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Chapter Three

Quantum Electrodynamics 

A comprehensive treatment of quantum electrodynamics (QED) cannot be given 
here in a single chapter. In any case, that would be beyond the scope of this book, 
and, as with the classical theory, the general subject has already been covered in a 
number of very fine textbooks. The full theory is, in fact, quite complicated and 
requires a lengthy formulation if it is to be laid out in a systematic way. Actually, the 
final result of this theory is a fairly simple set of prescriptions (Feynman rules) for 
the calculation of rates of electromagnetic processes. Instead of trying to “derive” 
the rules in a rigorous and pedestrian manner, we shall try to take an intuitive 
approach—like Feynman did—to shortcut the path leading to the rules themselves. 
In an attempt to make the reasoning seem more natural, we start first with a restricted 
limiting form of the theory. This limiting form is the non-relativistic theory restricted 
to the case where the photons are radiation-field particles. That is, the photons are 
considered to exist in given observable states described by their wave vector (k) 
and polarization unit vector (ε). The photons are considered to couple to non­
relativistic charges and magnetic moments, and the rates (cross sections) for the 
various processes are computed by elementary perturbation theory. To calculate 
these rates we need the perturbation Hamiltonian terms (H ′) associated with these 
couplings, and we can obtain these by elementary, but rigorous, methods. Having 
formulated this restricted corner of the subject, we then try to make the jump to 
the relativistic theory. In later chapters, when the theory is applied to treat various 
processes, the same approach will be taken. That is, the non-relativistic limit will 
be treated first, to be followed by the more general case where the particles can have 
relativistic energies. 

The non-relativistic theory is, to be sure, an important subject in itself, with many 
useful applications. Some processes are sufficiently complicated that analytic results 
cannot be derived in general covariant formulations, although exact formulas can be 
derived in the non-relativistic theory with its restricted energy domain. This chapter 
treats only the developments of the theory for its use in later applications, and it 
differs from the way the subject is presented in the standard textbooks. Modern 
books generally formulate the covariant theory from the very beginning, a result of 
the great success of this general and preferred approach. The whole subject has an 
interesting history, and we begin with a short outline of it. 
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3.1 BRIEF HISTORICAL SKETCH 

A lot of people have the impression that QED started in 1948 with the work of 
Feynman, Schwinger, and others. The real beginning came in 1905 with the in­
troduction of the concept of the photon. This concept was not readily accepted 
by twentieth-century physicists; only by about, say, 1917 did the particle nature 
of electromagnetic radiation begin to be considered seriously.1 In 1922, the par­
ticle character of the photon was seen clearly in the observation of the Compton 
effect which demonstrated the existence of momentum and energy of individual 
photons. With the subsequent developments in quantum mechanics in 1925 and the 
description of processes in terms of a general time-dependent Schrödinger equation 

Hψ  = i� ∂ψ/∂t,  (3.1) 

the formulation of a quantum theory of electromagnetism followed, principally in 
the work of Dirac, Heisenberg, Pauli, and Fermi. 

The essence of QED—a quantum theory of the electromagnetic field—is the 
introduction of the photon and the description of the fields in terms of a collection 
of these particles in various one-particle states. That is, the field is specified in terms 
of the values of the occupation numbers of the particle (photon) states. The classical 
Maxwell theory serves as a guide for QED, since in the limit of large occupation 
numbers the theory must approach that of the classical continuum. In a quantum-
mechanical formulation describing many charged particles and photons, the wave 
function ψ in Equation (3.1) would contain information on the charges and photons, 
and the Hamiltonian would consist of parts associated with each plus an interaction 
part: 

H = Hch + Hph + Hint, (3.2) 

just as in classical theory. Dirac gave the first such treatment of charged particles 
and photons in 1927 for the special case of radiation-field photons. As in classical 
electrodynamics, the quantum mechanics of the radiation field is simpler than that 
for general electromagnetic fields. 

General QED, formulated to describe electromagnetic effects not confined to 
radiation fields, presents more formidable problems, especially in connection with 
the requirements of gauge invariance. The first formulations of the general theory 
was by Heisenberg and Pauli in 1929 and Fermi in 1930. The theory was then 
successfully applied in the early 1930s to a number of problems involving the 
interaction of charged particles and photons. At the same time, however, it was 
found that there were difficulties with the theory when applied to certain problems. 
In particular, it was found that the theory seemed incapable of calculating effects 
to higher order in the electromagnetic coupling constant α. That is, quantities 
like cross sections, calculated by perturbation theory in a power series in α, came 
out in satisfactory form in lowest order, but yielded infinities in the higher-order 
corrections. The divergence problems, which we discuss briefly later in this chapter, 
show up in the evaluation of these “radiative corrections” and, in particular, in the 

1Even as late as 1917, only Einstein was actively advocating acceptance of the idea of the photon 
(or “quantum”) [see A. Pais, Rev. Mod. Phys. 51, 861 (1979)]. 
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attempt to calculate the electromagnetic self-energy of an electron. As first shown by 
Weisskopf, the divergence in the self-energy problem is not as serious as in classical 
electrodynamics, when treated by relativistic QED; the divergence, instead of being 
linear, is now of a logarithmic type. 

Quantum electrodynamics remained in this state until the late 1940s when there 
began a new phase in theoretical and experimental developments on the subject. 
The experiments were partly a result of advances in microwave techniques from 
research carried out during World War II. The first important measurement was the 
(1947) determination of the Lamb shift, a displacement of the 2s1/2 level with respect 
to the 2p1/2 level in atomic hydrogen. The small level shift, suspected from earlier 
spectroscopic measurements, provided a challenge for theory, and an approximate 
calculation of the effect was carried out by Bethe soon after the experimental dis­
covery. This was an important discovery, and the method used in the theoretical 
calculation of the effect was also of great significance, for the level shift corresponds 
to a “radiative correction,” and the measurement showed that the effect is real and 
finite. Bethe’s was the first calculation making use of “renormalization” techniques, 
thereby eliminating the necessity of dealing with the (“ultraviolet”) divergences that 
occur in these higher-order calculations. The idea, first introduced into QED by 
Kramers2 in 1937, removes the divergences by noting that the observed mass of 
the electron includes the electromagnetic self-energy. Then, when the higher-order 
radiative effects are expressed in terms of the observed mass, the divergent integrals 
subtract out. 

In the years 1948–1950 there was a great deal of work on QED, especially on the 
theoretical side. Independently, Feynman and Schwinger reformulated the theory, 
providing a description that was relativistically covariant at every stage. Actu­
ally, it turned out that work on covariant QED had already begun in Japan in 1943 
by Tomonaga; however, Tomonaga’s papers, first published in Japanese, were un­
known to almost everyone. Feynman’s approach first seemed hard to comprehend, 
and Schwinger’s papers were not easy to read. The work of Feynman was highly 
intuitive and, although no one else really knew why, with his formulation he was 
apparently able to perform calculations of a number of processes with great ease. 
The relationship between the work of Tomonaga, Feynman, and Schwinger with 
field theory was shown by Dyson. It is Dyson’s formulation of covariant QED 
and covariant perturbation theory that is found in all subsequent textbooks on the 
subject. 

The advantage of a fully covariant formulation of QED became evident, and the 
theory, with the help of renormalization procedures, was shown to be capable of 
performing calculations to very high accuracy. In particular, radiative corrections to 
atomic energy levels (Lamb shift) and to the magnetic moment of the electron were 
evaluated and found to be in excellent agreement with new very precise measure­
ments. In its ability to calculate quantities that can be measured—to an accuracy of 
one part in 108 in atomic energy levels—the theory is highly successful. Perhaps it 
should be emphasized, nevertheless, that modern QED is fundamentally no different 

2See, for example, the note on p. 453 in H. A. Kramers, Quantum Mechanics, New York: Dover Publ. 
Inc., 1964. 
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from the Dirac-Heisenberg-Pauli-Fermi theory described in 1930. The computa­
tional capabilities are much more advanced in the fully covariant theory, however, 
and this again demonstrates the advantages of a covariant formulation. For example, 
using the modern methods, the derivation of a formula for, say, some cross section 
might take a couple of hours, while months of work would be required using the 
older non-covariant procedures. For some calculations, even the methods of mod­
ern QED involve very lengthy mathematical manipulations requiring the evaluation 
of a great many integrals, etc. These higher-order calculations, which employ the 
techniques of renormalization, are beyond the capability of the older formulations 
of QED. Still, the theory is not in a totally satisfactory state in that the divergences 
have not been eliminated. For example, we cannot compute the electromagnetic 
self-energy of the electron; indeed, the theory still gives infinity for this quantity. If 
we can forget about difficulties like that, the theory can be applied with confidence 
to the calculation of virtually any observable electromagnetic phenomenon. 

3.2 RELATIONSHIP WITH CLASSICAL ELECTRODYNAMICS 

Purely classical electrodynamics (CED) is a continuum theory where the concept of 
a field particle (photon) is foreign. It is also a limiting case of the more general theory 
(QED), so that it is contained within the latter. This relationship can be exploited, as 
it is in the following section (3.3), to employ CED as a guide in formulating QED. 
There is, of course, a limit to what can be done along these lines, since the more 
general theory is greater in content and describes phenomena that are beyond the 
capability of the classical theory. Nevertheless, like all fundamental theories, QED 
is simple in its foundations, and it is not difficult to formulate it with the help of our 
knowledge of its limiting form. 

The classical domain of a radiation field corresponds to the condition 

n � 1, (3.3) 

where n̄ is the photon occupation number; this is essentially a specification of the 
applicability of a continuum-description theory of the photon field. For a particular 
process involving the interaction of these photons, the classical limit requires that 
the effects having to do with individual photons be negligible. That is, the particle 
(photon) characteristics must not play a role in this limit. It would seem that the 
condition that the photons are “soft” would be sufficient to satisfy this requirement. 
The soft-photon limit would confine the photon energy and momentum (that is, its 
kinematic properties) to be small compared with the energies and momenta (and 
their changes) of the charged particles involved in the particular process. For most 
processes this criterion would be sufficient for the validity of a classical treatment. 
However, for a particular process3 it may be that the photon kinematic properties play 
a key role even in the soft-photon limit. In such cases, a semi-classical calculation 
is not completely valid if its only quantum-mechanical aspect is the introduction 

3An example, treated later, would be electron-electron bremsstrahlung in the Born-approximation 
limit. This process must be given a quantum-mechanical treatment even for the case where the photons 
are soft. 
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of the photon concept. Some processes, such as photon-photon scattering, simply 
do not exist in a purely classical theory. This process, which can be thought of as 
involving virtual electron-positron pairs in an intermediate state, requires the fully 
relativistic QED for its treatment. However, immediately upon the introduction 
of quantum-mechanical ideas, it becomes fairly clear that such processes must be 
possible. In fact, even without a detailed quantum-mechanical calculation, we can 
have some idea of the order of magnitude of the associated cross section for this 
higher-order process. Moreover, for some processes, the relativistic effects are such 
that they can be included in a calculation in an approximate way by modifying the 
(large) argument of some logarithmic factor. 

For a process that does have an essentially classical description, it may be that 
only certain kinematic properties of the photon need be limited for the domain of 
applicability. For example, it may be that only the photon momentum is important 
in kinematic considerations while the photon energy is not limited. Or it may be that 
a classical description is valid even though the photon momentum is comparable to 
that of the charged particles involved. Bremsstrahlung and Compton scattering in 
the non-relativistic limit are examples of, respectively, each of these cases. 

Sometimes it is an accident that a certain classical formula is identical to a 
particular quantum-mechanical one. If this happens to be so, it is important to 
understand the reason for the coincidence. There is certainly one aspect of QED 
that is highly significant, and this has to do with the fundamental coupling constant 
associated with electromagnetic processes. The results (2.143) and (2.149), derived 
classically and obtained later in this chapter in a quantum-mechanical formulation, 

∼indicate how α (= e 2/�c = 1/137) determines the probability of photon emission. 
The electromagnetic coupling is weak (but not very weak), so that the calculation 
of processes can be carried out through the use of perturbation theory. Also, in 
the comparison of classical and perturbation-theory formulas, because α is small, 
we can understand why identical results are obtained. In the calculation of, say, 
photon-emission probability, the classical formula really gives the probability of 
one or more photons being produced, while the perturbation-theory result is for the 
probability of production of one photon. Because multiple photon production is 
improbable,4 the “one or more” of the classical formula essentially means one. 

The degree to which quantum mechanics must be included in a problem involving 
the electromagnetic interaction depends on the details of the process. For example, 
in bremsstrahlung it may be that “photon emission” can be described classically 
while the rest of the process (scattering, say) is treated quantum mechanically. The 
experimental or observational conditions can also dictate how some phenomenon 
is handled theoretically. If individual photons are not being detected and quantum 
mechanics does not play a role in the process, then classical electrodynamics is an 
appropriate description. Quantum electrodynamics can also be employed in such a 
problem, but it simply makes no sense to take the more general approach. In fact, 
the exact quantum-mechanical treatment might be so complicated that the problem 
cannot be handled this way. The relationship between CED and QED will become 
clearer as we treat the various electromagnetic processes in later chapters. 

4However, this is not so at ultrahigh energies [see Equation (3.191)]. 
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3.3 NON-RELATIVISTIC FORMULATION 

3.3.1 Introductory Remarks 

By confining our treatment to describe only processes involving radiation-field 
photons, we can simplify the subject. Thus, our photons are always real5 and their 
parameters (polarization and wave vector) are numbers that are fixed in the initial 
and/or final states. This relaxes, to a certain degree, the extent to which quantum me­
chanics must be employed in the description of the photon field and its interaction. 
However, it is inappropriate to refer to our treatment as “semi-classical,” since all 
the necessary quantum mechanics is included, and the formulation—with, however, 
its limited applicability—is completely rigorous. We do include the particle aspects 
of the photon field, that is, the effects of the individual-particle momentum (�k) and 
energy (�ck = �c|k|). Also, we give a complete quantum mechanical description 
of the charged particles that interact with the photons. The only restriction placed 
on the charge motion is that β = v/c � 1. 

A wide variety of problems can be worked out with the help of the formulation 
outlined here. It can even be applied to problems involving pair production and 
annihilation, as long as the charged particles involved have non-relativistic kinetic 
energies. For some problems or applications, the non-covariant development is 
actually more convenient, even for the case where the charges are in relativistic 
motion. However, nowadays everyone learns QED in the modern fully covariant 
form. There are, as a result, few treatments of non-relativistic, non-covariant QED in 
modern textbooks. Perhaps, therefore, the simplified approach taken in this chapter 
will be helpful to people not inclined to delve into the details of the full theory. 

3.3.2 Classical Interaction Hamiltonian 

Consider first the classical motion of a charge in an electromagnetic field described 
in terms of a vector potential A(r, t)  and scalar potential Φ(r, t). If there is present, 
in addition, a velocity-independent potential V (r, t), the total Lagrangian function 
would be (see Chapter 1) 

1L = 2 mv 2 + (q/c)A · v − qΦ − V.  (3.4) 

As is well known, this Lagrangian yields the correct equation of motion including 
the Lorentz force. The corresponding Hamiltonian is 

H = 
1 

2m 

( 

p − 
q 

c 
A 

)2 

+ qΦ + V.  (3.5) 

It should be noted that 

p = ∂L/∂v = mv + (q/c)A (3.6) 

5That is, they are not “virtual.” A virtual photon is one that is emitted and reabsorbed and exists 
only in intermediate states. If the photons in intermediate states are described by plane wave states, 
the amplitude and coupling derived here for radiation photons can still be used to describe these states, 
however. 
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is the canonical momentum and not the particle momentum; it is this quantity that is 
replaced by the operator −i�∇ in going to a Schrödinger equation. The particular 
form of the Hamiltonian should also be noted, in particular, the first term in Equation 
(3.5); it is the same as that for a free particle with the replacement 

p → p − (q/c)A. (3.7) 

The prescription (3.7) for the formation of a Hamiltonian function including elec­
tromagnetic interactions is sometimes referred to as a “Principle of Minimal Elec­
tromagnetic Coupling.” The coupling is “minimal” in the same sense that it yields a 
particular combination of terms involving the potentials Φ and A such that the gauge 
invariance of the theory is satisfied.6 In covariant form, in terms of the gradient 
operator, the relation (3.7) would become, for quantum-mechanical wave equations, 

∂µ → ∂µ − (iq/�c)Aµ. (3.8) 

The Hamiltonian (3.5), when written as 

H = p 2/2m + V + Hint, (3.9) 

yields an interaction part 
2Hint = −(q/2mc)(p · A +A · p) + (q /2mc 2)A · A + qΦ (3.10) 

associated with the coupling to the electromagnetic field. In this expression, since 
we want to make a transition to a quantum-mechanical formulation, the terms p · A 
and A · p are not equated. When p is replaced by the gradient operator and the term 
∇ ·  A operates on a function ψ to the right, the identity 

∇·Aψ = (∇·A)ψ +A·∇ψ (3.11) 

is employed. As we have seen in Chapter 2, for radiation fields a gauge can be chosen 
such that ∇·A = 0 and Φ = 0. In this case, for a system of charges interacting 
with an electromagnetic radiation field, the part of the Hamiltonian associated with 
this coupling is 

Hint = 
i� qα 

A(rα, t)  · ∇α + 
1

2 

qα 
2 

A(rα, t)  · A(rα, t).  (3.12) 
c mα 2c mαα α 

This expression is a generalization of Equation (3.10), employing the identity (3.11) 
and summing over particles (α), replacing the momenta by the operators −i�∇α . 

The formulation given above is adequate to calculate the rate at which the system 
of charges undergoes transitions as a result of the action of the perturbation (3.12). 
The state of the charge system is described in terms of a wave function ψ(rα, t)  
with the index α running over 1 to N (= number of charges). The charges can 
be in free-particle states or bound in atoms, molecules, or nuclei. However, the 
electromagnetic field, expressed in terms of the vector potential A in Equation 
(3.12), is treated as an “external” potential, that is, as a specified function of r 
and t . This corresponds to a classical description of the photon field, and it is 
important to understand the limitations of the treatment and why it is adequate for a 

6See, for example, F. Rohrlich, Classical Charged Particles, Reading, MA: Addison-Wesley Publ. 
Co., 1965; W. Pauli, General Principles of Quantum Mechanics, Berlin: Springer-Verlag, 1980. 



