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Chapter One

Group Theory

It is not surprising, given the syntactical nature of arguments in logic and in
combinatorial group theory, that one of the earliest examples of a natural, widely
studied, mathematical problem to be shown algorithmically unsolvable lies
in group theory. Our unsolvability (and dichotomy) results in topology and
geometry will come about by encoding group theory into these subjects, which
will be done in chapter 2. The goal of this chapter is to provide the necessary
background in group theory.

This subject contains a number of deep theorems. Some of the highlights of
this part are:

• the unsolvability of the word problem by Novikov and Boone, and the
triviality problem by Adian and Rabin (section 1.2);

• Higman’s embedding theorem (section 1.2);
• the recent work of Sapir with Birget and Rips on Dehn functions (sec-

tion 1.3);
• the results of Borel-Wallach and of Clozel on the cohomology of arithmetic

groups (section 1.5);
• the theorems of Baumslag and Dyer with Heller and Miller on the group

homology of finitely presented groups (section 1.6).

1.1 PRESENTATIONS OF GROUPS

Let G be a group. G is said to be finitely generated if there are finitely many
elements g1, g2, . . . , gk such that every element of G is a product of these
elements (many times) and their inverses. All finitely generated groups are
countable, but the rational numbers give an example of a nonfinitely generated
countable group.

Note that saying that G is finitely generated is exactly the same thing as
saying that there is a surjection from a free group Fk → G for some k. We say
that a subgroup H of G is finitely normally generated if there is a finite set S
such that H is the smallest normal subgroup of G containing S. Alternatively,
the elements of H are products of things of the form gsg−1, where s is from S,
and g lies in G.
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The group G is finitely presented if there is a surjection Fk → G whose
kernel is finitely normally generated. A set R which normally generates the
kernel is called a set of relations for G. One uses the notation

G = 〈g1, g2, . . . , gk | r1, r2, . . . , rs〉,
where the r’s are a list of the elements of R. The r’s should be thought of
as being words in the g-letters. One can easily show that the kernel of one
surjection of a free group to G is finitely normally generated iff it is for any
other surjection. Using this, one can show, for instance, that the following
group is not finitely presented:

〈x, y | [x, xayx−a] where a = 0, 1, 2, 3, . . .〉 = Z � Z,

where [g, h] = ghg−1h−1 is the commutator of g and h, and � denotes the
wreath product (for those familiar with this concept; we will never have any
use for it).

One thinks of the finite presentation as giving the group defined by these
generators, subject to the given set of relations (like an axiomatic system). The
word problem asks one to give an algorithm for deciding whether a combination
of generators represents the trivial element of G; in other words, whether a
certain potential relation is a consequence of the relations that are already part
of the set R. (Again, this is a property of a group, not of the way the group is
presented.) We will discuss the word problem in the next section.

Remark. It is not at all easy to tell if two finite presentations define the same
group. The Tietze theorem asserts that two presentations define the same group
iff there is a sequence of elementary moves (and their inverses) that relate the
two presentations. The first move adds a new generator and a new relation that
defines the generator in terms of the old ones, for example,

〈x, y | 〉 = 〈x, y, z | z = xyx−215y12x〉.
(We use the convention that a relation of the form r = s is just a user friendly
way of writing rs−1.) The second move allows one to add a relation that is a
“consequence” (i.e., that lies in the normal closure) of the others. So

〈x, y | yx = xy〉 = 〈x, y | yx = xy, xyxy = yxyx〉.
These moves always increase the complexity of presentations, but that means
that their inverses can decrease complexity. We will see that relating two “sim-
ple presentations” by Tietze moves could involve going through very compli-
cated intermediate presentations. (We will never really need the Tietze theorem,
but it will sometimes be useful for illustration purposes.)

Besides their natural logical interest, finitely presented groups occur ex-
tremely naturally throughout mathematics. Probably the simplest, general
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sources of these are fundamental groups of compact manifolds and arithmetic
groups (or more general lattices in real Lie groups).

The reason that compact smooth manifolds have finitely presented funda-
mental groups is because they are all homeomorphic to finite polyhedra (=
finite simplicial complex) by a relatively difficult theorem of Cairns and White-
head (CW), or by Morse theory, which, at least, shows that they are homotopy
equivalent to finite CW complexes.

Given a finite CW complex or simplicial complex one can very simply write
down a presentation of the fundamental group. The 1-skeleton is always ho-
motopy equivalent to a wedge of circles; the 2-cells of the 2-skeleton then give
the relations. The proof of this description goes by way of van Kampen’s the-
orem, which describes the fundamental group of the union of two spaces that
intersect “nicely.” To describe the answer, we shall need the constructions of
“amalgamated free product” and “HNN extension.”

Definition. Let A, B, and C be groups, and let C be a subgroup of both A

and B. A ∗C B is the group defined to have the universal property that A and
B both map to A ∗C B, and if f : A → D and g : B → D are homomor-
phisms that agree on C, then there is a unique extension of f and g to a map
A ∗C B → D.

General nonsense implies that A ∗C B is unique (up to canonical isomor-
phism) if it exists. To construct it, we can give a formula. Suppose A =
〈a1, a2, . . . | r1, r2, . . .〉, B = 〈b1, b2, . . . | s1, s2, . . .〉, and C is generated by
c1, c2, . . . .As C is a subgroup of both A and B, we can write c1 = c1(a’s) and
c1 = c1(b’s), c2 = c2(a’s) and c2 = c2(b’s), etc. Now

A ∗C B = 〈a1, a2, . . . , b1, b2, . . . | r1, r2, . . . , s1, s2, . . . , c1(a’s)

= c1(b’s), c2(a’s) = c2(b’s), . . .〉.
(Note that actually one needs only a homomorphism from C into both A and B

for the definition and universal property to make sense. The universal property
is helpful for a conceptual understanding of why the amalgamated free product
is independent of all the choices involved.) With this preparation, we can state
van Kampen’s theorem.

Van Kampen’s theorem

If two spaces with fundamental groups A and B intersect along a connected
space with a fundamental group C, then their union has the fundamental group
A ∗C B.

The HNN extension is a natural analogue of the amalgamated free prod-
uct, and comes up in determining the fundamental group of a union when the
intersection is not connected.
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Definition. Let A be a group and Bj , j = 1, 2, isomorphic subgroups (let φ
be the isomorphism). Then the HNN extension A∗

B is defined by the universal
property that, if f : A → D is a homomorphism which restricts to conjugate
maps on the two copies of B, then it extends uniquely to A∗

B . In terms of
generators and relations, the formula is

A∗
B = 〈a1, a2, . . . , t | r1, r2, tb1t

−1 = φ(b1), tb2t
−1 = φ(b2) . . .〉

with the obvious notation.
If one glues a cylinder Y × I whose fundamental group is B along both of its

ends to a space with fundamental group A, then one gets into a situation where
the HNN extension is defined. Indeed, the fundamental group of this union is
the HNN extension.

Exercise

Show that van Kampen’s theorem together with the above addendum for cylin-
ders together suffice to deal with all unions of polyhedra along subpolyhedra.

It is worth noting that these constructions can behave quite oddly when the
“subgroups” are really groups with homomorphisms with nontrivial kernels.
For instance, if we consider Z2 and Z3 amalgamated “along” Z which maps
surjectively to both groups, one obtains the trivial group.

On the other hand, if all of the “inclusions” are really injections, then A

automatically injects into A ∗C B and into A∗
B . In fact, there is quite a natural

normal form for elements in the amalgamated free product and HNN extension,
given a choice of coset representatives for the subgroup. In the next section we
will make extensive use of these constructions, and, in particular, this injectivity
statement.

The proof of this and several of the other basic theorems of combinatorial
group theory can be written down in a completely opaque combinatorial fashion,
but are actually quite transparent from a geometric point of view.

