define T ZP (X)?

One reason is that we wanted to understand if there is geometric significance to
Spencer Bloch’s expression for the formal tangent space to the higher Chow groups,
in which absolute differentials mysteriously appear. One of our main results is a
response to this question, given by Theorem (8.47) in section 8.3 below. A perhaps
deeper reason is the following: The basic Hodge-theoretic invariants of an algebraic
cycle are expressed by integrals which are generally transcendental functions of the
algebraic parameters describing the cycle. Some of the most satisfactory studies
of these integrals have been when they satisfy some sort of functional equation,
as is the situation for elliptic functions. However, this will not be the case in
general. The other most fruitful approach has been by infinitesimal methods, such as
the Picard-Fuchs differential equations and infinitesimal period relations (including
the infinitesimal form of functional equations), both of which are of an algebraic
character. Just as the infinitesimal period relations for variation of Hodge structure
are expressed in terms of the tangent spaces to moduli, it seemed to us desirable to be
able to express the infinitesimal Hodge-theoretic invariants of an algebraic cycle—
especially those beyond the usual Abel-Jacobi images—in terms of the tangent
spaces to cycles. In this monograph we will give such an expression for 0-cycles
on a surface.

In the remainder of this introduction we shall summarize the different parts of
this book and in so doing explain in more detail the above points.

In chapter 2 we begin by defining T Z'(X) when X is a smooth algebraic curve,
a case that is both suggestive and misleading. Intuitively, we consider arcs z(¢) in
the space Z!(X) of O-cycles on X, and we want to define an equivalence relation
=« on such arcs so that

TZ'(X) = {setof arcs in Z' (X)}/ =« .
The considerations are clearly local,! and locally we may take
z(r) =div f(1)

where f(¢) is an arc in C(X)*. We set |z(¢)| = “support of z(¢)” and assume that
lim, 0 |z(¢)| = x. Writing f(¢) = f +tg + - - - elementary geometric considera-
tions suggest that, with the obvious notation, we should define

div (1) = div f(1) & [g/f1s = [/ ]

I'Throughout this work, unless stated otherwise we will use the Zariski topology. We also denote
by C(X) the field of rational functions on X, with C(X)* being the multiplicative group of nonzero
functions.
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where [h], denotes the principal part of the rational function 4 at the point x € X.
Thus, letting Tiy; ZY(X) := TZ{IX} (X) be the tangents to arcs z (1) with liII(l) lz(t)| = x,
t—

we have as a provisional description
(1.2) Ty Z'(X) = PPx...
where PPx » = C (X),/Ox., is the stalk at x of the sheaf of principal parts.

Another possible description of T, Z!(X) is suggested by the classical theory of
abelian sums. Namely, working in a neighborhood of x € X and writing

2(t) =) mixi (1),

1
forw € QX/(C,X we set

d xi (1)
I(Z,w)=a<2n,»/ a)) .
i X =0

Then I (z, w) should depend only on the equivalence class of z(¢), and in fact we
show that

1(z, w) = Res, (7 w)

where 7' € PPx . is the tangent to z(¢) using the description (1.2). This leads to a
nondegenerate pairing

T Z'(X) ®c Q0 — C
so that with either of the above descriptions we have
(1.3) T Z'(X) = Hom &(RQ/c- ©),

where Hom & (2% sc.x» ©) are the continuous homomorphisms in the m,-adic topol-
ogy.

Now (1.3) suggests “duality,” and indeed it is easy to see that a third possible
description

(1.4) TZ'(X) = lim &xtp  (Ox/ml, Ox)

is valid. Of the three descriptions (1.2)—-(1.4) of T, Z 1(X), it will turn out that (1.3)
and (1.4) suggest the correct extensions to the case of 0-cycles on n-dimensional
varieties. However, the extension is not straightforward. For example, one might
suspect that similar consideration of abelian sums would lead to the description (1.3)
using 1-forms in general. For interesting geometric reasons, this turns out not to
be correct, since, as was suggested above and will be explained below, the correct
notion of abelian sums will involve integrals of differential forms of all degrees.
Thus, on a smooth variety of dimension n the analogue of the right-hand side of
(1.3) will give only part of the tangent space.

