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C H A P T E R  1 3 

Probabilistic Models 

13.1 Introduction 

All of the models considered so far have been deterministic; that is, the models 
predict that the system will be at one specific state at any given time. If a deter­
ministic model forecasts that n(t) � 50, then the implication is that there will be 
exactly 50 individuals at time t. The real world is never so certain. Individuals 
may fail to reproduce or produce a bonanza crop of offspring simply by chance. 
Even if 50 is the most likely number of individuals, we might find 49 or 51 indi­
viduals, and there might even be some chance that the population is extinct or 
that it numbers in the millions. To account for such uncertainty, we must 
broaden our models. We need models that describe the realm of possible states; 
such models are known as “stochastic” or “probabilistic” models. 

Definition 13.1: Stochastic Model 
A model describing how the probability of a system being in 

different states changes over time. 

Chapter Goals: 

•	 To give examples of 

dynamical models 

involving chance events 

•	 To discuss how to 

incorporate chance events 

into simulations 

Chapter Concepts: 

•	 Demographic stochasticity 

•	 Environmental 

stochasticity 

•	 Birth-death process 

•	 Wright-Fisher model 

•	 Random genetic drift 

•	 Individual-based model 

•	 Moran model 

•	 Coalescent theory 

Before embarking on the material in this chapter, first familiarize yourself 
with the principles of probability theory introduced in Primer 3. The core of 
this chapter focuses on developing stochastic models and simulating them, 
much as we did in Chapter 4 for deterministic models. Then, in Chapters 14 
and 15, we introduce various methods that can be used to analyze stochastic 
models. 

This chapter frequently relies on drawing random numbers from a probabil­
ity distribution. Although computers cannot generate truly random numbers 
(everything they do is specified deterministically by computer code), there are 
many programs that generate “pseudo-random” numbers (see Press 2002). 
Pseudo-random numbers are determined by an algorithm in such a way that it 
is difficult to detect a pattern between successive numbers. For example, it is dif­
ficult to detect a pattern in the series: 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, . . . ,  
but in fact these numbers are the digits in � (3.14159265358979323 . . .) that 
follow 3.14. Thus, we could use an algorithm that calculates � to get a series of 
pseudo-random integers between zero and nine. More sophisticated algorithms 
are described in Press (2002), which also discusses how random numbers can 
be drawn from different probability distributions (e.g., Poisson, binomial, normal, 
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etc.). In this chapter, we use the random number generators of Mathematica to 
simulate stochastic models, and we provide the code for generating each figure 
in the on-line supplementary material. 

In the next four sections, we introduce the most fundamental stochastic 
models in ecology and evolution. Sections 13.2 and 13.3 describe stochastic 
models of population growth in discrete and continuous time, respectively. 
Similarly, sections 13.4 and 13.5 describe stochastic models of allele frequency 
change. To give a flavor for the breadth of stochastic models, we then explore 
three other models. Section 13.6 develops a stochastic model of cancer to illus­
trate how new models are explored. Section 13.7 introduces the concept of a 
spatially explicit stochastic model, which tracks the number and location of 
individuals within a population. Finally, section 13.8 is slightly more advanced 
and describes a relatively new and important branch of evolutionary theory, 
known as coalescent theory, which traces the ancestry of a sample. 

13.2 Models of Population Growth 

We begin by developing a stochastic model of population growth. A general 
deterministic model of population growth in discrete time is n(t � 1) � R n(t), 
where R might be a constant as in the exponential model or a function of the 
current density as in the logistic model. The equivalent stochastic model 
describes the probability of observing n(t � 1) individuals at time t � 1, given 
that there are n(t) individuals at time t. Again, a stochastic model might con­
sider the passage of time to occur in discrete time steps or continuously. 

Consider a species that reproduces once per season, at which point all of the 
parents die (i.e., nonoverlapping generations). To determine the number of 
individuals in the next generation, we must know the probability distribution 
describing the number of offspring per parent (Figure 13.1). That is, we must 
specify the probability that each reproducing parent is replaced in the next 
time unit by 0, 1, 2, etc. offspring. For a species with separate sexes, this expo­
nential model counts only females and assumes that there are always enough 
males to fertilize these females. For a species that is hermaphroditic, each indi­
vidual within the population is considered to be a reproducing parent. The dis­
tribution of offspring number will vary from species to species, but a simple 
(albeit arbitrary) choice is that the number of surviving offspring per parent fol­
lows a Poisson distribution (Figure P3.6). A Poisson distribution has only one 
parameter, �, which gives both its mean and its variance. If the population size 
were initially n(t) � 10 and the mean number of offspring per parent, R, were 
1.2, then there would be n(t � 1) � 1.2 � 10 � 12 offspring in a deterministic 
model. Even though 1.2 is the expected number of offspring per parent, how­
ever, any one parent will have a random number of offspring, which we draw 
from a Poisson distribution with mean R � 1.2. For example, the number of 
offspring per parent for each of the ten parents might be 