Definition. Agraph of groups is a graph: such that each vertex v is associated
a group Gv and each edge is assigned Ge. For each of the two inclusions of
endpoints u, v in an edge e, there are given injections Ge → Gu and Ge → Gv .

Notice that an edge can have both endpoints being the same vertex, in which
case one has a group with two isomorphic subgroups. Thus, the data for an
edge are exactly the data necessary for defining amalgamated free products or
HNN extensions. For any connected graph, one can then inductively define,
using amalgamated free products or HNN extensions on individual vertices,
the fundamental group of the graph of groups. If all the vertex and edge groups
are trivial, this is just the fundamental group of the graph.
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One could define this notion in a less ad hoc way by an appropriate universal
property; we leave this for the reader. One can also see that it is the fundamental
group of a union of spaces, which overlap only in pairs, and that “fit together”
according to the pattern of the graph (vertices corresponding to spaces, and
edges to overlaps) and with the fundamental groups of every piece determined
by the labels on the graph.

The following proposition gives a connection between group actions on trees
and graphs of groups.

Proposition If a groupG acts simplicially on a tree T without inversions (i.e.,
invariant edges are fixed), then the quotient T/G is a graph of groups, with
fundamental groupG, wherewith each vertex or edge is associated its stabilizer.
Conversely, every graph of groups comes from an action of its fundamental
group.

The proof is little more than covering space theory. Note that, as a conse-
quence, A injects into A ∗C B, since the latter group acts on a tree, with A

and B as vertex groups and C as the edge group. Similarly, A injects into the
HNN extension A∗

B because the latter also acts on a tree with A as a stabilizer
subgroup for a vertex. Here are some other corollaries:

1. Subgroups of free groups are free. (Freeness is equivalent to having a free
action on a tree; free actions restricted to subgroups remain
free.)

2. Exercise: Show that any subgroup of finite index in a nonabelian free
group is a free group of higher rank. Show that the commutator subgroup
of a nonabelian free group is a free group of infinite rank. What are its
generators?

3. Generalized Kurosh subgroup theorem: Any subgroup of a graph of
groups is a graph of groups where the edge and vertex groups are sub-
groups of the original vertex and edge groups.

The usual Kurosh theorem corresponds to free products, that is, where edge
groups are trivial, so for the subgroup all edge groups are also trivial, so that
the fundamental group is a free product of subgroups of the free factors and
free groups.

Exercise

Supposing that G and H are nontrivial groups, not both Z2, show that G ∗ H

contains a free group of rank 2.
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1.2 PROBLEMS ABOUT GROUPS

Now let us return to the theory of group presentations. Recall that the word
problem for a finitely presented group is to determine when a word represents
the trivial element.

Example 1 Finite groups have a solvable word problem. (Use their multipli-
cation tables.)

So do finitely presented residually finite groups, that is, groupsGwith enough
homomorphisms to finite groups to catch any nontrivial element. (In other
words, each nontrivial element g of G is mapped nontrivially by some homo-
morphism of G into a finite group.) The proof of this goes as follows. Start
two machines going. The first lists elements of the normal closure of R sys-
tematically (i.e., going though the elements of G to get many conjugates of
the elements of R, and taking many products of these) and checks to see if
the given word occurs. If this happens, the machine yells “w is trivial.” The
second machine lists all homomorphisms from G into any finite group (why is
this algorithmic?) and then checks if the word is mapped trivially. If it is not,
this machine yells “w is nontrivial.” Clearly only one of these will happen, and
if G is residually finite, one of them will.

One could want to know a bound on how long it would take an algorithm to
determine if w is trivial. In general, it could be quite bad.

Another example is the free group, where the algorithm is quite simple; one
just looks for appearances of symbols like xx−1 within the word, and removes
these. When one is done, one has a reduced word, and every group element has
only one expression as a reduced word. This is an extremely fast algorithm. (It
is linear in the length of the word.) There is a large and rich class of groups with
a linear time solution to the word problem (subgroups of products of hyperbolic
groups in the sense of Gromov; see the references), but I do not know of many
general theorems for them.

Nowadays, there are even examples of finitely presented solvable groups
with unsolvable word problems! But this is running ahead in our story. The
wonderful theorem of Boone and (P. S.) Novikov is simply the following:

Theorem There are finitely presented groups with an unsolvable word
problem.

We will not even sketch the proof here. The overall idea is to encode a
Turing machine into a finite presentation (using a series of amalgamated free
products and HNN extensions) so “the normal form theorem” (for elements
of an amalgamated free product or HNN extension) implies that the only way
that a word will be trivialized is via the appropriate computation of the Turing
machine. That, the construction, and the proof that it works, will give you the
theorem. A number of refinements and extensions will be of importance to us
later. We will get to these.
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A rather different approach to these problems comes about via the following
landmark result:

Higman Embedding Theorem

A finitely generated group is a subgroup of a finitely presented group iff it has
a computably enumerable set of relations.

(For infinitely generated groups with a computable set of generators, the
same is correct.) The necessity of the computable enumerability of the relation
set is easy. The generators of the subgroup are some specific words, and all their
relations are specific relations that hold in the original group. We can always
enumrate the relations in a finitely presented group, by taking all products of
conjugates of the relators.

By now there are a number of different proofs of Higman’s theorem. We
will give some references below. The theorem is remarkable in that it relates
a basic group theoretic notion, embeddability in a finitely presented group, to
a computation theoretic one. Moreover, it very quickly gives rise to a proof
of the Novikov-Boone theorem, as follows. Let S be a c.e. set which is not
computable. Consider the finitely generated, computably presented group

G = 〈a, b, c, d | akba−k = ckdc−k for k ∈ S〉.
Note that G is a free product with amalgamation of two free groups 〈a, b〉 and
〈c, d〉. The relation akba−k = ckdc−k is true iff k is an element of S, by the
normal form theorem for amalgamated free products. Thus we cannot tell in G

whether a word represents the trivial element.
Embedding G into a finitely presented group gives a finitely presented group

with unsolvable word problem. By the way, Higman’s technique shows the
existence of a “universal” finitely presented group, which contains all others.
Later we will make use of such groups.

Now let us turn to the triviality problem, which was solved by Adian and
Rabin in much greater generality.

Definition. A Markov property of a group is a property such that (1) if G has
this property, so does any subgroup of G, and (2) there is some group H not
possessing this property.

Theorem (Adian and Rubin) There is no algorithm to decide if a finite
presentation has any particular Markov property.

So one cannot tell if a group is trivial, if it is finite, abelian, nilpotent, solv-
able, free,30 has a solvable word problem, is torsion-free, or contains infinitely
divisible elements.

30Exercise: Show that it is impossible to decide whether a group is freely generated by a specific
set of elements. Hint: Use HNN extensions.



October 5, 2004 14:40 weinberger Sheet number 56 Page number 44 black

44 CHAPTER 1

We shall give the proof of this, since it is quite simple, given what we know
about amalgamated free products and because the method is very important.

Proof. Given a finitely presented (f.p.) group G and an element w of G, we
shall construct a new f.p. groupGw such that (1) eitherw was the trivial element,
in which case Gw is the trivial group, or (2) w is nontrivial, in which case Gw

contains G as a proper subgroup.
Note that this immediately gives the impossibility of deciding triviality, since

an algorithm for this would give an algorithm for deciding whether w is trivial.
It also implies the theorem in general, by picking G to be a free product H ∗K ,
where K has an unsolvable word problem, and H does not have the given
Markov property. The group (H ∗ K)h has the Markov property iff h is the
trivial element, which cannot be discerned algorithmically.

Let G = 〈x1, x2, . . . , xk | R〉 and let w be an element of G. We form G∗F2,
where F2 is generated by t, s.