∑ 

82 CHAPTER 3 

certain class of problems. The formulation works only for radiation-field photons, 
that is, for photons in free-particle (plane-wave) states. These photons are thus in 
fixed states, either generated prior to incidence on the charge system or as detected 
after interaction with the system. The simplified treatment cannot handle problems 
that require consideration of electromagentic perturbations corresponding to purely 
intermediate-state photons7 (“photons” that are emitted and reabsorbed during the 
process). Although the photons must be either incoming or outgoing on the charge 
system, they can be created (or annihilated) as a result of the perturbation (3.12). 
The elementary theory given here is capable of calculating these processes without 
introducing the formalism of quantum field theory and annihilation and creation 
operators, etc. 

Photons existing only in intermediate states do not have observable characteristics 
and, in fact, have a spectrum of kinematic properties. A full quantum-mechanical 
treatment would be required to evaluate processes involving such states, and this 
apparatus is provided by conventional quantum field theory. However, the formu­
lation outlined here is adequate to treat problems in which the charged particles 
exist in (unobserved) intermediate states “in between” the action of perturbations. 
The elementary theory is also capable of treating problems involving pair produc­
tion and annihilation as long as the charged-particle kinematic energies are non­
relativistic. However, the non-relativistic theory cannot treat problems in which 
there are “virtual” charged pairs in intermediate states, since the characteristic en­
ergies of these pairs is such as to force a relativistic treatment. An example of a 
process of this type is photon-photon scattering—a phenomenon that does not exist 
in purely classical theory. As mentioned earlier, photons can scatter off one another 
because of the possibility of virtual electron-positron pairs in an intermediate state. 
The incoming and outgoing photons couple to these “particles” and this allows the 
process to take place. For center-of-mass photon energies such that ε1 = ε2 � mc 2, 
one might think that a non-relativistic theory would be capable of computing the 
cross section for the process. However, if pairs are produced in an intermediate 
state, they will have characteristic kinetic energies ∼ mc 2 even for the scattering of 
low-energy photons. 

Finally, on the subject of the interaction Hamiltonian, we should introduce an 
additional term associated with coupling of the electromagnetic field to a particle’s 
intrinsic magnetic moment. Charge coupling to the “orbital” motion is contained 
in the Hamiltonian (3.12), but (permanent) magnetic moments in a magnetic field 
have an energy −µ·B, and a corresponding term would have to be added to the 
Hamiltonian. In terms of the vector potential of the radiation field, for a collection 
of moments, the expression 

Hint(µ) = −  µα · curl A(rα, t  )  (3.13) 
α 

should be added to Hint in Equation (3.12). This term, like that for the A·p coupling, 
is linear in the electromagnetic field amplitude. 

7This is a rather loose terminology; the designation “photon” should perhaps be reserved for free-
particle states. On the other hand, all photons are eventually absorbed and in that sense could even be 
regarded as virtual. 



〈 〉 〈 〉 〈 〉 
〈 〉 〈 〉 

83 QUANTUM ELECTRODYNAMICS 

3.3.3 Quantum-Mechanical Interaction Hamiltonian 

For the calculation of the rates for various processes involving coupling to photons, 
we need the forms for the Hamiltonian terms associated with these couplings. Ba­
sically, the couplings are the forms Hint for which we must now substitute in the 
appropriate expression for the vector potential corresponding to a single propagat­
ing photon. In terms of the photon wave vector k and unit polarization vector ε, the 
vector potential is8 

a(r, t)  = a0ε cos(k · r − ωt). (3.14) 

In the oscillatory term with the phase φ = k · r − ωt , if we write 

cos φ = 1 
2 (e

iφ + e −iφ ), (3.15) 

in evaluating the rate for the process by perturbation theory, only one of the terms 
(e ±iφ ) would be picked out, depending on whether the photon is incoming or outgo­
ing. The task, then, is to determine the amplitude factor a0; this would then establish 
the precise forms for each of the three kinds of terms in Hint. That is, we would 
have the a·p, a·a, and µ·curl a couplings that, for various processes, determine the 
associated rate or cross section. 

It is easy to fix the parameter a0, and there are at least two simple procedures 
for doing this.9 The most direct method fixes a0 by relating the photon energy flux 
computed with the vector potential (3.14) to what it should be for a simple propa­
gating photon of energy �ω = �ck. If for photon states we take a unit normalization 
volume, the number density of photons in the state described by ε and k would be 
nγ = 1. In terms of the photon energy density uγ , the magnitude of the photon 
energy flux (Poynting vector) in the direction of k would be 

S = c�ω = cuγ . (3.16) 

If E and B are the magnitude of the electric and magnetic fields carried by the 
photon, then 

2uγ = ( E2 + B2 )/8π = E /4π, (3.17) 

where the brackets denote a time average. With the electric field E derived from 
1−(1/c)∂a/∂t , and the time average cos2 φ = sin2 φ = 2 , we combine the above 

two equations to give 
2/ω)1/2 a0 = (2π�c , (3.18) 

which should be then substituted into Equation (3.14) and employed to fix the forms 
for Hint. 

In the other method (see Footnote 9) used to evaluate a0, some process is com­
puted classically and quantum mechanically and the results are then compared. The 
simplest process to consider is soft-photon production when a charged particle is 
accelerated suddenly to a velocity v, say. The probability can be computed for the ac­
celeration to be accompanied by the production of a photon of frequency within dω. 

8We adopt notation here in which the lower case letter (a) is used for the vector potential associated 
with the state of a single photon. 

9See R. J. Gould, Astrophys. J. 362, 284 (1990). 
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This can be done by employing the soft-photon formulas of classical electrodynam­
ics that were derived in Chapter 2, and the comparison with a quantum-mechanical 
calculation then yields precisely the result (3.18). 

The treatment referred to in Footnote 9 uses the notation R, T , and S for the 
a · p, a · a, and µ · curl a perturbations, standing for “radiation,” “two-photon,” 
and “spin.” The a · a coupling is quadratic in the electromagnetic field; that is, it 
involves two fields which can represent two photons. Then, if we write a = a1 +a2 

for the total field, 

2 a · a = a1
2 + a2 + 2a1 · a2. (3.19) 

If, for example, there is one incoming and one outgoing photon, the factor 2 multi­
plying a1 · a2 would account for the possibility that labels 1 and 2 (fields 1 and 2) 
could describe either photon. If, on the other hand, we had two outgoing photons, 
the factor 2 would be regarded as accounting for a direct and exchange amplitude. 
We represent the coupling T as a “two-photon vertex” for which the photon states 
are described by ε, k and ε′ , k′, and to remind the reader of the origin of the factor 
of 2, we enclose it in parentheses in the formula for T . In the expression for S 
(coupling to the “spin” moment), the curl operator on the plane-wave photon state 
can be written as a cross product involving k and ε. For coupling to a charge q = ze 
and magnetic moment µ, the formulas for the three types of Hint perturbations can 
be summarized as 

R = 
ze 

m 

( 
2π� 

ω 

)1/2 

ε · p, (3.20) 

T = 
(2)πz 2 e 2� 

m 

ε · ε′ 

(ωω′)1/2 
, (3.21) 

S = −ic 

( 
2π� 

ω 

)1/2 

µ · (k × ε). (3.22) 

3.3.4 Perturbation Theory 

The standard time-dependent perturbation theory employed for the calculation of 
rates of processes in quantum-mechanical systems was first developed by Dirac. 
The procedure, often referred to as the “method of variation of constants,” is very 
general in that it is formulated for an arbitrary system described by a Schrödinger 
equation 

(H0 + H ′)ψ = i� ∂ψ/∂t.  (3.23) 

Here H0 is the unperturbed Hamiltonian, which satisfies 

H0ψ
(0) = i� ∂ψ(0)/∂t,  (3.24) 

for which there is a spectrum of stationary-state solutions 

ψ(0) = u(0) exp(−iE(0)t/�), (3.25)m m m 
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the u(0) being independent of time but functions of the coordinates of the particles. m 
The general state of the unperturbed system is 

ψ(0) = a(0)ψ(0), (3.26)m m 
m 

a superposition of possible states. 
The solution to the “perturbed” Schrödinger equation (3.23) is written in the form 

ψ = am(t)ψ
(0), (3.27)m 

m 

that is, as a linear combination of the unperturbed wave functions. This is a con­
venient procedure since often we have a problem in which, before the perturbation 

= ψ
(0)acts, the system is in some unperturbed state ψ(0) at, say, t = −∞. Thus, 0 

(0)
a = 1,0 

(3.28)
(0) = 0a (m �= 0),m 

the subscript 0 referring to the initial state. As a result of the perturbation H ′, the 
system makes transitions to different states. After the action of the perturbation, at 
t = +∞, the system will be in the final state 

ψf (t = +∞) = am(t = +∞)ψ(0), (3.29)m 
m 

and the probability of a particular state k will be given by 

Wk = |ak(t = +∞)|2 . (3.30) 

Perturbation theory works when H ′ is small and Wk � 1, except for W0. Since 
we are interested in transitions of various types, the case k �= 0 is important. In 
general, if the perturbation H ′ is sufficiently weak, 

am(t) = δ0m + am(t), (3.31) ∣ ′ ∣2with ∣am(t) ∣ � 1. If the general solution (3.27) is substituted into the perturbed 
equation (3.23), an equation for the a’s is obtained: 

ψ(0)(H0 + H ′) am m = i� (am∂ψ
(0)/∂t + ȧmψ

(0)). (3.32)m m 
m m 

Multiplying from the left by ψ(0) and integrating over the spatial volume dV (whichk 
may be multidimensional), employing the forms (3.25), we have an equation for ak: 

ame
iωkmt ′ = i�ȧk. (3.33)Hkm 

m 

The orthogonality of the ψ(0) has been employed to get a single term on the right, m 
and 

ωkm = E
(0) − E(0) /�, (3.34)k m 

Hkm 

( 
(
k 
0) ∗ 

H ′ u(
m 
0)′ = u dV. (3.35) 
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Note that in the definition (3.35) the matrix element is computed from time-
(0)independent wave functions u(0) and um . The perturbation Hamiltonian H ′ mayk 

still be a function of time, so that H ′ km may be as well. We consider the impor­
tant special cases where H ′ is time independent and later where H ′ is an harmonic 
function of t . 

For the condition (3.28) in which the system started in the initial state ψ(0), the 
coefficients are given by the expression (3.31). When this is subtituted into the 
(exact) equation (3.33) the main contribution on the left side is from m = 0 and we 
have, in a first iteration, 

t 

ak
′ (t) = −(i/�) eiωk0 tHk

′ 
0 dt.  (3.36) 

−∞ 

With Hk
′ 
0 independent of time10 the expressions (3.36) can be integrated; writing 

the lower limit as −T , we have 

H ′ k0 (eiωk0 t − e −iωkoT ak
′ (t) = ). (3.37)

E0 − Ek 

This result can then be employed in Equation (3.31) and then substituted back into 
the exact equation (3.33) to give a second-iteration result: ∑ H ′ iωk0 t m0 iωm0 t iωkmH ′i�ȧk 

′ = e Hk
′ 
0 + 

E0 − Em

e e km. (3.38) 
m 

In this step, the second term in parentheses in Equation (3.37) has been ignored; 
this term, for T → ∞, does not contribute, being highly oscillatory and having the 
essential value zero. Since ωkm + ωm0 = ωk0, the result (3.38) is the same as that 
for the first iteration in Equation (3.36) with ∑ 1 ′Hk

′ 
0 → Hk0 + Hkm Hm0. (3.39)

E0 − Em m 

For reasons to be discussed later, the factors in the above sum have been written in 
this special way. 

To simplify the equations, we express them with only the first term in the pertur­
bation series (3.39). By means of the Equations (3.30) and (3.36), the probability 
for the transition 0 → k occurring due to the action of the perturbation H ′ can be 
expressed explicitly in terms of an integral11 involving the matrix element Hk

′ 
0: 

1 
∣∣∫ ∞ ∣2 

Wk = 
�2 
∣ eiωk0 tHk

′ 
0(t) dt . (3.40) 

−∞ 

This is an important formula that exhibits a number of significant features. In par­
ticular, when the perturbation is a slowly varying function of time, the oscillatory 
exponential factor makes the value of the integral small. That is, when the pertur­
bation is “adiabatic” (slow) the probability of a transition is small and, instead, the 

10We shall see shortly how to modify our formulas for the case where Hk
′ 
0 ∝ eiωt , as in electromagentic 

perturbations. 
11In fact, this integral is 2π times the Fourier transform of Hk

′ 
0(t). 
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system adjusts itself gradually to the instantaneous effect of the perturbation. This 
effect is known as the Adiabatic Theorem. 

Another very important result can be derived from Equations (3.40) or (3.30) and 
(3.36). For transitions to continuum states, the transition probability per unit time 
is of interest. For a particular one (k) of these states, this is given by ∫ τ∆Wk = lim 

1 1 ∣∣ eiωk0 tHk
′ 
0 dt 

∣∣ 2 

. (3.41)
∆t τ →∞ 2τ �2 −τ 

When Hk
′ 
0 is independent12 of time, it can be taken out of the integral, which is then 

equal to 2i(Hk
′ 
0/ωk0) sin ωk0τ . But since 

sin2 ωk0τ 
lim = πδ(ωk0) = π �δ(Ek − E0), (3.42) 
τ →∞ ωk

2
0τ 

we have 
∆Wk = 

2π ∣∣ H ′ 
∣∣ 2 

δ(Ek − E0). (3.43)k0∆t � 

Here the δ-function manifests energy conservation in the overall process, and the 
result (3.43) is often written with a “density of final states” ρ(Ek) = dNk/dEk 

instead of the δ-function. Since a summation over final states is always performed 
in the applications of the result for ∆Wk/∆t , the δ-function is employed then, 
and the effect is the same as with the inclusion of ρ(Ek). The formula (3.43) 
has many applications and was called “Golden Rule Number Two” by Fermi. It 
is well to emphasize its general applicability in that it is based essentially on the 
perturbed general Schrödinger equation (3.23), which does not specify the form of 
the Hamiltonian. The Golden Rule has assumed that H ′ is not an explicit function 
of time; however, we can also employ the result when H ′ is a harmonic function of 
time for our special applications. 

Another aspect of the Golden Rule formula ought to be emphasized. Although it 
was derived in a perturbation theory formulation, the formula itself is more general 
in that it holds even if the perturbation is not weak. To understand this, we should 
recognize that the formulation was a description of “flow of probability,” and as 
long as the expired time is not long, the final-state coefficients ak 

′ (t) will be small 
even if the perturbation is not weak. Actually, if H ′ is strong, the effective matrix 
element Hk

′ 
0 can be regarded as the result of the multiple action of some coupling 

evaluated to higher order, assuming that the perturbation series converges. 
In one special application of the Golden Rule formula this more general validity 

is inherently assumed. The application is to the determination of the ratio of cross 
sections for processes in the forward and reverse directions. The cross-section 
ratio yields the corresponding ratio of the associated phase-space factors for the 
forward and reverse processes. The squared matrix elements are the same because 
the effective coupling Hamiltonian is Hermitian. Then, for example, if the processes 

12Here we mean that H ′ is not an explicit function of time. The results can still be applied, for 
example, in the calculation of scattering cross sections when the scattering potential (which would act 
as H ′ ) is time independent. In such scattering, the particle experiences a variable perturbation, but as a 
result of the dependence on position coordinate and not as a result of explicit time dependence. 
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themselves involve complicated multiple actions of a strong coupling, the ratio of the 
forward and reverse cross sections can be obtained from the Golden Rule formula. 

3.3.5 Processes, Vertices, and Diagrams 

The possible electromagnetic processes are determined by the interaction Hamilto­
nians (3.20), (3.21), and (3.22). For an overall process there may be other perturba­
tions involved and, correct to second order in the perturbations, the rate would be 
determined by the effective perturbation matrix element (3.35). We are restricting 
our treatment to processes involving only radiation-field photons, since this allows 
simplification. At the same time, it limits the number of processes that our elemen­
tary theory can treat. However, the techniques employed in the restricted theory are 
very similar to those in general QED, thereby providing a useful introduction to the 
subject. 

Of special interest are processes that occur as a result of the action of two per­
turbations, one or both of which are electromagnetic (that is, involving production 
or destruction of photons). If U and V are the interaction Hamiltonians associated 
with the perturbations, the effective perturbation matrix element for the combined 
process would be, generalizing13 the result (3.39), ∑ 1 ∑ 1 

Hf 
′ 

0 = UfI  VI 0 + Vf I  ′ UI ′ 0. (3.44)
E0 − EI 

I ′ 
E0 − EI ′ 

I 

Here I and I ′ are “intermediate” states and these states are summed over. The 
probability of the process between the initial state 0 and the final state f would be 
proportional to ∣Hf 0 

∣2 
and would determine a cross section or transition probability. 

The states 0 and f are observed or specified in the sense that the system is considered 
to be measured or detected in these states. The intermediate states are, of course, 
not observed, and it is essential in the evaluation of the overall 0 → f process that 
all of these accessible intermediate states be included in the total amplitude for the 
process. 

The probability of a process resulting from two perturbations can be written in 
the form ∣ ∣2 

Wf 0 = ∣ AfIAIAI 0 . (3.45) 
I 

An individual amplitude is the product of these factors, reading from right to left: 
(i) an amplitude (AI 0) associated with the action of a perturbation acting as to cause 
the system to make a transition 0 → I , (ii) an amplitude (AI ) that is only a function 
of the intermediate state, and (iii) an amplitude (AfI  ) from a perturbation acting to 
cause a transition I → f . If a process can take place through the action of a single 
perturbation, there is no intermediate state and there would be only the amplitude 
Af 0 in lowest order. On the other hand, for a given process, even in lowest order in a 

13This can be done by simply replacing H ′ with U + V , yielding the four types of second-order terms 
(UU  , VV  , UV  , VU  ), each with an energy denominator. 
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coupling constant,14 the total amplitude may involve both a simple direct amplitude 
Af 0 and a combination of amplitudes involving intermediate states as in the form 
(3.45). That is, in general, the total amplitude for a process can involve a number 
of perturbations and intermediate states. 

