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Chapter Two


Classical Electrodynamics 

Classical electrodynamics is contained within quantum electrodynamics as a limit­
ing case. It has a domain of validity and applicability to certain problems for which 
the classical treatment is clearly preferable to the more general quantum-mechanical 
approach. There is also a close relationship between a number of results in classical 
radiation theory and corresponding expressions derived in quantum electrodynam­
ics. In fact, sometimes classical formulas have a range of validity greater than 
that expected on the basis of elementary considerations. The relationship between 
classical and quantum electrodynamics will be discussed briefly in Chapter 3. The 
quantum-mechanical formulation relies heavily on the classical theory as a guide, 
starting with the classical field Hamiltonian. 

This chapter will give a purely classical treatment of radiation. It will not attempt 
to be a complete description of classical electrodynamics, since that general subject 
is treated well in several textbooks. However, starting from basic principles, a num­
ber of useful and general results will be derived. Applications to specific radiative 
processes will be given in later chapters. 

2.1 RETARDED POTENTIALS 

2.1.1 Fields, Potentials, and Gauges 

In non-covariant form, the four Maxwell equations are 

4π 1 ∂E ∇×B = j + , 
c c ∂t  

∇·E = 4πρ , 
(2.1)∇·B = 0, 

1 ∂B ∇×E + = 0. 
c ∂t  

These are the “microscopic” Maxwell equations in terms of the electric and magnetic 
fields E and B. The sources of the fields are the charge and current densities and 
would include contributions from the polarization and magnetization of the medium. 
In the “macroscopic” form of Maxwell’s equations, only the conduction charge 
densities and currents appear in the equations, which are now equations for D and 
H and also involve the dialectric constant and magnetic permeability. The forms 
(2.1) are more convenient for our purposes. 
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The fields E and B are physical variables in the sense that they are observable, 
being directly connected to physical quantities like forces. For convenience in 
the mathematical description of electromagnetic processes, it is useful to introduce 
potentials from which the fields are derived. Since div curl A = ∇·(∇×A) = 0, 
the third of the equations (2.1) is satisfied automatically if we write 

B = ∇×A, (2.2) 

where A is some vector function of r and t . The fourth equation (2.1) is satisfied if 
we introduce a scalar function Φ(r, t), such that 

1 ∂A 
E = −∇Φ − , (2.3) 

c ∂t  
since curl grad Φ = ∇×(∇Φ) = 0. It is not necessary to introduce these functions 
A(r, t)  and Φ(r, t); rather, it is simply convenient to do so. The vector and scalar 
potentials are not physical quantities in the sense that they can be measured. In fact, 
they are not unique, since the same E and B fields are obtained from the potentials 
if they are replaced by 

A → Â = A + ∇Λ, 

Φ → Φ̂ = Φ − 
1 ∂Λ

, 
(2.4) 

c ∂t  
where Λ is any arbitrary function of r and t . 

The equation (2.4) is called a gauge transformation, and the invariance of the 
fields E and B under this transformation is called gauge invariance. Although it 
introduces subtleties and complications in the general formulation of both classical 
and quantum electrodynamics, at the same time the gauge invariance can be used 
to facilitate calculations of electromagnetic phenomena. Because of the freedom of 
choice in the potentials allowed by the invariance under the transformation (2.4), 
a subsidiary condition can be imposed on A and Φ. The form of the subsidiary 
condition establishes the “choice of gauge.” For example, if the Lorentz condition 

1 ∂Φ  ∇·A + = 0 (2.5) 
c ∂t  

is imposed, the inhomogeneous Maxwell equations [first two equations (2.1)] reduce 
to two equations that are separable in A and Φ: 

1 ∂2A 4π ∇2A − 
c2 ∂t2 

= −  j , 
c 

(2.6)
1 ∂2Φ ∇2Φ − = −4πρ. 
c2 ∂t2 

In terms of Aµ = (iΦ,A) and jµ = (icρ, j ), these equations are manifestly 
covariant: 

�2Aµ = −(4π/c)jµ. (2.7) 

The Lorentz gauge condition is also covariant: ∂µAµ = 0. 
The class of gauges satisfying the condition (2.5) is called the Lorentz gauge; it 

is also called the covariant gauge. The Lorentz gauge is convenient, because of the 
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covariance property, especially in the general formulation of classical and quantum 
electrodynamics. However, even within the Lorentz gauge, there is a certain degree 
of arbitrariness. For example, if the function Λ(r, t)  satisfies 

1 ∂2Λ ∇2Λ − = 0. (2.8) 
c2 ∂t2 

then Â and Φ̂ satisfy the Lorentz condition if A and Φ do. 
It should be noted that the Lorentz condition (2.5) does not have any physical 

interpretation, although it looks like some kind of conservation equation. Rather, it 
is to be regarded only as a mathematical subsidiary condition imposed for conve­
nience in the computations. In fact, other types of mathematical subsidiary relations, 
corresponding to other “gauges,” are also convenient. For example, the condition 
∇·A = 0 can be imposed; this condition designates the Coulomb gauge.1 It is 
particularly convenient in certain radiation problems and is sometimes referred to 
as the radiation gauge (also as the transverse gauge). Its inconvenience lies in the 
non-covariant nature of the subsidiary relation. 

When describing radiation fields, that is, fields corresponding to propagating 
electromagnetic waves at large distances from their source in empty space where 
ρ = 0 and j = 0, the condition 

∇·A = 0 (2.9) 

can be imposed together with the condition 

Φ = 0. (2.10) 

For general electromagnetic fields it is not possible to impose both conditions (2.9) 
and (2.10), but the condition (2.10) follows—again, only for radiation fields—if the 
condition (2.9) is imposed.2 Actually, the gauge corresponding to the conditions 
(2.9) and (2.10) can be considered to be within the Lorentz class, since the Lorentz 
condition (2.5) is satisfied identically. The gauge (2.9, 2.10) is very convenient 
in its restricted application to radiation fields, since both E and B are derived 
from the vector potential alone through the simple relations B = ∇×A and E = 
−(1/c)∂A/∂t . The subsidiary relation (2.9) also simplifies calculations by requiring 
the fields (and A) to be transverse. 

2.1.2 Retarded Potentials in the Lorentz Gauge 

The field-source (or potential-source) equations (2.6), for Φ and for each component 
of A are of the form 

1 ∂2Ψ ∇2Ψ − = −4πs(r, t).  (2.11) 
c2 ∂t2 

The equation is linear in its relationship between the field (potential) Ψ (r, t)  and the 
source s(r, t); therefore, a superposition principle will apply, such that the total field 

1In this gauge the potential Φ satisfies ∇2 Φ = −4πρ, which has a solution corresponding to an 
(instantaneous) Coulomb field. Hence the name Coulomb gauge. 

2This can be seen readily through a substitution of Equation (2.3) into the second of equations (2.1) 
with ρ = 0. The result (2.10) can be considered as a special radiation-field solution of ∇2Φ = 0. 
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will be a result of a summation over contributions from sources at various spatial 
points. The solution3 of Equation (2.11) has a very well-known and particular form 
in terms of a volume integral over the source: 

s(r ′, t  − |r − r |/c) 
Ψ (r, t)  = |r − r ′| d3 r ′ . (2.12) 

This solution (2.12) exhibits the retardation effect in which the contribution to the 
field at time t is due to the source characteristics at the time 

t ′ = t − |r − r |/c, (2.13) 

earlier by an interval ∆t = |r − r ′|/c equal to the time required for propagation at 
the velocity of light between r ′ and r . 

The solution (2.12), in the form of a retarded “Green function,” can be derived 
by various means. The most direct and systematic approach evaluates the Green 
function in terms of its Fourier transform, with the retardation requirement a con­
sequence of the mathematical analysis. However, a simpler derivation is possible 
which makes use of a convenient artificial device. We imagine a point charge and 
current of variable magnitude4 at the origin. The potential Φ(r, t)  due to this charge 
q(t) will then be a solution of Equation (2.6), which is of the form 

1 ∂2Φ ∇2Φ − = −4πq(t)δ(r), (2.14) 
c2 ∂t2 

where δ(r) = δ(x)δ(y)δ(z) is the three-dimensional delta function. From the 
inherent spherical symmetry in the problem, Φ must be a function of, in addition 
to the time t , only the magnitude of the radial distance r . Then Φ = Φ(r, t) and 
∇2Φ = r −2∂(r  2∂Φ/∂r)/∂r , and if we substitute Φ(r, t) = χ(r,  t)/r , away from 
the origin χ satisfies 

2 −2 2 2∂ χ/∂r  2 − c ∂ χ/∂t = 0. (2.15) 

This equation has the well-known solution 

χ(r,  t)  = χ(t  ± r/c), (2.16) 

and for physical reasons (causality) we choose the minus sign in the argument of χ . 
Now we consider the solution to Equation (2.14) in the neighborhood of the 

origin. As r → 0, the spatial derivatives on the left will be much larger than the 
time derviative, and Φ will be a solution of the equation 

∇2Φ = −4πq(t)δ(r)  (r  → 0). (2.17) 

The solution to this equation is well known: 

Φ(r, t)  = q(t)/r (r → 0). (2.18) 

3Here we are referring to the “special” or “particular” solution of the inhomogenous equation (2.11). 
This represents the field due directly to the source s(r, t). To this solution must be added the so-called 
“general” solution of the corresponding homogeneous equation. The latter could represent fields not 
associated with the specific source s(r, t)  such as that connected with some external field. 

4It should be emphasized that this is essentially a mathematical assumption, made for convenience. 
This is permissable, even though we know that, because of other independent considerations, an isolated 
charge cannot change its magnitude. 
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For this solution to match the result (2.16) above for arbitrary t , the function χ must 
be identified with q itself, so that the solution of equation (2.14) for general r and t 
is 

Φ(r, t)  = q(t − r/c)/r. (2.19) 

For a general charge distribution we can simply add contributions, according to the 
superposition principle: 

ρ(r ′, t  − |r − r |/c) 
Φ(r, t)  = |r − r ′| d3 r ′ . (2.20) 

By similar arguments we obtain the solution to the Equation (2.6) for the vector 
potential: 

1 j (r ′, t  − |r − r |/c) 
A(r, t)  = 

c |r − r ′| d3 r ′ . (2.21) 

The two solutions (2.20) and (2.21) are represented by Equation (2.12), and we see 
how the retardation effect comes in. The contribution of the source to the potentials 

′ −1is that swept up by a spherical wave5 with amplitude proportional to |r − r |
converging on the field point r at the radial velocity c. This concept is useful in 
obtaining (see Section 4) the expressions for the potentials associated with a single 
moving point charge, i.e., the so-called Liénard-Wiechert potentials. In this case, 
the potential Φ, for example, is not given by q divided by the retarded distance. 

