
CHAPTER 1

u

Newton

Isaac Newton

Isaac Newton (1642–1727) stands as a seminal figure not just in math-
ematics but in all of Western intellectual history. He was born into a world
where science had yet to establish a clear supremacy over medieval super-
stition. By the time of his death, the Age of Reason was in full bloom. This
remarkable transition was due in no small part to his own contributions.

For mathematicians, Isaac Newton is revered as the creator of calculus,
or, to use his name for it, of “fluxions.” Its origin dates to the mid-1660s
when he was a young scholar at Trinity College, Cambridge. There he had
absorbed the work of such predecessors as René Descartes (1596–1650),
John Wallis (1616–1703), and Trinity’s own Isaac Barrow (1630–1677),
but he soon found himself moving into uncharted territory. During the
next few years, a period his biographer Richard Westfall characterized as
one of “incandescent activity,” Newton changed forever the mathematical
landscape [1]. By 1669, Barrow himself was describing his colleague as
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“a fellow of our College and very young . . . but of an extraordinary genius
and proficiency” [2].

In this chapter, we look at a few of Newton’s early achievements: his
generalized binomial expansion for turning certain expressions into infinite
series, his technique for finding inverses of such series, and his quadrature
rule for determining areas under curves. We conclude with a spectacular
consequence of these: the series expansion for the sine of an angle. New-
ton’s account of the binomial expansion appears in his epistola prior, a let-
ter he sent to Leibniz in the summer of 1676 long after he had done the
original work. The other discussions come from Newton’s 1669 treatise De
analysi per aequationes numero terminorum infinitas, usually called simply
the De analysi.

Although this chapter is restricted to Newton’s early work, we note that
“early” Newton tends to surpass the mature work of just about anyone else.

GENERALIZED BINOMIAL EXPANSION

By 1665, Isaac Newton had found a simple way to expand—his word
was “reduce”—binomial expressions into series. For him, such reductions
would be a means of recasting binomials in alternate form as well as an
entryway into the method of fluxions. This theorem was the starting point
for much of Newton’s mathematical innovation.

As described in the epistola prior, the issue at hand was to reduce the
binomial (P + PQ)m/n and to do so whether m/n “is integral or (so to speak)
fractional, whether positive or negative” [3]. This in itself was a bold idea
for a time when exponents were sufficiently unfamiliar that they had first
to be explained, as Newton did by stressing that “instead of 
etc. I write a1/2, a1/3, a5/3, and instead of 1/a, 1/aa, 1/a3, I write a−1, a−2, 
a−3” [4]. Apparently readers of the day needed a gentle reminder.

Newton discovered a pattern for expanding not only elementary bino-

mials like (1 + x)5 but more sophisticated ones like 

The reduction, as Newton explained to Leibniz, obeyed the rule 
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where each of A, B, C, . . . represents the previous term, as will be illus-
trated below. This is his famous binomial expansion, although perhaps in
an unfamiliar guise.

Newton provided the example of 

Here, P = c2, m = 1, and n = 2. Thus,

To identify A, B, C, and the rest, we recall that each is the immediately
preceding term. Thus, A = (c2)1/2 = c, giving us

Likewise B is the previous term—i.e., —so at this stage we have

The analogous substitutions yield and then Working

from left to right in this fashion, Newton arrived at

Obviously, the technique has a recursive flavor: one finds the coeffi-
cient of x8 from the coefficient of x6, which in turn requires the coefficient
of x4, and so on. Although the modern reader is probably accustomed to a
“direct” statement of the binomial theorem, Newton’s recursion has an un-
deniable appeal, for it streamlines the arithmetic when calculating a nu-
merical coefficient from its predecessor.

For the record, it is a simple matter to replace A, B, C, . . . by their
equivalent expressions in terms of P and Q, then factor the common
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Pm/n from both sides of (1), and so arrive at the result found in today’s
texts:

(2)

Newton likened such reductions to the conversion of square roots
into infinite decimals, and he was not shy in touting the benefits of the
operation. “It is a convenience attending infinite series,” he wrote in
1671,

that all kinds of complicated terms . . . may be reduced to the class
of simple quantities, i.e., to an infinite series of fractions whose nu-
merators and denominators are simple terms, which will thus be
freed from those difficulties that in their original form seem’d al-
most insuperable. [5]

To be sure, freeing mathematics from insuperable difficulties is a worthy
undertaking.