As will be explained below, (1.4) also extends but again not in the obvious
way. The correct extension which gives the formal definitions of the tangent spaces
T{x}Z"(X) and tangent sheaf T Z" (X)) is

(1.5) T Z"(X) = lim &t} (Ox/mi, Q)
1—> 00 N
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and

T7"(X) = (P lim &xty, (Ox/m'. Q).
xeX
The geometric reasons why absolute differentials appear have to do with the points
(b) and (c) above and will be discussed below.
The basic building blocks for O-cycles on a smooth variety X are the configuration
spaces consisting of sets of m points x; on X. As a variety this is just the m™
symmetric product X ™, whose points we write as effective 0-cycles

Z2=X1+ -+ Xy

We wish to study the geometry of the X ™ collectively, and for this we are interested
in differential forms ¢,, on X that have the hereditary property

(1.6) 1| X = @,

where for each fixed x € X the inclusion X < X™+D is given by z — z + x.
One such collection of differential forms on the various X "’s is given by the traces
Tr ¢ of a form ¢ € Q% sc- Here, we come to the first geometric reason why forms
of higher degree necessarily enter when n = 1:

(1.7) @5 is generated over Oxwm by sums of elements of the form

(m)/(c

ql
Trw; A -+ ATroy, wiGQX/C.

Moreover, we must add generators Tr w where w € Q?{/(C for all g with

1 < g < ntoreach all of Ly -

Of course, forms of higher degree are needed only in neighborhoods of singular
points on the X and for n 2 2 the singular locus is exactly the diagonals where
two or more points coincide.

Put differently, the structure of point configurations is reflected by the geometry
of the X . The infinitesimal structure of point configurations is then reflected
along the diagonals where two or more points have come together and where the
X are singular for n > 2. The geometric properties of point configurations
are in turn reflected by the regular differential forms on the symmetric products,
particularly those having the hereditary property (1.6). There is new geometric
information measured by the traces of g-forms for each ¢ with 1 < ¢ < n, and
thus the definition of the tangent space to 0-cycles should involve the differential
forms of all degrees. This is clearly illustrated by the coordinate calculations given
in chapter 3.

What is this new geometric information reflected by the differential forms of
higher degree? One answer stems from E. Cartan, who taught us that when there are
natural parameters in a geometric structure then those parameters should be included
as part of that structure. In the present situation, if in terms of local uniformizing
parameters on B and on X we represent arcs in the space of 0-cycles as sums of
Puiseaux series, then the coefficients of these series provide natural parameters for
the space of arcs in Z"(X). It turns out that for n = 2 there is new infinitesimal
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information in these parameters arising from the higher degree forms on X. This
phenomenon occurs only in higher codimension and is an essential ingredient in
the geometric understanding of the infinitesimal structure of higher codimensional
cycles.

The traces of forms w € Q% /¢ give rise to what are provisionally called universal
abelian invariants 1 (z, w) (cf. chapter 3), which in coordinates are certain expres-
sions in the Puiseaux coefficients and their differentials of degree ¢ — 1. In order
to define the relation of equivalence of arcs in the space of 0-cycles what is needed
is some way to map the ¢ — 1 forms in the Puiseaux coefficients to a fixed vector
space; i.e., a method of comparing the infinitesimal structure at different arcs. Such
a map exists, provided that instead of the usual differential forms we take absolute
differentials. Recall that for any algebraic or analytic variety Y and any subfield k
of the complex numbers we may define the Kéhler differentials over k of degree r,
denoted €2, . For any subvariety W C Y there are restriction maps

Qby/k — wa/k.
Taking W to be a point y € Y and the field k to be Q, since O, = C there is an
evaluation map
(1.9) ey : Qbm/@ — Q(E/Q.

Applying this when Y is the space of Puiseaux coefficients, for an arc z in the
space of 0-cycles and form w € Q%X o We may finally define the universal abelian
invariants

1(z, w) = eZT(z, ).
Two arcs z and 7 are said to be geometrically equivalent to first order, written
Z =t ’Z, lf
1(z,0) = 1(Z, ®)

for all v € Q¢ o and all g with 1 = ¢ < n. It turns out that here it is sufficient
to consider only @ € Q- The space is filtered with G.rq Q% /0 = QE& ® Q;( />
and roughly speaking we may think of €2y ¢ as encoding the information in the
Q% sc's for 1 < ¢ < n. Intuitively, =« captures the invariant information in the
differentials at t = O of Puiseaux series, where the coefficients are differentiated in
the sense of inc /o- The simplest interesting case is when X is a surface defined over

Q, £ and n € Q(X) give local uniformizing parameters, and z(¢) is an arc in Z>(X)
given by

z(t) = z4.(t) + z—(t)
where

z+(t) = €+ (1), n+ (@)
with
E4(1) = tayt'? +art + - -

ne(t) = £bit"2 4 byt +--- .
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The information in the universal abelian invariants / (z, ¢) for ¢ € Q} Jc is
alz, a1 by, b%; a, b,.
The additional information in / (z, w) for w € Qi /C is
ardby — bida,,

which is not a consequence of the differentials of the 1(z, ¢)’s for ¢ € Q} /c
We then give a geometric description of the tangent space as

TZ"(X) = {arcs in Z"(X)}/ =« .