4, 2, 0, 4, 1, 1, 1, 0, 0, 0 



                                

569 Probabilistic Models 

14% 

12% 

(a) 25% (b) 

Pe
rc

en
t o

f 
fa

m
ili

es
 

Humans 
(1950 US) 

20% 

5% 
2% 

0% 
0 1 2 3 4 5 6 7+ 

Family size
15 20 25 30

Salmon

0  5  10  

Family size 

Figure 13.1: Family size distributions. (a) Distribution of family sizes for humans based on Kojima and Kelleher (1962). 
(b) Distribution of the number of offspring that survive and return to spawn per female in pink salmon, based on Figure 3b 
in Geiger et al. (1997). For these species, family size is more variable than predicted by the Poisson distribution (solid curves) 
with the same mean as the empirical distribution (histograms). 

for a total of 13 surviving offspring. (We used Mathematica to draw these ran­
dom numbers from a Poisson distribution.) 

In this example, we expected the population to increase in size (from 10 to 
12), but it actually increased even more (to 13). By chance, two of the parents 
left a surprisingly large number of offspring (four). Retracing our steps and 
drawing another random set of ten numbers from a Poisson distribution with 
mean R � 1.2 gives an entirely different outcome: 

0, 1, 0, 1, 1, 1, 1, 3, 0, 1 

for a total of 9 surviving offspring. In this case, the population size decreased. 
To simulate population growth using a stochastic model, we could use ran­

dom numbers to specify the number of offspring per parent in each subsequent 
generation. Given n(t) parents at time t, the numbers of offspring per parent 
could be randomly drawn and the total set to n(t � 1). Repeating the process to 
determine how many offspring are born to each of these parents would give us 
n(t � 2). We could repeat this procedure for as many generations as desired. The 
simulation, however, would get slower and slower as the population size 
increased, because we must draw n(t) random numbers, each one specifying the 
number of offspring per parent. 

Fortunately, knowledge of probability theory can help us. We only care 
about the total number of offspring, and therefore we need only draw a single 
random number from a distribution that represents the sum of n(t) draws from 
a Poisson distribution with mean R. The sum of n(t) numbers drawn from a 
Poisson distribution with mean R is known to follow a Poisson distribution 
with mean � � R n(t) (Supplementary Material P3.2). Thus, we can simulate a 
population in which R � 1.2 and n(0) � 10 by drawing a single random num­
ber from a Poisson with mean � � 1.2 � 10 � 12. Using Mathematica, we 
obtained a random number of offspring equal to n(1) � 21. To get n(2), we then 
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drew a random number from a Poisson with mean 1.2 � 21 � 25.2, generating 
26 offspring, by chance. In Figure 13.2, we show the resulting trajectory of 
population growth over 30 generations. Finally, we started the whole process 
over again from n(0) � 10 to generate the different curves (replicates). 

The different curves in Figure 13.2 look as if they were drawn using differ­
ent reproductive ratios R, but they weren’t. In each case, R � 1.2. In the case of 
the top curve, the parents just happened to have more offspring early on in the 
simulation than in the case of the bottom curve. As in many stochastic mod­
els, there is a lot of variability in the outcome. Consequently, it is important to 
run several replicates of a stochastic simulation, starting with the same initial 
conditions and parameters, but drawing new random numbers each time step. 
We can then summarize the outcomes to draw conclusions. For example, we 
ran 100 replicate simulations with n(0) � 10 and R � 1.2. On average, 2470 off­
spring were alive after 30 generations. The standard deviation was 1739 offspring, 
indicating that the replicates varied substantially from one another. Indeed, the 
population had gone extinct in 3 of the 100 replicates. This variability in out­
come is referred to as demographic stochasticity. 

The above simulations modeled exponential growth, where the mean num­
ber of offspring per parent, R, was the same regardless of population size. It is 
easy to incorporate density dependence by specifying how the mean of the 
Poisson distribution, � � R(n) n(t), depends on the current population size. For 
example, we can run a stochastic simulation of the logistic model (3.5a) using 
R(n) � 1 � r (1 � n(t)/K). If we let r � 0.2, R would again be 1.2 at low popula­
tion sizes (n(t) �� K). As the population size gets larger, however, the mean 
number of offspring per parent drops. With n(0) � 10, r � 0.2, and K � 100, 
the total number of offspring is Poisson distributed with mean R(n(0)) n(0) � 

(1 � 0.2 (1 � 10/100)) 10 � 11.8. When we drew such a random number, we 
got n(1) � 12. In the next generation, the sum total number of offspring would 
follow a Poisson distribution with mean � n(1) � (1 � 0.2 (1 � 12/100)) 12 � 

14.1, from which we drew a random number of n(2) � 16. Following this 
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Figure 13.3: Stochastic model of logistic growth. 
Starting from a population of ten individuals, the 
number of individuals in generation t � 1 was 
drawn from a Poisson distribution with mean, 
(1 � r (1 � n(t)/K )) n(t), where r � 0.2 and 
K � 100, until 100 generations had passed. This 

Generation process was repeated five times (five curves). 

procedure for 100 generations and repeating the entire process five times gave 
us the data for Figure 13.3. 