One additional example may be helpful. Consider the expansion of

which Newton put to good use in a result we shall discuss later

in the chapter. We first write this as (1 − x2)−1/2, identify m = − 1, n = 2,
and Q = − x2, and apply (2):
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Newton would “check” an expansion like (3) by squaring the series
and examining the answer. If we do the same, restricting our attention to
terms of degree no higher than x8, we get

where all of the coefficients miraculously turn out to be 1 (try it!). The re-
sulting product, of course, is an infinite geometric series with common ratio

x2 which, by the well-known formula, sums to But if the square of the

series in (3) is we conclude that that series itself must be 

Voila!
Newton regarded such calculations as compelling evidence for his gen-

eral result. He asserted that the “common analysis performed by means of
equations of a finite number of terms” may be extended to such infinite ex-
pressions “albeit we mortals whose reasoning powers are confined within
narrow limits, can neither express nor so conceive all the terms of these
equations, as to know exactly from thence the quantities we want” [6].

INVERTING SERIES

Having described a method for reducing certain binomials to infinite
series of the form z = A + Bx + Cx2 + Dx3 + ⋅ ⋅ ⋅, Newton next sought a
way of finding the series for x in terms of z. In modern terminology, he
was seeking the inverse relationship. The resulting technique involves a
bit of heavy algebraic lifting, but it warrants our attention for it too will
appear later on. As Newton did, we describe the inversion procedure by
means of a specific example.

Beginning with the series z = x − x2 + x3 − x4 + ⋅ ⋅ ⋅, we rewrite it as

(x − x2 + x3 − x4 + ⋅ ⋅ ⋅) − z = 0 (4)

and discard all powers of x greater than or equal to the quadratic. This, of
course, leaves x − z = 0, and so the inverted series begins as x = z.
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Newton was aware that discarding all those higher degree terms ren-
dered the solution inexact. The exact answer would have the form x = z + p,
where p is a series yet to be determined. Substituting z + p for x in (4)
gives

[(z + p) − (z + p)2 + (z + p)3 − (z + p)4 + ⋅ ⋅ ⋅] − z = 0,

which we then expand and rearrange to get

[−z2 + z3 − z4 + z5 − ⋅ ⋅ ⋅] + [1 − 2z + 3z2 − 4z3 + 5z4 − ⋅ ⋅ ⋅]p
+ [−1 + 3z − 6z2 + 10z3 − ⋅ ⋅ ⋅]p2 + [1 − 4z + 10z2 − ⋅ ⋅ ⋅]p3

+ [−1 + 5z − ⋅ ⋅ ⋅]p4 + ⋅ ⋅ ⋅ = 0. (5)

Next, jettison the quadratic, cubic, and higher degree terms in p and solve
to get

Newton now did a second round of weeding, as he tossed out all but
the lowest power of z in numerator and denominator. Hence p is approxi-

mately so the inverted series at this stage looks like x = z + p = z + z2.

But p is not exactly z2. Rather, we say p = z2 + q, where q is a series to
be determined. To do so, we substitute into (5) to get

[− z2 + z3 − z4 + z5 − ⋅ ⋅ ⋅] + [1 − 2z + 3z2 − 4z3 + 5z4 − ⋅ ⋅ ⋅](z2 + q)

+ [−1 + 3z − 6z2 + 10z3 − ⋅ ⋅ ⋅](z2 + q)2 + [1 − 4z + 10z2 − ⋅ ⋅ ⋅]
(z2 + q)3 + [−1 + 5z − ⋅ ⋅ ⋅](z2 + q)4 + ⋅ ⋅ ⋅ = 0.