2.2 MULTIPOLE EXPANSION OF THE RADIATION FIELD 

2.2.1 Vector Potential and Retardation Expansion 

The electric and magnetic fields associated with radiation can, as we have seen in 
the previous section, within the Lorentz gauge, be evaluated in terms of only the 
vector potential, Φ being set identically to zero. The vector potential at the field 
point r at time t is determined by the characteristics of the source current density j 
at the source point r ′ and the retarded time t ′ = t − R/c, where 

R = |R| = |r − r ′|. (2.22) 

We can write the result (2.21) in the form 

′ j (r ′, t  − R/c) 
A(r, t)  = 

1 
d3 r 

c R 

= 
1 
∫∫  

d3 r ′dt ′
j (r ′, t ′)

δ(t ′ − t + R/c). 

(2.23) 

c R 

The field point is at a large distance from the source (see Figure 2.1) and if the source 
has some localization, r ′ � r , in  

2 ′2R = r 2 − 2r · r ′ + r , (2.24) 

5This is to be regarded as a “mathematical” rather than a physical wave. 
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r ′ 

R 

r 

Figure 2.1 Field and source points. 

the last term can be neglected. Then 

R ≈ r − n · r ′ , (2.25) 

where n = r/r is a unit vector in the radial direction. In the current density 

j (r ′, t  − R/c) ≈ j (r , t  − r/c + n · r /c), (2.26) 

it is convenient to introduce a translated time coordinate 

t ′′ = t − r/c, (2.27) 

which, significantly, does not involve the source coordinate r ′. Also, the factor 1/R 
in the integrand (2.23) is slowly varying and can be set equal to 1/r and taken outside 
of the integral. We then have, removing the double primes from the translated time 
coordinate t ′′ , 

3 ′ ′A(r, t)  ≈ (cr)−1 d r j (r ′, t  + n · r /c). (2.28) 

The retardation term n · r ′/c is of the order of the time for propagation at velocity 
c across the source. If the source motions are non-relativistic, this time is small and 
the current density can be expanded: 

j (r ′, t  + n · r /c) = j (r , t)  + 
n · r ∂j (r ′, t)  + · · ·  . (2.29) 
c ∂t  

This then yields a multipole expansion for the vector potential: 
1 d 3 ′3 ′ ′A(r, t)  = 

1 
d r j (r ′, t)  + d r (n · r ′)j (r , t)  + · · ·  . (2.30) 

cr c2r dt 
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An expansion of this type is useful when the source motions are non-relativisitic, 
for which retardation effects are small. When the source consists of charges in 
relativistic motion, many higher multipoles contribute to the radiation field and the 
expansion (2.30) is not useful. 

It is convenient to replace the formulation in terms of a continuum distribution of 
source current density by one in terms of a collection of discrete charges. If we set 

j (r ′, t)  = qαvα(r 
′)δ r ′ − rα(t) , (2.31) 

α 

where qα is the charge of particle α and vα is its velocity, we have 

1 ∑ 1 ∑ d ( ) 
A(r, t)  = 

cr 
qαvα + 

c2r 
qα

dt 
(n · rα)vα + · · ·  . (2.32) 

α α 

But (leaving off the subscripts) we can rewrite the second term in the expansion 
(2.32) using 

1 d ( ) 1 1 
(n · r)v = (n · r)r + 

2 
(n · r)v − 

2 
(n · v)r 

2 dt 
(2.33)

1 d ( ) 1 = 
2 dt 

(n · r)r + 
2 
(r × v)×n. 

The vector potential (2.32) can then be written as a sum of (electric) dipole, magnetic 
dipole, and quadrupole terms: 

A = Ad +Am +Aq + · · ·  , (2.34) 

where each term has a time derivative of the corresponding moment. If we define 
the moments 

p = qαrα, 
α 

m = qαrα×vα, (2.35) 
α 

Q = 3 qα(n · rα)rα, 
α 

the expansion (2.34) can be written 

¨ A = [ṗ + ṁ × n +Q/6c]/cr + · · ·  , (2.36) 

where the dots denote time derivatives. 

2.2.2 Multipole Radiated Power 

The evaluation of the electric and magnetic fields from the vector potential can be 
simplified for the case where only the radiation-field components are of interest. 
These are the fields associated with propagating plane waves and a general super­
position of these waves could be represented by a sum over Fourier components; 
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that is, we could write a corresponding vector potential for a general radiation field 
in the form6 

A(r, t)  = ake
i(k·r−ωt). (2.37) 

k 

Here the ak are the Fourier amplitudes corresponding to wave vector k with fre­
quency ω = c|k|. For the gauge condition div A = 0 to hold identically for all r 
and t , for each Fourier component the transversality condition 

ak · k = 0 (2.38) 

must hold. We can also make use of another general form for the radiation field. 
Setting coordinate axes with the x-axis along the direction of propagation in the 
radial direction away from the source, the components of the vector potential asso­
ciated with the radiation field will have the general form [see Equation (2.16)], in 
addition to the 1/r factor,7 

A ∝ f (x  − ct) = f (X)  (2.39) 

where X = X(x, t) = x − ct is the argument of the general function f . The 
magnetic field B = curl A results from differentiation with respect to x, but it 
is more convenient to express this in terms of a time derivative. Since ∂f/∂x = 
(∂f/∂X)(∂X/∂x) = ∂f/∂X and ∂f/∂t = (∂f/∂X)(∂X/∂t) = −c(∂f/∂X), we  
can write ∂f/∂x = −(1/c)∂f/∂t . In terms of the direction of propagation (away 
from the source) n = k/k, the general magentic field can then be written in terms 
of the time derivative of the vector potential: 

B = (1/c) Ȧ×n. (2.40) 

This is a general relation for radiation fields and holds for any gauge, including the 
one imposed to obtain the retarded potentials (2.20) and (2.21) and their expansions, 
which we are employing. These potentials do not satisfy the (sometimes convenient) 
radiation gauge conditions div A = 0 and Φ = 0, so E �= −(1/c) Ȧ; instead, again 
only for radiation fields, 

E = B×n. (2.41) 

From the convenient relation (2.40), the radiation magnetic field can be computed 
in terms of the time derivatives of the various moments by means of the retardation 
expansion (2.36). To the various terms in Ȧ can be added anything proportional to 
n without changing the (physical) quantity B. It is convenient to, in this manner, 
replace Q in Equation (2.35) by the expression 

2Q = 3 qα (n · rα)rα − 1 . (2.42)3 nrα 
α 

The components of this vector can be expressed in terms of a quadrupole tensor 
through the relation Qj = Qjknk (sum over k), where 

Qjk  = qα(3xjxk − δjkr 
2)α (2.43) 

α 

6Actually, the real part (“Re”) of this expression should be taken. 
7In evaluating the radiation fields E and B from A, differentiation of the 1/r factor is neglected; the 

radiation fields, like the potential, have a 1/r falloff. 
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is a symmetric traceless tensor. The magnetic field (2.40) is then 

1 [ 1 ... ] 
B = p̈ × n + ( m̈×n)×n + Q×n

2c r 6c (2.44) 
= Bd + Bm + Bq . 

The radiated power from a system of charges is computed from the Poynting 
vector 

S = (c/4π)E×B = (c/4π)(B · B)n, (2.45) 

which is the energy flux in the direction n. Multiplying by 4πr2, we get the total 
radiated power in terms of a directional average (of n): 

P = dW/dt = r 2 c(B · B), (2.46) 

where the bar denotes a directional average. In evaluating this average, the cross 
terms can be shown to vanish; that is, 

Bd ·Bm = Bd ·Bq = Bm ·Bq = 0. (2.47) 

To see this, consider the “parity” of the various components of B (behavior under 
n → −n). From their definitions, Bd is odd while Bm and Bq are even, and 
this proves the first two of the relations (2.47). The last one involving Bm and 
Bq is harder to prove. However, from the vector identity (A × B) · (C × D) = 
(A · C)(B · D) − (A · D)(B · C), we have 

... [ ] [ ... ] ... [ ] 
(Q×n) · ( ¨ m×n) (n · n) − (Q · n) n · ( ¨m × n)×n = Q · ( ¨ m×n) , (2.48) 

but the last term in brackets on the right is zero. It then remains to prove that the ... 
directional average of Q · ( m̈ × n) is zero. In terms of the Levi-Civita symbol [see 
Equation (1.73)], this is 

... ... 
Q · ( m̈×n) = εjkl  Qjn  m̈k nnnl , (2.49) 

and since 

nnnl = 1 
3 δnl , (2.50) 

the directional average is 
... 
Q · (m×n) = 1 

3 εjkl  
... 
Qjl  m̈k . (2.51) 

But we can relabel the dummy indices j and l, taking half the sum, making use of ... 
the symmetric nature of Qjl  and the antisymmetric nature of εjkl  , and we see easily 
that the result (2.51) is identically zero. Thus, 

2P = r c(B2 + B2 + B2 
q) = Pd + Pm + Pq. (2.52)d m 

The terms Pd , Pm, and Pq can be expressed in terms of the individual (time 
derivatives of) moments through the insertion of the expressions (2.44) and (2.52). 
In Pd and Pm the angular averages are trivial and we obtain 

Pd = 2 ̈ 2p /3c 3 , 
(2.53) 

Pm = 2 ¨ 3 m 2/3c . 
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The quadrupole expression is not so easy to evaluate. Employing for now the ... ... 
notation qj = Qj = Qjknk = qjknk , we have 

2(q×n)2 = q 2 − (q · n) . (2.54) 

But 
q 2 = q · q = qjqj = qjkqjlnknl, (2.55) 

2(q · n)2 = (qjnj ) = qjqknjnk = qjlqknnjnknlnn. (2.56) 

The directional average of the product nknl in Equation (2.55) was given in the 
result (2.50). The average of the four-index product in Equation (2.56) must be 
symmetric in the indices and expressed in terms of the “fundamental tensor” δjk  . 
The most general such symmetric function is 

njnknlnn = a(δjkδln + δjlδkn + δjnδkl), (2.57) 

where a is a constant. The constant can be evaluated by either contracting on two 
pairs of indices or by contracting on all four. Doing the latter, letting all four refer 
to the “z” or “polar” direction for a spherical polar coordinate description, from ∫ π1 1

4n = cos4 θ sin θ dθ  = 
5 
, (2.58)z 2 0 

we obtain a = 1/15. The quadrupole power radiated is then, by Equations (2.52), 
(2.44), (2.54)–(2.58), 

1 ∑ ...2 
Pq = 

5 
Qjk. (2.59)

180c
jk  

It should be noted that in Pd , Pm, and Pq the contribution results from a sum over ... ¨squares of individual moment ( p̈j , mj , Qjk  ) contributions. Further, remember that 
these results refer to the total energy radiated, integrated over photon energies and 
summed over polarization states. 