Although one replicate population out of five went extinct (again due to 
demographic stochasticity), the other four hovered around the carrying capacity 
of 100 and exhibited much less variability than Figure 13.2. Density dependence 
dampened the amount of demographic stochasticity by reducing the subsequent 
growth in those populations that happened to grow rapidly early on. 

In Figures 13.2 and 13.3, we held the parameters R, r, and K constant, but envi­
ronmental fluctuations can cause the parameters of a model to vary as well. This 
is referred to as environmental stochasticity. We can incorporate environmental 
stochasticity in the exponential growth model of Figure 13.2 by drawing the 
mean number of offspring per parent, R, from a probability distribution. For sim­
plicity, assume that there are good years and bad years, with reproductive ratios 
Rg and Rb. If the chance that a year is good is p, the type of year will represent a 
Bernoulli random variable (Primer 3). We model environmental stochasticity by 
drawing a random number to determine the type of year. Specifically, each year, 
we draw a random number between 0 and 1 (uniformly); if the random number 
is less than p, the year is good; otherwise it is bad (Figure 13.4). 

The results in Figure 13.4 are dramatically different from Figure 13.2. The 
population size plummets during bad years, causing the trajectories to fluctu­
ate wildly. Consequently, the risk of extinction is much higher. Indeed, out of 
100 replicates with an average R of 1.2 and n(0) � 10, extinction occurred for 
37 of the populations within 30 generations compared to only 3 with demo­
graphic stochasticity alone. Furthermore, the population size at generation 30 
was smaller, on average (1775 versus 2470), with a much greater standard devi­
ation (11,689 versus 1739). 

These stochastic models of population growth exhibit fluctuations in popula­
tion size regardless of the growth rate r. We also saw fluctuations in population 
size in the entirely deterministic model of logistic growth in discrete time when 
growth rates were high (Figure 4.2 and Box 4.1). Given data on changes over 
time in the size of a population, it can be difficult to determine the source of 
fluctuations (demographic stochasticity, environmental changes, or chaos). 

Variability in population 

size caused by chance 

fluctuations in the 

environment is known 

as environmental 

stochasticity. 
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This point is illustrated in Figure 13.5, where panel (a) is a simulation of the 
stochastic logistic model with Poisson variation in the number of offspring per 
parent with r � 2.4 and panel (b) is a simulation of the deterministic logistic 
model (3.5a) with no variation in offspring number per parent and r � 2.7. 
These graphs look very similar, but they differ fundamentally in that the sec­
ond graph is not random at all—each population size is exactly determined by 
the population size in the previous generation according to equation (3.5a). 

More generally, several mechanisms can be acting simultaneously to affect 
population dynamics. The statistical field known as “time series analysis” was 
born to interpret data measured over time and to identify underlying dynamic 
forces. For example, spectral analysis determines whether there are cycles of 
particular frequencies within time series and can be used to ascribe these cycles 
to abiotic (e.g., climatic) and biotic (e.g., predator-prey) fluctuations (e.g., 
Loeuille and Ghil 2004). The interested reader is referred to Bjørnstad and 
Grenfell (2001), who review the literature on time series analysis applied to ani­
mal population dynamics, and to Kaplan and Glass (1995) for an introduction 
to time series analysis. 

13.3 Birth-Death Models 

In the previous section, generations were discrete and the entire population 
reproduced simultaneously. For populations in which reproduction is not syn­
chronized, we need a different class of models. Imagine a vial of yeast. Yeast 
replicate by binary fission, but not every cell divides at the same time. If we 
were to track the population, we might see one cell divide and then another. 
Starting from only a few cells in the vial, we would initially observe few events 
per minute because there are so few cells replicating. As the population of cells 
expands, more and more new cells would be created each minute, causing cell 
“births” to occur in rapid succession. 