The “intermediate-state amplitude” AI is just the factor (E0 − EI )
−1 involving 

the energy denominators. It corresponds to, in modern covariant perturbation the­
ory, the Feynman propagator or propagation factor. Although the idea has limited 
physical meaning, being simply a factor in a perturbation-theory development, it 
is a convenient notion to introduce. As is indicated in the notation in Equation 
(3.45), we can think of the total amplitude for the process involving two perturba­
tions as if AI were an amplitude for propagation in the intermediate state between 
the two interactions. Basically, this is the reason why the factor with the energy 
denominator in Equation (3.39) was written in between the two matrix elements. It 
is also convenient (but not necessary) to introduce a pictorial representation of the 
process whereby a particle undergoes the transition 0 → f by means of the two 
perturbations U and V and the intermediate states I and I ′ [see Equation (3.44)]. 
The diagrams represent terms in a perturbation series and are nothing more than a 
bookkeeping device. Note that time runs vertically in these pictures, with the initial 
state indicated at the bottom and the final state at the top. The horizontal scale can 
represent position in a rough sense, so that the picture is like that of a “world line,” 
taking some terminology from relativity. An actual path or line for the particle is, of 
course, not implied, since this would be a classical notion foreign to our quantum-
mechanical formulation. These diagrams are not to be taken “literally”; rather, they 
serve as a guide or reminder in writing down terms in a perturbation series. 

Two diagrams are indicated in Figure 3.1, corresponding to the second-order 
perturbation for the case where the perturbations U and V are different and able to 
act in either order to cause the transition 0 → I or I ′ → f . An important example 
of a problem of this type would be that of bremsstrahlung, which takes place through 
the combined process of scattering (U , say) and photon production (V ). Here, by 
“photon production” is meant the interaction (3.20) between the charge and the 
field of the outgoing photon. Charged particles are always subjected to the photon-
emission Hamiltonian [Equations (3.20) as well as (3.21) and (3.22)]. However, 
energy conservation does not permit an isolated charge to produce a photon. An 
additional perturbation is required, such as a scattering potential, and through the 
combined action of both perturbations the photon can be produced. This has a 
corresponding feature in classical radiation theory in which emission takes place 
because of the charge’s acceleration (as a result of the scattering potential). 

The interaction associated with photon emission can be represented in a picture by 
a vertex with a wavy line designating the photon. Both the Hamiltonian (3.20) cor­
responding to the interaction of the charge with the radiation field and the expression 
(3.22) from the interaction of the intrinsic magnetic moment can be represented by 
a vertex of the type in Figure 3.2. Again with time running in the vertical direction, 
this picture is a designation of a matrix element H ′ in which a and b refer to the ba 

14As noted already, the perturbation (3.20) is first order in the charge while the perturbation (3.21) is 
second order. 
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f f 

U 

V 

I I ′ 

V 

U 

0 0 

Figure 3.1 Pictorial representation of the action of two perturbations. The vertices represent 
the matrix elements of the U and V interactions and the line between the vertices 
represents the energy denominator factor. 

b 

a 

Figure 3.2 Photon-coupling vertex corresponding to photon “production” (outgoing photon). 

initial and final states, respectively, with the state b containing a photon. Since an 
isolated charge or magnetic moment cannot emit a photon, the vertex of Figure 3.2 
must be just part of a diagram if a photon process is being represented. As noted 
above, it could be part of the bremsstrahlung diagrams, and we see that the two 
diagrams correspond to emission “before and after” the scattering. Again, it should 
be emphasized that this terminology, and the diagrams, should not be taken literally. 
“Emission” is associated with the probability for the process, and the probability is 
the squared total amplitude. The total amplitude itself is not observed nor are its 
individual components associated with individual diagrams. 
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b 

a 

Figure 3.3 Photon-coupling vertex associated with photon “absorption”. 

Photons can be absorbed as well, and the vertex or matrix element of the Hamil­
tonian (3.20) associated with interaction of an incoming photon by this coupling 
would be represented as in Figure 3.3. Basically, the vertices of Figures 3.2 and 3.3 
are the same, being the time reverse of one another. However, they do represent 
distinctly different interactions or perturbations, since one involves an incoming 
photon and the other an outgoing photon. This means, for example, that in the eval­
uation of the process of photon scattering by a free charge (Compton scattering), 
two diagrams occur that involve the vertices of Figures 3.2 and 3.3. That is, if these 
vertices correspond to the interactions U and V , respectively, of Figure 3.1, the 
“absorption” and “emission” in the two-step scattering process can occur in either 
order.15 Although the basic nature of the interaction is the same (for U and V ) in  
this case, the two photons involved are different and so, therefore, are the associated 
perturbations. In a later chapter, we give a more complete discussion of Compton 
scattering, and we shall see that the two diagrams referred to above actually do not 
contribute to the cross section. The whole contribution comes from a third diagram 
that is associated with the interaction Hamiltonian (3.21). This diagram, a vertex 
associated with particle coupling to two photons or two photon fields, would be, 
for one incoming and one outgoing photon, as shown in Figure 3.4. That is, the 
coupling involves the point interaction of the fields of four particles: the incoming 
and outgoing charges and the two photons. The interaction is of higher order than 
that associated with the coupling (3.20) (and the diagrams in Figure 3.2 or 3.3), 
being second order in the charge. 

The intrinsic magnetic moment coupling (3.22) to the photon field has a vertex 
looking like that for the coupling (3.20), that is, like Figures 3.2 or 3.3. However, 
for processes involving non-relativistic charges, this coupling is weaker than the 

15Again, we do not mean this to be taken literally. Without performing an experiment to do so—and 
thereby disturbing the process—we cannot know which perturbation acted first. The separate diagrams 
refer only to mathematical terms in a perturbation-theory formulation. 



92 CHAPTER 3 

b 

a 

Figure 3.4 Diagram representing the coupling (vertex) of two photon fields, in this case an 
incoming and an outgoing photon. 

lowest-order term R. Since µα ∼ qα �/mαc, we see that 
1/2R/S ∼ k/kα ∼ �ω/(mαc 2Eα) , (3.46) 

where Eα is the particle kinetic energy. The ratio (3.46) is small, being 
∼ (Eα/mαc 2)1/2 for �ω ∼ Eα . If, on the other hand, a particle had no charge 
but possessed a magnetic moment, the coupling (3.22) would be the only interac­
tion with the photon field. It is perhaps appropriate to remark at this point that 
covariant perturbation theory for spin- 1 

2 particles has only one basic interaction or 
vertex. This vertex is of the type in Figure 3.2 (or 3.3), associated with a linear cou­
pling to the electromagnetic field. The non-relativistic theory, on the other hand, has 
three basic couplings (3.20)–(3.22), and so the transition to the relativistic theory is 
somewhat complex. The non-relativistic, non-covariant theory is really quite dif­
ferent from the covariant formulation, and there is not a one-to-one correspondence 
between the vertices and diagrams in our treatment here and those associated with 
the relativistic theory. 

The “elementary” particles have an important fundamental property—their 
particle-antiparticle symmetry. That is, in addition to the photon, proton, neu­
tron, electron, pion, muon, and neutrino (electron and muon types), there are the 
corresponding antiparticles. The antiphoton is absolutely identical to the photon 
(γ = γ ). The neutron is also neutral, but it has a magnetic moment and for n 
there is a sign difference in the relation between magnetic moment and spin. The 
antineutrino has a helicity opposite in sign to that of the neutrino. The antielectron 
(positron) is identical to the electron except for being oppositely charged (which also 
has a corresponding effect on its magnetic moment). This is also true of the other 
charged “elementary” particles16 (proton, muon, and charged pion). The particle­

16On the other hand, the “strange” particles do not possess this symmetry between counterparts of 
opposite charge. 
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b 

+ – + – 

+ – + – 

a 

Figure 3.5 Particle and antiparticle diagrams. 

antiparticle symmetry means, for example, that in quantum electrodynamics a single 
unified theory describes electron and positron processes. In particular, it means that, 
consistent with charge conservation, for any perturbation matrix element 

Vba = 〈b|V |a〉 , (3.47) 

the only requirement on the states a and b is that they be consistent with charge 
conservation. This can be represented pictorially as in Figure 3.5, which gives the 
four possibilities for interactions involving electrons and/or positrons. In these ver­
tices or diagrams, the circle can represent any kind of interaction. It can correspond 
to some external potential or one of the three electromagnetic perturbations (3.20)– 
(3.22). For the latter perturbations, the photons involved can be either incoming or 
outgoing in all possibilities, so that there are many subcategories17 for the vertices 
in Figure 3.5. Some of these specific vertices may have a matrix element that is 
zero; this is, in fact, the case, as will be seen later. 

The two vertices on the right of Figure 3.5 would be part of processes involving 
pair production and annihilation, respectively. Because of the basic symmetry of 
the theory, a unified treatment of these processes can be given in terms of a basic 
interaction that can cause a variety of processes. For example, bremsstrahlung is 
closely related to pair production (and annihilation), the diagrams for the processes 
being essentially the same when one set is placed on its side. These processes will 
be treated in detail in later chapters. 

17For the interactions (3.20) and (3.22), each of the vertices in Figure 3.5 can involve either an 
incoming or an outgoing photon. For the interaction (3.21), each vertex could involve an incoming and 
an outgoing photon, two incoming photons, or two outgoing photons. 
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3.4 RELATIVISTIC THEORY 

Although the treatment of non-relativistic QED in the last section is fairly self-
contained, only a very superficial formulation of the relativistic theory can be given 
here.18 A substantive exposition of modern QED would require much more space, 
but perhaps we can provide some understanding of the essence of the theory in this 
brief outline. 

3.4.1 Modifications of the Non-Covariant Formulation 

The early (∼ 1930) formulations of relativistic QED were not manifestly covariant 
and were somewhat complicated in their derivations of the foundations and in the 
associated computational techniques in the applications of the theory. The newer 
(∼1950) methods are preferable and benefit from the more “natural” formulation in 
terms of covariant equations. Although no new physics is introduced in the covariant 
formulation, it is quite different in its mathematical layout and in its subsequent 
computational methods. In the interest of also retaining some simplicity, let us now 
consider how the non-relativistic theory might be modified. 

Some aspects of the theory can be considered to be very general, and we can expect 
to carry over some of the principles introduced in the non-relativistic development. 
Again, it is convenient to formulate a perturbation theory, and certain features of 
the non-covariant formulation in the last section are retained. The non-covariant 
perturbation theory is still a valid procedure in applications involving even rela­
tivistic particles, since it is based on the general Schrödinger equation (3.23) and 
the superposition principle. Transitions are viewed as the result of the action of 
perturbations, and more than one perturbation may be required to produce a non­
vanishing total amplitude for a certain process. In the mathematical formulation, 
the perturbations result in matrix elements associated with transitions between two 
states, and we have found it convenient to introduce the notion of a “vertex” in the 
pictorial representation of the transition. One or both of these states may be “inter­
mediate” so that the “transition” involving a particular vertex may not be directly 
related to an observable event; in that case, the associated matrix element is just 
one of the factors in the expression for the total amplitude for the process. To be 
consistent with the general literature on the subject, we use the notation, say, Mlk 

for one of these matrix elements (vertices) corresponding to the k → l transition. 
In an amplitude for a process in which intermediate states are involved, it can 

be expected that there will be a factor corresponding to the energy denominator 
(E0 − EI )

−1 in the non-covariant formulation. This factor is a function only of the 
characteristics of the intermediate state, and in covariant perturbation theory it is 
called a (Feynman) propagator. For now we designate it as PI for an intermediate 
state I , and we try to give simple arguments for inferring its expected form. For 
a process corresponding to some (total) transition 0 → f in which an arbitrary 
number of intermediate states are involved, the probability or rate would be given 

18There are a large number of excellent textbooks on relativistic QED. A selection of these, chosen 
for their variety of approach and penetration of the subject, are listed at the end of this chapter. 
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by an expression of the form ∣ ∣2 

Wf 0 = ∣ MfInPInMInIm · · ·MIlIkPIkMIk 0 . (3.48) 
Ik ···In 

The total amplitude in this expression is meant to be read from right to left. Loosely 
stated, the matrix element MIk 0 causes the transition from the initial state 0 to the 
intermediate state Ik , there is then a “propagation” (PIk ) to the next interaction 
or vertex MIlIk , and so forth, to the last interaction MfIn . The M’s are just the 
perturbation Hamiltonians, and, if there is more than one such perturbation, any one 
of them can be among the string of factors in Equation (3.48). That is, there can 
be various combinations of interactions resulting in a variety of processes, and for 
a given process there may be several combinations yielding the total amplitude for 
the process. 

In covariant perturbation theory, the matrix elements Mlk are evaluated from a 
spacetime integration over the invariant four-dimensional volume d4 x or, in the 
momentum representation, over d4 p. This results in a fundamental difference from 
the non-covariant theory in which matrix elements are evaluated from an integration 
over the three-dimensional spatial volume d3r (or d3p). The time (as well as space) 
integration in the matrix elements yields a simplification in the perturbation theory, 
which is described conveniently in terms of a diagrammatic representation. As 
noted by Stückelberg in 1942 and fully exploited by Feynman in 1948, positrons— 
holes in the sea of electrons in negative energy states in Dirac’s relativistic electron 
theory—can be described as electrons moving backward in time.19 In a process that 
involves, for example, two interactions, that is, two matrix elements, non-covariant 
perturbation theory must include the two types of diagrams indicated in Figure 3.6. 
One involves pair production with the particle of opposite sign to the incoming 
particle annihilating with the latter; this diagram corresponds to an intermediate 
state with three particles. On the other hand, in the covariant theory, in which there 
is an integration over all t for each interaction matrix element, both diagrams on the 
left in Figure 3.6 are effectively included in a single one. That is, in following the 
particle’s “world line” in covariant theory, we do not distinguish the two diagrams 
on the left, which are regarded as essentially the same. This can also be seen 
through consideration of a Lorentz transformation or rotation in the space-time 
plane; in another Lorentz frame, the pair-production diagram is that on the far left 
in the figure. The non-covariant theory is, as we have stated earlier, valid—even for 
relativistic problems. However, it is not as convenient as the covariant theory, which 
is fundamentally the more natural approach. In non-relativistic problems, the non-
covariant theory is more convenient, and the pair-producing diagram is negligible. 
This is because the corresponding intermediate-state energy is very large, and the 
factor (E0 −EI )

−1 is very small in the term in the effective perturbation Hamiltonian 
[see Equation (3.44)]. 

There is another feature of covariant perturbation theory that may be considered 
a consequence of the four-dimensional integrations in matrix elements. Matrix 

19This can be seen in the phase factor kµxµ = k · r − ωt in the wave function of a propagating 
particle. Replacing ω (= E/�) by  −ω corresponds to a description in which the direction of motion is 
changed unless t → −t . 
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Figure 3.6 Diagrams representing the action of two perturbations in the non-covariant for­
mulation and in the covariant formulation. 

elements in the non-covariant theory yield momentum-conservation δ-functions, 
since the position-space integrals are always of the form 

iκ·r 3 3e d r = (2π) δ(3)(κ ), (3.49) 

[see Equation (2.68)], where δ(3)(κ) = δ(κx)δ(κy)δ(κz), and 

κ = k − k (3.50) 
in out 

is just the difference between the sum of the wave vectors (or momenta) for the 
incoming and outgoing particles involved in a vertex. Momentum conservation 
results because the matrix elements are evaluated from 

∗ Mlk = u Muk d
3 r (non-cov.), (3.51)l 

with the two spatial wave functions being products of (unperturbed) factors 
exp(ik · r). In the covariant theory, the matrix elements involve the space- and 
time-dependent free-particle wave functions (3.25) 

∗ Mlk = ψl Mψk d
4 x (cov.), (3.52) 

with the ψ’s of the form exp(ikµxµ). The integrals then yield the result 

4 4eiκµxµd4 x = (2π) δ(4)(κµ) = (2π) δ(κ0)δ
(3)(κ), (3.53) 
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corresponding to conservation of both momentum and energy at each vertex. This 
then represents a fundamental difference from non-covariant perturbation theory 
where there was not energy conservation at vertices and in intermediate states. 
Consequently, diagrams and factors in amplitudes for processes do not have the 
same precise meaning in the non-covariant and covariant formulations. 

The starting point for all relativistic theories is an Action Principle: 

δ L d4 x = 0, (3.54) 

where L is a scalar Lagrangian density. The Lagrangian is a function of the various 
field components φα(xµ) and their derivatives ∂φα/∂xµ, where the index α refers 
to the various types of particles (photons, electrons, etc.). For the integral (3.54) to 
have a stationary value for independent variations of the field components, the set 
of field equations must hold: 

∂L − 
∂ ∂L = 0. (3.55)

∂φα ∂xµ ∂(∂φα/∂xµ) 

The Lagrangian is constructed to yield the correct equations of motion, including 
the effects of interactions, when substituted into the set of relations (3.55). If only 
electrons, positrons, and photons are involved, L would be of the form 

(3.56)L = LD + LM + LI, 

consisting of a Dirac (electrons and positrons), Maxwell (photons), and interaction 
part. Since the Dirac equation is quantum mechanical, the Lagrangian (3.56) is as 
well, although further steps must be taken to develop the full quantum field theory. 
Since the theory must allow for production and destruction of photons and particles 
(in pairs), it is inherently “many-particle” in nature. That is, the ψ in the Dirac 
Lagrangian is not a one-particle wave function but an operator for the Dirac field. 

The older formulations of relativistic QED, developed around 1930, were from 
a “Hamiltonian” approach with commutation relations introduced for the field 
operators. We now know that this method of field quantization is not very good. 
It is cumbersome and not fully covariant in its formulation. Feynman, Schwinger, 
and Dyson showed around 1950 how to reformulate the subject in a much better 
way. Dyson, in particular, gave a systematic treatment of QED by making the 
appropriate modifications in the non-covariant field theory to make the formulation 
covariant at every stage. In addition to demonstrating the connection with the work 
of Schwinger, Dyson was able to provide a basis for the so-called Feynman rules 
(and Feynman diagrams) as a logical consequence of covariant perturbation the­
ory. Rather than try to reproduce this formulation, which would have to be lengthy, 
we attempt to give a shortcut superficial account that may at least provide some 
understanding of the theory and its applications. 