The calculations given in chapter 3 show that this definition is independent of the
particular coordinate system used to define the space of Puiseaux coefficients. We
emphasize that this is not the formal definition of 7' Z" (X)—that definition is given
by (1.5), and as we shall show it is equivalent to the above geometric description.

So far this discussion applies to the analytic as well as to the algebraic category.
However, only in the algebraic setting is it the case that

(1.10) Q}QX/C = Ox(T*X);

that is, only in the algebraic setting is it the case that Kdhler differentials over C give
the right geometric object. Thus, the above sleight of hand where we used Kihler
differentials to define the universal abelian invariants

g—1
I1(z,w) € QC/Q

will only give the correct geometric notion in the algebraic category. In chapter 4
we give a heuristic, computational approach to absolute differentials. In particular
we explain why (1.10) only works in the algebraic setting. The essential point is
that the axioms for Kéhler differentials extend to allow term by term differentiation
of the power series expansion of an algebraic function, but this does not hold for a
general analytic function.

In the algebraic setting Q}QX Q= Q; s> and there is an additional geometric
interpretation of the “arithmetic part” Q. 1o ® Ox of the absolute differentials Q) Q-
This deals with the notion of a spread, and again in chapter 4 we give a heuristic,
geometric discussion of this concept. Given a 0-cycle z on an algebraic variety X,
both defined over a field k that is finitely generated over Q, the spread will be a
family

D)

X Z
[
S =S
X = {Xs)ses, Z = {2s)ses

where X, Z, and S are all defined over Q and Q(S) = k, and where the fiber over
a generic point sy € S is our original X and z. Roughly speaking we may think of
spreads as arising from the different embeddings of k into C; thus, for s € S not
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lying in a proper subvariety defined over Q the algebraic properties of X and z, are
the same as those of X and z. There is a canonical mapping
(1.11) TS — 0
and under this mapping the extension class of

0— Q/i/@ ®k Oxw) — Qi((k)/@ — Qk(k)/k -0
corresponds to the Kodaira-Spencer class of the family {X,};cs at so. The fact
that the spread gives in higher codimension the natural parameters of a cycle and
that infinitesimally the spread is expressed in terms of Q; /@ are two reasons why
absolute differentials necessarily appear.

Using this discussion of absolute differentials and spreads in chapter 4, in chap-
ter 5 we turn to the geometric description of the tangent space 7 Z" (X) to the space of
0-cycles or a smooth n-dimensional algebraic variety X. We say “geometric” be-
cause the formal algebraic definition of the tangent spaces 7' Z" (X)) will be given in
chapter 7 using an extension of the Ext construction discussed above in the n = 1
case. This definition will then be proved to coincide with the description using
the universal abelian invariants discussed above. In chapter 5 we give an alter-
nate, intrinsic definition of the 7 (z, )’s based on functorial properties of absolute
differentials.

In chapter 4 we have introduced absolute differentials as a means of mapping
the differentials of the parameters of an arc in Z"(X) expressed in terms of local
uniformizing parameters to a reference object. Geometrically, using (1.11) this
construction reflects infinitesimal variation in the spread directions. Algebraically,
for an algebraic variety Y and point y € Y, the evaluation mapping (1.9) is forr = 1
given by

fdg S FGHAEO),
where d = dg/g and f, g € C(Y) are rational functions on Y that are regular near
y. If Y is defined over Q and f, g € Q(Y), then e, reflects the field of definition of
y—it is thus measuring arithmetic information.

One may reasonably ask: Is there an alternative, purely geometric way of defining
=« for arcs in Z""(X) that leads to absolute differentials? In other words, even
if one is only interested in the complex geometry of the space of O-cycles, is there
a geometric reason why arithmetic considerations enter the picture? Although we
have not been able to completely define =« axiomatically, we suspect that this can
be done and in a number of places we will show geometrically how differentials
over Q necessarily arise.