How might we simulate this scenario? Let us start with a single cell. The 
chance that the cell replicates in any small unit of time �t is b �t, where b stands 
for the birth rate. As long as b is constant, the waiting time until the cell divides 
is exponentially distributed (see Definition P3.12) with mean 1/b. For example, 
under nutrient-rich conditions, the mean time to cell division is approximately 
90 minutes (b � 0.011 divisions per minute). In a simulation, we could draw a 
random number from the exponential distribution with parameter � � b to sim­
ulate the waiting time until cell division. Using Mathematica, we drew a waiting 
time of 83 minutes. Now we have two cells. As long as we don’t care which cell 
divides, the total rate of cell division is twice what it was before, � � 2b, and the 
distribution of waiting times is still exponential (Primer 3). Again using 
Mathematica, we drew a waiting time for the next cell division of 44 minutes 
from an exponential distribution with � � 0.022. We could thus illustrate pop­
ulation growth as a series of steps rising from one cell to two cells at 83 minutes, 
to three cells after another 44 minutes, etc. To calculate the length of each step, 
we would draw a random number from an exponential distribution with mean 
� � b n(t) where n(t) is the number of cells at time t (Figure 13.6). 
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This stochastic model is known as a pure-birth process or a Yule process, in 
honor of George Udny Yule (1924), who used this model to fit data on the 
number of species per genus assuming that speciation was akin to a birth. 
There is quite a bit of variation generated by a birth process, especially early on 
when few individuals are replicating (Figure 13.6 inset). The variation is not, 
however, as dramatic as in the stochastic model with discrete generations illus­
trated in Figure 13.2. In particular, the steps always rise upward because we 
allow only births within the population, but no deaths. 

We can extend the birth process to account for deaths by allowing individ­
uals to die at rate d per individual per unit time as well as replicate at rate b. 
Such a model is known as a birth-death process. With n(t) individuals, the wait­
ing time until the next event happens, regardless of whether it is a birth or a 
death, depends on the total rate of events � � (b � d ) n(t). When the event 
occurs, however, we must classify it as a birth or a death in order to track the 
resulting change in the population size. 

In general, the chance that an event is a birth is given by b/(b � d ). For 
example, there is a 50% chance that the event is a birth when the birth and 
death rates are equal (b � d ). This expression is fairly intuitive, but we can 
derive it formally using Rule P3.6. We wish to know the probability that a birth 
occurs in a time interval, �t, given that either a birth or a death occurs in this 
interval. Using Rule P3.6, P(birth | birth or death) � P(birth ¨ birth or 
death)/P(birth or death). The event “birth ¨ birth or death” is read “birth and 
a birth or a death,” and it can occur only if a birth occurs, which happens 
with probability b �t ; so P(birth ¨ birth or death) � b �t. Also, the probability 
of a birth or death is just P(birth or death) � (b � d) �t. Therefore, we have 
P(birth | birth or death) � b/(b � d). 

We will analyze a birth-death process in Chapter 14, but to prepare for this 
analysis, let us summarize the behavior of the model in terms of the transitions 
possible in a small amount of time, �t. Using an upper-case N to denote the ran­
dom variable “population size”, the probability that the population size at time 
t � �t is j, given that the population size at time t was i, is 

pji(�t) � P(N(t � �t) � j | N(t) � i), (13.1) 

A birth-death process 

tracks changes to a 

population through 

births and deaths, 

assuming that only one 

event happens at a time. 
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Figure 13.7: Birth-death process. The simulations 
of Figure 13.6 were repeated but with a birth rate 
of b � 21/90 and a death rate of d � 20/90, so 
that the net growth rate was b � d � 1/90 per 
unit time as in Figure 13.6. The inset figure shows 
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Time after 26 minutes. 

where pji(�t) denotes the “transition probability” within a time period �t. In a 
very short amount of time (so short that at most one event can occur) the tran­
sition probabilities pji(�t) are approximately 

b i �t for j � i � 1 1a birth2, 
d i �t for j � i � 1 1a death2,1�t2 � d (13.2)pji 1 � 1b � d2 i �t for j � i 1no change2, 
0 for j � i � 1, i, i � 1 1other changes2. 

Figure 13.7 illustrates how adding deaths to the birth-process changes the 
dynamics (compare to Figure 13.6). Although the net growth rate (b � d) is the 
same (1/90), the inclusion of deaths causes the population to grow more errat­
ically. In fact, one of the five replicates went extinct at t � 26. 

So far, we have assumed that the per capita birth and death rates are con­
stant, regardless of population size. It is easy to generalize this birth-death 
model to incorporate density dependence, by making either the birth or death 
rate a function of the number of individuals. Although it is possible to incor­
porate density dependence in a number of different ways, it is often assumed 
that competition among individuals acts to reduce the replication rate, and 
that the death rate remains constant (Renshaw 1991). For example, the per 
capita birth rate might decrease linearly with population size, as in the logistic 
model, giving the transition probabilities 

pji1�t2 � f 

b i a1 � 
i 
K 
b �t 

d i �t 

1 � aba1 � 
i 
K 
b � db i �t 

for j � i � 1 

for j � i � 1 

for j � i 

1a birth2, 
1a death2, 
1no change2, 

(13.3) 

0 for j � i � 1,i,i � 1 1other changes2. 

Here, the probability of a birth is zero at K, which represents a limit to the 
population size. To revise the simulations, all we have to do is update the birth 
and death rates each time the population size changes. It is also possible to 
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incorporate temporal variation in the birth and death rates due to environ­
mental fluctuations; such models are known as “nonhomogeneous birth-death 
processes.” 