3.4.2 Photon Interactions with Charges without Spin 

The simplest, relativistic, one-particle wave equation corresponding to the non­
relativistic Schrödinger equation was first written down by Schrödinger himself. 
However, to avoid confusion with the Schrödinger equation, it is referred to as the 
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Klein-Gordon equation, named after others who first considered relativistic wave 
equations. If ψ is a scalar function of only r and t (that is, not describing any 
spin states), a free-particle wave equation could be written as i�∂ψ/∂t = Hψ  with 

2H = (p2 c 2 + m c 4)1/2 as the Hamiltonian, replacing p 2 by the operator −�
2∇2 as 

in the non-relativistic theory. This wave equation with the square root is unwieldy, 
and there is also the problem of the appropriate sign outside the squre root. No one 
has made progress with the equation and, instead, an equation was formed from 
the relativistic relation pµpµ = −m 2 c 2, replacing pµ with −i�∂µ and allowing the 
terms to operate on ψ(r, t). This is what is now known as the Klein-Gordon (KG) 
equation20: 

2(∂µ∂µ − κ )ψ = (�2 − κ2)ψ = 0, (3.57) 

where κ = mc/�. For particles satisfying such one-particle equations, a field theory 
can be formulated to describe many-particle states. If there are several types of such 
particles, characterized by their mass (κ) parameter, the Lagrangian density for the 
scalar field of each type would be of the form21 

2
2 (∂µφ∂µφ + κ2φ ); (3.58)L = LKG = − 1 

by the Lagrange equation (3.55), the field then satisfies a Klein-Gordon equation of 
the form (3.57): 

2(�2 − κ )φ = 0. (3.59) 

The sign and factor in front of the Lagrangian function (3.58) are arbitrary for 
yielding Equation (3.59). However, with this choice the canonical momentum is 

π = ∂L/∂φ̇ = φ̇/c 2 , (3.60) 

and the Hamiltonian 
1 π 2 + 1 2 2H = πφ̇ − L = 2 (∇φ) · (∇φ) + 1 κ φ (3.61)2 2 

is positive definite. 
One problem with the Klein-Gordon equation is that if the probability current 

density is given, as in the non-relativistic Schrödinger theory, by 
∗ ∗ j = (�/2mi)(ψ ∇ψ − ψ∇ψ ), (3.62) 

for the conservation equation 

∂ρ/∂t + ∇ · j = ∂µjµ = 0 (3.63) 

to hold, the probability density must be given by ( ∗ ) 
i� ∗ ∂ψ  ∂ψ  

ρ = 
2 

ψ − ψ . (3.64)
2mc ∂t ∂t  

Although this expression reduces to the correct non-relativistic limit, it is not positive 
definite in general. The theory remained in this stage until 1934 when Pauli and 

20In the various textbooks, the reader will notice sign differences in terms in equations associated 
with the relativistic theory. This has to do with the somewhat arbitrary choice for the “metric.” For 
example, in many texts �2 is meant to designate (1/c2 )∂2/∂t 2 −∇2, which is the same as our ∂µ∂µ but 
with a minus sign. 

21In this function the ∂µ is meant to operate only on the φ to its immediate right. 
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Weisskopf reinterpreted the density ρ of the Klein-Gordon theory in terms of a 
charge density. The formulation of a theory of scalar particles of positive and 
negative charge is conveniently done by introducing a complex scalar field 

φ = 2−1/2(φ(1) + iφ(2)), (3.65) 

where φ(1) and φ(2) are two real scalar fields. They can be written in terms of φ and 
∗ φ as 

φ(1) ∗ = 2−1/2(φ + φ ), 
(3.66) 

φ(2) ∗ = (1/21/2i)(φ − φ ). 

The total Lagrangian L = L(1) + L(2), with L(1) and L(2) of the form (3.58), is 
then, very simply, 

2 ∗ L = −∂µφ ∗ ∂µφ − κ φ φ.  (3.67) 

Here φ ∗ and φ are to be considered as independent fields (instead of φ(1) and φ(2)). 
Both φ and φ ∗ satisfy Equation (3.59), as we see on applying the Lagrange equation 
(3.55) separately for φ and φ ∗ using the Lagrangian (3.67). Further, π = ∂L/∂φ̇ = 

∗ ˙φ̇∗/c2 and π = ∂L/∂φ̇∗ = φ/c 2; the Hamiltonian is 

H = πφ̇ + π ∗ φ̇∗ − L 
(3.68)∗ ∗ ∗ = π π + (∇φ ) · (∇φ) + κ2φ φ.  

We can construct a four-current density of the form 

jµ = const(φ(1)∂µφ
(2) − φ(2)∂µφ

(1)), (3.69) 

and since �2φ(1) = κ2φ(1) and �2φ(2) = κ2φ(2), 

∂µjµ = 0. (3.70) 

The current can be written conveniently in terms of φ and φ ∗ : 

jµ = const φ
∂L − φ ∗ ∂L 

∗ , (3.71)
∂(∂µφ) ∂(∂µφ ) 

∗with, for example, ρ = const(πφ − π ∗ φ ). This gives some indication of how the 
theory is applied to describe scalar particles of equal and opposite sign. 

This theory, with the Lagrangian (3.67), can be used as a starting point for the 
description of the interaction of charged pions (π+, π−) with photons. From the 
free-particle Lagrangian (3.67), the interaction Lagrangian can be obtained by re­
placing ∂µ with ∂µ − (iq/�c)Aµ: 

∗
φ − iq ∗ LKG + LI = −  ∂µφ − iq 

Aµφ ∂µ Aµφ − κ2φ φ.  (3.72)
�c �c 

The interaction Lagrangian is then (see, also, Footnote 21) ( )2
iq ∗ ∗ ∗ LI = (φ∂µφ − φ ∂µφ)Aµ + 

q 
φ φAµAµ. (3.73)

�c �c 
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To the Lagrangian (3.72) should be added that for a pure photon field. This is 
usually referred to as the Maxwell Lagrangian (LM) and a convenient form has been 
introduced by Fermi22: 

1 LM = −  FµνFµν − 
1 

(∂µAµ)
2 

16π 8π 
(3.74)

1 1 2= −  (∂µAν − ∂νAµ)(∂µAν − ∂νAµ) − (∂µAµ) . 
16π 8π 

The total Lagrangian for charged spinless bosons interacting with photons is then 

L = LKG + LM + LI. (3.75) 

The coupling terms in the interaction Lagrangian (3.73) are similar in form to the 
forms (3.20) and (3.21) that arise in the non-relativistic theory. And, of course, the 
diagrams that are introduced as a guide in a perturbation-theory description look 
the same. Because the non-relativistic theory has fundamental differences from 
the covariant formulation, we have not previously referred to them as “Feynman 
diagrams,” believing that the designation should be reserved for the covariant the­
ory. Although we cannot give a complete description of this theory, we can infer 
something about it in a simple way, and the form (3.73) can be employed for this 
purpose. 

The first term on the right in the Lagrangian (3.73) has a coupling strength linear 
in the charge and is associated with, say, the interaction of two charged meson fields 
with a photon field. It corresponds to a vertex with two meson lines and one photon 
line like that in Figure 3.2 or 3.3. All lines can be incoming or outgoing. If one 
meson (field) is incoming and the other is outgoing, the matrix element associated 
with the interaction or vertex is of the form 

M
(q) ∝ qεµ(kaµ + kbµ), (3.76)ba 

where εµ is the photon polarization four-vector arising from the photon field Aµ ∝ 
εµ exp(±ikµxµ), where the + (−) would be associated with an incoming (outgoing) 
photon, and kaµ and kbµ are the wave vectors for the incoming and outgoing mesons. 
Since the meson fields are of the form exp(ikaµxµ) and exp(ikbµxµ), the matrix 
element is a result of the integration 

M
(q) 

d4 x ei(kaµ −kbµ ±kµ)xµ 
ba ∝ qεµ(kaµ + kbµ) 

(3.77) 

= (2π)4qεµ(kaµ + kbµ)δ
(4)(kaµ − kbµ ± kµ). 

The δ-function is simply a manifestation of energy and momentum conservation at 
the vertex. 

22We shall not employ the specific form for LM given here, but quote the result for completeness (see 
references at end of chapter). It is expressed here in c.g.s. or Gaussian units, but most books on QED use 
the Heaviside-Lorentz units, which have the advantage of eliminating factors of (4π)−1 in equations for 
electromagnetic phenomena. In these (HL) units, however, the electronic charge has a different value; 
for example, the fine-structure constant is given by (e2/4π �c)HL = α " 1/137. The reader should be 
aware of the use of these different unit systems. 
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The second term in the interaction Lagrangian (3.73) is second order in the charge 
and involves two meson fields and two photon fields (see Figure 3.4). It yields a 
matrix element of the form 

M
(q2 )

d4 x ei(kaµ −kbµ ±k1µ ±k2µ)xµ∝ q 2ε1µε2µba 
(3.78) 

2= (2π)4 q ε1µε2µδ
(4)(kaµ − kbµ ± k1µ ± k2µ), 

where the + (−) sign on the photon four-momenta is associated with incoming 
(outgoing) states. 

The form of the couplings can be obtained in another way by making the replace­
ment ∂µ → ∂µ − (iq/�c)Aµ directly in the Klein-Gordon equation (∂µ∂µ −κ2)φ = 
0. The “perturbed” equation is then 

2(�2 − κ )φ = (iq/�c)[Aµ∂µφ + ∂µ(Aµφ)] + (q/�c)2AµAµφ.  (3.79) 

The right-hand side of this equation represents source terms S(q) and S(q2 ) and is 
linear in the charged boson field φ. Transition matrix elements would be evaluated 
from integrals of the form φ ∗ Sad

4 x. The q-term of the source (3.79), with ∂µb 
operating on φa and Aµ, yields 

M
(q) 4 
ba ∝ qεµ(kaµ + kbµ ± kµ) d x ei(−kbµ +kaµ ±kµ) 

(3.80) 

= (2π)4qεµ(kaµ + kbµ) δ
(4)(kaµ − kbµ ± kµ), 

identical to the result (3.77). In a similar manner, the q 2-term (3.78) is again 
obtained. 

The other fundamental type of quantity in the amplitude for a process is the 
Feynman propagator PI . Let us see23 if the form for this factor can be inferred 
from simple arguments. We consider again the effects of the action of the two 
perturbations V and U in a process involving a scalar charged particle (see Figure 3.6 
and Section 4.1). As we have already seen, in a covariant formulation, the two 
diagrams of the non-covariant theory are replaced by one. The essential form of 
the Feynman propagator for scalar particles can be obtained if we start from the 
non-covariant amplitude in terms of energy denominators and try to inject some 
simple ideas of the modern theory. One is a more suitable covariant definition of 
interaction matrix elements in terms of “entry” and “exit” states: 〈exit|M|entry〉. 
With this description, we follow the “world line” of a particle even it goes backward 
in time. For a process involving, say, a π−, the right-hand, non-covariant diagram 
in Figure 3.6 would correspond to the initial production (by U ) of a  π+, π  − pair 
with the π+ then annihilating (V ) with the incident π − . The diagram on its left 
would be associated with an amplitude 

A1 = UfIPIVI 0, (3.81) 

23Here we are relying heavily on R. P. Feynman, Theory of Fundamental Processes, New York: 
W. A. Benjamin, Inc., 1962. 
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with PI = (E0 − EI )
−1. For the diagram with pair production (or with the π − 

going backward in time), taking the exit-entry definition of matrix elements, the 
amplitude is 

A2 = VI 0PI 
′UfI , (3.82) 

where P ′ = [E0 − (EI + E0 + Ef )]−1 = −(E0 + EI )
−1, since E0 = Ef . Then I 

A1 + A2 = UfI  (PI + P ′ I )VI 0, (3.83) 

where 

PI + P ′ I = 2EI /(E
2 
0 − E2 

I ). (3.84) 

The result (3.84) can be cast in another form that exhibits its covariant character. In 
attempting to obtain the form for the Feynman propagator, we should remember that 
the ultimate expression should be characteristic of the scalar nature of the particle 
(that is, not of its interactions) and be determined by, for example, its free-particle 
wave equation. Although we are considering electromagnetic phenomena, we can 
consider some special process convenient for the determination of the propagator 
for the intermediate state. We can, for example, consider the interaction V to be 
some (external) scattering potential (say, produced by some very heavy particle) 
such that the incident π − suffers a change in the direction of its momentum but 
not in its magnitude. The interaction U can be a photon-emission vertex, and let 
us assume that the energies of the photons are infinitesimally small; then, even for 
the non-covariant diagram on the right in Figure 3.6, the photon momentum and 
energy in the intermediate (and final) state are negligible. Dropping, for simplicity, 
the subscript I for the intermediate state, we have EI 

2/c2 = −p 2 + p2, where 
2 2 2 p 2 ≡ pµpµ. Further, E0

2/c2 = m c 2 + p = m c 2 + p2. Thus we obtain24 
0 

2 2 2 2(E0 − EI )/c
2 = p 2 + m c (p2 ≡ pµpµ). (3.85) 

We see that the resulting expression is an invariant. Note also that, although 
2 pµ = (iE/c, p) for the intermediate state, p 2 = pµpµ �= −m 2 c . The other 

factor (2EI ) in the propagator (3.84) is of less significance but has some meaning 
in terms of the transition to the covariant formulation. In the covariant theory, a 
different normalization convention is more appropriate. The conservation of prob­
ability equation (3.70) requires that jµ be a four-vector function of xµ, and this is 
accomplished by adopting a normalization convention25 |u|2d3r = 2E (rather 
than unity) for free-particle states. This makes the probability density ρ [see also 
Equation (3.64)] the 0-component of a four-vector. Since uI always appears twice 
in the total amplitude, this explains the occurrence of the factor 2EI . The essential 
factor in the covariant Feynman propagator for scalar particles is then 

2 2 −1PF (scalar) = (p2 + m c ) . (3.86) 

2 2)−124Often in the literature and in texts the propagator for scalar particles is given as (p2 − m c . 
The sign difference has to do simply with the convention (metric) chosen for the four-dimensional scalar 
product. Again, the reader will have to be aware of these various sign conventions that are employed. 
Also, units with c (and �) equal to unity are almost always used in this subject. 

25Taking 2E rather than E just happens to be more convenient. 
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An alternative simplified approach26 to obtaining PF is illuminating in a different 
way. The coupled field equation (3.79) can be expressed in the form 

(�2 − κ2)φ = −S, (3.87) 

where the right-hand side can be considered a source term. It is written with a minus 
sign for convenience [compare Equation (2.71)]. Both φ and S are functions of xµ 

and their Fourier transforms can be introduced. With f standing for either φ or S, 

4f (xµ) = f (kµ)e
ikνxν d k, (3.88) 

f (xµ)e
−ikνxν d4f (kµ) = (2π)−4 x. (3.89) 

Substituting into the equation (3.87), we obtain the inhomogeneous solution (k2 = 
kµkµ) 

2 −1 4φ(xµ) = (k2 + κ ) S(kµ)e
ikνxν d k′ , (3.90) 

which yields the factor (k2 + κ2)−1 as in the result (3.86). The spacetime form of 
the propagator can be obtained by writing S(kµ) in the terms of S(xµ) by means of 
the relation (3.89). We then have 

φ(xµ) = D(xµ − xµ) S(xµ) d
4 x , (3.91) 

where ∫ ikµ(xµ−xµ) 

D(xµ − xµ) =′ e d4k 
(3.92)

k2 + κ2 (2π)4 

is the propagator in the position representation. The form (3.91) exhibits how φ 
depends on S at other spacetime points. 

3.4.3 Spin- 1 Interactions2 

The general theory of the interactions of relativistic spin- 1 
2 particles with the elec­

tromagnetic field (photons) is what is commonly known as quantum electrodynam­
ics. The spin- 1 

2 case is much more important than that for spin-0 because nature’s 
smallest-mass charged particles, electrons and positrons, are of this type. Unfor­
tunately, the theory is, on the whole, more complicated than that for spin-0 which 
we have just outlined. Thus, in imposing brevity, we shall have to be quite super­
ficial and cannot really formulate the subject to provide the foundation necessary 
to perform extensive calculations. Nevertheless, certain basic characteristics of the 
theory can be seen without getting deeply into a more substantive exposition. 

Basically, the content of the theory is determined by the form of the one-particle 
relativistic wave equation for the electron and positron, that is, the Dirac equation. 
In seeking this equation, Dirac was guided very much by a feeling that it should 

26We are, again, relying heavily on R. P. Feynman, Theory of Fundamental Processes, New York: 
W. A. Benjamin, Inc., 1962. 
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have a form similar to the general time-dependent Schrödinger equation (3.1). Like 
the non-relativistic equation—and not like the Klein-Gordon equation—it should 
be first-order in the time derivative ∂t = ∂/∂t . But, since covariant equations have 
spatial derivatives (∂j = ∂/∂xj ; j = 1, 2, 3) appearing in the same manner as time 
derivatives, it would seem that only the first derivatives ∂j might be expected. The 
simplest such equation of this form is 

(1/c)∂tψ + αj∂jψ + iκβψ = 0; (3.93) 

here αj and β are numerical coefficients and κ (= mc/�) is the basic inverse-length 
parameter characteristic of the particle whose state is described by ψ(r, t). The 
factor 1/c in the first term is natural in order to give the same dimensions as the 
second and third terms, if β and the three αj are to be dimensionless. The factor i in 
the third term is arbitrary (but convenient) and could, alternatively, be incorporated 
into β. 

Equation (3.93) is the free-particle Dirac equation, and it remains to determine 
the nature of β and the αj . The wave function ψ is, moreover, allowed to have more 
than one component in order, for example, to describe particle spin; that is,   

ψ1   
ψ =  ψ2  . (3.94) 

. . . 

In fact, the number of components has to be four if (for spin- 1 
2 ) two spin substates 

(sz = ±1/2) are to be allowed as well as the two types of charge (e ±) or energy or 
antiparticle (hole) states in the theory. the four components are also called for by the 
resulting requirements on the coefficients β and αj ; these have to be matrices and 
at least 4 × 4. The form (3.93) chosen for the relativistic wave equation inherently 
implies an application to spin- 1 

2 particles with finite mass. The matrices β and αj are 
determined by requiring that ψ also satisfy the Klein-Gordon equation (3.57), which 
is essentially a consequence of the relativistic relation pµpµ = −m 2 c 2 required also 
for free particles of spin- 1 

2 . An equation of this type can be obtained if we operate 
with (1/c)∂t −αl∂l −iκβ from the left on the Dirac equation (3.93). The coefficients 
and signs in this operator are fixed by the requirement that there be no terms in ∂t and 
∂t∂j . Comparison with Equation (3.57) then yields the following requirements27 on 
β and the αj : 

1 
2 (αjαl + αlαj ) = δjl, 

βαj + αjβ = 0, (3.95) 

2β = I (unit matrix Ijl  = δjl). 