For example, in section 6.2 we consider the free group F generated by the arcs
in Z*(C?) given by differences z,(t) — z15(t) where z,4(¢) is the O-cycle given by
the equations

x?—ay?=0 a#=0
Zap ) =
xy — Bt =0.
There we list a set of “evident” geometric axioms for first order equivalence of arcs
in F, and then an elementary but somewhat intricate calculation shows that the map

F/ =1~ Qe
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given by
da
Zap(t) — ,37 (d denotes dc/q)

is a well-defined isomorphism. Essentially, the condition that the tangent map be a
homomorphism to a vector space that factors through the tangent map to the Hilbert
scheme leads directly to the defining relations for absolute Kihler differentials.
Another example, one that will be used elsewhere in the book, begins with the
observation that Z"(X) is the group of global sections of the Zariski sheaf

Dz.
xeX
Taking X to be a curve we may consider the Zariski sheaf

C*
=X
xeX
whose global sections we denote by Z!(X). This sheaf arises naturally when one
localizes the tame symbol mappings 7, that arise in the Weil reciprocity law. In
section 6.2 we give a set of geometric axioms on arcs in le(X) that define an
equivalence relation yielding a description of the sheaf T Z| (X) as

TZ{(X) = @ Hom () q..» t0):
xeX
here Hom”(Q}(/Q’x,Q}C/Q) are the continuous C-linear homomorphims

¢ .
Qg = Qg that satisfy

p(fa) =g¢o(fa,

where f € Ox, o € Qé:/Q, and ¢ : Ox . — Cis a continuous C-linear homo-
morphism. The point is that again purely geometric considerations lead naturally
to differentials over Q. Essentially, the reason again comes down to the assumption
that

(Z:tz')/ =Z/:|:z’/

i.e., the tangent map should be a homomorphism from arcs in Z{(X) to a vector
space.

In (d) at the beginning of the introduction we mentioned different limiting prop-
erties of rational equivalence for divisors and higher codimensional cycles. One
property that our tangent space construction has is the following: Let z,(¢) be a
family of arcs in Z?7(X). Then

Ifz,(0) = 0 forallu # 0, then z,(0) = 0.
Once again the statement
lim z;k (0) = 0 for a sequence u; — 0 implies that zé)(O) =0

is true for divisors but false in higher codimension. The reason is essentially this:
Any algebraic construction concerning algebraic cycles survives when we take the
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spread of the variety together with the cycles over their field of definition. Geometric
invariants arising in the spread give invariants of the original cycle. Infinitesimally,
related to (b) above there is in higher codimensions new information arising from
evaluating g-forms (¢ = 2) on multivectors v A wy A - -+ A wy—;, Where v is the
tangent to the arc in the usual “geometric” sense and wy, ..., wy_; are tangents
in the spread directions. Thus arithmetic considerations appear at the level of the
tangent space to cycles (we did not expect this) and survive in the tangent space to
Chow groups where they appear in Bloch’s formula.

Above, we mentioned the tame symbol 7, (f, g) € C* of f, g € C(X)*. It has
the directly verified properties

T.(f™, g) =T (f, g)" form € Z
T.(fif2, 8) =T:.(f1, )T (f2, &)
T.(f. 8) = Te(g. /)7
T.(f,1-f)=1,

which show that the tame symbol gives mappings

T, : K2(C(X)) - C*, and T : K»(C(X)) - € Ci.

A natural question related to the definition of Iz 11 (X) is
What is the differential of the tame symbol?

According to van der Kallen [12], for any field or local ring F' in characteristic zero
the formal tangent space to K, (F) is given by

(1.12) TKy(F) = Q-

Thus, we are seeking to calculate
1 dT; 1 1
Q¢ 0 — Hom *(Q2yq . Q)

In section 6.3 we give this evaluation in terms of residues; this calculation again
illustrates the linking of arithmetic and geometry. As an aside, we also show that the
infinitesimal form of the Weil and Suslin reciprocity laws follow from the residue
theorem.

Beginning with the work of Bloch, Gersten, and Quillen (cf. [S] and [16]) one
has understood that there is an intricate relationship between K -theory and higher
codimensional algebraic cycles. For X an algebraic curve, the Chow group C H' (X)
is defined as the cokernel of the mapping obtained by taking global sections of the
surjective mapping of Zariski sheaves

(1.13) cx) &% Pz —o.
o xeX o
This sheaf sequence completes to the exact sequence

(1.14) 0— o;ag(){)*e@%ao,
xeX
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and the exact cohomology sequence gives the well-known identification

(1.15) CH'(X) = H'(0%).

For X an algebraic surface, the analogue of (1.13) is

(1.16) P cuoy = @z —o.
{Y .irv;ed xeX

Whereas the kernel of the map in (1.13) is evidently O%, for (1.16) it is a nontrivial
result that the kernel is the image of the map

T *
K (Cx) — P cm)
[
given by the tame symbol. Itis at this juncture that K -theory enters the picture in the
study of higher codimension algebraic cycles. The sequence (1.16) then completes
to the analogue of (1.14), the Bloch-Gersten-Quillen exact sequence

0— X>(0x) — K,(CxX) — P co)* - Pz —0

: Y irred xeX

which in turn leads to Bloch’s analogue
(1.17) CH?*(X) = H*(X2(0y))

of (1.15), which opened up a whole new perspective in the study of algebraic cycles.