Birth-death models have been applied to many other biological problems. 
For example, birth-death models have been used to describe changes in the 
number of repeats at microsatellites, which are stretches of DNA containing 
several copies in a row of a short motif (e.g., GAGAGAGA . . . ) (Edwards et al. 
1992; Ohta and Kimura 1973; Valdes et al. 1993). The birth-death model has 
also been used to describe the process of speciation (akin to birth) and extinc­
tion (akin to death), providing an interesting null model to describe the gen­
eration of biodiversity (Harvey et al. 1994; Nee et al. 1994a; Nee et al. 1995; 
Purvis et al. 1995). We will return to birth-death models in Chapter 14, where 
we describe analytical techniques that can be used to determine such things as 
the probability that the system is at any particular size, the probability of 
extinction, and the expected time until extinction. 

13.4 Wright-Fisher Model of Allele Frequency Change 

Next, we turn to a class of stochastic models that have played an important role 
in evolutionary biology. In the previous sections, the stochastic models focused 
on the total number of individuals within a population. Stochastic models can 
also be used to track the frequency of various types. We will again consider two 
different types of models. In this section, as in section 13.2, we assume that the 
entire population reproduces simultaneously, so that the generations are dis­
crete and nonoverlapping. In the next section, we assume that generations are 
overlapping and that individuals are born and die at random points in time, as 
in the birth-death model of section 13.3. Again, the focus here will be on the 
development of these models and their simulation, laying the groundwork for 
the analytical techniques presented in subsequent chapters. 

Consider a population that has a constant size, N, and only two types of 
individuals (A and a), as in the one-locus, two-allele haploid model (see exten­
sion to diploids in Problem 13.4). The deterministic model of this process, 
equation (3.8c), predicts that the frequency of type A at time t � 1 will be 
exactly p(t � 1) � WA p(t)/(WA p(t) � Wa (1 � p(t))), where Wi represents the 
relative fitness of each type. By chance, however, individuals of type A might 
happen to leave more or fewer offspring in any given generation, so that 
p(t � 1) will have a probability distribution centered around this deterministic 
prediction. 

We first tackle the so-called “neutral” case where individuals are equally fit 
(WA � Wa � 1). If the population size remains constant at N, and if the initial 
frequency of type A is p(0), we can imagine individuals producing an infinite 
number of propagules (seeds, spores, etc.) from which a total of N surviving off­
spring are sampled. This thought experiment implies that the number of copies 
of allele A among the offspring should be binomially distributed with a mean 
of N p(0) (see Primer 3). Thus, to simulate the Wright-Fisher model, we draw a 
random number from the binomial distribution with parameters N and p(0). 
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Figure 13.8: The Wright-Fisher model without 
0.4 

selection. Each generation, offspring were chosen 
by randomly drawing from the alleles (A and a) 

0.2 carried by the parents with replacement (equiva­
lent to binomial sampling). The population was 
assumed to be haploid and of constant size, N � 

100. The frequency of allele A is plotted over time, 
Generation starting with p(0) � 0.5. 

The result j is the number of copies of the allele in the next generation, and 
p(1) � j/N. When we did this for an initial allele frequency of p(0) � 1/2 in a 
population of size N � 100, we drew 42 copies of allele A, so p(1) � 0.42. We 
can then find p(2) by drawing a random number from a binomial distribution 
with parameters N and p(1). Extending this process over 100 generations and 
repeating it five times, gave us the data for Figure 13.8. 

The results are completely different from what we would expect based on 
the deterministic model of Chapter 3. According to equation (3.8c), when rel­
ative fitnesses are equal (WA � Wa � 1), the allele frequency should stay con­
stant (p(t � 1) � p(t)). In Figure 13.8, however, the allele frequencies rise and 
fall by chance over time. This process, whereby random sampling of offspring 
causes allele frequencies to vary from their deterministic expectation, is known 
as random genetic drift. These chance events led to the loss of the A allele at gen-

The process whereby
eration 43 in one replicate and at generation 71 in another. Conversely, the A random sampling of 
allele became fixed within the population at generation 67 in a third replicate. offspring causes allele 
A polymorphism remained in two of the replicates at generation 100, but even- frequencies to vary from 
tually the A allele would have been lost or fixed had we continued to run the their deterministic 
simulations. expectation is known as 

Here, we have been using simulations to determine the probability that, at genetic drift. 

some future point in time, the population will be composed of a certain pro­
portion p(t) of type A. There is a faster way to calculate this probability distri­
bution in small populations, which will provide us with a good background for 
the analysis in Chapter 14. First, because sampling N surviving offspring ran­
domly and independently from all possible offspring is described by a binomial 
distribution, we can use Definition P3.4 to write down the probability that there 
are j individuals of type A at time t � 1 given that there were i individuals of 
type A at time t. Using an upper-case X to denote the random variable “number 
of type A individuals”, the transition probabilities for the Wright-Fisher model are 

pji � P1X1t � 12 � j ƒ X1t2 � i2 
� aNb a  

i b j a1 � 
i bN � j 

, 
(13.4) 

j N N 
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where pji denotes the transition probability within one generation. Equation 
(13.4) is the formula for the binomial distribution (Definition P3.4), but with p 
written as i/N. 