It is possible to obtain solutions to these equations for β and the αj in terms of the 
2×2 Pauli spin matrices and the 2×2 identity matrix. However, instead of employing 
such explicit expressions, it is better not to indicate a particular representation, and 

27The first of the relations (3.95), obtained through consideration of the term in ∂j ∂l , results in 
writing the coefficient of ∂j ∂l (= ∂l∂j ) in the most general form to include all terms in the dummy 
indices j and l. 
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instead to regard the commutation relations (3.95) as fundamental and make use 
of identities derived directly from them. The β and αj must be, in general, non-
commuting operators or matrices as we see, in particular, from the second of the 
identities (3.95). Rather than employing these identities, it is, in fact, preferable to 
cast them—and the Dirac equation (3.93)—into four-dimensional covariant form; 
this is easily done. 

Because of the last of the identities (3.95), if we operate from the left on the Dirac 
equation with β, we eliminate the matrix as a factor in the third term. The equation 
is then 

β(1/c)∂tψ + βαj∂jψ + iκψ = 0, (3.96) 

and, in terms of xµ = (ict, x1, x2, x3) and ∂µ, we see that the equation simplifies if 
we define 

γ0 = β, 
(3.97) 

γj = iαjβ = −iβαj , 

and γµ = (γ0, γ1, γ2, γ3). The equation (3.96) then becomes 

(γµ∂µ + κ)ψ  = 0, (3.98) 

or, in terms of pµ = −i�∂µ, 

( /p − imc)ψ = 0, (3.99) 

where 

p/ = γµpµ. (3.100) 

The covariant form (3.99) of the Dirac equation28 is extremely simple. Moreover, 
the new Dirac matrices (3.97) satisfy the very compact identity 

γµγν + γνγµ = 2δµν, (3.101) 

which replaces the three identities (3.95). The identity (3.101) is easily obtained by 
operating on the first of the relations (3.95) from the right and left with β. 

The notation p/, read “p dagger” or “p slash,” was introduced by Feynman. For 
any four-vector, we define 

/B = γµBµ. (3.102) 

With Aµ and Bµ being four-vectors, the identity (3.101) yields the useful relation 

A/ B //B + /A = 2AµBµ = 2A · B. (3.103) 

There are many other identities involving Dirac matrices, and often the relation 
(3.103) is employed in proving the more complicated ones. 

28The equation appears in this form in some textbooks, but more often it is exhibited without the 
factor i multiplying mc. The difference has to do with the convention chosen for the metric (see, also, 
Footnote 24), which we avoid throughout by taking imaginary time components of four-vectors, etc. 
Our subsequent expressions, such as the Feynman propagator for spin- 1 

2 particles, will, as a result of our 
notation, also contain the factor i. 
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To include the effects of electromagnetic interactions, the replacement ∂µ → 
∂µ − (iq/�c)Aµ or 

p/ → p/ − (q/c) /A (3.104) 

can be made in the free-particle Dirac equation (3.99). The equation is then 

p − imc)ψ = (q/c) /( / Aψ = (q/c)γµAµψ. (3.105) 

Immediately we see two important characteristics of the covariant theory of 
electron-photon interactions. The source or coupling is of the γµ type—one of 
the fundamental kinds of coupling in covariant perturbation theory. In covariant 
QED for spin- 1 particles, there is just this one type of coupling. This is to be 2 
compared with the non-relativistic formulation, which must include three types of 
coupling [see Equations (3.12) and (3.13) and Figures 3.2 and 3.4] associated with 
the A · p, A · A, and µ · curl A terms in the interaction Hamiltonian. The single 
coupling term in the covariant theory accounts for all of these interaction terms in 
the non-relativistic theory (even the magnetic moment coupling!). As a result, the 
number of diagrams representing perturbations in a covariant formulation is signif­
icantly reduced for the spin- 1 

2 case. The only vertex is one involving two (charged) 
particle lines and one photon line—as in Figure 3.2. As we have seen, basically the 
occurrence of only this type of coupling is a result of the inherent simplicity of the 
Dirac equation, being linear in the momentum (or gradient) operator. 

The other important factor in covariant perturbation theory that can be inferred 
from Equation (3.105) is the Feynman propagator for spin- 1 

2 particles. Comparison 
of Equation (3.105) with the corresponding field-source equation (3.87) for scalar 
particles suggests a propagator of the form 

2 ) = ( /PF (spin- 1 p − imc)−1 . (3.106) 

Making use of the identity (3.103), this can also be written 

1 p/ + imc p/ + imc p/ + imc · = = 
p/ − imc p/ + imc p/2 + m2c2 p2 + m2c2 

, (3.107) 

where, as in the scalar formulas, p 2 = pµpµ. Again, the denominator is not zero 
2because p 2 �= −m c 2 in intermediate states. 

For both the treatment of scalar (spin-0) QED in Section 4.2 and of spinor 
(spin- 1 

2 ) QED in Section 4.3, we have given only a sketchy outline. Not only are the 
derivations not rigorous, for example, those to obtain PF (spin-0) and PF (spin- 1 

2 ), 
but we have not derived the multiplying constants. This is not important; there are 
other ways of obtaining the factors. For example, we could compute some formula 
for which there is also a classical or non-relativistic derivation and compare the 
results to determine the factor. Of course, there is a detailed systematic method for 
obtaining the results and prescriptions in covariant perturbation theory. This takes 
much more time. However, we have given a fairly complete and self-contained 
treatment of the non-relativistic theory. Perhaps a comparison of this formulation 
with our more sketchy outline of the relativistic theory will help in understanding 
the latter. We shall be making some applications of the results derived here and that 
should also help in the understanding. 



∣ ∣ ∣ ∏ ∏ 

∫ 

( ) ( ) ( ) ∑ ∑ ∑ ∑ ∑ ∑ 

107 QUANTUM ELECTRODYNAMICS 

3.4.4 Invariant Transition Rate 

Although a very general result, the Fermi Golden Rule formula (3.43) is inappro­
priate in that form for applications involving covariant perturbation theory. We 
can rewrite it for this purpose, however, with the resulting expression containing 
factors that are manifestly Lorentz invariant. The most important feature of the rel­
ativistic form of the transition rate formula is the invariant nature of the amplitude 
for the process. To distinguish it from the non-covariant amplitude (Mf 0) we use  
the notation Mf 0 for the quantity. All of the physics of a process is contained in 
the corresponding Mf 0; the rest of the factors in the transition rate formula are 
kinematic in nature. 

One characteristic of a relativistic formulation that is different concerns the nor­
malization convention for free-particle wave functions. It is no longer appropriate29 

to take |u|2 = 1; instead we adopt 

|u|2 = 2E (3.108) 

(some textbooks take 2E/m or E/m). This type of normalization results naturally 
from a relativistic formulation, as can be seen from formula (3.64), for example, 
and has a simple explanantion or interpretation. To provide an invariant probabil­
ity (volume integral of |u|2), Lorentz-Fitzgerald contraction along the direction of 
motion then compensates the factor E. Thus, with our modified normalization we 
make the replacement ∣ ∣2 ∣ ∣2 Mf 0 ∣Mf 0 = ( )( ) ; (3.109) 

2E 2E 
(f ) (0) 

here the products are over the 2E factors for all the incoming (0) and outgoing (f ) 
particles. There would also be normalization factors associated with intermediate 
states, but these can be assumed to be contained within Mf 0. These factors could 
be incorporated within the Feynman propagators, for example, since for every pair 
of intermediate states, there is a PF . 

There are two other modifications in the non-covariant formula (3.43) that are to 
be made. The transition matrix element Mf 0 always yields a (total) momentum-
conservation δ-function even when multiple perturbations are involved, arising from 

ik·r d3an integral of the type e r = (2π)3δ(3)(k), where k is the total momentum 
change. We extract this ubiquitous factor from Mf 0 and combine it with the energy-
conservation δ-function: 

(2π)3δ(3) p − p δ E − E = (2π)3δ(4) pµ − pµ , (3.110) 
(f ) (0) (f ) (0) (f ) (0) 

with the four-dimensional covariant δ-function now expressing energy and momen­
tum conservation. 

29In this subsection, we simplify the algebra by setting c = 1 and � = 1; this provides an easier 
comparison with treatments in modern textbooks. We also take a unit normalization volume. 
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The second additional modification of the non-covariant transition rate formula 
is, like the factor (3.110), essentially kinematic. It concerns the implied factor, 
eventually integrated, for the differential number of states30 for the (N ) outgoing 
particles: 

N 
dNf = d3p/(2π)3 . (3.111) 

(f ) 

Instead of counting the states of N particles, momentum conservation could be 
applied and N − 1 factors of d3p/(2π)3 could be taken, and the momentum-space 
δ-function [times (2π)3] could be omitted. However, it is better to express results 
in this more symmetric way. It allows the employment of the covariant δ-function 
(3.110) and also allows the N factors 2E in the denominator of Equation (3.109) 
to be combined with the d3p in product (3.111). This ratio d3p/E is an invariant 
[see Equation (1.47)]; it can also be written in another form. With p 2 ≡ pµpµ = 

2p2 − E2 (= inv.), we can write p 2 + m = (Ep + E)(Ep − E), where Ep is the 
2positive square root of p2 + m . Then, if it is understood that only the positive 

values of E will be included in integrations, a factor δ(E − Ep)dE can be inserted 
to multiply each d3p. But, with the implied inclusion of only positive energies, 

2δ(E − Ep) = 2Eδ(p 2 + m ). Then 

3 2 4d p/2E = δ(p2 + m ) d p, (3.112) 

which is manifestly invariant. 
The transition rate can now be expressed in the desired covariant form: 

∣ ∣2 
∆W 

∆t 
= (2π)4 

∣Mf 0
∣ ∏ 

(2E) 
ρ,  (3.113) 

(0) 

where 

ρ = 
( ∏ 

(f ) 

2πδ(p  2 + m 2) 
d4 p 

(2π)4 

) 
δ(4) 
( ∑ 

(f ) 

pµ − 
∑ 

(0) 

pµ 

) 
(3.114) 

is the invariant phase space density. The factors of 2E for the incident particles in the 
denominator of Equation (3.113) are kinematic in nature. An important feature of 
this result is, as already emphasized, the invariant nature of the matrix element Mf 0. 
In fact, in some applications, it can even be possible to make an educated guess as 
to its form from considerations of invariance. There are many applications of the 
transition rate formula, with the physics of particular processes being contained 
in Mf 0. In particular, it is employed to compute lifetimes and cross sections for 
processes. 

30If the particles have spin and we are not interested in their polarization states, there will also be a 
sum over these spin substates. Also, if, as is usually the case in the application considered, the incident 
particles are unpolarized, there would be an average over these polarizations. For simplicity in the 
notation, we are omitting spin summations and averages from the transition rate formula. 
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3.5 SOFT-PHOTON EMISSION 

When the photon energy and momentum are small, that is, when the photon is 
“soft,” some very general and useful results can be derived. In this section, we 
give quantum-mechanical derivations of certain formulas applicable in the non­
relativistic limit and in the general case. All of the expressions are valid only in the 
Born approximation, and they will be compared with corresponding results derived 
through classical electrodynamics. The formulas are identical to the classical ones, 
but it turns out that the non-relativistic expressions derived quantum mechanically 
have a more general validity, being applicable even away from the soft-photon limit. 

3.5.1 Non-Relativistic Limit 

Consider the motion of a charge in the presence of some perturbation V that does 
not involve the spin of the particle.31 The charge also feels a photon-emission per­
turbation, the lowest-order type being the interaction Hamiltonian (3.20) designated 
H ′ . The charge always experiences the perturbation Hq

′ ; that is, it is always try-q 
ing to produce photons. However, as mentioned earlier in this chapter, an isolated 
charge without internal structure cannot do this because of energy conservation. The 
combined action of the two perturbations V and Hq 

′ does allow the phenomenon of 
photon emission to take place. The total perturbation Hamiltonian is then 

H ′ = V + Hq, (3.115) 

and this perturbation can account for a variety of processes. The non-electromag-
netic part V could represent various mechanisms. For example, it could be some 
scattering potential, or it could even be some interaction that causes the creation 
of a charge as in β-decay. In the latter process, a charge of opposite sign must 
be created (as in neutron decay: n → p + e − + ve), or the charge on a proton 
must be transferred to a (positive) electron as in positron-producing β-decay. It 
is always the electromagnetic interactions with the e + or e − that are important for 
photon production because of their small mass. Further, regarding the application 
in β-decay, the e − or e + involved must be non-relativistic for the applicability of 
the formulation in this subsection. There are such β-decays, an example being the 
decay of tritium (H3), for which the maximum e − energy is about 18.7 keV. 

We are interested in this section in evaluating the probability that a soft photon of 
energy within � dω  accompanies some radiationless process, the photon emission 
being just a small perturbation on the rest of the overall process. Both interactions 
V and H ′ are treated as perturbations; that is, in lowest order, they are considered to q 
“act once.” This is always a valid assumption for the electromagnetic perturbation 

31We ignore spin to simplify the formulation. This assumption is really not necessary, and, if spin 
interactions are involved, there is no difficulty in modifying the equations by adding the spin coordinate 
to a total description of the particle state: ψtot = ψ(r, t)ψspin. If there are no spin interactions, the 
orthogonality of the spin eigenfunctions would simply tell us that the spin coordinate remains unchanged 
in the overall process and can be ignored. In the following subsection (5.2), we consider a problem 
where spin plays a major role. 
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I I ′ 

(1) (2) 

Figure 3.7 Diagrams representing the combined action of two perturbations, one being some 
coupling or perturbation V and the second representing an electromagnetic cou­
pling, in this case associated with the production of an outgoing photon. 

H ′ , since the interactions is fundamentally weak. The smallness of the fine structure q 
constant guarantees this: α ≈ 1/137. Treating V as a perturbation that acts once is a 
more restricting assumption that generally confines the application to the domain of 
the Born approximation. The Born approximation would require the energy of the 
charge to be sufficiently large if, for example, V is a Coulomb scattering potential. 
Specifically, in Coulomb scattering where the charges are ze and z ′ e, the criterion 
for Born approximation would be simply32 zz e 2/λ � mv 2, where λ = �/mv is 
the de Broglie wavelength. The requirement is then β = v/c � zz ′ e 2/�c = zz ′α 
or that the particle energy is E � (zz ′)2Ry. 

With both V and H ′ acting once, the process can be represented in terms of the q 
diagrams in Figure 3.7. In our non-covariant formulation, there would also be pair 
production-annihilation diagrams (see Figure 3.6), but these give a negligible contri­
bution in the non-relativistic limit (see previous section). The effective perturbation 
Hamiltonian matrix element for the process is [see Equation (3.44)] 

∑ f |H ′ |I 〈I |V |0〉 ∑ f |V |I ′ I ′|H ′ |0 q
Hf 0 = q + . (3.116) 

E0 − EI 
I ′ 

E0 − EI ′ 
I 

In the evaluation of matrix elements, let us, for convenience, set the normalization 
volume L3 equal to unity in all subsequent formulae; factors involving L always 
cancel in final expressions for probabilities, cross sections, etc. For outgoing pho­

32This is a requirement that the characteristic scattering potential is small compared with the particle 
kinetic energy. The probability current associated with the amplitude of the scattered wave would, as a 
result, be small compared with that of the wave incident on the scattering center. The Born approximation 
is essentially that of a perturbation or iteration procedure. 
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tons (wave vector k and polarization ε), the matrix element associated with the 
photon-emission vertex (between plane-wave states a and b) will be given by [see 
Equation (3.20)] 

b|H ′ |a = (2π�
3/ω)1/2(q/m)(ε · ka) ei(ka −kb −k)·r d3 r, (3.117) q 

where ka and kb are the wave vectors of the charged particle. The integral is just 
a three-dimensional, momentum-conservation, Dirac δ-function, which can also be 
expressed as a Kronecker δ: 

i(ka −kb −k)·r d3 r = (2π)3δ(3)(kae − kb − k) = δka ,kb +k . (3.118) 

The Dirac or Kronecker δ-functions are eventually used in the intermediate-state 
summations in Equation (3.116). Leaving out the trivial δ-function factor, the matrix 
element (3.117) can be written very simply: 

b|H ′ |a = (2π�
3/ω)1/2q(ε · va), (3.119) q 

where va is the velocity of the charge in state a. The matrix element of V does not 
involve the photon and is only a function of the charge wave vectors: 

〈d|V |c〉 ≡ Vdc = Vdc(kd , kc). (3.120) 

Further, we allow the source of the potential V to have “internal structure” such that 
it can possess an excitation energy χ . For example, it could be an atom or it could 
be a nucleus when the potential V causing a β-decay. 

The energies of the various states are given by 

E0 = (�k0)
2/2m + χ0, 

Ef = (�kf )
2/2m + �ck + χf , 

(3.121) 
EI = (�kI )

2/2m + χf , 

EI ′ = (�kI ′)
2/2m + �ck. 

Since E0 = Ef , there is also the relation 

(�k0)
2/2m + χ0 = (�kf )

2/2m + �ck + χf . (3.122) 

Moreover, because of momentum conservation at the photon-emission vertices, 

kI = kf + k, kI ′ = k0 − k. (3.123) 

Making use of the identities (3.122) and (3.123), we obtain the energy denominators 
2E0 − EI = �ck − �

2k · kf /m − �
2k /2m, 

(3.124)
2E0 − EI ′ = −�ck + �

2k · k0/m − �
2k /2m. 

We now make the assumption that the photon energy (�ck) is of the order of or less 
than that of the charged particle [say, Eα = (�kα)

2/2m]; then, [see also Equation 
(3.46)] 

k/kα � �kα/mc = vα/c = βα � 1. (3.125) 
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In other words, for non-relativistic particles, when the photon and particle energies 
are comparable, the photon momentum is small. Under these conditions, the photons 
are always soft—at least as regards their momenta. Also, as we see easily, the three 
terms on the right-hand side of each of the Equations (3.124) are successively smaller 
in the ratio βα . 