We expand and collect terms by powers of q:

[−z3 + z4 − z6 + ⋅ ⋅ ⋅] + [1 − 2z + z2 + 2z3 − ⋅ ⋅ ⋅]q
+ [−1 + 3z − 3z2 − 2z3 + ⋅ ⋅ ⋅]q2 + ⋅ ⋅ ⋅. (6)

As before, discard terms involving powers of q above the first, solve to 

get and then drop all but the lowest degree

terms top and bottom to arrive at At this point, the series looks like

x = z + z2 + q = z + z2 + z3.
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The process would be continued by substituting q = z3 + r into (6).
Newton, who had a remarkable tolerance for algebraic monotony, seemed
able to continue such calculations ad infinitum (almost). But eventually
even he was ready to step back, examine the output, and seek a pattern.
Newton put it this way: “Let it be observed here, by the bye, that when 5
or 6 terms . . . are known, they may be continued at pleasure for most
part, by observing the analogy of the progression” [7].

For our example, such an examination suggests that x = z + z2 + z3 +
z4 + z5 + ⋅ ⋅ ⋅ is the inverse of the series z = x − x2 + x3 − x4 + ⋅ ⋅ ⋅ with
which we began.

In what sense can this be trusted? After all, Newton discarded most of
his terms most of the time, so what confidence remains that the answer is
correct?

Again, we take comfort in the following “check.” The original series
z = x − x2 + x3 − x4 + ⋅ ⋅ ⋅ is geometric with common ratio − x, and so in 

closed form Consequently, which we recognize to be 

the sum of the geometric series z + z2 + z3 + z4 + z5 + ⋅ ⋅ ⋅ . This is pre-
cisely the result to which Newton’s procedure had led us. Everything
seems to be in working order.

The techniques encountered thus far—the generalized binomial ex-
pansion and the inversion of series—would be powerful tools in Newton’s
hands. There remains one last prerequisite, however, before we can truly
appreciate the master at work.

QUADRATURE RULES FROM THE DE ANALYSI

In his De analysi of 1669, Newton promised to describe the method
“which I had devised some considerable time ago, for measuring the quan-
tity of curves, by means of series, infinite in the number of terms” [8]. This
was not Newton’s first account of his fluxional discoveries, for he had
drafted an October 1666 tract along these same lines. The De analysi was a
revision that displayed the polish of a maturing thinker. Modern scholars
find it strange that the secretive Newton withheld this manuscript from all
but a few lucky colleagues, and it did not appear in print until 1711, long
after many of its results had been published by others. Nonetheless, the
early date and illustrious authorship justify its description as “perhaps the
most celebrated of all Newton’s mathematical writings” [9].
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The treatise began with a statement of the three rules for “the quadra-
ture of simple curves.” In the seventeenth century, quadrature meant de-
termination of area, so these are just integration rules.

Rule 1. The quadrature of simple curves: If y = axm/n is the curve
AD, where a is a constant and m and n are positive integers, then

the area of region ABD is (see figure 1.1).

A modern version of this would identify A as the origin, B as (x, 0), and 

the curve as y = atm/n. Newton’s statement then becomes 

which is just a special case of the power rule

from integral calculus.
Only at the end of the De analysi did Newton observe, almost as an af-

terthought, that “an attentive reader” would want to see a proof for Rule 1
[10]. Attentive as always, we present his argument below.

Again, let the curve be AD with AB = x and BD = y, as shown in
figure 1.2. Newton assumed that the area ABD beneath the curve was given
by an expression z written in terms of x. The goal was to find a corresponding
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formula for y in terms of x. From a modern vantage point, he was beginning

with and seeking y = y(x). His derivation blended geometry, 
algebra, and fluxions before ending with a few dramatic flourishes.

At the outset, Newton let β be a point on the horizontal axis a tiny dis-
tance o from B. Thus, segment Aβ has length x + o. He let z be the area
ABD, although to emphasize the functional relationship we shall take the
liberty of writing z = z(x). Hence, z(x + o) is the area Aβδ under the curve.
Next he introduced rectangle BβHK of height v = BK = βH, the area of
which he stipulated to be exactly that of region BβδD beneath the curve.
In other words, the area of BβδD was to be ov.