We can use (13.4) to describe a “transition probability matrix” for the 
Wright-Fisher model, which gives the probability of going from any state i to 
any state j in one generation. Because we could have anywhere from 0, 1, 2, to 
N copies of type A, this matrix has N � 1 rows and columns. For example, in a 
population of size four, the transition probability matrix is 

M � •p00 p01 p02 p03 p04 µp10 p11 p12 p13 p14 

p20 p21 p22 p23 p24 

p30 p31 p32 p33 p34 

p40 p41 p42 p43 p44 

81 1 1
1 0

256 16 256 
108 4 12

0 0
256 16 256 
54 6 54 

� ©0 0π . (13.5)
256 16 256 
12 4 108

0 0
256 16 256 
1 1 81

0 1
256 16 256 

Each column sums to one because a population that starts with i copies of the 
allele must have some number between 0 and N copies in the next generation: 

N 
g j� 0 pji � 1. The first and last columns are particularly simple because there is 
no mutation; if nobody is type A (i � 0; first column) or if everybody is type A 
(i � N; last column), then no further changes are possible. 

The helpful part about writing (13.5) in matrix form is that it can be iterated 
using the rules of matrix multiplication (Primer 2). M2 tells us the probability 
that there are j copies at time t � 2 given that there were i copies at time t. In 
general, Mt tells us the probability that there are j copies at time t given that 
there were i copies at time 0. For example, calculating M1000 using equation 
(13.5) (using a mathematical software package) gives 

1 0.75 0.5 0.25 0 
0 0 0 0 0 

M1000 � •0 0 0 0 0µ . (13.6) 
0 0 0 0 0 
0 0.25 0.5 0.75 1

(The zeros in the middle of this matrix aren’t exactly zero, but they are less 
than 10�126.) 
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We can also represent the initial state of the system using a vector 

P1X102 � 02

P1X102 � 12
•P1X102 � 22µ . (13.7) 
P1X102 � 32 
P1X102 � 42

For example, if the population initially had two copies of the allele, then 
P(X(0) � 2) � 1 and all other entries in this vector are zero. Multiplying M1000 

on the right by this initial vector, we find 

1 0.75 0.5 0.25 0  0 0.5 
0 0 0 0 0 0 0 •0 0 0 0 0µ •1µ � • 0 µ . 
0 0 0 0 0 0 0 
0 0.25 0.5 0.75 1 0 0.5

The vector on the right indicates that there is a 50% chance that type A will be 
lost ( j � 0) after 1000 generations and a 50% chance that type A will be fixed 
( j � 4). If instead, the system initially had one copy of the allele, then 
P(X(0) � 1) � 1 and the remaining terms in vector (13.7) are zero. Now when 
we multiply M1000 on the right by this initial vector, we find that there is a 75% 
chance that type A will be lost and a 25% chance that it will be fixed after 1000 
generations. These results suggest that if we start with i copies of type A, then 
type A will eventually be lost with probability 1 � i/N and fixed with proba­
bility i/N. 

Writing this stochastic model in terms of a transition probability matrix 
suggests that we could apply the matrix techniques used in Primer 2 and 
Chapters 7–9 to understand stochastic models. This is exactly right, and we 
shall do so in the next chapter. Once again, eigenvalues and eigenvectors play 
a key role in analyzing stochastic models. At least for small population sizes, 
however, we can get an exact numerical solution just by calculating Mt, against 
which we can check any theoretical prediction. 

The Wright-Fisher model can be extended to incorporate fitness differences, 
mutation, multiple loci, etc. In reality, many of these processes are themselves 
stochastic, but a shortcut is often taken by assuming that these processes affect 
the number of propagules and their allele frequencies. If the number of propag­
ules is very large, then these processes can be described by a deterministic 
recursion (e.g., using equation (3.8c) for selection or (1 � �) p(t) � � (1 � p(t)) 
for the allele frequency after mutation). As a consequence, sampling occurs 
only once, when the N adult individuals are chosen from the propagules. 