The normal form theorem for elements in a free product gives us a free group
of rank k+1 in this free product, and we will choose one generated by w[w, t],
and xα

a′ , where αa = sata . We use the standard notation that [ , ] denotes
the commutator and “exponentiation indicates conjugation” in groups. The
condition on the αa ensures that the words xα

a′ have little cancellation possible
among them, and therefore generate a free group. (This is a formal matter given
the normal form theorem for free products, and we leave an exact construction
as a worthwhile exercise for the reader.) One can add on conjugates of s and t

by complicated words and still have a free subgroup of G ∗ F2.
Let A be a group containing a free subgroup F on k + 3 generators, the first

one of which normally generates A. (Many of the fundamental groups of knot
complements in the 3-sphere have this property. The meridian31 of the knot is
always an element which normally generates the group; the fundamental group
of the Seifert surface is always a free group, and if we omit one of them, then
the remaining ones together with the meridian will also generate a free group;
within this free group one can increase the rank at will.) SetGw = (G∗F2)∗F A.

Clearly, if w is nontrivial, this free product is nontrivial. If w is trivial, then
A dies because w trivial kills w[w, t], which has been identified with a normal
generator of A. Once A dies, so do all the elements of F , but these each go to
conjugates of the remaining generators of G ∗ F2, and thus this whole group is
killed as well, completing the verification of the construction.

Finally, armed with this construction, one easily builds groups H ∗Gw which
have a given Markov property if and only if w �= e.

Appendix: Some Refinements and Extensions

The study of the algorithmic problems about groups did not end with the un-
solvability of the word problem; indeed, that was just a beginning.

31This is the small circle that bounds a tiny 2-disk which intersects the knot once.
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To understand the first extension, we need the notion of Turing reducibility.
Let S and T be sets of natural numbers. We will say that S ≤ T if one can
compute S from an oracle that decides membership in T .

Notice that, even if T is c.e., S need not be; for instance, the complement
of T is always computable from T . However, we shall restrict our attention to
c.e. sets. We shall say that S and T have the same (c.e.) degree32 if S ≤ T and
T ≤ S; in other words, if each can be computed in terms of the other. Note
that we shall identify c.e. sets with the Turing machines that define them (say,
as being the set of inputs on which the machine halts).

Now, the set of words representing the trivial element is a c.e. set, and there-
fore represents a c.e. degree. After learning that it is possible for this set to
be noncomputable, it becomes natural to ask whether there are any restric-
tions on the c.e. degrees. The following theorem completely answers this
question:

Theorem (Fridman, Clapham, and Boone) If D is a c.e. degree, then
there is a finitely presented group with degree exactly D. More precisely,
there is a uniform construction starting from a Turing machine T producing
a group G(T ), whose word problem is of the same degree as (the halting
set of) T .

One way to prove this is to give a precise version of Higman’s embedding
theorem which preserves the c.e. degree of the word problem. Then the con-
struction described above certainly would yield this theorem.

There are other natural problems about elements of a f.p. group that these
theorems imply are algorithmically undecidable, and of arbitrary degree, as one
varies the group.

Theorem There is no algorithm to decide, in general, whether a group ele-
ment

1. is of finite order,
2. is of the form [x, y],
3. lies in the center,
4. commutes with another given element, or
5. is conjugate to another given element.

The proof for (5) is obvious; conjugacy is a more general problem than
triviality. (3) and (4) can be proven simultaneously by considering a group
Z ∗ G, for G a group with an unsolvable word problem. The only element
that commutes with tg (t in Z, g nontrivial in G) is the identity, which is the
whole center, so the word problem for G reduces to either of these problems.
To prove (1) it would suffice to observe that one can produce groups as above
which are torsion-free, which is true. (They can be built up from the trivial

32These are sometimes referred to as Turing degrees, or as degrees of unsolvability.
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group by HNN extensions and amalgamated free products; as the reader can
check, this implies that the group is torsion free.33)

Another approach would be to produce a recursively presented group and
then Higman embed. So let

G = 〈a1, a2, . . . | af (k)

k 〉,

where the exponent f (k) is 0 if the kth Turing machine does not halt on input k
and is the number of steps that machine takes to halt, if it does. This G clearly
has unsolvable “torsionality,” and it can be embedded into a f.p. group.

Only (2) requires (as far as I can see) more trickery. Rather than prove
it, let me just point out that it is a close cousin to the word problem and the
conjugacy problem (5). If one considers a space with fundamental group G, the
word problem asks one to decide whether a curve bounds a disk; the conjugacy
problem asks whether a pair of curves bound an annulus. (2) asks whether a
curve is the boundary of a punctured torus, whereas (4) asks whether two curves
could be homotoped to lie on torus.

In this context it is worth observing that the question of whether a curve is
the boundary of some compact surface is solvable. This is the same as asking
whether it is a product of some number of elementary commutators, i.e., whether
the element is trivial in the abelianization of the group.

Remark. The conjugacy problem is clearly “harder” than the word problem.
In fact, Clapham showed that for an arbitrary pair of c.e. degrees D ≤ E, there
is a finitely presented group with word problem of degree D and conjugacy
problem of degree E.

While we have mentioned only briefly (in the Introduction) that there are
degrees besides computable and K , the degree of the halting problem, actually,
the structure of the set of degrees, is extremely rich and complicated. In par-
ticular, it is a dense partial ordering, and there are also many noncomparable
degrees, and so on.

We will close this section with the comment that for arithmetic groups, the
word problem and conjugacy problems are in fact solvable (although it would
be nice to get good bounds). However, the following generalized word problem
is not solvable:

Theorem (Mikhailova) There is no algorithm in F2 × F2 to decide whether
a given element lies in the group generated by a given finite set of elements.

Since F2×F2 is a subgroup of SLn(Z) for n > 3, we obtain the unsolvability
of the generalized word problem for these arithmetic groups.

33Notice that the groups produced by HNN and amalgamated free products starting from the
trivial group all have finite-dimensional Eilenberg-MacLane complexes, which gives a “geometric
proof” of the nonexistence of nontrivial torsion.
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The beautiful construction is irresistible. Let H be a two-generator group
with an unsolvable word problem. (Such exist; even without this fact, one
could modify the construction slightly, as the reader can readily see.) Write
H = 〈x, y | R〉. Now consider the subgroup S of F2 ×F2 generated by (x, x),
(y, y), and (1, r) for r in R. It is trivial to check that the pair (u, v) lies in S iff
u and v represent the same element of H .

1.3 DEHN FUNCTIONS

The Dehn function of a presentation of a group is a concrete measure of how
hard it is to solve the word problem. More precisely, we ask, for all words of
length≤ n that actually represent the trivial element, what is the largest number
of relations it is necessary to use (when a relation is used twice, it is counted
twice) in order to prove this.

This function does depend on the presentation. However, its order of growth
does not. More precisely, the Dehn functions of two different presentations
satisfy a relation of the sort

g(n/B)− Cn−D < f (n) < g(Bn)+ Cn+D (1)

for some constants B,C,D. (The linear term is there for fairly trivial reasons:
see example 1 below.)

The famous Gromov hyperbolic groups are those whose Dehn functions grow
linearly. Remarkably, if the Dehn function is subquadratic, it is automatically
linear. Thus, there is a nontrivial subject of the possible Dehn functions of
f.p. groups.

In this section, I would like to explain a little bit about their theory and
describe some remarkable work that gives an almost complete solution to the
problem of characterizing Dehn functions by M. Sapir with J. C. Birget and
E. Rips.

It is important to be clear that Dehn functions measure the difficulty of a
particular method of trying to solve the word problem; there could be other
solutions that are much more rapid. They are the analogues of the stopping
times of particular Turing machines defining a given c.e. set. However, unlike
the Turing machine situation, for a given group, the Dehn function has a much
stronger well-definedness property (1).