The infinitesimal form of (1.17) is also due to Bloch (cf. [4] and [27]) with
important amplifications by Stienstra [6]. In this work the van der Kallen result is
central. Because it is important for our work to understand in detail the infinitesimal
properties of the Steinberg relations that give the (Milnor) K-groups, we have in
the appendix to chapter 6 given the calculations that lie behind (1.12). At the end of
this appendix we have amplified on the above heuristic argument that shows from
a geometric perspective how K -theory and absolute differentials necessarily enter
into the study of higher codimensional algebraic cycles.

In chapter 7 we give the formal definition

TZ(X)= lim &y, (07, Q)

Z codim 2
subscheme

for the tangent sheaf to the sheaf of 0-cycles on a smooth algebraic surface X. We
show that this is equivalent to the geometric description discussed above. Then,
based on a construction of Angéniol and Lejeune-Jalabert [19], we define a map

THilb*(X) — TZ*(X),

thereby showing that the tangent to an arc in Z(X) given as the image in Z?(X) of
an arc in Hilb? (X) depends only on the tangent to that arc in THilb? (X).
In summary, the geometric description has the advantages:

— it is additive;

— it depends only on z(¢) as a cycle;
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— it depends only on z(¢) up to first order in ¢;
— it has clear geometric meaning.

It is however not clear that two families of effective cycles that represent the same
element of 7 Hilb?(X) have the same tangent under the geometric description. The
formal definition has the properties:

— it clearly factors through THilb*(X);
— it is easy to compute in examples.

But additivity does not make sense for arbitrary schemes, and in the formal definition
it is not clear that z'(0) depends only on the cycle structure of z(z). For this reason
it is important to show their equivalence.
In chapter 8 we give the definitions of some related spaces, beginning with the
definition
TZ'(X) = lim &t (Oz, Ox)

Z codiml
subscheme

for the sheaf of divisors on a smooth algebraic surface X. Actually, this definition
contains interesting geometry not present for divisors on curves. In section 8.2 this
geometry is discussed both directly and dually using differential forms and residues.
As background for this, we review duality with emphasis on how one may use the
theory to compute in examples.

In section 8.2 we give the definition

TZi(X) = P H) (D)
[ }ootim

for the tangent sheaf to the Zariski sheaf @ C(Y)*. Underlying this definition is
Y =

an interesting mix of arithmetic and geometry which is illustrated in a number of
examples. With this definition there is a natural map TZ 1' (X) - TZ*(X) and
passing to global sections we may define the geometric tangent space to the Chow
group C H*(X) by

ToeomC H*(X) = T Z*(X)/image {T Z{(X) — TZ*(X)}.

Both the numerator and denominator on the RHS have geometric meaning and are
amenable to computation in examples. The main result of this work is then given
by the

Theorem: (i) There is a natural surjective map
arcs in X
Sy | = L2 (X).
V=

(ii) Denoting by TiomaC H*(X) the formal tangent space to the Chow group given
by Bloch [4], [27], there is a natural identification

TgeomCHz(X) = TformaICHz(X)-
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Contained in (i) and (ii) in this theorem is a geometric existence result, albeit at
the infinitesimal level. The interesting but significant difficulties in “integrating”
this result are discussed in section 8.4 and again in chapter 10.

In chapter 9 we give some applications and examples. Classically, on an alge-
braic curve Abel’s differential equations—by which we mean the infinitesimal form
of Abel’s theorem—express the infinitesimal constraints that a O-cycle move in a
rational equivalence class. An application of our work gives an extension of Abel’s
differential equations to O-cycles on an n-dimensional smooth variety X. For X a
regular algebraic surface defined over QQ these conditions take the following form:
Let z = ), x; be a O-cycle, where for simplicity of exposition we assume that the
x; are distinct. Given 7; € Ty, X we ask when is

(1.18) =) (x. 1) € TZ*(X)

tangent to a rational equivalence? Here there are several issues that one does not
see in the curve case. One is that because of the cancellation phenomenon in higher
codimension discussed above it is essential to allow creation/annihilation arcs in
Z?(X), so it is understood that a picture like

x_(1)

PRI
x4 (7)

x(1) = x3.(2) —x_(),
x4.(0) =x_(0),
x, (0) = —x'(0)

is allowed, and a picture like

« T

could be the tangent to a simple arc);(t) in X with x(0) = x and x’(0) = 7, or it
could be the tangent to an arc

z(t) = x1(8) + x2(t) — x3(¢),
where

x1(0) = x2(0) = x3(0) = x,

x1(0) + x5,(0) — x5(0) =7,

and so forth.2

Second, we can only require that T be tangent to a first order arc in Z2 (X).