There are two especially simple and important applications of the above results. 
The first is to the problem of particle production such as in β-decay. We ask for 
the probability that a photon (energy within �dω) accompanies the production of 
a particle of given velocity βf c. Except for summing over photon states dN = 
d3k/(2π)3, this differential probability is given by, in Born approximation, ∣ ∣2 ∣ 

H ′ ∣ ∣ f 0 
dw = ∣ ∣2 dN. (3.126) ∣Vf 0 

In this process, there is only diagram (1) of Figure 3.7, and the energy denominator 
is given by �ck in good approximation. Further, since ε ·k = 0, by the first equation 
(3.124), ε · kI = ε · kf , and the photon-emission matrix element is given by 

f |H ′ |I = (2π�/ω)1/2q(ε · vf ). (3.127)q

Because of the inequality (3.125) and the equation (3.120), the matrix element 
involving V is given by 

〈I |V |0〉 = VI0 ≈ Vf 0. (3.128) 

Thus, 

dw = 

∣ ∣ 〈 f |H ′ 
q |I 
〉 ∣ ∣ 2 

(�ck)2 
dN,  (3.129) 

with 
2dN = (2π)−3k dk  dΩ,  (3.130) 

in terms of the solid angle element Ω for the outgoing photon. In terms of ω (= kc) 
and z = q/e, we have, very simply, 

2dw = z 2(α/4π )(dω/ω)(ε · βf )
2dΩ,  (3.131) 

where α is the fine-structure constant. 
The expression (3.131) is the result of a quantum-mechanical derivation of a 

formula identical to the semi-classical expression (2.142). However, now we see that 
the expression is not restricted to the soft-photon limit when the Born approximation 
holds. We can also sum over polarizations for the outgoing photon. The two possible 
(linear) polarization states are perpendicular to k. With k and β defining a plane, 
one of these polarization reference directions (ε1) can be taken perpendicular to this 
plane. The other polarization unit vector (ε2) is in the plane and perpendicular to 
k and gives the whole contribution (the reader can construct a simple diagram to 
indicate this). Thus, 

(ε · βf )
2 = (ε2 · βf )

2 = β2 sin2 θ,  (3.132)f 
pol 
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where θ is the angle between k and βf . Summed over polarizations, the angular 
distributions of the photon emission is then 

dw = z 2(α/4π2)(dω/ω)β2 
f sin2 θ dΩ.  (3.133) 

Finally, integrating over angles for the outgoing photon, 

dw = z 2(2α/3π)β2 
f dω/ω. (3.134) 

The three formulas (3.131), (3.133), and (3.134) exhibit the characteristic “infrared 
divergence” factor dω/ω, indicating an infinite probability of emitting infinitesi­
mally soft photons. However, we emphasize again that, in the Born approximation, 
these non-relativistic expressions are not restricted to the soft-photon limit. That 
is, �ω does not have to be small compared with the charged-particle kinetic energy. 
The general nature of these formulas has not been emphasized in the literature. 

Let us turn to another important application of the above general formulation. This 
is to the problem of photon emission (bremsstrahlung) in the scattering of a charged 
particle. We need not specify the nature of the scattering potential, although the 
important application would be for Coulomb scattering (the photon emission would 
then be Coulomb bremsstrahlung). The Born approximation is assumed, however, 
since the scattering potential is treated as a perturbation that acts only once. Both 
diagrams in Figure 3.7 give contributions to the amplitude for the process, so that 

Hf 0 = H1 
′ + H2, (3.135) 

and the energy denominators are given by 

E0 − EI ≈ �ck, 
(3.136) 

E0 − EI ′ ≈ −�ck. 

The matrix elements of the electromagnetic perturbation (photon emission) have the 
form (3.127); that is, f |H ′ |I ∝ ε ·vf and I ′|H ′ |0 ∝ ε ·v0. Both matrix elements q q 
of the scattering potential can be approximated by the (radiationless) expressions 
(3.128), because of the inequality (3.125). Because the two energy denominators 
(3.136) are equal but opposite in sign, we have the important result 

Hf 
′ 

0 ∝ ε · (vf − v0) = ε · ∆v. (3.137) 

The formulas for the photon-emission probabilities are then the same as the results 
(3.131), (3.133), and (3.134) with βf replaced by ∆β. They are again identical 
to the semi-classical expressions (2.142) and (2.143). However, we now see that, 
basically because of the inequality (3.125), they are not restricted to the soft-photon 
limit—at least when the Born approximation holds. We return to make use of these 
formulas when we consider the general bremsstrahlung process in a later chapter. 

3.5.2 Emission from Spin Transitions 

Phenomena having to do with a particle’s intrinsic magnetic moment associated 
with its spin have only a limited classical analog. This intrinsic moment is without 
spatial extent in a quantum-mechanical formulation, and the special case of spin- 1 

is particularly interesting and unique. The effects associated with photon coupling 
2 
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to this moment are small, especially in the soft-photon limit. It is well to demon­
strate this, if only as an illustration of the general theory developed in this chapter. 
Interest in the problem should be more than academic, however; it is important to 
demonstrate the magnitude of the effects in comparison with those involving photon 
interactions with particle “orbital” motion (interaction with the charge). There is, 
in fact, a particle in nature that has a magnetic moment but no charge. The neutron 
is electrically neutral but has a magnetic moment of magnitude33 µn = −1.913µM , 
where µM = e�/2Mpc is the nuclear Bohr magneton. The neutron moment—as 
well as most of the proton’s moment—can be thought to be a result of the cloud of 
virtual pions that is associated with the nucleon. To regard the neutron’s moment as 
point-like and “rigid” is thus an approximation, but to do so using the experimental 
magentic moment should take into account the virtual pion field. The approximation 
can be expected to be valid for photon energies much less than the pion rest energy 
(∼ 100 MeV); this is in the non-relativistic domain for neutron motion. The other 
relevant application for spin- 1 

2 particles is to the electron, but photon interactions 
with that particle’s charge are much greater. 

For particles of spin- 1 
2 , the spin angular momentum is given by J spin = �s with 

s = 1 σ , σ being the set of 2 × 2 Pauli spin matrices: σ = (σx, σy, σz). The spin 2 
wave function has two components representing the amplitudes for the two possible 
values for the spin component in some specified direction. In terms of its spin 
magnitude µ0, the spin magnetic moment is given by 

µs = µ0σ , (3.138) 

and in the (σ 2, σz) representation where the z-direction is chosen to describe one 
component of σ , the three Pauli matrices are (see any book on quantum mechanics) 

0 1  0 −i 1 0 
σx = 

1 0  
, σy = 

i 0 
, σz = 

0 −1 
. (3.139) 

The matrix σz is diagonal and the eigenvalues are ±1. That is, the two eigenfunctions 
are 

1 0 
Λ+ = 

0 
, Λ− = 

1 
, (3.140) 

and we can use the simplified notation 

Λ± = |±〉 . (3.141) 

The Pauli matrices anticommute; that is, σxσy + σyσx = 0, etc. Also, σxσy = iσz, 
with other relations obtained from a cyclic permutation of x, y, z; in general, we 
can write 

σ × σ = 2iσ . (3.142) 

Further, σ 2 = σy 
2 = σz 

2 = σ /3 = 1. The eigenfunctions are orthogonal: m ′|m = x 
δm m. The operators σx , σy , and σz yield 

σx |±〉 = |∓〉 , 
σy |±〉 = ±i |∓〉 , (3.143) 

σz |±〉 = ± |±〉 . 
33The minus sign means that the magnetic moment is opposite in direction to the spin. 
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Instead of the form (3.22) for the spin magnetic moment interaction (with a 
photon) Hamiltonian, we can rewrite it more simply as 

S = i(2π�ω)1/2 µs · ε′ (3.144) 

where ε′ is a unit polarization vector in the direction of the photon’s magnetic field 
(that is, ε′ = k × ε/k, where ε is the polarization vector for A and the electric 
field); ε′, like ε, has two fundamental polarization directions perpendicular to k. 
As in Section 3.5.1, we consider the action of perturbations V and H ′ , where µ

now V is independent of particle spin, so that the total perturbation Hamiltonian is 
H ′ = V +H ′ . We allow both V and H ′ to act once on a single particle with spin- 1 

µ µ 2 
and magnitude µ0 of its magnetic moment (see Figure 3.7). The particle is initially 
unpolarized, so we average over initial spin-polarization states and sum over final 
spin polarizations; we also sum over polarizations for the outgoing photon. The 
photon emission probability will be determined by 

S = 
1 ∑∑∑∣∣〈 m |ε′ · σ |m 

〉∣2 = (ε′2 + ε′2 + ε′2 
z) = 2. (3.145)x y2 pol m′ m pol


In the evaluation of the photon-emission probability, we again employ the basic 
equation (3.126) in terms of the effective Hamiltonian (3.116) for the combined 
process. The diagrams are of the form in Figure 3.7. In the perturbation Hamiltonian 
(3.116), the energy denominators can be approximated by (κ = mc/�) 

E0 − EI = �ck(1 − k · kf /κk), 
(3.146) 

E0 − EI ′ = −�ck(1 − k · k0/κk), 

in terms of the initial and final wave vectors (k0 and kf ) of the scattered particle 
(with magnetic moment). The matrix elements of the scattering potential V are 

〈kI |V |k0〉 = kf + k|V |k0 , 〈 〉 〈 〉 (3.147) 
kf |V |kI ′ = kf |V |k0 − k , 

which are the same in Born approximation. The combination of energy denomina­
tors is given by 

1 1 ∼ 1 k · kf k · k0+ = 1 + − 1 − 
E0 − EI E0 − EI ′ �ck κk  κk  

(3.148) 
k · ∆kµ= −  

2k2 
, 

mc

where ∆kµ = k0 − kf is the change in the wave vector of the scattered particle 
(having a magnetic moment). Employing the above results, including Equation 
(3.145), we obtain ( )2 

2dwµ = 2µ0(2π�ω) 
k · ∆kµ d3k 

mc2k2 (2π)3 
. (3.149) 
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Setting d3k = k2dk dΩ and integrating over angles of emission, we have 

µ0dwµ = 
2 

2

2

5 
(∆kµ)

2
�ω dω.  (3.150)

3π m c

For the case of scattering of an electron (µ0 = e�/2mc), the result can be written 

1 2dwµ = 4 (�ω/mc )2dwq, (3.151) 

where dwq is the corresponding emission probability associated with photon inter­
actions with the charge [see Equation (3.134) with βf → ∆β]. The emission from 
spin interactions is small for non-relativistic particles. Moreover, we note that there 
is no infrared divergence effect as ω → 0; in fact, dwµ/dω → 0 in this limit. 
Finally, it should be mentioned that the results (3.149)–(3.151) are not confined to 
the soft-photon limit. 

3.5.3 Relativistic Particles without Spin 

Consideration of soft-photon emission associated with processes involving relativis­
tic particles provides our first application of the methods of covariant QED outlined 
in Section 3.4. First, for scalar charged particles, we derive an expression for the 
photon-emission probability corresponding to the non-relativistic formulae (3.134) 
and (3.150). As in the derivation of those results, two perturbations are allowed to 
act on the particle (see Figure 3.7); one can correspond to, say, a scattering potential 
or some perturbation that creates the charge at high energy, while the other is the 
purely electromagnetic perturbation (photon-emission vertex). In our elementary 
sketch of covariant QED, we concerned ourselves with the establishment of the 
form of the perturbation amplitudes and Feynman propagators corresponding to 
the perturbation Hamiltonian and energy denominator in the non-covariant, non­
relativisitic theory. Although the multiplying factors for these terms can be derived 
formally in a systematic exposition of covariant perturbation theory, we shall merely 
leave them as undetermined constants. This is not a serious problem; in fact, the 
undetermined factors can usually be established through a comparison with known 
results in some special case such as the non-relativistic limit or the classical limit. 

The fundamental factors that are needed in a covariant perturbtion calculation 
2 2are the Feynman propagator (3.86), PF (scalar) = (p2 + m c )−1, and the term 

associated with the photon-emission vertex. For such a vertex (see Figure 3.2), the 
matrix element between initial state a and final state b has the form (3.73) in the 
momentum representation: 

Mba = asqεµ(pa + pb)µ, (3.152) 

where as is some numerical factor for this scalar-charge interaction; paµ and pbµ 

are the four-momenta for the incoming and outgoing charge (q), and εµ is the unit 
polarization four-vector. The amplitude Mba is, like PF , a Lorentz invariant and is 
the analog of the non-relativistic formula (3.20) associated with the same type of 
single-photon vertex. With the combined interactions (3.152) plus the perturbation 
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V , the matrix element for the process between initial state 0 and final state f will 
be (see Figure 3.7) 

Mf 0 = as qεµ(pf + pI )µ(p
2 
I + m 2 c 2)−1VI 0 

+ Vf I  ′(p
2 
I ′ + m 2 c 2)−1 as qεµ(pI ′ + p0)µ. 

(3.153) 

At the vertices, there is four-momentum conservation so that 

pIµ  = pfµ  + kµ, pI ′µ = p0µ − kµ, (3.154) 

2 2 2kµ referring to the photon. Since p = (pµpµ)f = p = (pµpµ)0 = −m c 2 andf 0 
kµkµ = 0, the Feynman propagators for the two intermediate states are, very simply, 

1 1 
PI = 

2(pf · k) , PI ′ = −  
2(p0 · k) , (3.155) 

where the notation (p · k) = pµkµ is employed for the four-dimensional scalar 
products. Further, because of the relations (3.154), 

(pf + pI )µ = (2pf + k)µ, 
(3.156) 

(pI ′ + p0)µ = (2p0 − k)µ. 

Also, the Lorentz gauge condition 

εµkµ = 0 (3.157) 

holds. In the soft-photon limit 

VI 0 ≈ Vf I  ′ ≈ Vf 0, (3.158) 

which is the matrix element in the radiationless problem. The matrix element for 
the combined process involving V and the (soft-) photon perturbation is then the 
invariant 

Mf 0 ≈ asqVf 0 
(ε · pf ) − (ε · p0) 

. (3.159)
(k · pf ) (k · p0) 

The photon-emission probability is [see Equation (3.126)] ∣ ∣2 

dw = 
∣∣ Mf 0 ∣2 dN ′ , (3.160) ∣Vf 0 

where dN ′ is now the invariant phase-space factor (3.113) or number of photon final 
states divided by 2E. That is, with k designating the magnitude of the energy or 
momentum of the outgoing photon,34 

2dN ′ ∝ k dk  dΩ/k  = k dk dΩ.  (3.161) 

34The appearance of the additional factor of 1/k  could be understood in another way. Instead of 
employing the (more natural) invariant phase-space factor, the photon-emission invariant amplitude 
(3.152) could be employed with an additional factor k−1/2. This perturbation amplitude would then 
be essentially a relativistic generalization of the corresponding non-relativistic interaction Hamiltonian 
(3.20). Alternately, the factor could be regarded as associated with the relativistic normalization [see 
Equation (3.108)] of the photon function. 
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If, in addition, a sum over photon final-state polarizations is performed, the proba­
bility (3.160) is given by an expression of the form ∣ ∣2 

dw = Kq2 
∑∣∣ (ε · pf ) − 

(ε · p0) ∣∣ k dk dΩ,  (3.162)
(k · pf ) (k · p0)pol 

where K is a constant. 
Although the photon polarization unit four-vector εµ has four components, only 

two contribute in the polarization sum. There is a covariant (Lorentz) transversality 
condition (3.158), but within this class of gauges there can be a (convenient) choice 
of gauge (see Section 2.1.1). The transformed vector potential A′ = Aµ+∂µχ could µ 

be used if χ satisfies �2χ = 0. This is satisfied by, for example, the choice χ = 
a exp(ikνxν), where kν = (ik, k) is the photon four-momentum. The transformed 
polarization four-vector would then be 

εµ = εµ + iakµ, (3.163) 

and the choice a = ε0/k  could be made so that ε′ = 0. We assume that this gauge 0 
is employed so that (dropping the primes) εµ has a vanishing time component, the 
relation (3.157) giving the usual transversality for the space part of εµ: 

εµkµ = (ε · k) = 0. (3.164) 

For general pf and p0, the expression (3.162) does not yield a simple formula 
on integrating over dΩ and summing over polarizations. Only for a frame with 
p0 = 0 (or pf = 0) does the result simplify. Designating either of these as p (with 
the other zero), we have ∑ 

pol 
|ε · p|2 = 

∑ 

pol 
(ε · p)2 = p 2 − (p · k)2/k2 , (3.165) 

and ∑ 

pol 

∣ ∣ ∣ ∣ (ε · p) 

(k · p) 

∣ ∣ ∣ ∣ 
2 

= 
β2 

k2 

1 − cos2 θ 

(1 − β cos θ)2 
, (3.166) 

in terms of β (= v/c) for the outgoing charge and the angle θ between p and k. 
This expression (3.166) gives the angular distribution (dw/dΩ) of the emission. 
Integrating over dΩ = 2π sin θ dθ , we get the emission probability in any direction: 

1 − x 2 
2dw = 2πKq  2 dk β

∫ 1 

dx. (3.167)
k −1 (1 − βx)2 

The integral is elementary [in fact, it was already encountered in Equation (2.146)] 
and we obtain 

1 1 + β 
dw = 4πKq  2 dk 

ln − 2 . (3.168)
k β 1 − β 

For β � 1, the parenthesis above is 

1 1 + β 2 2 3 
ln − 2 = β 1 + β2 + · · ·  , (3.169)

β 1 − β 3 5 
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which allows a comparison with the non-relativistic formula (3.134). For q = ze, 
we then have K = (4π 2�c)−1 and 

1 1 + β dk 
dw = 

α
z 2 ln − 2 , (3.170)

π β 1 − β k 

which is identical to the result obtained in Equation (2.149). The formula exhibits 
the usual infrared divergence factor (dk/ k). It is valid in the soft-photon limit, that 
is, for �ck � (γ − 1)mc2, except when β � 1, for which, as we have seen in 
Section 5.1, it holds for general photon energy. 

3.5.4 Relativistic Spin- 1 Particles2 

Here we wish to derive an expression for the probability that soft-photon emission 
accompanies some process involving relativistic particles of spin- 1 . This case is far 2 
more important than that for spin-0 considered in the previous subsection, since it 
applies to electrons. It will provide a first illustration of the techniques of modern 
QED and is perhaps the simplest example of methods in the theory. Employing the 
basic principles, the application is elementary, yielding a general formula that can 
be compared with that for spin-0 and with the classical expression. 