Although “eastern philosophy” as we introduced it in the Introduction is
phrased in terms of arbitrary algorithms, in chapters 3 and 4, we will give ver-
sions that can make use of Dehn functions, rather than arbitrary stopping times
for arbitrary solutions of the word problem. Let us compute some examples.

Example 1 The Dehn function of Z. Let Z = 〈x | 〉. Then the Dehn function
is trivial. However, for the presentation 〈x, y | y〉, the Dehn function is linear.
One removes all y’s one at a time, and the number of y’s present can be linear
in the word length.
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Exercise

Verify the linearity of the Dehn function for a free group.

Example 2 The Dehn function of Z2 is quadratic. Consider Z2 = 〈x, y | [x, y]〉.
Now, we know that in Z2 we have [xn, yn] = e. However the “proof” of this
is quite large: [xn, yn] ∼ [x, y]n2

(see figure 8, where “∼” means that on the
right-hand side we have a product of that number of conjugates of [x, y]). It is
not very hard to see, by hand, that there is no smaller product of (conjugates of)
relations that gives [xn, yn], so one has that D(4n) ≥ n2. It is also easy enough
to see that a quadratic number of uses of the relations suffices to “reduce” any
word to normal form.

yyyy

yyy

yy

y

x xx xxxe

yx=xy yxx

yxyyxxyxy

Figure 8. The Cayley graph of Z2. (Vertices are labeled by group elements; we have
labeled them using words that describe specific paths from e to the given
node.) Note that the “curve” bounded by a large square is the boundary of
quite a lot of small squares. The small unit squares represent the basic relator.

Note, by the way, that using the two homomorphisms Z2 → Z (killing
x and y, respectively), we can get a linear solution to the word problem for
Z2. I am not sure whether there are any reasonable results about the class of
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groups that have a linear time solution to their word problems. One can often
very substantially compress Dehn functions using “nonsyntactic” algorithms.
Before going further, it is worth pointing out a limit to this:

Theorem The Dehn function of a f.g. group is computable iff the word problem
is solvable.

If the Dehn function is computable, then one knows how many relators to
try to combine to trivialize a word; conversely, given a solution to the word
problem, one can then search out products of relations for all the words of
length n that are, in fact, trivial. When this has been accomplished, then look at
the length of the longest one you found. This is a computable upper bound for
the Dehn function. Then check all products with a smaller number of relations
to make sure you did not miss the shortest product realizing these words, to
actually compute the Dehn function.

Example 3 The Heisenberg group H of 3 × 3 upper diagonal unipotent
integer matrices has a presentation with two generators and two relations:

H = 〈x, y | [x, [x, y]], [y, [x, y]]〉,
and has a cubic Dehn function. We have [xn, [xn, yn]] = e in H , but it is a
product of a cubic number of relators.

The way to see this is to think somewhat geometrically about the meaning
of Dehn functions. Let Z be the universal cover of a space (say a manifold,
to be specific) with fundamental group π . Words that represent the trivial
element are essentially the same thing as closed nullhomotopic loops in the
base, and, by covering space theory, these lift to closed loops in Z. Since they
are nullhomotopic, these loops bound 2-disks. The Dehn function is equivalent
to seeking the smallest area disk in Z that can be found to bound an arbitrary
closed curve of length L.

In examples 1 and 2, we were discussing the Euclidean line and plane, re-
spectively, where the answers are linear and quadratic. (By the way, note that
as the dimension of the Euclidean space increases, the Dehn function remains
quadratic.) To do example 3, consider the map f : H(R) → R2 (of real 3× 3
unipotent upper diagonal matrices) to R2 (giving the entries immediately above
the diagonal) by killing the commutator. Observe that f ∗(dx ∧ dy) ≤ dA (the
area 2-form). Since dx ∧ dy is a closed 2-form, one can integrate it over any
disk bounding a given closed curve, like the one represented by [xn, [xn, yn]],
and (1) the integral is independent of the bounding disk (even surface) and (2)
by the area inequality, it gives a lower bound on the area of such a bounding
disk. Playing with these gives the cubic nature of the Heisenberg group.

Remark. This cubic nature is due to the identity [xn, yn] = [x, y]n2
, so we

have n2 commutators to commute with xn. This identity asserts that the copy of
the integers generated by [x, y] in H is quadratically distorted. Using this fact,



October 5, 2004 14:40 weinberger Sheet number 62 Page number 50 black

50 CHAPTER 1

one can also see that the number of distinct elements of the group represented
by words of length n (the volume growth of the group) is quartic.

Remark. A finitely generated subgroup of F2×F2 has nonrecursive distortion
exactly when the generalized word problem associated with that subgroup is
unsolvable.

Example 4 Let us now give some exponential and superexponential exam-
ples; with a bit of trickery, one can promote these higher up the Ackermann
hierarchy.34

The solvable Baumslag-Solitar group G = 〈x, y | xyx−1 = y2〉 is actually
a linear group. Then [y, xnyx−n] is a linear length word that requires an
exponential number of relations to kill. Note that xnyx−n = y2n

. Now, let us
add a new generator as follows:

〈x, y, t | xyx−1 = y2, tyt−1 = y, txt−1 = x2〉.
Then [y, [tnxt−ny, t−nx−1tn]] is a linear length word that now needs 22n

rela-
tions to kill, and so on.

We leave the verification to the reader. A useful method for doing these types
of calculations is to try to consider “van Kampen diagrams,” which are directed
planar graphs, where every edge is labeled by a generator of the group, and
every face is labeled by a relator of the group. A word w is trivial iff there is
a van Kampen diagram over the given presentation, whose boundary is that
word.

In all of our examples, the relations are designed for easy examination of
possible van Kampen diagrams. We shall not pursue this direction any further,35

but now move on to some very general theorems.

Theorem (Birget-Sapir) If D(n) is the Dehn function of a finitely presented
group π , then it is the stopping time of some nondeterministic Turing machine
that solves the word problem for π .

Here is the idea of this restriction. Suppose we knew that (a function equiv-
alent to) nα were a bound on the Dehn function of G. Then I would check 2nα

products of relations to see which words were trivialized, and this would give
me D(n) exactly. Thus, if the Dehn function were actually (up to equivalence)
of the form nβ , we would be able to compute β quite quickly. It turns out that,
when you unravel this, it implies that the first k digits of β can be computed in

34The Ackerman hierarchy measures how much induction is used in the definition of a function.
nm is adding m to itself n times; iterating that, we have mn, which is multiplying m by itself n

times; then one can consider m[n], which would exponentiate itself n times. After that, it becomes
more awkward: m[[n]] would be doing m[m] to itself n times, and so on. The Ackermann function
is the diagonalization of this A(2) = 22, A(3) = 3[3],….

35It seems quite possible that the extension of some of our geometric results to dimension four
will depend precisely on the continuation of these explicit methods.
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time 222k

. In other words, if the Dehn function grows quite slowly, it cannot take
too long to compute it. The best result known currently is almost the converse
of this observation.

Theorem If T 4(n) is superadditive (T 4(m+ n) ≥ T 4(m)+ T 4(n)), and T is
the stopping function for a (perhaps nondeterministic36) Turing machine, then
T 4(n) is equivalent to the Dehn function of a finitely presented group π .

The group is built out of the machine whose stopping time is T . More
precisely, if M is this machine, there is an injective map from the input words
of M to the words of p such that word size does not get distorted under this
map, and the word is accepted by M iff its image is trivial in π .

The moral is that, besides the extra fourth power and the assumed superad-
ditivity, which seem like technical conditions, one gets a remarkably close
connection between stopping times of general Turing machines and Dehn
functions.