Alternatively, we could require (i) that T be tangent to a formal arc in me(X ), or

20f course, for curves one may introduce creation/annihilation arcs, but as noted in point (¢) above
it is only in higher codimension, due to the presence of “irrelevant” rational equivalences, that they play
an essential role.
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(ii) that T be tangent to a geometric arc in Z2,(X). There are heuristic geometric

reasons that (i) may be the same as tangent to a first-order arcs, but although (ii)
may be equivalent for O-cycles on a surface (essentially Bloch’s conjecture), there
are Hodge-theoretic reasons why for higher dimensional varieties the analogue of
(ii) cannot in general be equivalent to tangency to a first order rational equivalence
for general codimension 2 cycles (say, curves on a threefold). In any case, there are
natural pairings

(1.19) (, ):Qi/ny®TXX—>Q(IC/Q
and the condition that (1.18) be tangent to a first order rational equivalence class is
(1.20) (@.7) =) (0.7)=0 in Qg

L

for all o € H(R2 o). If the x; € X (k) then the pairing (1.19) lies in €} ¢

At one extreme, if z = ), x; € ZZ(X(@)) then all (w, 7;) = 0 and the main
theorem stated above gives a geometric existence result which is an infinitesimal
version of the conjecture of Bloch-Beilinson [22]. At the other extreme, taking
the x; to be independent transcendentals we obtain a quantitative version of the
theorem of Mumford-Roitman (cf. [1] and [2]). In between, the behavior of how a
0-cycle moves infinitesimally in a rational equivalence class is very reminiscent of
the behavior of divisors on curves where h>°(X) together with tr deg (k) play the
role of the genus of the curve.

In section 9.2 we discuss the integration of Abel’s differential equations. The
exact meaning of “integration” is explained there—roughly it means defining a
Hodge-theoretic object H and map

(1.21) v Z'(X) > H
whose codifferential factors through the map
T*CH"(X) —» T*Z"(X).

For curves, denoting by Z'(X), the divisors of degree zero, the basic classical
construction is the pairing

HO(Qi(/C) ® Z'(X)o — C mod periods
given by

w®z BN / w, Iy =z.
¥
As z varies along an arc z,
d (V(@®2)) = (0, 2)
— (¥ (w = (w,
dr 2t e
where the right-hand side is the usual pairing

HY(Qy,0) ® TZ'(X) - C

of differential forms on tangent vectors. This of course suggests that the usual
abelian sums should serve to integrate Abel’s differential equations in the case of
curves.
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In [32] we discussed the integration of Abel’s differential equations in general.
Here we consider the first nonclassical case of a regular surface X defined over Q,
and we shall explain how the geometric interpretation of (1.20) suggests how one
may construct a map (1.21) in this case. What is needed is a pairing

(1.22) HY(Q%,0) ® Z*(X)o — / @ mod periods,
I

where I is a (real) 2-dimensional chain that is constructed from z using the assump-
tions that deg z = 0 and that X is regular. If z € Z? (X (k)) o then using the spread
construction together with (1.10) we have a pairing

(1.23) HY(Q ) ® T.Z*(X)o — TS,
which if we compare it with (1.10) will, according to (1.19) and (1.20), give the
conditions that z move infinitesimally in a rational equivalence class. Writing (1.23)
as a pairing

H(Q%,0) ®TZ*(X)®TS — C
suggests in analogy to the curve case that in (1.21) the 2-chain I should be traced
out by 1-chains y; in X parametrized by a curve A in S. Choosing y; so that dy,; = z;

and taking for X a closed curve in S, we are led to set ' = Usek ys and define for
weH O(Qi /(C)

(1.24) I1(z,w, A) =/a) mod periods.
r

As is shown in section 9.2 this gives a differential character on S that depends only
on the k-rational equivalence class of z.> If one assumes the conjecture of Bloch
and Beilinson, then the triviality of /(z, -, -) implies that z is rationally equivalent
to zero; this would be an analogue of Abel’s theorem for 0-cycles on a surface.

In section 9.3 we give explicit computations for surfaces in P* leading to the
following results:

Let X be a general surface in P of degree d > 5. Then, for any point p € X

T,X NTZ*(X) = 0.
If d = 6, then for any distinct points p, g € X
(TyX + T, X) N TZ*(X)sa = 0.

The first statement implies that a general X contains no rational curve—, that is, a
g}—which is a well-known result of Clemens. The second statement implies that
a general X of degree = 6 does not contain a g;. It may well be that the method
of proof can be used to show that for each integer k there is a d(k) such that for
d = d(k) a general X does not contain a g,l.