In the covariant theory, the probability of a process will be proportional to the 
square of a matrix element Mf 0. This amplitude is a Lorentz invariant and is 
constructed from the one-particle Dirac wave functions ψ0 and ψf for the initial 
and final states and a product (M) of factors associated with interaction vertices and 
Feynman propagators. In the momentum representation, the invariant amplitude is 
constructed from 

Mf 0 = ufMu0, (3.171) 

where u0 and uf are the momentum-space Fourier amplitudes for the initial and 
final states, respectively. That is, u is related to ψ by 

ψ(r, t)  = u ei(p·x), (3.172) 

where, again, (p · x) = pµxµ. Both ψ and u are four-component (spinor) wave 
functions satisfying the free-particle Dirac equation in the position and momentum 
representation, respectively. 

Now, however, we have to develop the basic theory a little further. For example, 
what, precisely, is the conjugate wave function u? While ψ is the column wave 

∗ ∗ ∗ ∗function (3.94) with four components, ψ is not the row ψ† = (ψ1 , ψ2 , ψ3 , ψ4 ), 
which is the Hermitian conjugate35 wave function, but is defined by36 

†ψ = ψ†β = ψ γ0; (3.173) 

35The Hermitian conjugate or adjoint of a matrix is formed by interchanging rows and columns and 
∗taking the complex conjugate of its elements: (A†)jk  = (Akj ) . A matrix is Hermitian if it is equal to 

its Hermitian conjugate, that is, if A† = A. While β and the α matrices are Hermitian, of the γ matrices 
only γ0 (= β) is Hermitian; γ1, γ2, and γ3 are anti-Hermitian. 

36The operation on the right in Equation (3.173) is a matrix multiplication of the single-row matrix 
ψ † on β (= γ0) and yields another single-row matrix (ψ ). This can be easily seen from the matrix 
multiplication rule (AB)kj = AklBlj . Here Akl = 0 unless k = 1 and (AB)kj = (AB)1j , that is, a 
single-row matrix. 
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also, of course, u = u †γ0. The reason for introducing the functions ψ and u (rather 
than ψ† and u †) to form the invariant (3.171) can be seen through consideration of the 
continuity equation for probability density and current in the Dirac theory. To obtain 
this relation, we first derive the equations that ψ† and ψ satisfy. These manipulations 
will make use of the Hermitian character of the α and β matrices: α† = αj ; β† = β.j 
That β and α are Hermitian is expected because of the Hermitian character of 
the (four-momentum) operators i∂µ in the Dirac equation (3.93) (multiplied by i). 
Alternatively, the character can be seen from the specific representation 

0 σ I 0 
α = 

σ 0 
, β  = 

0 −I
, (3.174) 

where the σj are the three Pauli spin matrices (3.139). The representation (3.174), 
in terms of the three anti-commuting Pauli matrices and the identity matrix, satisfies 
the identities (3.95). 

Returning now to the problem of the equations for ψ† and ψ , we take the Hermi­
tian conjugate of the Dirac equation (3.93), making use of the Hermitian property 
of αj and β: 

†(1/c)∂tψ
† + ∂jψ

†αj − iκψ β = 0. (3.175) 

Multiplying from the right by β and making use of the anti-commutation relation 
αjβ = −βαj , we have, in terms of the definition (3.173) for ψ , 

(1/c)∂tψ − ∂jψαj − iκψβ  = 0. (3.176) 

Again multiplying on the right by β and using the definitions (3.97) and (3.100), 
there results an equation for ψ in covariant form: 

ψ(  /p + imc) = 0, (3.177) 

where the gradient ∂µ in p/ is meant to operate on the function ψ to the left. This 
equation is the free-particle Dirac equation for the conjugate function ψ , and the sign 
difference in parentheses should be noted when comparison is made with the Dirac 
equation (3.99) for ψ . On the other hand, the conjugate momentum component 
amplitude u is given by 

ψ = ue −i(p·x), (3.178) 

with a sign difference in the exponent (as if pµ → −pµ). That is, u(−p) satisfies 
u(−p)( /p + imc) and up = u satisfies 

u( /p − imc) = 0, (3.179) 

the parenthesis having the same sign combination as in 

( /p − imc)u = 0. (3.180) 

The sign difference should also be noted in the terms in Equation (3.175) for ψ† and 
in Equation (3.176) for ψ , indicating how ψ is a more natural conjugate function 
than ψ† in a covariant theory. 
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The continuity equation for probability density and current can be obtained 
by multiplying equation (3.93) on the left by ψ† and adding the result to Equa­
tion (3.175) multiplied on the right by ψ . We then have 

∂ † ∂ †(ψ ψ)  + (cψ αjψ)  = 0, (3.181)
∂t  ∂xj 

which is a conservation equation with density ρ = ψ†ψ and current density j = 
cψ†αψ . However, in terms of the covariant Dirac matrices γµ, since ψ = ψ†β and 
so ψ† = ψβ, while γj = iαjβ = −iβαj , the continuity equation (3.181) can be 
written in covariant form in terms of ψ , ψ , and the γµ: 

∂µ(ψγµψ)  = 0. (3.182) 

Thus, we see how, in a covariant theory, the function ψ is a more natural conjugate 
function than ψ†. 

Finally, for the basic formulation, we derive a relation between the normalization 
for uu and that for u † u. If we write the Dirac equation (3.93) in terms of the 
amplitude u defined in Equation (3.172) and then multiply the equation from the 
left by u (= u †β), we obtain 

† † †Eu βu = cu βα · pu + mc 2 u u. (3.183) 

Taking the Hermitian conjugate of this equation, and making use of the anti-
Hermitian character of the operator βα, there results an equation identical to the 
relation (3.183) except that the first term on the right has a minus sign. Adding 
Equation (3.183) then yields the result 

2uu = (mc /E)u† u, (3.184) 

which will be referred back to later. 
The free-particle Dirac equations (3.183) and (3.184) in the momentum represen­

tation are necessary to prove the important expression for the soft-photon emission 
probability associated with a process involving relativistic electrons. We again con­
sider the combined action of a perturbation V and a photon-emission perturbation 
on a spin- 1 

2 charge (see Figure 3.7). The photon-emission vertex is associated with 
a coupling of the form ε/ [the (q/c)γµAµ term in Equation (3.105)]. There are two 
types of intermediate states, just as in the spin-0 case in Section 5.3, for which the 
Feynman propagator is of the form (3.106) or (3.107). The matrix element for the 
process is given by the form (3.171) in terms of an invariant amplitude M . Accord­
ing to the Feynman rules for spin- 1 charges, the amplitude corresponding to the 2 
spin-0 case (3.153) is now given by 

ε( / ′ pI ′ − imc)−1/M = / pI − imc)−1V (I,  0) + V (f,  I  )( / ε. (3.185) 

As in the relativistic spin-0 formulation, there is four-momentum conservation at the 
photon-emission vertex and pIµ  and pI ′µ are again given by the relations (3.154). 
The V -perturbation amplitudes are associated with particle “transitions” 0 → I 
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and I ′ → f as indicated in the simplified notation in Equation (3.185). With the 
propagators expressed in the form (3.107), the amplitude M is given by 

ε( // pf + /k + imc) p0 − k/ + imc) 
/M = V (I,  0) − V (f,  I  ′)

( /
ε. (3.186)

2(k · pf ) 2(k · p0) 

In the soft-photon limit, we neglect the terms /k in the numerators and we also 
approximate 

V (I,  0) ≈ V (f,  0), 
(3.187) 

V (f,  I  ′) ≈ V (f,  0). 

ε /Employing the identity (3.103), we rewrite /pf and p/0ε/: 

/pf = −p/f /ε + 2(ε · pf ),ε /
(3.188) 

ε /p/0ε/ = −/p0 + 2(ε · p0). 

Since uf p/f = imcuf and p/0u0 = imcu0, we have 

Mf 0 = ufMu0 ≈ uf V (f,  0)u0 
(ε · pf ) − (ε · p0)

. (3.189)
(k · pf ) (k · p0) 

This modified amplitude for the combined process has the same relation to that for the 
radiationless problem as in the spin-0 case. Thus, the photon-emission probability 
is identical to the formulas for that case. In other words, the angular distribution 
for the soft photons is again given by the form (3.166), and the probability for 
emission in all directions is given by the result (3.170). The establishment of the 
multiplying constant requires, as in the spin-0 case, a comparison with the non­
relativistic formulas that were given a detailed systematic derivation. 

Spin seems to be unimportant for emission in the soft-photon limit. It should be 
emphasized that in the covariant spin- 1 

2 formulation employed in this subsection, the 
spin effects are included in the single electromagnetic perturbation ε/ (or γµ). That 
is, as we have emphasized near the end of Section 4.3, this perturbation includes the 
three perturbation terms A · p, A · A, and µ · curl A in the non-covariant theory. The 
result that spin is unimportant in soft-photon emission involving relativistic (and 
non-relativistic) charges can perhaps be understood in terms of the result (3.150) for 
spin transitions as obtained in a non-covariant formulation. Finally, it should be em­
phasized again that all of these results have been derived in the Born approximation. 
The results will be employed later in various applications. 

There is one feature of the soft-photon emission formula (3.170) for relativistic 
particles that should perhaps be noted at this point. In the limit of ultrarelativistic 
energies where β → 1, the argument of the logarithm approaches the large number 
(2E/mc 2)2. The emission probability then approaches 

2z 2α 2E dk 
dw → ln 

2 
− 1 . (3.190)

π mc k 

Further, if we integrate over photon energies or wave numbers from k1 to k2, the 
total photon-emission probability is approximately 

2z 2α E k2 
w(k1 < k  < k2) → ln 

2
ln . (3.191)

π mc k1 
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Although α = 1/137, the logarithmic factors can compensate to make the photon 
emission probability appreciable (that is, not small). This does not occur in the non­
relativistic case where instead of the first logarithmic factor in Equation (3.191), 
there is a factor v 2/c2 [see Equation (3.134)]. 

3.6 SPECIAL FEATURES OF ELECTROMAGNETIC PROCESSES 

There are several characteristic of electromagnetic processes that can be described in 
a general way and that represent features that are of great importance in determining 
the details and qualitative aspects of various processes. Some of these, like radiative 
corrections and renormalization techniques, are really beyond the scope of this book 
for a substantive discussion; we only mention these fundamental and subtle topics. 
However, certain physical processes are very closely related and can be described 
in a unified way with the help of a property called crossing symmetry, which will be 
discussed later in this section. Also, for some kinds of processes there are special 
kinematic invariants that are useful in relating cross sections through crossing sym­
metry, and these will be introduced. Of great importance in categorizing processes 
is their “order” or characteristic magnitude of the associated cross sections. This 
can be done quite simply, and it is useful to be aware of the elementary ideas that 
allow a determination of the characteristic magnitudes of various cross sections. 

3.6.1 “Order” of a Process 

One of the basic properties of the electromagnetic coupling is that it is a fairly 
weak interaction—not very weak like that (called “weak,” in fact) associated with 
neutrino processes, etc., but weak enough that a perturbation-theory approach is 
useful. We have discussed this aspect of the coupling in Section 3.5.1 in connection 
with soft-photon emission. In fact, treatment of that phenomenon yielded results that 
exhibit the characteristic strength of the coupling very clearly. We have seen [see 
Equations (3.134), (3.170), (3.190)] that the differential probability for soft-photon 
emission (energy within � dω) to accompany some process involving a charged 
particle is of the form 

αβ2(dω/ω) (NR),
dw ∼ (3.192) 

α ln γ (dω/ω)  (ER), 

in the non-relativistic (NR) and extreme-relativistic (ER) limits. Aside from the 
factor dω/ω and the kinematic factors β2 and ln γ , the probability is determined 
by the dimensionless coupling constant α = e 2/�c. The factor α can be considered 
the square of a dimensionless charge: 

1/2 q = e/(�c)1/2 = α . (3.193) 

The probability [Equation (3.192), for example] is the square of an amplitude M 
corresponding to some perturbation, in this case associated with a photon-emission 
vertex. For a single-photon vertex, the perturbation (interaction Hamiltonian or 
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Lagrangian) is proportional to the charge q (or the dimensionless q), and the 
probability is 

2W = |M|2 ∝ q = α. (3.194) 

Ageneral relation can be written down for the total amplitude and probability asso­
ciated with a purely electromagnetic process that can be represented by a collection 
of diagrams representing the actions of perturbations and the roles of propagators 
(or energy denominators). Let us now consider processes and diagrams that allow 
both charged particles and/or photons in intermediate states as well as in initial and 
final states; up to now we have regarded the photons to be “real” and occurring 
in intermediate states only if they were the same as in initial or final states. That 
is, we now consider processes that can correspond to “virtual” photons—photons 
that are only part of intermediate states. In this more general classification of elec­
tromagnetic processes the order of the various diagrams can be designated by the 
corresponding number of vertices they contain. This designation is sufficient in a 
covariant formulation for spin- 1 

2 charges for which there is only one kind of vertex, 
namely that representing the γµ interaction [see Equation (3.105)]. This is the vertex 
of Figure 3.2 (or 3.3) with one photon line and two fermion lines, and the strength of 
the perturbation is proportional to q (or q). In a non-relativistic formulation, there 
are two types of vertices (Figures 3.2 and 3.4) associated with the interactions (3.20) 
and (3.21), respectively (Hq 

′ and H
q
′ 

2 ), as well as the magentic-moment interaction 
H ′ given by the form (3.22), but this latter perturbation is usually not important µ 
[see Equation (3.25)]. In fact, as we have seen, for spin-0 charges a covariant for­
mulation also introduces two types of vertices [see Equation (3.73)]. However, for 
these cases we find that the two-photon perturbation H

q
′ (and its relativistic coun­2 

terpart) is proportional to q 2 or to q 2, so it is higher order by the same factor α1/2 

in its amplitude. That is, the two-photon vertex yields a factor α2 in the squared 
amplitude—like two single-photon vertices. 

In classifying the order of a general electromagnetic process, we can say that its 
probability is of the form 

W ∝ αn, (3.195) 

where 

n = n1 + 2n2, (3.196) 

being the number (n1) of single-photon vertices plus twice the number (n2) of two-
photon vertices associated with the process. Processes that are complex and require 
a larger number of interactions, or vertices in a diagrammatic representation, are 
less probable and have smaller rates. Usually the important parameter associated 
with some process is a cross section and, if n is its order, the cross section can be 
written 

σ ∼ αnl2 , (3.197) 

where l is some characteristic length. We can think of four such lengths: the 
(electron) Compton wavelength (Λ = �/mc), the de Broglie wavelength (λ = �/p), 



{ 

∣ ∣ 

QUANTUM ELECTRODYNAMICS 125 

the classical electron radius (r0 = e 2/mc 2), and the Bohr radius (α0 = �2/me 2). 
Of these, the only possible candidates for l in Equation (3.197) are Λ and λ if we 
are considering free-particle processes,37 for both r0 and a0 involve the electronic 
charge e and all such dependence should be contained within the factor αn . The 
squared ratio (Λ/λ)2 approaches 

β2 (NR)
(Λ/λ)2 → (3.198) 

γ 2 (ER) 

in the non-relativistic and extreme-relativistic limits. The factor β2 and γ 2 are 
kinematic in nature and in the intermediate domain where c.m. energies are of 
the order mc 2 the ratio Λ/λ is of order unity. At this “characteristic” energy, the 
appropriate choice for l is the constant Λ, and so the characteristic cross section is 
of the order 

σ ∼ αnΛ2 . (3.199) 

Figure 3.8 exhibits Feynman diagrams for a variety of electromagnetic processes, 
with those on each row having the same order and so the same characteristic cross 
section. For each process, only one diagram is shown; some processes have a 
number of other diagrams that contribute to the total amplitude. The top three rows 
exhibit diagrams with only one kind of vertex, corresponding to the charged spin- 1 

2 
case. In the bottom three rows are diagrams for processes involving spin-0 charges 
for which there are two kinds of vertices. For spin-0 charges, there would also be the 
diagrams on the top half contributing to the total amplitude for the corresponding 
processes. Also, in a non-relativistic formulation, there would be both the single- and 
double-photon vertex in a diagrammatic representation—even for spin- 1 

2 charges. 
Finally, it should be noted that, for simplicity, the arrows have been left off the 
diagrams in Figure 3.8. It is clear, for example, that a V -like vertex involves 
production of a particle-antiparticle pair, etc. The description of the processes 
below the diagrams will also clarify the nature of the processes represented. In the 
processes (bremsstrahlung, for example) where there is an “extra” photon produced, 
the differential cross section will always be proportional to dω/ω, as is indicated, 
for these cases, in parentheses for the corresponding cross section on the right. 

We can be a little more sophisticated in expressing the cross section for an elec­
tromagnetic process. Formally, at least, the origin of the energy dependence of 
a cross section can be indicated to give, for an individual process, an expression 
modifying the characteristic value (3.199). The energy dependence can come from 
three different factors in the cross section. For a process, the product of the cross 
section and the incident particle flux (essentially its incident velocity v0) gives the 
transition probability per unit time (∆W/∆t ). This quantity is, in turn, given by the 
square of the matrix element (Mf 0) for the process times the final state phase space 
per unit energy (Φf , see Section 1.3.3). Thus, we write 

σv0 ∝ ∣Mf 0 

∣2 
Φf . (3.200) 

37For processes involving bound electrons, a0 might be a candidate. In fact, the characteristic cross 
section for photoionization is of the order αa0

2. 
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σ ∼ α2Λ2 

Coulomb Compton pair prod. pair 
scatt. scatt. in γ−γ annihilation 

σ ∼ α3Λ2(dω/ω) 

Coulomb pair prod. radiative radiative γ−γ 
bremsung. in Coul. field Compton pair prod 

σ ∼ α4Λ2 

γ−γ scatt. pair prod. in double pair
Coul. scatt. prod in γ−γ 

σ ∼ α2Λ2 

Compton 
scatt. 

pair prod. 
in γ−γ 

pair 
annihilation 

σ ∼ α3Λ2(dω/ω) 

Coulomb 
bremsung. 

pair prod. 
in Coul. field 

radiative 
Compton 

radiative γ−γ 
pair prod. 

σ ∼ α4Λ2 

pair prod. in double pair 
Coul. scatt. prod in γ−γ 

Figure 3.8 A collection of diagrams associated with various processes. There are other 
diagrams for the particular processes. The top part is for the covariant spin- 1 

formulation. The bottom diagrams would be for the covariant spin-0 formulation 
or a non-relativistic formulation and include the two-photon vertex. 