1.4 GROUP HOMOLOGY

Group homology and cohomology is a very basic tool that developed simultane-
ously with homological algebra. My impression is that early researchers were
very highly motivated by Hopf’s result that the cokernel of the two-dimensional
Hurewicz homomorphism depends only on the fundamental group of the space.
Nowadays, we write this as the Hopf exact sequence

π2(X)→ H2(X)→ H2(π1(X))→ 0.

(Of course the first homology of a space depends only on its fundamental group;
it is the abelianization.)

We shall avoid any discussion of homological algebra and work purely topo-
logically. Obstruction theory very quickly leads to the following fact:

Theorem For any countable groupπ , there is a spaceBπ whose fundamental
group is p and whose universal cover is contractible. This space is unique
up to pointed homotopy type. Moreover, for any homomorphism π → π ′
between groups, there is a unique pointed homotopy class of maps between
spaces Bπ → Bπ ′ whose induced map on fundamental groups is the given
homomorphism.

This theorem embeds group theory within homotopy theory. As a result, any
homotopy functor gives a functor on groups: so we can have homology and

36Essentially, the difference between a deterministic and nondeterministic Turing machine is not
one of calculability, but one of speed; it measures the difference between discovering and verifying
membership. Note that, in a group with an unsolvable word problem, not only is it hard to discover
that a word is trivial, but it is also hard to verify that it is—the “certificate of triviality,” for example,
the product of relations one must use, can be noncomputably long.
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cohomology, and more exotic things likeK-theory and stable homotopy theory,
whatever is useful.

Thus, we will write Hi(π) for Hi(Bπ) (and similarly for cohomology and
coefficients, etc.). Some of the low groups have special interpretations.

Proposition If A is abelian, then H 1(π,A) = Hom(π,A). Also H 2(π,A)

is in a 1 : 1 correspondence with central extensions of π by A, i.e., exact
sequences

0 → A→ E → π → e.

(We denote the trivial group by e and the trivial abelian group by 0.)

The condition that the extension be central means that A lies in the center
of E. Thus, for instance, Z2 has two central extensions by Z: Z × Z2 and Z

(mapping onto Z2); the infinite dihedral group Z2 ∗ Z2 mapping onto Z2 is a
noncentral extension by Z.

If π is perfect, that is, H1(π) = 0, meaning that π is its own commutator
subgroup, then π has a universal central extension, that is, one that all others
map through. For this extension, the center is H2(π), and it corresponds to the
tautologous element of H 2(π;H2(π)) that defines the Kronecker pairing from
cohomology to the dual of homology.

Unraveling this a bit, under the assumption of perfection, we note that the uni-
versal coefficient theorem identifies H 2(π;H2(π)) = Hom(H2(π);H2(π));
our element is the one that corresponds to the identity. Let us give a few simple
examples of group homology.

Example 1 The trivial group. Here Bπ is a point, and homology vanishes
above dimension zero.

Example 2 Free groups. If π is Fk , then Bπ is a wedge of k circles, with
Hi = 0 for i > 1, H0 = Z, and H1 = Zk . It is worth mentioning in this
example that when Bπ is a finite complex, it makes sense to discuss its Euler
characteristic, which is a well-defined integer (as the Euler characteristic is a
homotopy invariant of finite complexes), and computable from the homology
with coefficients in any field.

Example 3 Free abelian groups. If π = Zk , then Bπ is T k , the k-torus.
Now, the Künneth formula can be applied to show that the homology of Bπ is
torsion-free of rank the binomial coefficient k!/a!(k − a)!.

Example 4 Cyclic groups. For π = Zk , it is a little harder to see what Bπ

looks like. One approach is to consider S2n−1 as the unit sphere of Cn on which
Zk acts freely, just by multiplying each coordinate by a primitive root of unity.
As n gets large these quotient spaces resemble Bπ more and more closely, and
we can use their (co)homology to compute the group (co)homology.
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In this case, it is not hard to find a cell complex for the quotients S2n−1/Zk

by induction on n. For n = 1, the quotient is a circle. For larger n, one gets
a cell decomposition with one cell in every dimension until 2n − 1. Explicit
calculation then leads to

Ha(Zk) = Zk Ha(Zk) = 0 with a odd,
Ha(Zk) = 0 Ha(Zk) = Zk with a even > 0.

The Künneth formula can then be applied to give the calculation for abelian
groups.

Remark. In general, one can build a Bπ using a construction of Milnor. Con-
sider the infinite join π ∗ π ∗ · · · . It is contractible and has a free π action.
The quotient is our desired space. (Recall that X ∗ Y is the space made up of
lines connecting a point of X to a point of Y . The join of k discrete spaces is a
wedge of 2k+1 spheres, up to homotopy type.) The chain complex obtained in
this way for the computation of group homology is called the “bar resolution.”
(The n-chains are the free abelian group of n-tuples of group elements whose
product is the identity.)

Before proceeding to methods of calculation, it seems worth mentioning a
couple of applications. Throughout the rest of the book we will be giving many
more geometric, but more involved, examples.

The first is to groups that act freely and properly discontinuously on Euclidean
space. If π is such a group, then so is any subgroup. Note that if π so acts, it has
a Bπ which is finite dimensional, so its homology vanishes in all sufficiently
large dimensions. In particular, by example 4, π cannot have any nontrivial
finite cyclic subgroups, that is, π is torsion-free.

In fact, similar reasoning shows that if π acts freely on Rn or even a con-
tractible manifold, the cohomology with arbitrary coefficients vanishes in di-
mension greater than n. If the quotient is noncompact, then even in dimension n

one would get vanishing. If the quotient were compact, then the integral coho-
mology would be Z in dimension n; in fact, one could see that Hn(π;Zπ) = Z

and vanishes otherwise. This last condition turns out to imply that Bπ (if a
finite complex) satisfies Poincaré duality.

It is an important conjecture that the converse might hold, namely, that given
such a π there exists (a unique) free cocompact action on some contractible X

iff Hn(π;Zπ) = Z and vanishes otherwise. (In the appendix to section 2.3,
we will see, following M. Davis, that X cannot always be taken to be Euclidean
space.)

Here is another rather different application. Suppose we are interested in the
existence of short exact sequences of the form

1 → Fk → E → Zr → 0,

where E is torsion-free. Note that the kernel of the composite surjection Fs →
Z → Zr is isomorphic to Fr(s−1)+1. So a sufficient condition is that r | (k− 1).
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Using homological ideas, one can show that the converse holds. The idea
is that if E existed, we could consider BE. Let us suppose first that this
is a finite complex. Then by covering space theory its r-fold cover would
be homotopy equivalent to BFk , a wedge of k circles. Since, by definition,
the Euler characteristic is multiplicative in coverings, one would obtain that
1 − k = χ(BFk) = rχ(BE), giving necessity. An actual proof goes like
this. One shows that under these conditions, the chain complex of BE is
still (chain equivalent to) a finite projective (over ZE) chain complex. This
allows one to use the Lefschetz fixed-point theorem for the Zr action on BF .
Then examination of the possible rational representations onH1 forces the latter
module to be a sum of one trivial summand and a number of copies of Q[e2πi/r ].
This implies that k ≡ 1 mod r .

For our purposes, probably the most important calculational tool is the Mayer-
Vietoris sequence of the amalgamated free product and HNN extension.

Theorem If B is a subgroup of A and C (i.e., we are in the injective cases of
the amalgamated free product and HNN extension) then

B(A∗
BC) = BA ∪BB BC,

B(A∗
B) = BA ∪BB×{0,1} BB × [0, 1].