The multipole expansion is useful, as we have stated earlier, in the limit where 
the source motions are non-relativistic. In this case, the retardation effects are small 
and the principal contribution comes from the dipole term. Sometimes, however, 
because of symmetries in the source characteristics,8 there is no dipole contribution. 
Compared with the (electric) dipole term, the magnetic dipole and quadrupole terms 
are small and of the same order of magnitude. If the characteristic velocities of the 
source particles are ∼ v, from the definitions of p, m, and Qjk  , we see that 

2Pm ∼ Pq ∼ (v /c2)Pd. (2.60) 

2.3 FOURIER SPECTRA 

Depending on the details of the source characteristics, the radiation field contains 
a spectrum of photon energies or frequencies. If E(t ) and B(t) represent the mag­
nitude of the electric and magnetic fields, respectively, associated with a particular 

8An example of this case—one that will be considered later—is that in which the source consists of 
two identical particles. In the scattering of two electrons, the lowest-order radiation term is quadrupole. 
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component9 of polarization, the corresponding contribution to the energy flux in the 
magnitude of the Poynting vector in the radial direction away from the source is 

2S(t) = dW/dA dt = (c/4π)E2(t) = (c/4π)B (t). (2.61) 

The fields can be written in terms of Fourier amplitudes: 

Bωe −iωt E(t) = Eωe −iωtdω, B(t) = dω,  (2.62) 

where the Fourier components are determined by the specific time dependence of 
the fields: 

Eω = (2π)−1 E(t)eiωtdt,  Bω = (2π)−1 B(t)eiωtdt.  (2.63) 

If the source motions are periodic, instead of a continuum of frequencies, there 
would be a sum over a discrete spectrum: ∑ ∑ 

E(t) = Eke −iωk t , B(t) = Bke −iωk t . (2.64) 
k k 

Let us take the continuum form (2.62) and consider only the magnetic field, since 
it is equal in magnitude to the associated electric field (although, of course, the 
corresponding components are mutually perpendicular). Employing the complex 
forms (2.61) we should write the Poynting vector as S(t) = (c/4π)|B2(t)|. We can 
also introduce the energy flux per unit frequency, integrated over time: 

I (ω)  = dW/dA dω,  (2.65) 

so that we can write for the total energy flow per unit area: 

dW/dA = S(t)dt = I (ω)dω,  (2.66) 

with 

∗ S(t) = (c/4π)|B(t)|2 = (c/4π)  Bω′ Bωe
i(ω′−ω)tdω′dω. (2.67) 

When this form is substituted into the first integral on the right side of Equation 
(2.66) and use is made of the identity 

ei(ω
′−ω)tdt = 2πδ(ω′ − ω), (2.68) 

we have 
1 

dW/dA = c |Bω|2dω. (2.69)
2 

In the above expressions, the frequency variable ω extends from −∞ to ∞, but 
the positive and negative frequencies in the radiation field spectrum are physically 
equivalent and can be lumped together. Thus, we can write 

2Iω ≡ I (|ω|) = 2I (ω)  = c|Eω|2 = c|Bω| . (2.70) 

9It could be one of the mutually perpendicular linear components transverse to the direction of 
propagation. 
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If the element of area through which radiation is flowing is at a distance r from the 
source and subtends a solid angle dΩ , then dA = r 2dΩ , and the differential energy 
radiated within frequency dω is 

dWω = Iω r 
2dω  dΩ.  (2.71) 

In this relation, the intensity Iω will be proportional to 1/r2, so that dWω is inde­
pendent of r . 

The photon concept can be introduced into our classical formulation by writing 

dWω = �ω dwω, (2.72) 

where dwω is the probability of photon emission within dω. Then we have 
2 2dwω = (c/�)r (dω/ω) |Eω|2 or |Bω| dΩ (2.73) 

for the differential probability of emitting a photon within frequency dω and within 
solid angle dΩ . As mentioned earlier, Eω and Bω refer to the components associated 
with a particular polarization, and the corresponding probability dwω given by 
Equation (2.73) would then refer to this photon polarization state. If in dwω we are 
not interested in polarization, and want the total dwω summed over polarizations, 
the terms |Eω|2 or |Bω|2 in Equation (2.73) would be the sum of the squares of their 
values associated with each polarization. 

The expression (2.73), although it contains �, is essentially a classical one, since 
the only quantum mechanics introduced is the photon concept by means of the 
relation (2.72). For example, we have not provided the necessary quantum me­
chanics to calculate Eω or Bω from the source motions. In this chapter, we employ 
only classical theory to relate the fields to source characteristics. Nevertheless, 
the classical theory, together with the subsequent injection of the photon concept 
by means of the relation (2.72), does provide a description of certain phenomena 
often considered to be quantum mechanical in nature. One phenomenon is the so-
called infrared divergence or infrared “catastrophe,” which is the infinite probability 
of emitting infinitesimally soft photons in charged-partical processes. The simple 
semi-classical formulation described above is sufficient to yield this effect as well 
as, in fact, its explanation. We return to discuss this phenomenon in more detail 
later in this chapter. 

Once again, it may be well to emphasize that if we are not interested in photon 
polarizations, the Eω or Bω in the emission probability (2.73) can refer to the (Fourier 
transform of the) magnitude of the fields. Alternatively, if the total field is expressed 
in terms of its two mutually perpendicular polarizations ( B = B1 + B2, with 
B1·B2 = 0; similarly with E), the emission probability can be expressed in terms 
of the sum of the individual polarization components. That is, in the result (2.73) 
we can write 

2|Bω|2 = |Bω1| + |Bω2|2 (2.74) 

(similarly with |Eω|2). For the case of dipole radiation, there is a simple and con­
venient relation for the angular and spectral distribution of radiation summed over 
polarizations. By equations (2.36), (2.40), and (2.70), we have 

pω×n|2/c , (2.75)(dW/dω  dΩ)d = | ¨ 3 
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in terms of the Fourier transform of p. When we integrate over angles of emission, ¨
the spectrum of energy radiated is 

3 ¨ 3 ¨ 2(dW/dω)d = (4π/c )|pω|2sin2 θ = (8π/3c )|pω| ; (2.76) 

¨here θ is the angle between pω and n, and the spherical average of sin2 θ is 2/3. 
The result (2.76) can be put in slightly different form, since p̈ω = −ω2pω, and for 
a single charge the second time derivative of the dipole moment is directly related 
to the particle acceleration and thus to the force on it. That is, for a charge q the 
emission spectrum is directly related to the Fourier transform of its acceleration: 

2 2(dW/dω)d = (8πq /3c 3)|aω| . (2.77) 

We shall return to further general developments concerning radiation field spectra 
and applications to specific processes later in this chapter and in later chapters. 

2.4 FIELDS OF A CHARGE IN RELATIVISTIC MOTION 

2.4.1 Liénard-Wiechert Potentials 

In the convenient Lorentz gauge, the vector and scalar potentials associated with 
a distribution of charges and currents are given by the expressions (2.20)–(2.23). 
An important application of these retarded potentials is to the case of a single par­
ticle of charge q moving at an arbitrary velocity v. As mentioned earlier, for this 
problem—even in the case of a point particle—the potentials are not given by the 
non-relativistic values (R = |r − r ′|) 

ΦNR → q/R, ANR → qv/cR, (2.78) 

at the retarded position r ′ and time t ′ . This is immediately obvious, since the 
expressions (2.78) do not form the components of a four-vector. Actually, it is not 
difficult to construct a covariant form for Aµ = (iΦ, A) that reduces to the non­
relativistic limits (2.78) for v � c. From R = r − r ′, the source-to-field point, the 
four-vector 

Rµ = (iR, R) = (ic(t − t ′), r − r ) (2.79) 

can be formed [see Equation (2.22)]; this is a null four-vector: 

RµRµ = 0. (2.80) 

Employing the four-vector velocity vµ = γ (ic,  v), a scalar 

Rνvν = −γ (Rc  −R · v) (2.81) 

can be constructed that reduces to −Rc in the limit v � c. The expression 

Aµ = −q[vµ/Rνvν ], (2.82) 

where the brackets are meant to imply the imposition of the retardation condition, 
satisfies the covariance requirement and reduces to the required limit in a Lorentz 
frame where the motion is non-relativistic. It is, therefore, a correct general formula 
valid in a frame where the particle velocity is arbitrarily large. 
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Figure 2.2 “Effective volume” associated with the field of a moving charge. 

In terms of the source-to-field point unit vector n = R/R, β = v/c, and 

κ ≡ 1 − n · β, (2.83) 

the result (2.82) is 

Aµ = (iΦ, A) = [iq/κR, qv/cκR]. (2.84) 

The magnitude of the retardation effect is expressed in the factor κ−1. Although we 
have made use of covariance considerations in deriving this result, this correction 
factor is not relativistic in nature, the modification being linear in v. The correction 
is due totally to effects of retardation in the relationship between source motions 
and field (potential) amplitudes. 

The expressions (2.84) are called the Liénard-Wiechert potentials, and their 
derivation as given above, although simple, perhaps obscures the meaning of, in 
particular, the correction factor κ−1. One way of interpreting the factor q/κ is as 
an “effective charge” (qeff). To see this, refer back to the expressions (2.20)–(2.23) 
for the potentials that exhibit the manner in which an imaginary spherical wave 
converging on the field point r at time t sweeps past the charge in motion at the 
source point (r ′, t ). We assume, for convenience, that the charge has finite spatial 
extent although, in the end, we can let it approach the point-particle limit. Also for 
convenience, imagine the field point at the origin, so that n points toward the origin. 
Then if v is pictured as having a positive component away from the origin, n · v is 
negative. Now consider the contribution to A and Φ from a cubic (or cylindrical) 
element of the charge with flat front and back perpendicular to n (see Figure 2.2). 
During the time ∆t that the wave front passes the charge element, the back end of 
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the charge has moved a distance ∆L, so that the effective amount of charge that the 
wave sees is 

qeff = q(Leff/L), (2.85) 

where10 L is the length of the element in the radial (−n) direction, and 

Leff = L + ∆L (2.86) 

(remember that ∆L is negative if n · v is negative). But ∆L = n · v∆t , ∆t = Leff/c 
and, by the relations (2.85) and (2.86), we have 

qeff = q(1 − n · β)−1 = q/κ. (2.87) 

The spatial extent of the charge can now be made infinitesimally small with no effect 
on the correction factor κ−1. 