As an example, Figure 13.9 illustrates simulations of the Wright-Fisher 
model with selection. In this figure, the A allele is 10% more fit than the a type 
and begins at a frequency of p(0) � 0.05. The simulations are run for popula­
tions of size (a) N � 100 and (b) N � 10,000. In both cases, the alleles rise in 
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For comparison, the thick curves illustrate the 
deterministic trajectory (N � �), obtained by 0.2 
iterating equation (3.8c). The frequency of allele 
A is plotted over time, starting with p(0) � 0.05. 
The favorable allele A was lost at generation 6 in 
one replicate with N � 100 (inset). Generation 

frequency towards fixation within 100 generations, roughly following the 
S-shaped trajectory seen in deterministic models (bold curve). When the pop­
ulation size is small, the Wright-Fisher model exhibits more variability around 
the deterministic trajectory than when the population size is large. This is 
consistent with the fact that the variance in the frequency of allele A due to 
sampling should be p (1 � p)/N under the binomial distribution (see section 
P3.3.1). In fact, when N is only 100, we observe extinction of the beneficial 
allele in one of the five replicates (see inset figure). When N is 10,000, however, 
none of the replicates go extinct, and there is little variability in the trajectory. 

These figures illustrate an important point: adding stochasticity to a model 
need not cause major changes to the results. In populations of small size 
(N � 100), we have seen allele frequency change when there should have 
been none (the neutral case, Figure 13.8), and we have witnessed the loss of a 
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beneficial allele, which we would expect to fix (Figure 13.9a). In populations of 
large size, however, there is less random genetic drift. Consequently, when the 
amount of chance (here represented by variation in samples from the binomial 
distribution) is small relative to other forces like selection, stochastic models 
can behave very much like deterministic models. 

To simulate more than two types within a population (e.g., more than two 
alleles at a locus, or multiple genotypes at two loci), the above method must be 
modified by drawing from a multinomial distribution, with parameters N and 
pi where the pi are the frequencies of the various types, so that g ci � 1 pi � 1 
when there are c types (see Definition P3.5). This works well unless the num­
ber of types becomes very large. For example, with two alleles at each of 100 
loci, there are 2100 possible haploid genotypes (Box P3.1). This number is 
greater than 1030, which is much larger than any population. When there are 
too many types, drawing random numbers from a multinomial distribution 
grinds to a halt. What else can you do? The alternative is to develop an 
individual-based model where you mimic the production of each offspring An individual-based 
within the population, one at a time (Deangelis and Gross 1992). model is a simulation 

Typically, in an individual-based model for the above process, you randomly where each individual is 
draw a gamete from a mother and a gamete from a father within the parental tracked explicitly, along 
population, and unite these to form a diploid offspring (followed by meiosis if with its properties 

you wish to produce a haploid offspring). If the fitness of the offspring is W and (e.g., genotype, 

the maximum fitness is Wmax, you can then test to see if your offspring survives location, age, etc.). 

selection by drawing a random number uniformly between 0 and 1. If that ran­
dom number is less than W/Wmax the offspring becomes one of the N surviving 
individuals in the next generation, otherwise you start again by choosing new 
parents at random. This procedure works well unless the population size is very 
large. 

13.5 Moran Model of Allele Frequency Change 

In the Wright-Fisher model, we assumed that the entire population reproduced 
simultaneously. Intuitively, one might think that random genetic drift would 
be exaggerated by having the entire population replicate at once. To check this 
intuition, we explore a model where only one individual reproduces at a time. 
One way to do this would be to expand the birth-death process to allow mul­
tiple types of individuals (e.g., types of alleles) and to track the numbers of each 
type. In this case, you would observe both changes to the population size and 
to the frequencies of each type. But what if you wanted to hold the population 
size constant, to compare the results to those of the Wright-Fisher model? 

The easiest way to adapt the birth-death process, holding the population 
size constant, is to couple each birth event with a death event. Whenever an 
individual is chosen to give birth, another individual is randomly chosen to 
die. Typically, the individual chosen to die can be any individual in the popu­
lation, including the parent of the new offspring, but not the new offspring 
itself. It is also typical to track the population only at those discrete points in 
time where a birth-death event occurs, measuring time in terms of the number 
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In the Moran model, 

a randomly chosen 

individual reproduces, 

followed by the death 

of a randomly chosen 

individual. This sampling 

process also causes 

genetic drift. 

of events that have happened rather than in chronological time. This evolu­
tionary model is known as the Moran model (Moran 1962). 

We focus on a population of size N with only two types A and a, where the 
number of copies of A is i and the frequency of A is p � i/N. If all individuals are 
equally fit, then the chance that an A-type parent is chosen to replicate is p. 
Thus, after one birth-death event, the number of copies of A goes up by one if 
the individual chosen to replicate carries the A allele (with probability p) and the 
individual chosen to die carries the a allele (with probability 1 � p), giving an 
overall probability of p (1 � p). Similarly, the number of copies of A goes down 
by one (if a replicates and A dies), with probability (1 � p) p. Finally, the num­
ber of copies stays the same if the individual chosen to replicate is the same type 
as the individual chosen to die, which happens with probability p2 � (1 � p)2. 
These calculations allow us to write down the probability of going from i copies 
of type A to j copies: 

pji � P(X(t � 1) � j | X(t) � i),	 (13.8) 

where pji denotes the transition probability after one birth-death event, and 
X(t) is a random variable representing the number of copies of type A at time 
t. For the Moran model, the transition probabilities pji are 

p 11 � p2 for j � i � 1 1increase by one2, 
11 � p2 p for j � i � 1 1decrease by one2,d	 (13.9)pji �	
p2 � 11 � p22 for j � i 1no change2,

0 for j � i � 1, i, i � 1 1other changes2,


where p � i/N. The key assumption of the Moran model is that the transition 
probability is zero for transitions that differ from the current state by more 
than one A allele. 