Consequently, one obtains exact sequences

· · · → Hk(B)→ Hk(A)×Hk(C)→ Hk(A ∗B C)→ Hk−1(B)→ · · · ,

· · ·Hk(B)→ Hk(A)→ Hk(A
∗
B)→ Hk−1(B)→ · · · ,

where the map Hk(B)→ Hk(A) in the second exact sequence is the difference
of the two inclusions.

The proof of the theorem goes as follows. First, the right-hand sides have the
right fundamental groups by van Kampen’s theorem. One just wants to analyze
the universal covers and see that they are contractible. This follows from the
tree picture. The universal covers are made of copies of the universal covers of
the BA’s and BC’s (which are themselves contractible) glued along universal
covers of the BB’s which are contractible. This guarantees the contractibility
of the universal covers of BA ∪BB BC and of BA ∪BB×[0,1] BB × [0, 1].
Example 5 Consider the groupG = 〈a, b, c, d | [a, b] = [c, d] 〉. It is clearly
of the form F2 ∗Z F2 where the free groups are generated by 〈a, b〉 and 〈c, d〉.
The relation is the amalgamation of a Z which is generated by the commutators.
In this case the maps from the subgroup into the groups are trivial, so one gets
the calculation that

H1(G) = Z4 and H2(G) = Z.

The perspicacious reader probably noticed that this group is just the fun-
damental group of a surface of genus two, and we have computed the group
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homology just by noticing that the surface is aBG! Therefore, it is worth noting
that we would get the exact same calculation for group homology if we used
[a, b]2 = [c2, d3]. Indeed, for any words u, v in the commutator subgroups of
〈a, b〉 and 〈c, d〉, respectively, one would obtain for 〈a, b, c, d | u = v〉 the same
homology. (However, these groups are not Poincaré duality groups, because
they do not satisfy duality with respect to arbitrary coefficient modules.)

A straightforward argument shows the following, which opens the way to
applying spectral sequence techniques:

Proposition If one has a short exact sequence of groups 1 → K → E →
L→ 1, then there is a fibration BK → BE → BL.

As a special case (where the fibration is a circle bundle, and the spectral
sequence becomes the Gysin sequence), one has for a central Z-extension 1 →
Z → E → L→ 1 the sequence

· · · → Hk−2(L)→ Hk(L)→ Hk(E)→ Hk−1(L)→ · · · .
We have chosen to write this sequence in cohomology because there one can
interpret the map Hk−2(L)→ Hk(L) concretely as cup product with the Euler
class of the circle bundle.

Example 6 Let us compute the homology of the Heisenberg group H of 3×3
upper triangular unipotent matrices. We have an exact sequence extension
1 → Z → H → Z2 → 1. The Euler class is the generator of H 2(Z2). One
thus obtains (via the Gysin sequence) that

H1(H) = Z2, H2(H) = Z2, and H3(H) = Z.

Exercise

Write H as an HNN extension with A = B = Z2 and use a Mayer-Vietoris
sequence to do the same calculation.

1.5 ARITHMETIC GROUPS

Arithmetic groups are groups that are defined similarly to SLn(Z), the group of
invertible matrices with determinant one. They arise naturally all over mathe-
matics, and they have been studied from many points of view.

In this section, we will review a few special theorems regarding the homology
of arithmetic groups that we will need in chapter 4.

Consider a subgroup G of GLn defined by polynomial relations with coeffi-
cients in the rational numbers Q. In other words, we shall assume that there is a
set of polynomials in the entries of the matrices and det−1 that define the group
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G. It makes sense to discuss the F points of G, denoted G(F), for any field F

of characteristic 0. By GZ, we mean G(Q) ∩ GLn(Z). A discrete subgroup :

of G(Q) is called arithmetic if it is commensurable with GZ. Such subgroups
are often lattices, that is, the natural metric on G/: has finite volume (see the
theorem of Borel and Harish-Chandra below). For various reasons, it usually
makes more sense to look at K\G/:; for instance, it is an Eilenberg-MacLane
space when : is torsion-free.

Note that given the real Lie group G(R), there are many “Q-forms,” and
these will give rise to different commensurability classes of arithmetic groups.
For instance, we can define O(n, 1) using any quadratic form over the rationals
that has signature (n, 1), and they will all give rise to arithmetic groups, but,
unless these quadratic forms are homothetic over Q, it is quite unlikely that
these lattices will be commensurable. (A little below we will give a somewhat
more general way of generating arithmetic lattices.)

We have already met a number of arithmetic groups: all finite groups, finitely
generated abelian groups, finitely generated torsion free nilpotent groups (the-
orem of Malcev) such as the Heisenberg group, free groups (lie in SL2(Z)),
surface groups. Given a quadratic form f in n variables over the rationals, then
SO(n, f ) defines a most interesting arithmetic group.

Remark. There is nothing sacred about Q in these definitions; using E, a finite
extension of Q, in its stead can be useful in defining more examples; in theory,
this does not change the class of arithmetic groups, because if E is degree d

over Q, one can view GLn(E) as a subgroup of GLnd(Q). However, it is quite
a bit simpler (and provides more insight) to write formulas using the general E
rather than forcing them to be subgroups of GLnd(Q).

Here is an important example that, among other things, shows the need for a
slight modification of the definition of arithmetic. Let us consider an orthogonal
group of the quadratic form

x2
1 + x2

2 + · · · + x2
n −

√
2x2

n+1

for Q[√2]. There are two embeddings of Q[√2] in R. Thus O(x2
1 +x2

2 +· · ·+
x2
n −

√
2x2

n+1,Z[√2]) is a lattice in O(n, 1)×O(n+ 1)(in the usual positive
embedding, where

√
2 is positive, this quadratic form is of type (n, 1); in the

embedding where
√

2 is negative, the form is positive definite).
The image of this lattice in O(n, 1) is a lattice there as well, because all that

we are doing is projectingO(n, 1)×O(n+1)→ O(n, 1), which has a compact
kernel. (The discreteness of the lattice means that we kill at most a finite normal
subgroup of it when projecting.) The theorems we will explain presently show
that the lattices just described are cocompact hyperbolic lattices. Torsion-free
subgroups of finite index provide compact hyperbolic manifolds.

It is not at all obvious, but it is true, that arithmetic groups are finitely pre-
sented; they have a solvable word problem, are virtually torsion-free, and resid-
ually finite (this is a general fact about linear groups called Selberg’s lemma).
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Even the conjugacy problem is solvable in these groups (although not in all
residually finite groups). However, as we saw above, the generalized word
problem is usually not solvable in these groups.

Another remarkable property of these groups is that they are (Bieri-Eckmann)
duality groups. This means that Hk(:;Z:) is nonzero for only one value of k.
(This then implies a twisted Poincaré duality for :, where the twist is by that
module.) This follows from the theory of Borel and Serre, which shows that
the open manifold K\G/: can be compactified to a manifold with boundary,
and their analysis of what the universal cover of its boundary looks like.

Recall that the radical of an algebraic group is its maximal connected alge-
braic solvable normal subgroup. The (E-)rank of G(E) is the dimension of the
maximal split torus (i.e., products of GL1) defined over E that can be embedded
in G(E). G is semisimple if its radical is trivial.

Theorem (Borel and Harish-Chandra) Let : be an arithmetic subgroup
of G.

1. G(R)/: has finiteG-invariant volume iff there are no Q-homomorphisms
from the identity component of G to GL1.

2. G(R)/: is compact iff G has no subgroup isomorphic to GL1 which is iff
it has finite volume and every unipotent element of G(Q) lies in its radical.

For example, GLm(Z) is not a lattice in GLn(R) because of the homomor-
phism to R∗ (= GL1) given by the determinant. Recall that unipotents are
elements differing from the identity by a nilpotent. Condition 2 is equivalent
to saying that the Q-rank of G is 0.