2.4.2 Charge in Uniform Motion 

The fields associated with a charge moving at constant velocity can be computed 
easily, and the results are of interest in connection with, for example, a topic 
(Weizsäcker-Williams Method) that is treated later in this chapter. For the case 
of uniform motion the particle retarded position (Pr ) and present position (Pp ) are 
related in a simple way to the field point (Pf ), as is indicated in Figure 2.3. In terms 
of the distance 

s ≡ κR = R −R · β, (2.88) 

the vector and scalar potentials are given by 

A = qβ/s, Φ = q/s, (2.89) 

where, for convenience in the notation, the brackets indicating retardation have 
been omitted. The fields E and B are computed from A and Φ by differentiation 
with respect to the field-point coordinates. To do this, it is convenient to employ a 
coordinate system (K0) with the origin at the instantaneous present position of the 
particle. Then, by Equations (2.2) and (2.3), we have Ex = −∂Φ/∂x0−c −1∂Ax/∂t0, 
etc. However, since the fields are carried by the particle (moving in the x- or  x0­
direction), the time derivatives can be computed from 

∂ 

∂t0 
= −v 

∂ 

∂x0 
. (2.90) 

Also (see Figure 2.3), 
2 2 2 2= r0 − (Rβ sin θ) = r0 (1 − β2 sin2 ψ)s 

(2.91)
2 2 2 2 2= x0 + y0 + z0 − β2(y0 + z0). 

The vector potential has only an x-component (direction of v) and we obtain for the 
fields: 

E = qs −3(1 − β2)r0, 
(2.92)

B = β×E. 

10The lengths are, of course, lab-frame values, which are different from those in the particle rest 
frame. 
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Figure 2.3 Present and retarded positions for a charge in uniform motion. 

Note that r0 is the vector from the present position of the charge to the field point 
(rather than from the retarded position). The longitudinal and transverse components 
of the fields should also be noted, especially in the extreme relativistic limit. The 
magnitude of the electric field in the transverse direction (perpendicular to the x-
axis) can be expressed as a function of ψ and r0 or as a function of ψ and the 
“impact” parameter b = r0 sin ψ : 

q (1 − β2) sin ψ q (1 − β2) sin3 ψ 
Et = = 2 r (1 − β2 sin2 ψ)3/2 b2 (1 − β2 sin2 ψ)3/2 

. (2.93) 
0 

The longitudinal component is 

q (1 − β2) cos ψ q (1 − β2) sin2 ψ cos ψ 
El = = 2 r (1 − β2 sin2 ψ)3/2 b2 (1 − β2 sin2 ψ)3/2 

. (2.94) 
0 

The magnetic field has only a transverse component, which, at the field point, is 
perpendicular to both Et and β [see Equation (2.92)]: 

|B| = βEt . (2.95)


The dependence of the fields on ψ provides a description of their time dependence

as seen by an observer at the fixed field point Pf as the particle (at Pp) passes. The
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largest electric field component is the transverse field Et , which attains a value 
)−1/2Et → (q/b2)(1 − β2 as ψ → π/2. The longitudinal component El does not 

attain this value and, in fact, changes sign at ψ = π/2. As β → 1, the electric 
field Et and its accompanying magnetic field (2.95) become large at ψ = π/2, and 
the observer at Pf sees a strong transverse pulse. The idea behind the Weizsäcker-
Williams method is that this pulse can be regarded as a flux of photons (see Section 8). 

2.4.3 Fields of an Accelerated Charge 

For a charge in non-uniform motion the calculation of the fields is a more complicated 
problem. The case of finite acceleration is of great importance, however, because 
there are now radiation-field components; that is, there are electric and magentic 
fields that fall off as 1/r at a large distance from the charge. The existence of these 
fields is due to, as in the non-relativistic problem, the effects of retardation. In the 
computation of the fields from the spatial and time derivatives of the potentials, the 
retardation results in a certain amount of complexity. This is because, in evaluating 
the spatial gradients with respect to the field-point coordinate (r), it is necessary to 
include the explicit functional dependence of the potentials on r and dependence 
that is contained in the retardation condition. 

We consider the motion of the source particle to be known; that is, r ′ = r (t ′) is 
specified, as is its velocity v = ∂r /∂t ′ and acceleration v̇ = ∂v/∂t ′ (we leave the 
primes off v asnd v̇). The retarded time coordinate t ′ is the independent variable in 
the problem. To compute the fields E = −∇Φ − (1/c)∂A/∂t and B = ∇×A from 
the Liénard-Wiechert potentials (2.84), it is necessary to express the derivatives with 
respect to the retarded time t ′. This is easily accomplished through consideration of 
the mathematical statement of the retardation condition, that is, Equation (2.80) or 

R = (r − r ′) · (r − r ) 
]1/2 = c(t − t ). (2.96) 

Differentiating with respect to t , we have 
∂R  ∂t ′ ∂R  ∂t ′ ∂t ′ = c 1 − = (2.97)
∂t  ∂t ∂t ′ ∂t  

= −n · v 
∂t  

. 

Then 
∂ ∂t ′ ∂ R ∂ 1 ∂ = = = 
∂t  ∂t ∂t ′ s ∂t ′ κ ∂t ′

. (2.98) 

We also need a convenient expression for the gradient operator ∇, which can be 
written 

∇ = ∇r + ∇t ′ = ∇r + (∇t ′)∂/∂t . (2.99) 

Here ∇r means differentiation with respect to the field-point coordinate r , ignoring 
the dependence contained within the retardation condition, and ∇t ′ accounts for 
the latter contribution. The factor ∇t ′ can be found from the retardation condition 
(2.96), recognizing that varying r implies a variation in t ′: 

1 R ∇t ′ = −  
1 ∇R = = −  + 

∂R  ∇t ′ 
c c R ∂t ′( ) (2.100) 

R = −  
1 − n · v∇t ′ . 
c R 
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Solving for ∇t , we have ∇t ′ = −R/sc, and 

R ∂ ∇ = ∇r − 
sc ∂t ′

. (2.101) 

The fields E and B are derived from the potentials A(= qv/cs) and Φ(= q/s), 
employing the operators (2.98) and (2.101). Carrying through these operations and 
rearranging the terms, we find 

E = 
R

3 
v
(1 − β2) + 

1 
R×(Rv×v̇), (2.102)

2 3q s c s

B = n×E, (2.103) 

where 

Rv = R − Rβ (2.104) 

is the “virtual present source-to-field-point vector.” That is, if the source (charge) 
at the retarded position and velocity were to move at constant velocity, it would be 
at a certain “virtual” position, and Rv is the vector from that position to the field 
point. Compare this result with that for a charge in uniform motion (see Figure 2.3). 
Again, the brackets [ ] designating retardation have been left off the terms on the 
right-hand side. 

For considerations of radiation effects, the important term in the field (2.102) is 
the second, since it falls off as 1/r at large distances. It then yields a Poynting vector 
component S ∝ 1/r2 and an energy flow rate dW/dt = S dA  ∝ dΩ through an 
element of area dA = r 2dΩ and solid angle dΩ . The radiation term is finite only 
when there is an acceleration of the particle, and it is a consequence of the effects 
of retardation. 

2.5 RADIATION FROM A RELATIVISTIC CHARGE 

It is convenient to express the radiation fields in terms of the dimensionless quantities 
n = R/R, β = v/c, and κ = 1 − n ·β. Then the second term on the right of 
Equation (2.102) can be written 

Erad = (q/cRκ
3)n× (n − β)×β̇ . (2.105) 

The Poynting vector at the field point r, t  is then 

S(r, t)  = n(c/4π)|Erad|2 

q 2 n× (n − β)×β̇ ]2 (2.106) 
= n 

4πc  κ3R
, 

where the brackets have now been reinserted to emphasize that quantities therein 
are to be evaluated at the retarded coordinates. That is, for example, βc and β̇c are 
the velocity and acceleration at r ′ and t ′ = t − R/c. 

The energy flow rate per unit solid angle dΩ = dA/R2 at r, t  would be computed 
from 

dW/dt dΩ = R2S, (2.107) 
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but this is not equal to charge’s energy radiation rate. If dE′ is the change in the 
energy of the charged particle as a result of the emission of radiation, we can write 
dE′ = −dW . However, the interval of time dt associated with the passage of 
photons through the element of area dA at the field point r is different from the 
interval dt ′ corresponding to the emission of these photons by the charge at r ′. The 
relationship between these intervals has already been derived and is given by the 
result (2.98): dt ′/dt = R/s = 1/κ. Then the rate of radiation of energy by the 
charge is 

−dE /dt ′ = (dW/dt)(dt/dt ) = κ dW/dt.  (2.108) 

The times t and t ′ both refer to events in the lab frame; that is, the prime does not 
refer to a different Lorentz frame. The κ factor is associated with retardation effects, 
being first order in β. Since, also, dΩ = dΩ ′, the angular distribution of emitted 
radiation is given by 

2 n× (n − β)×β̇)]2 

− 
dE′

= 
q 

dt ′dΩ ′ 4πc  κ5 
. (2.109) 

Employing the well-known identity for the triple vector product, we can write the 
quantity in brackets in Equation (2.109) as 

n× (n − β)×β̇ = (n − β)(n · β̇) − β̇ n · (n − β) 

= (n − β)(n · β̇) − κβ̇. 
(2.110) 

Squaring this expression then yields the squared bracket in Equation (2.109): 

2n× (n − β)×β̇)]2 = κ
2β̇2 + 2κ(n · β̇)(β · β̇) − (1 − β )(n · β̇)2 . (2.111) 

This relation is convenient for an evaluation of the angular integration over dΩ ′ 
to obtain the total radiative energy loss rate. The form (2.111), together with the 
factor κ−5, describes the angular distribution of the emitted radiation. In the non­
relativistic limit, the result is the familiar dipole pattern of the form sin2 ϑ , where 
ϑ if the angle between n and β̇. The result in the extreme relativistic limit (β → 1) 
is more interesting, since in this limit κ can get very small when n is along β. In  
this case, the distribution is peaked in the direction of the instantaneous velocity β; 
if θ is the angle between n and β, it is easy to show that the angular width is of the 

1order ∆θ ∼ γ − = (1 − β2)1/2 � 1. The effect is basically kinematic in nature 
and could also be derived through considerations of transformations between the 
lab frame and one in which the motion is non-relativistic. 

Another characteristic of the angular distribution in the general case should be 
mentioned. From the form (2.109) we see that the intensity is zero in two directions: 
when n − β is along and opposite to the direction of β̇. 