In section 9.4 we discuss what seems to be the only nonclassical case where the
Chow group is explicitly known: the isomorphism

(1.25) Gr’CH?*(P*, T) = K,(C)

3The regularity of X enters in the rigorous construction and in the uniqueness of the lifting of  to
HO(ng/Q). Also, the construction is only well-defined modulo torsion. Finally, as discussed in section

9.3, one must “enlarge” the construction (1.24) to take into account all the transcendental part H 2(X)
of the second cohomology group of X.

For general queries, contact webmaster@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

18 CHAPTER 1

due to Bloch and Suslin [26], [21]. We give a proof of (1.25) similar to that of Totaro
[9], showing that it is a consequence of the Suslin reciprocity law together with
elementary geometric constructions. This example was of particular importance to
us as it was one where the infinitesimal picture could be understood explicitly. In
particular, we show that if tr deg k = 1 so that S is an algebraic curve, the invariant
(1.24) coincides with the regulator and the issue of whether it captures rational
equivalence, modulo torsion, reduces to an analogue of a well-known conjecture
about the injectivity of the regulator.

In the last chapter we discuss briefly some of the larger issues that this study has
raised. One is whether or not the space of codimension p cycles Z7(X) is at least
“formally reduced.” That is, given a tangent vector T € T Z”(X), is there a formal
arc z(¢) in Z?(X) with tangent t? If so, is Z”(X) “actually reduced”; i.e., can we
choose z(t) to be a geometric arc? Here we are assuming that a general definition of
T Z?(X) has been given extending that given in this work when p = 1 and p = n,
and that there is a natural map

THilb?(X) — TZ"(X).

The first part of the following proposition is proved in this book; the second is a
result of Ting Fei Ng [39], the idea of whose proof is sketched in chapter 10:

(1.26) ZP(X) is reduced for p = n, 1.

What this means is that for p = n, 1 every tangent vector in 7' Z” (X) is the tangent
to a geometric arc in Z”(X). For p = n this is essentially a local result. However,
for p = 1 and n > 2 it is well known that Hilb' (X) may not be reduced. Already
when n = 2 there exist examples of a smooth curve Y in an algebraic surface and a
normal vector field v € H(Ny,x) which is not tangent to a geometric definition of
Y in X; i.e., v may be obstructed. However, when we consider Y as a codimension
one cycle on X the above result implies that there is an arc Z(¢) in Z '(X) with

Z0) =Y,
Z'(0) = v;
in particular, allowing Y to deform as a cycle kills the obstructions.
For Hodge-theoretic reasons, (1.26) cannot be true in general—as discussed in

chapter 10, when p = 2 and n = 3 the result is not true. Essentially there are two
possibilities:

(i) ZP(X) is not reduced.
(i) ZP(X) is formally, but not actually, reduced.

Here we are using “reduced” as if Z”(X) had a scheme structure, which of course
it does not. What is meant is that first an m™ order arc is given by a finite linear
combination of the map to the space of cycles induced by maps

Spec (C[t]/¢" ") — Hilb? (X), m=>14

4The issue of the equivalence relation on such maps to define the same cycle is non-trivial — cf.
section 10.2. In fact, the purpose of chapter 10 is to raise issues that we feel merit further study.
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The tangent to such an arc factors as in
Spec(Clt]/t™+!) — Z7(X)

N
N
N
N

Spec(C[t]/t?) — TZP(X)

where the top row is the finite linear combination of the above maps, and where
the bottom row is surjective. To say that t € TZ”(X) is unobstructed to order
m means that it is in the image of the dotted arrow. To say that it is formally reduced
means that it is unobstructed to order m for all m. To say that it is actually reduced
means that it comes from a geometric arc

B — ZP(X).

Another anomaly of the space of cycles is the presence of null curves in the Chow
group, these being curves z(¢) in C H” (X) that are nonconstant but whose derivative
is identically zero. They arise from tangent vectors to rational equivalences that do
not arise from actual rational equivalences (nonreduced property of 7'Z" (X) =:
image {T Z}(X) — T Z"(X)}—see below for notation). Thus, if one thinks in the
language of differential equations:

(1.27) Because of the presence of null curves, there can be no uniqueness in the
integration of Abel’s differential equations.

Thus, the usual existence and uniqueness theorems of differential equations both
fail in our context. Heuristic considerations suggest that one must add additional
arithmetic considerations to have even the possibility of convergent iterative con-
structions. The monograph concludes with a discussion of this issue in section 10.4.