We can use this theorem to check that the hyperbolic lattices produced above
are actually cocompact. Since we are using embeddings of Q[√2] in R, an
element of the lattice is unipotent iff it is under either embedding. However,
the embedding where

√
2 is negative gave rise to the orthogonal group, which

has no nontrivial unipotents; a fortiori, neither does the lattice.

Example For quadratic forms, (1) holds unless n = 2 and f represents 0
(i.e., there are nontrivial nullvectors in E), and (2) holds whenever the form is
anisotropic (i.e., has no nullvectors).

We shall confine the rest of our discussion to the semisimple case, and, as
indicated above, we shall extend the definition of an arithmetic subgroup of a
real Lie group H to be the image of an arithmetic group in a group G defined
over Q under a Lie homomorphism from G onto an open subgroup of H which
has a compact kernel.

Every semisimple group has a Q-form that gives it arithmetic lattices. In
fact, G contains both uniform (= cocompact) and nonuniform lattices.

Theorem (Margulis’s arithmeticity.) If R-rank(H) > 1, then all irreducible
lattices in H are arithmetic.



October 5, 2004 14:40 weinberger Sheet number 70 Page number 58 black

58 CHAPTER 1

In rank one, the existence of nonarithmetic lattices depends strongly on the
Lie group and has been the object of intensive study. For instance, all the
SO(n, 1)’s have nonarithmetic lattices, but Sp(n, 1) does not. It is unknown
whether U(n, 1) has such lattices when n is large.

Later, I will be interested in the cohomology of certain arithmetic lattices.
While I cannot go into the details here, it seems worth just mentioning some
of the ideas that have been brought to bear on this problem. Everything is a
lot simpler in the uniform (i.e., cocompact) case, although, with more work,
similar results can often be obtained for the nonuniform case.

The first key point is that for any semisimple group the coset space K\G
with its right invariant metric has nonpositive curvature.37 Consequently, it is a
Euclidean space, and the manifold38 K\G/: is a B:. Thus, the group homol-
ogy is the study of the homology of this manifold. The following discussion
is more straightforward if we assume that : is a uniform lattice, that is, that
K\G/: is compact.

For convenience, we switch to cohomology and make use of an essentially
tautological isomorphism:

H ∗(:;C) = H ∗(K\G/:;C) = H ∗(g, k ;C∞(G/:))

where the last term is Lie algebra cohomology; the isomorphism is a con-
sequence of a cochain complex isomorphism between the deRham model of
the cohomology of K\G/: and the defining complex of relative Lie algebra
cohomology with coefficients.

Now, one can show that the decomposition of L2(G/:) as a sum of irre-
ducible representations,

L2(G/:) ≈
⊕

m(π, :)Hπ

(where the m’s are multiplicities and the Hπ are the irreducible Hilbert space
representations of G that are summands of the regular representation of G),
gives one of H ∗(g, k ;C∞(G/:)) as well. That is,

H ∗(:;C) ≈
⊕

m(π, :)H ∗(g, k;Hπ). (2)

(This is essentially some kind of smoothing theorem, analogous to the fact that
smooth singular homology and the continuous version are isomorphic.)

This result is the Matsushima formula. It gives a lot of useful information,
including useful vanishing and nonvanishing theorems. A very useful result is
that for lattices in semisimple groups, through some range linear in the R-rank,
the terms not coming from the trivial representation give vanishing contribu-
tions. This means that the cohomology (in some range) is independent of the
lattice! (The cohomology associated with the trivial representation is isomor-
phic to that of the compact dual of K\G.)

37We will discuss the elementary geometry necessary to follow this discussion in chapter 3. In
any case, the trusting reader can just skip a sentence or so.

38Orbifold, if : has torsion.
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I should emphasize that this is true only for coefficients with characteristic 0.
For finite coefficients, one can see that the opposite is almost always true. (Hint:
Think about lattices corresponding top-Sylow subgroups of finite quotients of a
given lattice.) It also fails strongly around the rank, as one can see for surfaces.

Remarks

Although our discussion assumed cocompactness, there are versions of the Mat-
sushima formula and the vanishing theorems that are true for general lattices.
Moreover, one can also generalize a great deal of the theory of arithmetic groups
(including hard things like arithmeticity and cohomology calculations, although
not the soft parts like finite generation!) to “S-arithmetic groups.” These are
lattices in products of real and p-adic fields, that is, groups like SLn(Z[1/k])
for an integer k.

One of the most striking results of this development is that for any number
field E (finite extension of Q)

H ∗(G(E)) = H ∗
cont(G∞) (3)

where the subscript “cont” means continuous cohomology and G∞ refers to
the copies of G at the infinite places. In other words, it looks as if equation (2)
holds, but with no contributions of any of the other representations besides the
trivial one!

The formula (3) is based on the fact that, by considering all of the E-points,
one has essentially arranged for the rank of the “lattice” to be infinite.

A second useful method is L2-cohomology. (The applications of this consid-
erably transcend the study of lattices.) While the results are not quite precise,
they give conclusions such as that, if K\G is odd dimensional, the Betti num-
bers of regular covers of a given lattice grow as o(volume) (i.e., sublinearly in
the index of the cover), and in even dimensions, all but the middle cohomology
groups do the same. On the other hand, the middle-dimensional groups do
have ranks that are asymptotic to a multiple of the volume. (Some people even
believe that this behavior is typical of residually finite groups that are funda-
mental groups of aspherical manifolds.) The drawback of this method is that it
is hard to go from an L2 calculation back to an ordinary calculation.

Later on, we will need sharp information about vanishing and nonvanishing
of cohomology for negatively curved manifolds. This necessitates a look at
lattices of R-rank one. Avery deep theorem of Clozel that gives sharp vanishing
and nonvanishing results for a class of arithmetic lattices in U(n, 1).

Theorem For every n, there are complex hyperbolic n-manifolds39 whose
cohomology is nonzero in exactly the following dimensions:

1. there is a rank-one piece in every even dimension 0 ≤ d ≤ 2n;

39These are of complex dimension n, and thus of real dimension 2n.
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2. for any divisor a of n + 1 (less than n + 1) there are elements in every
second dimension between n− a + 1 and n+ a − 1.

It is worth making a couple of comments about this theorem. First, the
relative Lie algebra cohomology is nonzero in the vanishing range here; the
theorem is an arithmetic phenomenon, and, indeed, it is known that it fails for
other lattices in U(n, 1). (Of course, what is happening is that the multiplicities
occurring in the Matsushima formula are zero.)

Second, there are a large number of contributions to the proof of this theorem
coming from deep number theory, à la Langlands’ program. While I cannot say
anything that really elucidates what is going on, I should probably mention that
the “baby example” of these ideas is Deligne’s proof of the Weil conjectures.
These conjectures give an arithmetic method for computing the cohomology of
smooth projective varieties. According to this work, the number of points on
the variety over the various finite fields contains exactly the same information
as the rational cohomology. The cohomology of CPn “corresponds” to the
number of points in Pn(Fq) being 1+ q + q2 + · · · + qn.

In fact, CPn is the compact dual of complex hyperbolic n-space, U(n +
1, 1)/U(n)×U(1). The classes accounted for in (1) are the classes coming from
the trivial representation in the Matsushima formula, that is, the classes from
the compact dual. Geometrically, the dual homology classes can be thought of
as intersections of the complex hyperbolic manifold, of a smooth projective va-
riety, with linear subspaces of CPn. The other classes are harder to account for,
although their general placement symmetrically around the middle is Poincaré
duality, their upward growth toward the middle is the Lefschetz theorem, and
the nonvanishing in the middle can be seen, in even complex dimension, using
the Hirzebruch signature theorem, and by the L2-method.

1.6 REALIZATION OF SEQUENCES OF GROUPS
AS GROUP HOMOLOGY

While we will not need the full depths of the following theorems, they are very
interesting, and the special cases that we will need are not substantively simpler
than the general case.