To compute the total rate of radiation of energy, an integration over dΩ ′ (directions 
of n) can be performed. It is convenient to employ coordinate axes in which one axis 
(say, the y-axis) is instantaneously (at the retarded time) aligned with the velocity 
β. Choosing this axis as, in addition, the polar axis of a spherical polar coordinate 
system describing n = (sin θ cos ϕ, cos θ, sin θ sin ϕ), we have κ = 1 − β cos θ . 
In the terms on the right-hand side of Equation (2.111) the integrations over the 
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azimuthal angle ϕ are trivial. The subsequent integrations over dθ are elementary, 
although the algebra is a little tedious. The result can be written 

′ 6−dE /dt ′ = (2q 2/3c)γ β̇2 − (β×β̇)2 . (2.112) 

The derivation of the form (2.112) as outlined above requires a considerable 
amount of work, especially if we include that necessary to obtain the angular dis­
tribution (2.109). However, there is much simpler method of obtaining the energy 
radiation rate (2.112) that makes use of ideas of covariance. The differential energy 
radiated can be written dErad = E dN , where E is the photon energy and dN is the 
differential number of photons11 emitted. As we have seen in Section 1.2.3, the ratio 
dt/E  associated with photon coordinates is an invariant, where the photons may be 
moving in any direction. Then the radiated power dErad/dt must be an invariant or 
scalar. But we have already derived the form for this scalar in the non-relativistic 
limit; this is the dipole or lowest-order term (2.53), which is, of course, contained 
within the rate (2.112) when β � 1. It is always possible to consider a Lorentz 
frame where the motion is, at a particular time, non-relativistic. In this limit, the 
radiative energy loss is 

2 3−dE/dt = (2q /3m 2 c )ṗj ṗj , (2.113) 

with a sum over the three spatial indices j . Since dE/dt (for this particular problem) 
is an invariant, the exact relativistic expression must be a scalar function of the 
particle’s kinematic quantities. It is easy to guess the appropriate generalization, 
the validity of which is established by its agreement with the result (2.113) in a 
Lorentz frame where the motion is non-relativistic. The relativistic generalization 
is obtained through the replacement 

ṗj ṗj → (dpµ/dτ )(dpµ/dτ ), (2.114) 

and it remains to show that the covariant form is identical to the non-covariant 
expression (2.112). Since dτ = dt/γ , and pµ = γmc(i,  β), we have 

2 2 2 2(dpµ/dτ )(dpµ/dτ ) = m c γ (γ̇β + γ β̇)2 − ˙ . (2.115) γ 

But γ̇ = γ 3β·β̇, β̇2 − (β·β̇)2 = (β×β̇)2, and elementary algebraic manipulations 
yield the form (2.112). 

This very simple derivation illustrates again the very considerable power of 
covariance considerations. For example, the non-relativistic expression (2.113) 
contains only the dipole contribution, while the relativistic result includes contri­
butions from many multipoles. Yet, the exact formula has been obtained from its 
limiting form without having to employ the formulation of radiation theory for 
relativistic particles. The relativistic result (2.112) is, in addition, of great signifi­
cance in exhibiting important features of the radiation phenomenon. In particular, 
the factor γ 6 indicates the increased efficiency of the radiation phenomenon for 
relativistic particles. This is especially so for the case where the accelerating force 
is perpendicular to the particle velocity. The force is related to the acceleration by 

F = mc γ 3(β · β̇)β + γ β̇ . (2.116) 

11It is really not necessary to introduce the photon concept here, but it is convenient. 
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When F is along β and γ � 1, β̇ → F/mcγ 3 and the radiated power approaches 
2 3 2P‖ → (2q /3m 2 c )F , (2.117) 

which is independent of energy. On the other hand, if F is perpendicular to β, we  
see from Equation (2.116) that β̇ → F/mcγ , and 

2 3 2 2P⊥ → (2q /3m 2 c )F γ , (2.118) 

increasing as the square of the energy. Comparison of the two results shows why, 
for example, in the field of high-energy physics, radiative losses are far more impor­
tant in synchrotrons than in linear accelerators (linacs). The comparison is relevant 
for astrophysics, where nature has provided both high-energy particles and mag­
netic fields, which provide the (perpendicular) deflecting force. The associated 
“synchrotron radiation” from relativistic electrons in cosmic radio sources is pro­
duced, as we see, by a very efficient mechanism. 

2.6 RADIATION REACTION 

The radiation of energy by an accelerated charge has an effect on the motion of the 
particle that can be described in terms of a radiation reaction force. The form of 
the expression for this force can be established through considerations of energy 
conservation. However, a more revealing derivation of the result involves a cal­
culation of the force from various elements of the charge acting on one another. 
Because of the effects of retardation, the total force is not zero and there results 
a total “self-force.” Treatment of the phenomenon also involves the evaluation of 
the charge’s “self-energy,” and, in this simple classical problem, we can introduce 
the ideas of “renormalization.” A full treatment of the problem is clearly beyond 
the scope of this book. We only touch on the subject, first in the non-relativistic 
limit—or in a reference frame where the motion is such that β � 1. 

2.6.1 Non-Relativistic Limit 

Radiation reaction was considered by Lorentz, who first introduced the electron 
into the subject of electromagnetic theory. For definiteness in the formulation, our 
charged particle is referred to as an electron, although the classical description would 
be the same for any particle. We consider a slowly moving electron of finite size 
and compute the reaction force that results from the interaction of the radiation field 
from different parts of the electron acting on other parts (see Figure 2.4). Let de 
and de′ be two elements of charge on the electron, located at r and r ′, respectively. 
The reaction force is computed from 

F = de dE, (2.119) 

where dE is the differential electric field at r due to the charge element de′ at the 
source point r ′. The double integral is then over the elements de and de′ . 

It is convenient to evaluate the radiation reaction force in an inertial frame in 
which the electron is instantaneously at rest. The radiation-reaction force terms are 
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Figure 2.4 Infinitesimal charge elements associated with the same charge distribution. 

proportional to v̇ and to higher derivatives of the velocity, and these are the same 
in the lab frame as in the instantaneous rest frame. The integration over de in the 
double integral (2.119) is instantaneous, but the differential field dE at de is due to 
the motion of the element de′ at the retarded time at which the velocity is not zero. In 
terms of the source-to-field point distance R = r −r ′ , n = R/R, and κ = 1 −n · β, 
the differential field dE due to de′ would be given by the expression (2.102): 

de′ 
dE = 1 − 

v 2(t ′) 
R − 

R 
v(t ′)

2R3κ3 c c 
(2.120) 

1 ′+ R × R − 
R 
v(t ) × v̇(t ′) .

2c c 

Note that all quantities on the right are retarded values; that is, v̇(t ′) = dv(t ′)/dt ′ , 
and κ = 1−n · v(t ′)/c. The retarded time is t ′ = t −R/c, where at the present time 
the velocity v(t ) is zero. We then express the (retarded) velocity and acceleration 
as expansions in terms of quantities at the time t : 

1 
v(t ) = −(R/c) v̇(t ) + 

2 
(R/c)2 v̈(t) + · · ·  , 

(2.121) 

v̇(t ′) = v̇(t) − (R/c)v̈(t) + · · ·  . 
...

In the expression for dE we neglect higher-derivative terms (v , etc.) and consider 
only terms linear in v, v̇, and v̈, neglecting terms in v 2, vv̇, etc.; terms having 
coefficients c −p with p >  3 are also ignored. Then 

3
κ = 1 +R · v̇/c2 − (R/2c )R · v̈ + · · ·  , 

(2.122) 
κ

−3 3= 1 − 3R · v̇/c2 + (3R/2c )R · v̈ + · · ·  , 

where v̇ and v̈ are the values at time t . The differential electric field is, neglecting 
the higher-order terms in Equation (2.120), 

2R(v̇ · R) R(R · v̈) R v̈
dE = de′ − 

R3c
+ 

2R2c
+ 

R3 
+ 

3 
+ · · ·  . (2.123)

2 3 2c
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For component k of the field, summing over dummy index j , the result can be 
written 

RkRj v̈j Rk v̈k 
dEk = de′ − 

2Rkv̇jRj + 
2R2c

+ 
R3 

+ 
3 

+ · · ·  . (2.124)
2 3 2cR3c

The total force on the electron is found from Equation (2.119) by integrating over 
de′ and de. For a spherically symmetric distribution, 

de de′f (R)Rk = 0, ∫∫  ∫∫  (2.125) 

de de′f (R)RkRj = 
1 
δkj de de f (R)R2 ,

3 

and we have 

2e 2 4Wel 
F = v̈ − v̇ + · · ·  , (2.126)

3 3c23c
where 

Wel = 
1 

de de′/R (2.127)
2 

is the electrostatic self-energy. The result can be written 

F = F rr − melv̇, (2.128) 

where the radiation reaction F rr is given by the first term on the right-hand side 
of Equation (2.126), and mel = 4Wel/3c 2 is the “electromagentic mass.” Note 
the factor 4/3; it was suggested long ago by Poincaré that there should be non-
electromagnetic binding forces providing a “glue” to stabilize the electron, and that 
the associated binding energy is 1 Wel. In fact, if there are external forces acting on 3 
the electron, it is appropriate to write the equation of motion in the form 

3m0v̇ − (2e 2/3c )v̈ = F ext, (2.129) 

where the electromagnetic and mechanical inertia terms are combined into an 
“observed” mass m0, which can be determined experimentally. Moreover, with 
m0 determined empirically, it is then not necessary to know what percentage of it 
is electromagnetic in origin. In fact, for a point particle, Wel diverges. There are 
higher terms in F that would result from, for example, the next-order terms in the 

...
expansions (2.121), and these would be of the order Frr(v /v̈)r0/c, where r0 is the 
electron radius. For a point particle these terms go to zero, but, of course, Wel is 
infinite as r0 → 0. This is what classical electron theory in this elementary formu­
lation has to live with. On the other hand, the expression for F rr is independent of 
the structure of the electron. 

The combining of electromagnetic mass into a total observed mass is an essential 
part of what is known as “renormalization” in modern quantum electrodynamics. 
The idea goes back to J. J. Thomson in classical electron theory. It is clear from ele­
mentary considerations that quantum mechanics must be brought into the problem. 
There are still divergences in quantum electrodynamics, although they are not as 
severe (logarithmic). Nevertheless, quantum electrodynamics does treat the elec­
tron as a point particle and these divergences are there, so there is still is a certain 



[ ( ) ] 

60 CHAPTER 2 

amount of, as Feynman used to say, “sweeping the dirt under the rug.” We seem to 
be able to endure these difficulties, however. 

There is an extensive literature on electron theory—even on the classical theory 
and in recent decades. Suggested references are listed at the end of this chapter.12 

2.6.2 Relativistic Theory: Lorentz-Dirac Equation 

The radiation-reaction force is a real effect whose magnitude is increased when 
charged particles experience rapid changes in their acceleration. It is then of inter­
est to obtain a relativistic generalization of the non-relativistic equation of motion 
including radiation reaction. If “mass renormalization” has already been carried 
out, the relativistic generalization of Equation (2.129) should be of the form 

m0 dvµ/dτ = Kµ + Γµ, (2.130) 

where m0 is the observed mass, Kµ is some external four-vector force, and Γµ is the 
term due to radiation reaction. The equation of motion (2.130) is sometimes called 
the Lorentz-Dirac equation and Γµ is referred to as the Abraham radiation-reaction 
four-vector. 