At this point, Newton specified that and pro-

ceeded to find the instantaneous rate of change of z. To do so, he exam-
ined the change in z divided by the change in x as the latter becomes
small. For notational ease, he temporarily let c = an/(m + n) and p = m + n
so that z(x) = cxp/n and

[z(x)]n = cnxp. (7)

Now, z(x + o) is the area Aβδ, which can be decomposed into the area
of ABD and that of BβδD. The latter, as noted, is the same as rectangular

z x
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area ov and so Newton concluded that z(x + o) = z(x) + ov. Substituting
into (7), he got

[z(x) + ov]n = [z(x + o)]n = cn(x + o)p,

and the binomials on the left and right were expanded to

Applying (7) to cancel the leftmost terms on each side and then dividing
through by o, Newton arrived at

(8)

At that point, he wrote, “If we suppose Bβ to be diminished infinitely
and to vanish, or o to be nothing, v and y in that case will be equal, and the
terms which are multiplied by o will vanish” [11]. He was asserting that, as o
becomes zero, so do all terms in (8) that contain o. At the same time, v becomes
equal to y, which is to say that the height BK of the rectangle in Figure 1.2 will
equal the ordinate BD of the original curve. In this way, (8) transforms into

n[z(x)]n−1y = cnpxp−1. (9)

A modern reader is likely to respond, “Not so fast, Isaac!” When New-
ton divided by o, that quantity most certainly was not zero. A moment
later, it was zero. There, in a nutshell, lay the rub. This zero/nonzero di-
chotomy would trouble analysts for the next century and then some. We
shall have much more to say about this later in the book.
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Thus, starting from his assumption that the area ABD is given by

Newton had deduced that curve AD must satisfy the 

equation y = axm/n. He had, in essence, differentiated the integral. Then,
without further justification, he stated, “Wherefore conversely, if axm/n = y, 

it shall be ” His proof of rule 1 was finished [12].

This was a peculiar twist of logic. Having derived the equation of y from
that of its area accumulator z, Newton asserted that the relationship went 

the other way and that the area under y = axm/n is indeed 

Such an argument tends to leave us with mixed feelings, for it features
some gaping logical chasms. Derek Whiteside, editor of Newton’s mathe-
matical papers, aptly characterized this quadrature proof as “a brief,
scarcely comprehensible appearance of fluxions” [13]. On the other hand,
it is important to remember the source. Newton was writing at the very
beginning of the long calculus journey. Within the context of his time, the
proof was groundbreaking, and his conclusion was correct. Something
rings true in Richard Westfall’s observation that, “however briefly, De analysi
did indicate the full extent and power of the fluxional method” [14].

Whatever the modern verdict, Newton was satisfied. His other two
rules, for which the De analysi contained no proofs, were as follows:

Rule 2. The quadrature of curves compounded of simple ones: If
the value of y be made up of several such terms, the area likewise
shall be made up of the areas which result from every one of the
terms. [15]

Rule 3. The quadrature of all other curves: But if the value of y, or
any of its terms be more compounded than the foregoing, it must
be reduced into more simple terms . . . and afterwards by the pre-
ceding rules you will discover the [area] of the curve sought. [16]

Newton’s second rule affirmed that the integral of the sum of finitely
many terms is the sum of the integrals. This he illustrated with an example
or two. The third rule asserted that, when confronted with a more compli-
cated expression, one was first to “reduce” it into an infinite series, integrate
each term of the series by means of the first rule, and then sum the results.

This last was an appealing idea. More to the point, it was the final pre-
requisite Newton would need to derive a mathematical blockbuster: the
infinite series for the sine of an angle. This great theorem from the De
analysi will serve as the chapter’s climax.
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NEWTON’S DERIVATION OF THE SINE SERIES

Consider in figure 1.3 the quadrant of a circle centered at the origin
and with radius 1, where as before AB = x and BD = y. Newton’s initial ob-
jective was to find an expression for the length of arc αD [17].

From D, draw DT tangent to the circle, and let BK be “the moment of
the base AB.” In a notation that would become standard after Newton, we
let BK = dx. This created the “indefinitely small” right triangle DGH,
whose hypotenuse DH Newton regarded as the moment of the arc αD. We
write DH = dz, where z = z(x) stands for the length of arc αD. Because all
of this is occurring within the unit circle, the radian measure of ∠αAD is
z as well.