The basic issue we are interested in is the appearance of the sequence of
homology groups of a finitely presented group. Given the Higman embedding
theorem, it is perhaps not surprising that there is a strong logical component to
this problem. On the other hand, the reader might be surprised to find that, for
instance, there is a group G such that

1. for each a, Ha(G) = 0 or Z, and
2. { a | Ha(G) = 0} is neither c.e. nor the complement of a c.e. set.
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We will also see that there is a finitely presented group G such that Ha(G) =
Za or Ha(G) is a sum of copies of Z, where the number of copies is the ath
digit of π + e2.

In fact, there is an almost complete solution to this problem, but as of yet
there does not seem to be one to the natural question of what cohomology
algebra structures can exist. One has to be careful about the exact formulation
of this question, because it is not yet known even for spaces. In fact, the
question should be formulated in a way that explicitly compares what happens
for groups to what happens for spaces.

There is a sense in which groups are no more special than general spaces:

Theorem For any connected simplicial complex X, there is a group π and
a map f : Bπ → X, which is an isomorphism on homology. In fact, for
any covering space of X, the map from the induced cover of Bπ is also an
isomorphism on homology.40 Moreover, if X is a finite complex, Bπ can also
be taken to be a finite complex. If X is a countable complex, π can be taken
countable. Moreover, if X is a c.e. space, then π is a c.e. group.

We will return to the precise meaning of the c.e. group and c.e. space. Let
us concentrate on the proof of the other parts of the theorem.

The construction of Bπ → X has two steps. The first is the construction of
“n-simplices of groups.” The second is merely the assembly of these according
to the same data that one uses to assemble standard simplices to construct X.

To begin, one needs a nontrivial acyclic group A (that is, a group whose
reduced homology vanishes in all dimensions). One can do so using an injection
F4 → F2 that looks like the projection on homology, and then producing an
amalgamated free product F2 ∗F4 F2, where the two injections of F4 → F2 are
such maps, just arranged to be projections to different factors.

Using A, we can easily build a 1-simplex of acyclic groups, using A for each
of the two vertices andA×A for the group associated with the 1-simplex. (Note
that here we map the group associated with a vertex into the group associated
with an edge, the opposite of what we did with the graph of a group.) Using
amalgamated free products and HNN extensions, one can assemble these groups
to build a π , such that Bπ → G for any connected graph G, and by the Mayer-
Vietoris exact sequences in section 1.4, this map is an isomorphism in homology
(and, by the exact same argument, the same holds for covers). This construction
proves the theorem for graphs.

Now, to do two-dimensional complexes, one needs to construct a 2-simplex.
That is, we need an acyclic group B that contains the result of applying the
construction to a circle, thought of as a triangle, that is, as the boundary of a
2-simplex (and similarly in higher dimensions.)

40This notion can be most succinctly described in terms of the “plus construction,” which will
be explained in chapter 2.
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We shall not give a construction of these simplices (all such contructions that
I know about are somwhat tricky), and shall instead, rely on the paper [BDH]
mentioned in the notes section. In any case, I hope the idea is clear.

Now, let us move on to the notions of a c.e. group and c.e. space. A c.e. group
is a group with generators x1, x2, x3, . . . and a set of relations that is a c.e. set.
In other words, there is a Turing machine that constructs the relations. Note that
it is entirely equivalent to ask that the set of relations that hold be c.e. or to give
a c.e. generating set for these relations. To define the notion of a c.e. space,
we will think of the vertices as being the integers (or a finite set of them).
We can think of the simplices as being (n + 1)tuples of vertices, which can
be encoded by natural numbers. So a simplicial complex is just some set of
tuples of natural numbers (with the additional property of being closed under
inclusion). We shall suppose that our complexes are effectively connected.

Note that the homology groups of a c.e. space are actually c.e. abelian groups.
(Hint: First check that a c.e. abelian group, up to computable isomorphism, is
equivalent to a c.e. sequence of finitely presented abelian groups with (c.e.)
homomorphisms from one group to the next.)

We leave it to the reader to check that the above constructions produce
c.e. groups from c.e. spaces.

The space Bπ for π finitely presented (or even c.e.) groups is actually a
c.e. simplicial complex, as one can see by going carefully through the Milnor
construction. This suggests the following:

Conjecture For X an effective simplicial complex, whose 2-skeleton is finite
(up to homotopy), there is a finitely presented π , and a map Bπ → X, which
is an isomorphism on homology.

This would lead to a characterization of the sequences of groups that can be
the homology groups of a finitely presented group. They would be the c.e. se-
quences of c.e. abelian groups whose first two groups are finitely generated.
The following theorem implies something that is quite close.

Theorem If X is any c.e. simplicial complex, then there is a finitely presented
π , and a map f : Bπ → D2X to the second suspension of X, which is an
isomorphism on homology.

First we find a c.e. group π that resembles X. Then we can embed π in
a universal acyclic group U ,41 and form π ′ = U ∗π U , which resembles the
suspension of X. This is now a finitely generated c.e. group, which we will
denote π ′. π ′ also embeds in U . U ∗π ′ U resembles the second suspension,
and is also finitely presented, proving the theorem.

Corollary For n > 3, for any c.e. abelian group A, there is a f.p. group π

such that Ha(π) = A for a = n, and is 0 otherwise.

41Recall that a universal group is a finitely presented group that contains all others. Baumslag,
Dyer, and Miller constructed acyclic universal groups.
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Proof. A is a limit of a c.e. sequence of finitely presented abelian groups. Thus,
one can form the c.e. sequence of Moore spaces and maps to produce a c.e. space
M(A, n− 2). Setting X = the limit of these spaces and applying the theorem
gives the result.

Remark. To put some more flesh onto the above proof, we should make a few
simple remarks. Recall that a Moore space of type (A, k) is a simply connected
space all of whose homology groups vanish except for Hk , and Hk = A.
They exist for k > 1, and are unique up to homotopy equivalence. For any
homomorphism between A and B, there is a map from M(A, k) → M(B, k)

inducing this homomorphism. (The homotopy class of maps is not unique,
however.)

Note also that one can interpolate between two triangulations of a polyhedron
P by a triangulation of P × [0, 1]. Arbitrary homotopy classes can also be
realized by simplicial maps, which allows one to build a c.e. space from the
c.e. sequence of homotopy types and (the not quite well defined) sequence of
homotopy classes of maps.

Corollary If Ai is any c.e. sequence of c.e. abelian groups, such that A1 and
A2 are finitely generated and A3 is “untangled” in the sense of [BDM] (see
the notes), then there is a finitely presented group with the A’s as its homology
sequence.

An abelian group is “untangled” if it has a presentation with a c.e. basis for
its relations. This condition is not necessary, and thwarts a complete character-
ization of the homology sequence of f.p. groups.

Proof. To realize the Ak , k > 3, one simply uses as X the wedge of the Moore
spaces discussed in the previous proof. We can then take the free product with
a group realizing the first three groups from [BDM] (and 0 above dimension
three), to obtain our desired π .

NOTES

The elementary topology of fundamental groups, covering spaces, and van Kampen’s
theorem is all very nicely explained in

W. Massey. Algebraic Topology: An Introduction. Reprint of the 1967 edition. Graduate
Texts in Mathematics 56. Springer-Verlag, New York, 1977.

A good introduction to basic combinatorial group theory and to the theory of group
actions on trees can be found in

P. Scott and C.T.C. Wall. Topological methods in group theory. In Homological
Group Theory. Proceedings of the Symposium (Durham, 1977), 137–203. Lon-
don Mathathematical Society Lecture Note Series 36. Cambridge University Press,
Cambridge, 1979.