It is not hard to obtain the expression for Γµ. The most obvious try would be 
to set it equal to (2e 2/3c 3)d2 vµ/dτ 2, whose space component does reduce to non­
relativistic form F rr is that limit. However, such an expression for Γµ does not 
satisfy the relation [see Equation (1.65)] 

Γµvµ = 0, (2.131) 

which is a conservation equation that all forces must satisfy; that is, in general, 
vµd

2 vµ/dτ 2 is not identically zero. The next step would be to try the form13 

3 2Γµ = (2e 2/3c )(d vµ/dτ 2 + Svµ), (2.132) 

where S is a scalar function. This scalar can be established by imposing the condition 
(2.131), which leads immediately to the result 

1 1 d dvµ dvµ dvµ 1 
S = 

2 
vµ 

dτ 2 
= −  

2 
aµaµ, (2.133) 

c

d2 vµ = 
c2 dτ 

vµ
dτ 

− 
dτ dτ c

since vµvµ = −c 2 = constant, and aµ = dvµ/dτ . The solutions to and properties 
of the Lorentz-Dirac equation have been studied extensively (see Footnote 12). We 
shall not go further into this topic, since it is somewhat outside the principal program 
of this text. 

12A thorough discussion of, in particular, classical electron theory is given in the scholarly book 
Classical Charged Particles by F. Rohrlich (Reading, MA: Addison-Wesley Publ. Co., Inc., 1965). 
Formulations that can avoid divergence problems are described and an extensive collection of relevant 
papers are cited, including those published early in the last century. 

13We do not try an expression with a term proportional to dvµ/dτ because this would be contained 
within the left-hand side of Equation (2.130). 
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2.7 SOFT-PHOTON EMISSION 

Photons are produced whenever charged particles suffer a change in velocity. There 
is also photon production accompanying the production of a charged particle, as in, 
for example, β-decay (n → p + e − + νe for bound or free neutrons or for protons 
bound in a nucleus p → n + e + + νe).14 In this case, the electron or positron can 
be considered to be accelerated instantaneously from rest to a velocity v, and the 
overall radiative process corresponds to the production of a photon accompanying 
the other particles in the final state. When the photon has a very low energy, the 
description of the process is simplified in that usually (but not always) we can 
derive a photon-emission probability that does not depend on the details of the 
associated radiationless process. This is because the photons are “soft,” and their 
emission does not disturb the accompanying (radiationless) process that causes the 
particle acceleration. The formulas for the soft-photon emission probability can 
be derived by classical electrodynamics, as is done in this section. In Chapter 3, 
the same formulas will be derived by quantum electrodynamics. By employing the 
two different approaches, we learn more about the range of validity of the resulting 
expressions. The formulas are of great value because of their generality, and they 
allow a convenient calculation of certain important processes like, in particular, 
bremsstrahlung. Also, although they are restricted to the soft-photon limit, the 
formulas allow simple estimates for photon-producing processes at general photon 
energies. 

We consider emission by non-relativistic and relativistic particles, and derive 
some useful expressions by means of the purely classical formulation of the chapter. 
The formulas will be derived again in the following chapter wherein their range of 
validity will be discussed further. Chapter 3 will also consider the effects of photon 
production connected with interactions with particles’ intrinsic magnetic moments. 

2.7.1 Multipole Formulation 

For a system of particles in non-relativistic motion, the total rate of radiation of 
energy is given by the result (2.52), which can be written 

dW/dt = CM |M(t)|2 , (2.134) 
M 

where M(t)  is some moment (or, rather, its time derivative), and CM is a numerical 
coefficient. The values of CM and M(t)  are given in Equations (2.53) and (2.59) for 
the first few terms of the multipole expansion (2.134). Further, we can introduce 
the moment’s Fourier transform Mω by writing 

−M(t)  = iωt Mωe dω,  (2.135) 

with ∫ 
Mω = (2π)−1 M(t)e  iωt dt.  (2.136) 

−14Here the photon “coupling” (see Chapter 3) or emission is associated with the production of the e 
or e + rather than with the proton. The e − and e +, together with the neutrino, carry away most of the 
energy and their velocities are much larger than that of the more massive proton. 
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Then, including only positive frequencies in the emission spectrum dW/dω and 
introducing the photon concept by means of the relation (2.72), we have 

dwω = (4π/�)(dω/ω) CM |M(ω)|2 (2.137) 
M 

for the photon-emission probability (within dω). 
If the individual moment can be written (as it can) as a time derivative 

M(t)  = µ̇M (2.138) 

in terms of some related moment µ(t), in the soft-photon limit Mω → ∆µM/2π , 
where ∆µM is the change in µM . Then, in this limit, the result (2.137) becomes 

dwω → (π�)−1(dω/ω) CM |∆µM |2 . (2.139) 
M 

This is a very general formula and certain features of it should be emphasized. First, 
note that the quantities ∆µM are independent of ω and so the factor dω/ω exhibits 
the infrared divergence effect. That is, there is always a factor of this precise 
form, independent of whether the lowest-order emission is electric or magnetic 
dipole or quadrupole radiation or from higher multipole radiation. Basically, the 
fundamental assumption that yields this result is that the system of charges can exist 
in a continuum of states rather than in a quantized spectrum. This will be true for 
a system of free particles but not for a system in bound states. It should also be 
noted how the contributions from the various moments contribute additively with 
the appropriate coefficients CM ; this is the case when dwω represents the probability 
integrated over angles for the outgoing photon. The coefficients are the same for the 
x, y, and z components of the dipole contributions and for each contribution from 
the quadrupole tensor. The probability dwω is then determined by the combination 
of quantities ∆µM . 

2.7.2 Dipole Formula 

Let us now obtain an important result for soft-photon emission by a single charge ze 
in non-relativistic motion. In this case, the emission is dipole radiation, and, instead 
of employing the expressions given above, we refer back to the more general formula 
(2.73) to exhibit the angular distribution as well. In Equation (2.73) we employ15 

the magnetic-field term with 

Bω = (2π)−1 |curl A|eiωtdt ∫ (2.140) 
iωt ˙= (2πc)−1 |A×n|e dt.  

15Although we are computing a radiation field, we do not evaluate its intensity from the electric-
field magnitude derived from −Ȧ/c; that is, we are not employing the gauge (2.9) and (2.10). This is 
because we are deriving the fields from the Liénard-Wiechert potentials, which do not satisfy that gauge 
condition. With the fields derived from the L-W potentials, it is simpler to employ the relation (2.40) for 
the magnetic component of the radiation field, since no gauge is specified therein. These remarks were 
also made in Section 2.2 and are relevant to the upcoming Section 2.7.3. 
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In the low-frequency limit this becomes 

Bω → (2πc)−1|∆A×n|, (2.141) 

where ∆A is the change in the vector potential associated with the charge motion; 
in the non-relativistic limit, ∆A approaches (ze/R)∆β, where c∆β is the velocity 
change. Equation (2.73) then gives 

2 2dwω = (α/4π )(dω/ω)z2|∆β×n| dΩ (2.142) 

for the soft-photon emission probability within frequency dω and in the direction n 
within the solid angle dΩ . We see that the result is proportional to the fine-structure 
constant α and is determined by ∆β. Integrating over dΩ we get the total dwω (if 
we are not interested in the direction of the outgoing soft photon): 

2dwω = (2α/3π)z  2(∆β) dω/ω. (2.143) 

The dipole result (2.142) can be expressed in a form that is even more general. 
Both results (2.142) and (2.143) correspond to the photon production probability 
summed over polarization states. However, the dw per polarization state can be 
seen from the result (2.142) by rewriting the factor |∆β×n|2. The two photon 
(linear) polarization states can be described by two unit vectors εa and εb in mu­
tually perpendicular directions perpendicular to n = k/k; that is, if ε is a general 
polarization state, ε · n = 0. Then, if q is any vector [see Equation (2.54)], 

2(q×n)2 = q 2 − (q · n) = (ε · q)2 . (2.144) 
ε 

Another way of obtaining the result (2.144) makes use of the relation n = εa ×εb; 
since εa ·εb = 0, the elementary vector identity A×(B×C) = (A·C)B −(A·B)C 
yields q×(εa ×εb) 

)2 = (q · εa)2 + (q · εb)2. That is, from the formula (2.142) we 
can identify the expression for the probability per photon state for emission in the 
direction n desginated by the element dΩ: 

2 2dwω = (α/4π )z2(ε · ∆β) (dω/ω)dΩ. (2.145) 

2.7.3 Emission from Relativistic Particles 

For the more general case of emission by relativistic particles it is also convenient 
to employ the result (2.73) with Bω given by Equation (2.141). Now we use the 
relativistic expression (2.84) for the vector potential, and for a system of particles, 
readily obtain the general formula 

dwω = α|∆β |2(dω/ω)dΩ (2.146) 

for the soft-photon-emission probability. Here 

∆β = (2π)−1 ∆(zβ/κ)k ×n, (2.147) 
k 

the sum being over the charged particles, and the soft-photon-emission probability 
is determined by the particles’ velocities and changes in velocities. Further, we 
again obtain the result that dwω is proportional to dω/ω in this very general case. 
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Even for the case of a single particle, integration over dΩ does not yield a simple 
result for arbitrary initial and final velocities. We give expressions for dwω only for 
two special, but important, cases. First, consider the case where a single particle is 
accelerated from rest to (or suddenly produced at) velocity βc. Then 

2 dω sin2 θ 
dwω = 

α
z 2β

(1 − β cos θ)2 
dΩ,  (2.148)

4π2 ω 

where θ is the angle between β and n. The integration over dΩ (= 2π sin θdθ ) is  
elementary and yields the total probability 

dwω = 
α 

π 
z 2 

( 
1 

β 
ln 

1 + β 

1 − β 
− 2 

) 
dω 

ω 
, (2.149) 

which is consistent with the dipole formula (2.143) when β � 1. 
The second important example of emission from relativistic particles for which 

a simple expression for dwω results is the case where a single highly relativistic 
particle suffers small-angle elastic scattering. Then, since we are considering soft-
photon emission, β is close to unity before and after scattering, ∆β is small and 
β · ∆β is negligible. Then, with f (β) = (1 − β · n)−1β, and ∆f = (∂f /∂β) · ∆β, 

−1 2dwω = (4π2) αz (dω/ω) (∆f ×n)2dΩ.  (2.150) 

The evaluation of the integrals16 of the various terms here is elementary. The algebra 
is a little tedious, but the result is simple: 

2dwω = (2α/3π)z  2γ (∆β)2(dω/ω), (2.151) 

that is, just γ 2 = (1 − β2)−1 times the non-relativistic expression (2.143). It 
should be emphasized again that this formula holds only in the limit of small-angle 
scattering and for γ � 1. The formula is useful, however, and will be applied in a 
later chapter on bremsstrahlung. 