The energy dependence in the cross section for a process is contained in v0, Mf 0, 
and Φf . If we express these in dimensionless form by dividing by their values at 
the characteristic energy Ec ∼ mc 2, the cross section can be written 

σ ∼ αnΛ2η, (3.201) 

where 

η = µ 2 
f 0Φf /β0, (3.202) 

2 
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with (β0 = v0/c) 
2 
∣ ∣2 ∣ ∣2 

µf 0 = ∣Mf 0(E) ∣ / ∣Mf 0(Ec) , (3.203) 

Φf = Φf (E)/Φf (Ec). (3.204) 

The phase-space factor Φf always increases with increasing energy; for a single-
particle phase space, Φf ∝ vf and E2 in the NR and ER limits, respectively. The f 
matrix element Mf 0 generally decreases with increasing energy at high energies. 
The energy dependence of η thus depends on the nature of the process, that is, its 
amplitude, number of final-state particles, etc. 

3.6.2 Radiative Corrections and Renormalization 

In Section 3.1, brief mention was made of the problems encountered in QED when 
attempts were made to compute processes higher order in perturbation theory. After 
the initial development of QED in 1927, in the early 1930s it was noticed that in 
the calculation of perturbation amplitudes to higher order, divergences sometimes 
appeared in the theory when summations over intermediate states were performed. 
These problems occurred, in particular, when the higher-order amplitude involved 
perturbations that could be described in terms of diagrams in which a virtual photon 
is “emitted and reabsorbed” by the same charge (in loose terminology). These 
“photons” are thus not observed but contribute to the corresponding correction (M1) 
to the lowest-order amplitude (M0). Then, for a process in which the final state is 
specified, the total amplitude is 

M = M0 + M1 + · · ·  . (3.205) 

Here, for each Mk , the final state is the same, so that the probability for the process 
is 

∗ ∗ W = |M0 + M1 + · · · |2 = |M0|2 + M0M1 + M1M0 + · · ·  . (3.206) 

The type of amplitudes that would be part of M1 can be indicated in terms of 
the diagrams38 in Figure 3.9. These are the types39 modifying the lowest-order 
amplitude for which M0 is part of the total diagram for the complete process. The 
characteristic magnitude for each amplitude is determined by e n, where e = α1/2 is 
the dimensionless (electron) charge and n is the number of vertices. Moreover, there 
is a special terminology for these types of diagram parts, as is indicated. Because 
of its role in giving rise to the electron self-energy due to electromagnetic effects, 
parts with virtual photons being emitted and reabsorbed before another interaction 
(vertex) are called “self-energy parts.” Then there is the “vertex part” of the same 
order in e. The “photon self-energy part” has a virtual electron-positron pair bubble; 
this type of virtual state is also connected with a phenomenon known as vacuum 
polarization. At the bottom of Figure 3.9 are what we shall call “radiative parts.” 
These perturbation amplitudes (Mr ) are associated with a different process, namely, 

38Here we consider only one kind of basic vertex as in the covariant formulation for spin- 1 
2 charges. 

39For a complete process with associated diagrams, there can be other kinds of higher-order diagrams. 
For example, in Coulomb scattering (see Figure 3.8), there can be the higher-order amplitude associated 
with the exchange of two photons. 
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Figure 3.9 Self-energy diagrams. 

that in which there is an additional photon in the final state. Thus, they do not 
contribute to the total amplitude (3.205), and the associated probability is 

Wr = |Mr |2 . (3.207) 

We see that, while |M0|2 is of order α (times something from the rest of the diagram), 
the lowest-order correction term is of order α2; Wr is also of order α2. 

When the corrected amplitude M1 is computed by the standard methods, it is 
found, for example, in the integration over the four-dimensional volume d4k′ asso­
ciated with the virtual photon state, that there are divergences. Divergences occur, 
in different instances, at both the low and high end of the k′ integration and came to 
be called, respectively, the “infrared catastrophe” and the “ultraviolet catastrophe.” 
The former is really no catastrophe at all, as first shown by Bloch and Nordsieck in 
1937. They explained that for any process where we consider some particular final 
state, our ability to observe the details of the process depends on the experimental 
energy resolution and detector sensitivities. In particular, if an additional soft photon 
is emitted in the process, our measuring apparatus may not be capable of detecting 
it. Suppose that the apparatus has a threshold εt so that photons of energy below εt 
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cannot be detected. Then, experimentally we are looking at the process without an 
extra photon plus the radiative process with an extra photon of any energy less than 
εt . The associated probability would be 

Eexpt = W + Wr = W0 + W1 + · · · + Wr, (3.208) 
∗ ∗with W0 = |M0|2 and W1 = M0M1 + M1M0 from Equation (3.206). If we write 

Wexpt = W0(1 + ξ),  (3.209) 

we find that the relative correction ξ is of order e 2 = α and composed of several 
parts. In the two terms 

ξ = W1/W0 + Wr/W0, (3.210) 

there is a cancellation of the infrared divergence. This can be shown to order α when 
explicit processes are considered, such as bremsstrahlung or Compton scattering, 
and also for a general process.40 That is, if we take ε0 as the lower limit in the (extra) 
photon spectrum in Wr and also in the lower limit of the virtual photon spectrum 
in the (infrared) divergent part of W1, we  find that both integrals have the same 
coefficient except for a sign difference. In Wr there is a term of the form ln(εt/ε0) 
(see Section 3.5) and in W1 there is one of the form ln(ε0/εchar), where εchar is some 
characteristic energy in the problem (such as mc 2 or some charged particle energy). 
The terms have the same coefficient and the sum is then of the form ln(εt/εchar) and 
contains no divergence for ε0 → 0. 

The occurrence of infrared divergences is a consequence of the particular math­
ematical formulation of the subject. When the results are expressed in a form more 
suited to experience or measurement, the divergence disappears. Not that the soft 
photons emitted are unreal; there are an infinite number of infinitesimally soft pho­
tons emitted during, say, the scattering of a charged particle. However, the very 
soft photons have no physical effect on the process. In fact, in the case of very soft 
photons when the wavelength is very large, there is little distinction between real 
and virtual photons. The real photons are eventually reabsorbed someplace and in 
that sense are virtual in their temporary existence. Thus, it is understandable that 
there is a cancellation of the infrared divergences, their occurrence being simply a 
mathematical artifact. In fact, in most problems involving soft photons, it is actu­
ally preferable to treat phenomena by classical electrodynamics, which is a limiting 
domain of QED. In the classical theory, the photon concept does not appear and the 
mathemtical formulation does not result in an infrared “catastrophe.” 

The ultraviolet divergence is a more serious problem in QED and was handled in 
calculations of phenomena for the first time in 1947—twenty years after the subject 
was originally developed. The first such calculation was by Bethe in an evaluation 
of the Lamb shift, and the techniques of the method have been developed fully and 
incorporated into modern relativistic QED. The resolution of this type of divergence 
problem with the theory is not clean like that for the infrared divergence, and it is 
generally regarded as a rather unsatisfactory procedure even though it seems to allow 

40See J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, 2nd ed., Berlin: Springer-
Verlag, 1976. This book gives an excellent discussion of the divergences in QED and, in particular, of 
the infrared divergence. 
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accurate higher-order calculations of any observable electromagnetic phenomenon. 
In the end, perhaps the ultraviolet divergence will, in some future formulation of 
QED, like the infrared problem, be shown to be a mathematical artifact. This has yet 
to be achieved, and the present theory still suffers from an uncomfortable subtraction 
of infinities. 

The method for handling the ultraviolet divergence makes use of renormalization 
techniques. This idea, already mentioned in Section 2.6 of the previous chapter 
on classical electrodynamics, prescribes that results be expressed in terms of the 
observed or phenomenological mass (m0) and charge (e0) of the particles involved 
in the process. The values m0 and e0 contain electromagnetic parts (δm and δe) 
due to emission and absorption of virtual photons and charged pairs, and these 
contributions should, in principle, be capable of computation by the theory. The 
problem is that the theory gives infinity for δm and δe when it is applied. However, 
when radiative corrections to processes are computed and then formally expressed 
in terms of m0 and e0, the ultraviolet divergences can be handled by introducing 
covariant cutoff or convergence factors, so that the whole computational procedure 
is made systematic. In a practical sense, the whole technique seems to work very 
well. However, the parameters m0 and e0 are measured quantities, and the theory 
really gives infinity for both when it is applied. 

We go no further into this topic. Generally, the coefficients of the higher-order 
corrections in αn have numerical values of order unity when the theory is handled 
as prescribed above. The nature of the infrared and ultraviolet divergences seem 
to be quite different. The former difficulty is completely understood and resolved, 
while the latter is handled only with some embarrassment. For a more extensive 
discussion, the reader is referred to the standard textbooks on the subject. 

3.6.3 Kinematic Invariants 

In covariant perturbation theory, the amplitude Mf 0 for a process is itself a Lorentz 
invariant, being a function of invariants involving the energies and momenta of 
the various particles that are present in the initial and final states. These are the 
so-called kinematic invariants constructed from the four-momenta of the incoming 
and outgoing particles. In particular, for the case where there are two incoming and 
two outgoing particles, certain of these invariants are particularly convenient and 
have some physical significance. For the process 

a + b → c + d,  (3.211) 
kinematic invariants can be constructed from the individual four-momenta (pµ)α = 
(iE/c, p)α , and there are four such quantities. Designating an individual four-
momentum simply as pα , we can express the conservation of four-momentum in 
the reaction (3.211) as 

4 
qα = 0, (3.212) 

α=1 

if q1 = pa , q2 = pb, q3 = −pc, and q4 = −pd . 
2 4In addition to the squares of the individual qα [(qµqµ)α = q 2 = −mαc ], which α 

are just constants, six invariants qα · qβ can be formed from the six combinations of 
α and β. These quantities are kinematic invariants, but only two are independent 
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because of the four conservation relations (3.212) for each component (µ = 0, 1, 2, 3) 
of four-momentum. However, instead of the qα · qβ , it is more convenient to intro­
duce the following three invariants: 

2 s = (q1 + q2)
2 = (q3 + q4) , 

2t = (q1 + q3)
2 = (q2 + q4) , (3.213) 

2 u = (q1 + q4)
2 = (q2 + q3) . 

Here the squares represent four-dimensional scalar products and, since, as is easily 
seen, ∑ 2 s + t + u = −  mαc 4 , (3.214) 

α 

only two of the three invariants are independent. 
The quantities s, t , and u are what we shall be referring to when we speak 

of kinematic invariants. Although only two are independent, it is convenient to 
introduce all three. This is because in addition to the process (3.211) for specific 
particles a, b, c, and d , there are also reactions involving the corresponding anti­
particles. If, for example, b and c are transferred to the other sides of the arrow 
and made to represent their anti-particles (designated by a bar), the reaction is 
a + c → b + d . In fact, designating the particles by numbers instead of letters, we 
can have the following three “channels” for reactions with two incoming and two 
outgoing particles41: 

1 + 2 → 3 + 4 (s), 

1 + 3 → 2 + 4 (t), (3.215) 

1 + 4 → 3 + 2 (u). 

The channels are sometimes referred to as the “s”, “t”, and “u” channels, as indicated 
above. The reason for this is that s, t , and u have a very physical significance for 
the corresponding channels. They are, for the channels, just minus the total c.m. 
energies (divided by c 2). 

In the case of elastic scattering, the expressions for s, t , and u are particularly 
simple. Then the type of outgoing particle is the same as the incoming ones: m1 = 
m3 and m2 = m4. In terms of c.m. quantities, the q’s are 

q1 = (iE1/c, ps), q2 = (iE2/c, −ps), (3.216) 
q3 = −(iE3/c, ps 

′ ), q4 = −(iE4/c, −ps 
′ ), 

where ps and ps 
′ (or their negative) refer to the initial and final momenta, respec­

tively. Since the scattering is elastic, ps 
∣ = 
∣∣p′ 

s 

∣∣ ≡ ps and so E1 = E3 and 
E2 = E4. The values for the three invariants can then be written 

2 s = −(E1 + E2)
2/c , 

t = 2ps 
2(1 − cos θs), (3.217) 

2 2 u = −(E1 − E2) /c2 + 2ps (1 + cos θs), 

where θs is the c.m. scattering angle between ps and ps 
′ . 

41The reactions can also procede in either direction, these additional processes being simply the time 
reverse of the others. 
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3.6.4 Crossing Symmetry 

The kinematic invariants are particularly useful in connection with a fundamental 
property of covariant perturbation theory. Because the amplitude Mf 0 introduced 
in Equation (3.109) is an invariant, it must be a function of invariants. These 
invariants must be associated with the observable characteristics of the process, 
that is, with parameters of the initial and final states. For a reaction of the type 
(3.211), these would be the invariants s, t , and u. More properly, for the case where 
the particles have spin, if we are not interested in the spin states of the incoming 
and outgoing particles, we should average over initial spin states and sum over final 
states. Then the only remaining kinematic parameters for these states are the particle 
four-momenta, and the invariant squared amplitude can be written ∑ ∣ ∣2 ∣Mf 0

∣ = f (s, t, u). (3.218) 
all spins 

One of the significant and useful features of covariant QED is the basic symmetry 
in its formulation in terms of particle and antiparticle states. The unified description 
of processes involving, in particular, electrons and positrons has been examined only 
in a superficial manner in this chapter. A brief discussion was given in Section 4.2, 
indicating how the theory encompasses, in a convenient and simplified way, the 
inclusion of positron and pair-production effects in terms of a backward-in-time 
description of the antiparticle states. As we have seen, it is useful to speak of 
“entry” and “exit” states in evaluating the total amplitude for the process. The 
unified treatment is also appropriate in the description of initial and final states for 
processes, that is, in the diagrams, for the meaning of “external lines.” In this 
formulation, the cases corresponding to an initial-state particle and a final-state 
antiparticle are equivalent in that a single expression for an amplitude can refer to 
either case. The symmetric covariant theory yields a useful result that allows a 
convenient way of obtaining the squared amplitude (3.218), spin-averaged, for any 
cross channel (3.215) in terms of that for one of the other channels. That is, as a 
result of the unified formulation of the theory, a single function f yields the squared 
amplitude for each of the three channels (3.215). The invariants s, t , and u will be 
different for each channel, but the functional form (f ) will be the same. This is 
what is known by crossing symmetry. 

Figure 3.10 indicates the replacements for s, t , and u in channels II and III as 
obtained from those for channel I. When an antiparticle is involved, the qα has a 
minus sign as a result of the backward-in-time description. Also exhibited in Figure 
3.10 are three examples of specific physical processes in the three corresponding 
channels. In addition to these, there are the time-reversed processes that have the 
same squared amplitude. We see, for example, that the processes of Compton 
scattering, pair annihilation into two photons, and pair production in photon-photon 
collisions are closely related. Note that, since the photon is identical to its antiparticle 
(γ = γ ), we do not distinguish the two. In transferring the photon to the opposite 
side of the reaction equation (3.211) the processes of absorption and emission are 
interchanged. We should also keep in mind that for antiparticles, even though they 
are indicated as going backward in time in a diagram, the actual momentum of the 
particle is in the opposite direction; in other words, panti-particle = −pdiagram. In  
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c d 

I: a + b → c + d 

1 + 2 → 3 + 4 sI = (q1 + q2)2 

γ + e → γ + e tI = (q1 + q3)2 

e + e → e + e 
a b uI = (q1 + q4)2 

e + µ → e + µ 

– 
b d 

– II: a + c – → b + d 
– – 

1 + 3 → 2 + 4 sII = (q1 – q3)2 

– γ + γ → e + e tII = (q1 – q2)2 

– – e + e → e + e 
a c– uII = (q1 – q2)2 

– – e + e → µ + µ 

– 
c b 

– – 
III: a + d → c + b 

– – 
1 + 4 → 3 + 2 sIII = (q1 – q4)2 

–γ + e – → e + γ tIII = (q1 + q3)2 

– – e + e → e + e 
– uIII = (q1 – q2)2 

– – a de + µ → e + µ 

Figure 3.10 Channels associated with related processes. 

evaluating the kinematics of the process in terms of diagrams and Feynman rules, 
the four-momenta are handled as in the diagram. 

There are other examples of crossing symmetry besides those associated with 
the processes in Figure 3.10. For example, bremsstrahlung and pair production 
are related by crossing symmetry (see Figure 3.8). In fact, this was noted already 
in 1934 by Bethe and Heitler. Actually, the existence of this type of symmetry is 
very general and not restricted to electromagnetic processes. Finally, it should be 
mentioned that the physical domains of s, t , and u for the three channels of a process 
would be different. Mathematically, it is said that the scattering amplitude, being 
an analytic function, is “analytically continued” from one domain to another for the 
three channels. 



134 

Bibliographical Notes 

A brief historical summary of quantum electrodynamics, along with a collection 
of fundamental papers may be found in 

1. Schwinger, J.,	 Quantum Electrodynamics, New York: Dover Publ., Inc., 
1958. 

To this collection of papers on QED the following could be added: 

2. Fermi, E., Rev. Mod. Phys. 4, 87 (1932); see also Reference 8 of Chapter 1. 

There are a number of excellent textbooks on modern covariant QED, especially 

3. Jauch, J. M. and Rohrlich, F., The Theory of Photons and Electrons, 2nd ed., 
Berlin: Springer-Verlag, 1976. 

4. Berestetskii, V. B., Lifshitz, E. M., and Pitaevskii, L. P., Relativistic Quantum 
Theory, Parts 1 and 2, Reading, MA: Addison-Wesley Publ. Co., 1979. 

5. Bjorken, J. D. and Drell, S., Relativistic Quantum Mechanics, New York: 
McGraw-Hill, 1964. 

6. Feynman, R. P., Quantum Electrodynamics, New York: W. A. Benjamin, Inc., 
1961. 

7. Feynman, R. P., Theory of Fundamental Processes, New York: W. A. Ben­
jamin, Inc., 1962. 

8. Dyson, F. J., Advanced Quantum Mechanics (mimeographed lecture notes), 
Laboratory of Nuclear Studies, Cornell University, 1951. 

Not so modern, but excellent, is 

9. Heitler, W., The Quantum Theory of Radiation, Oxford, UK: Oxford Univer­
sity Press, 1954. 

For the material in Sections 3.5 and 3.6, References 3 and 4 are especially good. 