We have used classical terminology in discussing the spaces of cycles on an
algebraic variety, as if the Z7(X) were themselves some sort of variety. However,
because of properties such as (1.26) and (1.27) the Z7 (X) are decidedly nonclassical
objects. This nonclassical behavior is combined Hodge-theoretic and arithmetic in
origin, and in our view understanding it presents a deep challenge in the study of
algebraic cycles.

To conclude this introduction we shall give some references and discuss the
relationship of this material to some other works on the space of cycles on an
algebraic variety.

Our original motivation stems from the work of David Mumford and Spencer
Bloch some thirty odd years ago. The paper [Rational equivalence of 0-cycles on
surfaces., J. Math. Kyoto Univ. 9 (1968), 195-204] by Mumford showed that the
story for Chow groups in higher codimensions would be completely different from
the classical case of divisors. Certainly one of the questions in our minds was
whether Mumford’s result and the subsequent important extensions by Roitman
[Rational equivalence of zero-dimensional cycles (Russian), Mat. Zametki 28(1)
(1980), 85-90, 169] and [The torsion of the group of 0-cycles modulo rational
equivalence, Ann. of Math. 111 (2) (1980), 553-569] could be understood, and
perhaps refined, by defining the tangent space to cycles and then passing to the
quotient by infinitesimal rational equivalence—this turned out to be the case.
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The monograph Lectures on algebraic cycles (Duke University Mathematics
Series, I'V. Duke University, Mathematics Department, Durham, N.C., 1980. 182 pp.)
by Bloch was one of the major milestones in the study of Chow groups and provided
significant impetus for this work. The initial paper [K , and algebraic cycles, Ann. of
Math. 99(2) (1974), 349-379] by Bloch its successor [Algebraic cycles and higher
K -theory, Adv. in Math. 61(3) (1986), 267-304] together with Quillen’s work [16]
brought K -theory into the study of cycles, and trying to understand geometrically
what is behind this was one principal motivation for this work. We feel that we have
been able to do this infinitesimally by giving a geometric understanding of how
absolute differentials necessarily enter into the description of the tangent space to
the space of 0-cycles on a smooth variety. One hint that this should be the case came
from Bloch’s early work [On the tangent space to Quillen K -theory, Lecture Notes
in Math. 341 (1974), Springer-Verlag] and summarized in [4] and with important
extensions by Stienstra, Balere [On K, and K3 of truncated polynomial rings, Al-
gebraic K-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, IlL.,
1980), pp. 409455, Lecture Notes in Math. 854, Springer, Berlin, 1981].

Another principal motivation for us has been provided by the conjectures of
Bloch and Beilinson. These are explained in sections 6 and 8 of [Ramakrishnan,
Dinakar, Regulators, algebraic cycles, and values of L-functions, Contemp. Math.
83 (1989), 183-310] and in [Jannsen, U., Motivic sheaves and filtrations on Chow
groups. Motives (Seattle, WA, 1991), 245-302, Proc. Sympos. Pure Math. 55,
Part 1, Amer. Math. Soc., Providence, RI, 1994]. Our work provides a geometric
understanding and verification of these conjectures at the infinitesimal level, and it
also points out some of the major obstacles to “integrating” these results [8].

In an important work, Blaine Lawson introduced a topology on the space Z” (X)
of codimension p algebraic cycles on a smooth complex projective variety. Briefly,
two codimension-p cycles z, z’ written as

I=24 —2-

7=z, -7
where z4, z/, and effective cycles are close, if z, z; and z_, 7. are close in the
usual sense of closed subsets of projective space. Lawson then shows that Z”(X)
has the homotopy type of a CW complex, and from this he proceeds to define the
Lawson homology of X in terms of the homotopy groups of Z”(X). His initial work
triggered an extensive development, many aspects of which are reported on in his talk
at ICM Ziirich (cf. [Lawson, Spaces of Algebraic Cycles—Levels of Holomorphic
Approximation, Proc. ICM Ziirich, 574-584] and the references cited therein).

In this monograph, although we do not define a topology on Z”(X), we do define
and work with the concept of a (regular) arc in Z”(X). Implicit in this is the
condition that two cycles z, 7’ as above should be close: First, there should be a
common field of definition for X, z, and z". This leads to the spreads

2,2 cX

|

S
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as discussed in chapter 4 below, and z, 7' should be considered close if Z,
Z' € ZP(X) are close in the Lawson sense (taking care to say what this means,
since the spread is not uniquely defined). As seen in the diagram,

X

two cycles may be Lawson close without being close in our sense. We do not
attempt to formalize this, but rather wish only to point out one relationship between
the theory here and that of Lawson and his coworkers.

Finally, we mention that some of the early material in this study has appeared
in [23].
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