Formula (2.151) can be derived in a much simpler way by making use of the 
non-relativistic expression (2.143). We consider the process in the lab frame (K) 
where the initial velocity is along, say, the x-axis and in a frame (K ′) moving in the 
same direction such that in this frame the particle motion is non-relativistic. Since 
dwω is a probability (a number), it must be an invariant: 

dwω(v,∆v) = dwω′ (v ′,∆v ). (2.152) 

For the right-hand side we can employ the result (2.143). Since dω′/ω′ = dω/ω, 
and ∆v′ is in, say, the y-direction, we have only to perform an elementary Lorentz 
transformation of ∆β ′ : y 

∆β ′ = ∆βy/γ (1 − ββx). (2.153)y 

But βx → β, so  ∆βy 
′ → γ∆βy and the result (2.151) is readily obtained. 

Finally, let us rewrite and generalize some of the relativistic expressions given 
here, and again make use of covariance arguments to show the most general formula 
can be obtained easily from the corresponding expression in the non-relativistic 

16They are similar to those involved in the derivation of the result (2.112). 
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limit. We express the formulas in terms of the photon momentum k rather than ω 
(= |k|c), being part of the four-vector kµ = (ik, k). Also, we let pµ and pµ be, 
respectively, the initial and final four-momenta of the charged particle. A photon 
polarization four-vector εµ = (ε0, ε) is introduced, with a gauge chosen such that 
ε0 = 0. Then the invariant17 

k · p ≡ kµpµ = −γmckκ (2.154) 

can be used to write 
β = −k 

p 
. (2.155)

κ k · p 

The factor (dω/ω)dΩ is expressed in terms of the invariant d3k/k: 

dk 

k 
dΩ = 

1 

k2 

d3k 

k 
(2.156) 

In the gauge with ε0 = 0, 

εµpµ = ε · p = ε · p, (2.157) 

and the formula (2.146) becomes [see Equation (2.144)] 

z 2α ∑∣ ( ε · p ∣ 2 d3k 
dwω = ∣ ∆ ∣ . (2.158)

4π 2 k · p k 
ε 

That is, per polarization state, the generalization of the non-relativistic expression 
(2.145) is ∣2 

d3kz 2α ∣ ε · p ε · p ′ ∣ 
dwω = 

4π2 
∣ 
k · p 

− 
k · p′ ∣∣ k

. (2.159) 

The expression is manifestly covariant, involving factors that are Lorentz invariants. 
This is to be expected, since dwω should be invariant, as has already been noted 
[see Equation (2.152)]. Actually, the general expression (2.159) could be obtained 
directly from the formula (2.145) by rewriting the latter in terms of factors that are 
manifestly covariant and that reduce to the non-relativistic factors in that limit. It 
is not difficult to do this; the ε · β term is replaced by the invariant ε · p and the 
1/k  inside the square is replaced by the form (k · p)−1 [see Equation (2.155)]. In 
the next chapter, in Section 3.5, all of the soft-photon formulas derived here will be 
derived in a quantum-mechanical treatment. 

2.8 WEIZSÄCKER-WILLIAMS METHOD 

The idea for this method was first introduced by Fermi18 in 1924 and was developed 
more fully ten years later by von Weizsäcker and especially by Williams. Sometimes 
the procedure is referred to, in a more descriptive way, as the “Method of Virtual 

17For a four-dimensional dot product we do not use boldface symbols, to distinguish it from the 
three-dimensional case. 

18Z. Phys. 29, 315 (1924). 
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Quanta,” and, more recently, the designation “Equivalent Photon Method” (e.p.m.) 
has been used. We stick with the older name, employing, for brevity, simply “W-W.” 

The W-W method is really quite powerful. It allows the calculation, by very 
simple means, of certain proceses that otherwise would be extremely difficult to 
evaluate. Generally, it is the cross section for some process that is computed, and 
the method allows its evaluation to a relative accuracy ∼ (ln N)−1, where N is some 
large number. The actual application of the method for various specific processes 
will be deferred to later chapters. Applications will show, for example, how it allows 
an alternative derivation for a process and how it always provides more insight into 
the nature of the process. Here the foundations for the development of the procedure 
will be given and the basic assumptions involved will be discussed, along with the 
limitations of the method. We also try to indicate basically why it works so well in 
general, although this will only be fully clarified later when the specific applications 
are outlined. 

2.8.1 Fields of a Moving Charge 

In the W-W method the effects of the fields on a moving charge q on a target system T 
are described in terms of an “equivalent” flux of photons. The charge is incident on T 
at an impact parameter b with a velocity v, and to describe the fields it is convenient 
to introduce two reference frames K and K ′ with x- and x -axes oriented along v, 
with q moving at the origin of K ′ (see Figure 2.5). It is assumed that the charge 
is moving fast enough that the interaction with T does not cause an appreciable 
deviation from a straight line path. The system T is located at a distance b along the 
y-axis of K , and experiences fields from q that are time variable. The equivalent 
flux of photons incident on T then has a frequency spectrum that is determined by 
the details of this time dependence. 

In the frame K ′ there is only an electric field with components at T equal to 
3 ′ ′2 ′2E′ = (q/r ′ )(x1

′ , b,  0); here x1 is the coordinate of T in K ′, and r = b2 + x 1. 
With K and K ′ coinciding at t ′ = 0, x1 = −vt . What are needed are the fields in K 
at the point (0, b,  0) where the target is located. The time coordinate t at this point 
is gotten from t ′ by the elementary Lorentz transformation t ′ = γ (t  −vx1/c

2) = γ t  
(since x1 = 0), so that we can write x1 

′ = −γ vt . The electromagnetic fields in K 
are found from the tensor transformation [see Equations (1.28), (1.73)] 

Fρλ = aρµaλνFµν, (2.160) 

where   
0 iE1 iE2 iE3  −iE1 0 B3 −B2   (2.161)  Fµν =  −iE2 −B3 0 B1 

−iE3 B2 −B1 0 

is the electromagnetic field tensor. As in this problem, when the relative motion 
is along the x- and x ′-axes, the transformation coefficients are given by Equa­
tions (1.23)–(1.25). Then, the transformations (2.152) for individual components 
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Figure 2.5 Moving-charge and “target” reference frames. 

are found to be 

= E1,E1 

E2 
′ = γ (E2 − βB3), 

= γ (E3 + βB2),E3 (2.162) = B1,B1 

= γ (B2 + βE3),B2 

B3 
′ = γ (B3 − βE2). 

Actually, in our problem we have to go from the frame K ′ to K , but those transfor­
mations are the same as the ones (2.162) with the sign of β changed and with primes 
transferred to the unprimed fields. Of course, there are only the fields E1 

′ and E2 
′ in 

K ′. The only fields in K are then 

E1 = E1 
′ = −  

qγ vt 
2t2)3/2 

, 
(b2 + γ 2v

(2.163)
E2 = γE2 

′ = 
qγ b 

2t2)3/2 
, 

(b2 + γ 2v

B3 = βγ E2 = βE2, 

now expressed in terms of the K-frame variable t . These are the fields experienced 
by the target system. 
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2.8.2 Equivalent Photon Fluxes 

If the target system consists of charges in non-relativistic motion,19 magnetic forces 
are negligible and the principal perturbation is from the electric fields E1 and E2. 
Then, if there were, in addition to E1 and E2, two fictitious20 magnetic fields (B3)a = 
E2 and (B3)b = −E1, the perturbation would be essentially the same. However, 
now the perturbation can be described in terms of two radiation pulses with Poynting 
vectors S1 = (c/4π)E2

2 and S2 = (c/4π)E1
2 striking the target in two directions. 

These pulses can be considered to consist of photons of linear polarization, with a 
spectrum of frequencies determined by the time dependence of E2 and E1. In terms 
of the Fourier transforms of these fields, the spectral distributions of the equivalent 
photon fluxes will be [see Equation (2.70)] 

dJ1/dω = dN1/dA dω = (c/�ω)|E2ω|2 , 
(2.164) 

dJ2/dω = dN2/dA dω = (c/�ω)|E1ω|2 . 

Specifically, the Fourier amplitudes are given by the integrals ∫ ∞ iaξ q e 
E2ω = 

(1 + ξ 2)3/2 
dξ,  (2.165)

2πbv  −∞ ∫ ∞ ξeiaξ 

E1ω = −  
q

(1 + ξ 2)3/2 
dξ,  (2.166)

2πbvγ  −∞ 

where the obvious variable change ξ = γ vt/b  has been made, and the dimensionless 
parameter a is given by 

a = ωb/γ v. (2.167) 

All of the frequency dependence is contained in a. Moreover, the main contribu­
tions to the integrals (2.165) and (2.166) come from |ξ | � 1, so that for a � 1 the 
integrands are oscillatory and the integrals are small. The characteristic frequency 
of the equivalent photon fluxes is then 

ωc ∼ γ b/v, (2.168) 

and this is also the effective maximum frequency of both of the distributions 
(2.164). The integrals (2.165) and (2.166) are actually representations of modi­
fied Bessel functions, so that they can be evaluated from tables for any value of 
the parameter a. However, only the asymptotic forms will be important for our 
considerations, both as to the foundations of the method as well as for most (but not 
all) the applications. 

It is the asymptotic form at low frequency (small a) that is most relevant. The 
Fourier amplitudes in this limit may be obtained through consideration of the in­
tegrals (2.165) and (2.166) for a � 1. The first integral is very simple and we 
have 

E2ω → q/πbv. (2.169) 

19It will be shown below that this assumption can be relaxed, so that the W-W method can be employed 
when there are relativistic motions in the target system. 

20Actually, as β → 1, the field B3 = E2 really is present [see Equations (2.163)], so that in this limit 
(B3)a is not fictitious. 
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In the second integral the asymptotic form can be obtained in good approximation 
by setting eiaξ = 1 + iaξ + · · ·  and by applying effective cutoffs to the integral, 
giving the approximate result21 ∫ 1/a 

2 dξ/ξ = 2 ln(1/a), (2.170) 
1 

E1ω → −(iqa/πbvγ ) ln(1/a). (2.171) 

The important ratio is then 

|E1ω|2/|E2ω|2 → 
[ 
(a/γ ) ln(1/a) 

]2 
, (2.172) 

which is very small in the limit a � 1, so that in the limit of very soft “virtual” 
photons, dJ1/dω ∝ ω−1 while dJ2/dω ∝ ω. It is because of this result and, 
therefore, in applications (treated later) that the main contribution to the evaluation 
of cross sections by the W-W method comes from these virtual photons, and that 
the pulse J1 always gives the principal result, J2 being unimportant. The method 
always gives a final formula involving a logarithmic factor whose argument (N ) is  
very large. Since N is evaluated to an accuracy up to an undetermined multiplying 
constant of order unity, use of the asymptotic forms given above is sufficient in the 
general formulation. That is, it is really unnecessary to introduce the precise forms 
for the distributions (2.164) in terms of modified Bessel functions. In the end, the 
asymptotic forms are always taken and the argument N is not precisely determined. 