Under this scenario, the infinitely small triangle DGH is similar to 

triangle DBT so that Moreover, radius AD is perpendicular to 

tangent line DT, and so altitude BD splits right triangle ADT into similar 

pieces: triangles DBT and ABD. It follows that and from these 

two proportions we conclude that With the differential notation 

above, this amounts to and hence dz
dx
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Newton’s next step was to exploit the circular relationship 

to conclude that Expanding as in (3) led to

and so

Finding the quadratures of these individual powers and summing the re-
sults by Rule 3, Newton concluded that the arclength of αD was

(10)

Referring again to Figure 1.3, we see that z is not only the radian mea-
sure of ∠αAD, but the measure of ∠ADB as well. From triangle ABD, we
know that sin z = x and so

Thus, beginning with the algebraic expression Newton had used 

his generalized binomial expansion and basic integration to derive the se-
ries for arcsine, an intrinsically more complicated relationship.

But Newton had one other trick up his sleeve. Instead of a series for
arclength (z) in terms of its coordinate (x), he sought to reverse the pro-
cess. He wrote, “If, from the Arch αD given, the Sine AB was required, I
extract the root of the equation found above” [18]. That is, Newton would
apply his inversion procedure to convert the series for z = arcsin x into
one for x = sin z.

Following the technique described earlier, we begin with x = z as the
first term. To push the expansion to the next step, substitute x = z + p into
(10) and solve to get
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from which we retain only This extends the series to x = z −

Next introduce and continue the inversion process,

solving for

or simply At this stage and, as Newton

might say, we “continue at pleasure” until discerning the pattern and writ-
ing down one of the most important series in analysis:

sin

( )

( )!
.

z z z z z z

k
z

k

k

k

= − + − + − ⋅ ⋅ ⋅

= −
+=

∞
+∑

1

6

1

120

1

5040

1

362880

1

2 1

3 5 7 9

0

2 1 

x z z z= − +1

6

1

120
3 5,q z= 1

120
5.

  

q
z z z

z z
=

+ − + ⋅ ⋅ ⋅

+ + + ⋅ ⋅ ⋅

1

120

1

56

1

72

1
1

2

3

8

5 7 8

2 4
,

p z q= − +1

6
31

6
3z .

p z= − 1

6
3.

18 C H A P T E R  1

Newton’s series for sine and cosine (1669)

For good measure, Newton included the series for In 

the words of Derek Whiteside, “These series for the sine and cosine . . .
here appear for the first time in a European manuscript” [19].

cos
( )

( )!
z

k
z

k

k

k= −

=

∞

∑ 1

20
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To us, this development seems incredibly roundabout. We now regard
the sine series as a trivial consequence of Taylor’s formula and differential
calculus. It is so natural a procedure that we expect it was always so. But
Newton, as we have seen, approached this very differently. He applied
rules of integration, not of differentiation; he generated the sine series
from the (to our minds) incidental series for the arcsine; and he needed
his complicated inversion scheme to make it all work.

This episode reminds us that mathematics did not necessarily evolve
in the manner of today’s textbooks. Rather, it developed by fits and starts
and odd surprises. Actually that is half the fun, for history is most intrigu-
ing when it is at once significant, beautiful, and unexpected.

On the subject of the unexpected, we add a word about Whiteside’s
qualification in the passage above. It seems that Newton was not the first
to discover a series for the sine. In 1545, the Indian mathematician
Nilakantha (1445–1545) described this series and credited it to his even
more remote predecessor Madhava, who lived around 1400. An account
of these discoveries, and of the great Indian tradition in mathematics, can
be found in [20] and [21]. It is certain, however, that these results were
unknown in Europe when Newton was active.

We end with two observations. First, Newton’s De analysi is a true
classic of mathematics, belonging on the bookshelf of anyone interested in
how calculus came to be. It provides a glimpse of one of history’s most fer-
tile thinkers at an early stage of his intellectual development.

Second, as should be evident by now, a revolution had begun. The
young Newton, with a skill and insight beyond his years, had combined
infinite series and fluxional methods to push the frontiers of mathematics
in new directions. It was his contemporary, James Gregory (1638–1675),
who observed that the elementary methods of the past bore the same rela-
tionship to these new techniques “as dawn compares to the bright light of
noon” [22]. Gregory’s charming description was apt, as we see time and
again in the chapters to come. And first to travel down this exciting path
was Isaac Newton, truly “a man of extraordinary genius and proficiency.”
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