It is, however, appropriate to exhibit here a general formula for the cross section 
dσ  for a process evaluated by means of the W-W method. If we describe the process 
in terms of the interaction of the equivalent virtual photons accompanying the fast 
charge, we can write 

dσ = dN dσv (2.173) 

where dN is the differential number of virtual photons and dσv is their interac­
tion cross section. For example, in an important application of the W-W method, 
bremsstrahlung can be considered as Compton scattering of the virtual photons of 
the Coulomb field of the scattering center by the incoming fast particle. In this case, 
dσv would be the Compton cross section and dσ the bremsstrahlung cross section. 
The differential dN is obtained by multiplying the virtual photon flux dJ1/dω by 
dω and the differential area 2πb  db  associated with charged particles incident on the 
target at impact parameters within db. This summary over azimuthal angles means 
that dσv should be the cross section for unpolarized (virtual) photons. Employing 
the asymptotic form (2.169) for E2ω, we then have, for q = ze, the result 

dN = (2α/π)(z/β)2(dω/ω)(db/b), (2.174) 

where α is, again, the fine structure constant and β = v/c. There will, in the end, 
be an integration over db, yielding a factor ln(bmax/bmin) and, depending on the 

21The exact asymptotic form of this integral is obtained by replacing ln(1/a) by ln(2/ΓEa) = 
ln(1.123/a), where ln ΓE = 0.5772 is Euler’s constant. An outline of an elementary derivation of this 
more precise result, without resort to general identities on Bessel funcitons, may be found in R. J. Gould, 
Am. J. Phys. 38, 189 (1970). 
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process considered, there may be an integration over dω (or a transformation of dω 
into, say, the differential energy of the particle produced in the process). 

Finally, we might note another reason for neglecting the effects of the pulse 
associated with J2, at least for the case of the highly relativistic incident charge. This 
is exhibited in the factor 1/γ multiplying the integral (2.166) and means that, for 
γ � 1, the flux dJ2/dω is small compared with dJ1/dω for all frequencies of virtual 
photons. Since, for γ � 1, the flux dJ2/dω is truly fictitious for a relativistic target 
(since there is no magnetic field to accompany E1), and since magnetic interactions 
may be important, the equivalent-photon description for this “transverse” pulse has 
its limitations. On the other hand, as has been remarked earlier, the field E2 really 
does have a magnetic counterpart (B3) of equal magnitude as β → 1, so that the 
“longitudinal” pulse J1 does have a valid equivalent-photon description, even when 
the target is relativistic and magnetic forces are important. 

2.9 ABSORPTION AND STIMULATED EMISSION 

A radiation field, incident on a system of charges, can, itself, provide the perturbation 
to cause the system to undergo a transition. This “external” radiation field can 
thereby induce a transition resulting in the production of a new photon (stimulated 
emission) or a transition in which the system absorbs energy from the radiation field, 
removing a photon from it (absorption). The two processes, stimulated emission and 
absorption, are a result of the same interaction or perturbation and can be considered 
as just the time reverse of one another. This is indicated pictorially in Figure 2.6 
where a photon beam (wavy lines) is shown incident on the charge system s. The 
beam is considered to have a definite direction specified by, say, a solid angle element 
dΩ , and we consider a class of its photons having a particular polarization and a 
frequency within dω. Thus, the photon states of the beam are completely specified 
and n is the associated photon occupation number. Also, we consider a transition 
in s between two specified states (“1” and “2”). There can occur, in addition to the 
processes induced by the beam, spontaneous emission, in general in any direction; 
Figure 2.6 indicates the case of emission in the beam direction.22 

A most important result is the relation between the rates for stimulated emission 
and absorption and that for spontaneous emission. The relation is extremely simple 
and is sometimes referred to in terms of the “Einstein A and B coefficients,” although 
that old-fashioned terminology and notation will not be employed here. Also, it 
should be noted that, to derive the fundamental result, the only quantum-mechanical 
concept that will be introduced is that of the photon. That is, it is not necessary to 
make use of the detailed formalism of quantum field theory. This fact has dictated 
the inclusion of the topic in a chapter on classical radiation theory rather than in the 
following one on quantum electrodynamics. 

22Stimulated emission, being the exact reverse of absorption, always takes place in the direction of 
the incident radiation beam. 
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Figure 2.6 Representations of absorption, stimulated emission, and spontaneous emission. 

2.9.1 Relation to Spontaneous Emission 

Consider again the three processes indicated in Figure 2.6 with the photon state 
completely specified in terms of its polarization, frequency (or energy), and direc­
tion of motion. As a result of the interaction with the photon beam, the system s 
undergoes transitions between states 1 and 2. The system can also undergo spon­
taneous radiative transitions that can deposit photons into the beam. The rates for 
the absorption (a) and stimulated-emission (b) processes will be proportional to the 
occupation number (n) of the photon beam and to the numbers N1 and N2 of the 
system in the lower and upper state, respectively. That is, 

Ra = R1→2 = Rabs ∝ nN1, 
(2.175) 

Rb = R2→1 = Rstim ∝ nN2. 

The proportionality constants (wabs and wstim) in the rates (2.175) must be identical, 
since the two processes are just the time reverse of one another. The spontaneous 
rate will, of course, be proportional to N2: 

Rc = Rspon ∝ N2, (2.176) 

and we designate the associated proportionality constant as wspon. The rate constants 
wabs (= wstim) and wspon are determined by the characteristics of the charge system 
s; that is, they are “atomic” parameters. A convenient way of determining the 
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relationship between them is to consider the case where the system s is in thermal 
equilibrium with the surrounding photon gas. Then, balancing the 1 → 2 and 2 → 1 
rates involving photons produced or absorbed within the beam direction and with 
particular polarization, we have 

nN1wabs = nN2wstim + N2wspon. (2.177) 

With23 

n = (e�ω/kT − 1)−1 , 
(2.178) 

N2/N1 = e −�ω/kT , 

and the identity wabs = wstim, we obtain the simple and fundamental result 

wspon = wabs = wstim ≡ w. (2.179) 

In other words, there is only one (w) fundamental radiative transition constant. The 
coefficient w will, of course, be different for each type of system and transition— 
and, in general, the w’s are difficult to compute—but the identity (2.179) must hold 
for each given transition. This identity corresponds to the relation between the 
“Einstein A and B coefficients.” 

2.9.2 General Multiphoton Formula 

Because of the result (2.179), for any process for which there is a finite rate coefficient 
w for the spontaneous production of a photon in some polarization state and in some 
direction of motion and with frequency ω, the total rate will be given by 

Rspon + Rstim = wN2(1 + n). (2.180) 

The factor 1 + n simply corrects for simulated emission. The result (2.180) holds 
for any background photon gas (not just for that of a blackbody, of course), and 
n is the occupation number of the gas causing the stimulated process. Again, we 
must remember that stimulated emission takes place only in the direction of the 
(incident) photons that cause it. Note, further, that n is the occupation number for 
the characteristics of the outgoing photon. The process is stimulated only by these 
same kind of photons. 

There are some radiative processes that take place by the spontaneous production 
of two photons. For example, the neutral pion decays spontaneously into two γ ­
rays: π0 → γ1 + γ2. The total decay rate for photons emitted in specific directions 
is obtained from the spontaneous rate by multiplying by (1 + n1)(1 + n2), where n1 

and n2 are the occupation numbers of the surrounding photon gas at the energies �ω1 

and �ω2 (for a pion at rest these energies are equal) and corresponding directions 
and polarizations. This corrects for stimulated emission. That precisely the factor 
(1 + n1)(1 + n2) is required can be seen if we consider the pion to be in thermal 
equilibrium with a (blackbody) photon gas. Then in a steady state condition 

N(π0)w(1 + n1)(1 + n2) = N(2γ )wn1n2 (2.181) 

23The blackbody occupation number [first of Equation (2.178)] is a result of (only) the assumption 
that the photon is a massless boson. 
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where w is the transition rate. The “2γ ” two-photon state of the π0 will have 
�ω/kT forrelative numbers N(2γ )/N(π0) = exp[(�ω1 + �ω2)/kT ] and 1 + n = ne 

a blackbody distribution. Thus, we see that the condition (2.181) is satisfied. 
Another example of a two-photon radiative process is the decay of the 2s state of 

a hydrogenic system: 

a2s → a1s + γ1 + γ2, (2.182) 

3with �ω1 + �ω2 = 4 Z
2Ry. Corrected for stimulated emission, the total decay rate 

is obtained from the spontaneous rate by multiplying by (1 + n1)(1 + n2); there is 
an integration over photon energies and directions. Again, we see that this factor is 
needed to satisfy the detailed balance relation 

N2sw(1 + n1)(1 + n2) = N1swn1n2, (2.183) 

with N2s/N1s = exp[−(�ω1 + �ω2)/kT ] and n1 and n2 the blackbody occupation 
numbers. 

The generalization to the case of a process in which there are any number of 
photons in the final state is clear. If Rspon(ω1, ω2, . . .)  is the spontaneous rate, the 
rate corrected for stimulation by an external radiation field is 

R = Rspon(ω1, ω2, . . .)(1 + n1)(1 + n2) · · ·  . (2.184) 

2.9.3 Stimulated Scattering 

In addition to stimulated photon-emission process, there can be stimulation of photon 
scattering by an external radiation field. The rate is enhanced by a factor 1+n′, where 
n′ is the occupation number of the photon gas for the state (energy, polarization, 
direction of motion) of the scattered photon. The scattering can be by a free electron 
(Compton scattering) or by an atomic or molecular system. For a system with 
internal degrees of freedom the scattering can either leave the system unchanged 
(Rayleigh scattering) or cause an excitation in the system at the same time (Raman 
scattering). If, in the scattering, the photon frequency changes from ω to ω′ (and 
its polarization and direction changes) and the scattering system changes from s to 
s ′, we can see the necessity of precisely the factor 1 + n′ to correct for stimulated 
scattering by considering detailed balance. With the scattering system in equilibrium 
with a surrounding blackbody radiation field, the condition 

nNwsc(1 + n′) = n′N ′ wsc(1 + n) (2.185) 

is satisfied identically with n and n′ the blackbody occupation numbers and N/N ′ = 
exp[−�(ω − ω′)/kT ]. Of course, the stimulation correction 1 + n′ (or 1 + n) 
applies whether the external radiation field is or is not in thermal equilibrium with 
the scattering system. 
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