Figure 13.10 illustrates the outcome of five replicate simulations of the Moran 
model starting with i � 50 copies of type A in a population of size N � 100. The 
simulations look similar to those from the Wright-Fisher model without selec­
tion (Figure 13.8). There are differences, however, as the inset figure shows. The 
allele frequency only jumps by �/� 1/N in the Moran model, whereas much 
larger jumps can occur in the Wright-Fisher model. The main qualitative dif­
ference, however, is the scale along the x axis. There are only 100 generations 
represented in Figure 13.8 of the Wright-Fisher model, but 10,000 birth-death 
events represented in Figure 13.10 of the Moran model. You might be tempted 
to conclude that the Moran model exhibits less drift, but this is not a fair com­
parison. One time step in the Wright-Fisher model involves N births followed 
by the death of all N parents and so is more equivalent to N birth-death events 
in the Moran model. Thus, Figures 13.8 and 13.10 both represent the same 
total number of generations (100) with N � 100. Over this time period, and 
with only five replicates each, it is unclear which model exhibits more drift. 

Given that no clear conclusions emerge from a few replicate simulations, we 
must run many more replicate simulations to compare the Wright-Fisher and 
Moran models. Starting with p(0) � 0.5 in a population of size 100, we ran 500 
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Figure 13.10: The Moran model without selection. At each time step, an individual was 
randomly chosen to give birth, after which an individual other than the new offspring was 
randomly chosen to die. The population was assumed to be haploid and of constant size, 
N � 100. The frequency of allele A is plotted over time, starting with p (0) � 0.5. 

replicate simulations until fixation or loss of type A. By coincidence, the A type 
was lost 48.4% of the time using both the Moran and the Wright-Fisher model. 
In the Moran model, however, it took only 66.3 generations (SE � 2.2), on aver­
age, which was approximately half the time until loss or fixation in the Wright-
Fisher model (133.3 generations with SE � 4.6). 

The above results show that polymorphism is lost significantly faster in the 
Moran model than in the Wright-Fisher model. This result seems counterintu­
itive, because the Moran model makes only little jumps in frequency, whereas 
the Wright-Fisher model can make large jumps. A clue that can help us to 
understand this result is provided by the variance in reproductive success in the 
two models. When reproductive success is more variable, stochasticity (here, 
random genetic drift) plays a stronger role, and polymorphism will be lost by 
chance more rapidly. 

In the Wright-Fisher model, the variance in reproductive success of single 
individuals, �r 

2, is given by the binomial variance N p (1 � p) from equation 
2(P3.4), when there is a single individual (i.e., with p � 1/N). Thus, �r � 1 � 1>N. 

To calculate the variance in reproductive success over a single birth-death event 
in the Moran model, we use the formula for calculating variance (Definition 
P3.3), summing the squared change in number of copies over all possible tran­
sitions using (13.9): 

p11 � p21�122 � 11 � p2p1�122 � 11 � 2p11 � p221022 

� 2p11 � p2. 
Because the variance of a sum of independent random variables is the sum of 
the variances (Table P3.1), the total variance in reproductive success over N 
such birth-death events is 2Np(1 � p) per generation. Again, because we are 
interested in the variance in reproductive success of a focal individual, we set 

2p � 1/N, demonstrating that �r � 2 � 2>N. Thus, the Moran model exhibits 
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twice the variance in reproductive success, and consequently more random 
genetic drift, than the Wright-Fisher model (Ewens 1979). At an intuitive level, 
the Moran model is more variable because sampling occurs twice, when choos­
ing which individual replicates and when choosing which individual dies. 

The Moran model can be extended to incorporate processes such as selection 
and mutation by modifying the transition probabilities (Problem 13.6). For 
example, selection can be incorporated by altering the chance that an individual 
is chosen to reproduce. With selection, type A is chosen to give birth with a prob­
ability, p�, equal to the frequency of type A weighted by its fitness (WA) divided 
by the mean fitness: p� � WA p>W, where W � WA p � Wa 11 � p2. That is, 
p� is the same as the frequency change due to one generation of selection in the 
standard deterministic model of haploid selection (see equation (3.8c)). Making 
the key assumption that only one birth-death event occurs per time step, the 
transition probabilities are 

p�11 � p2 for j � i � 1 1increase by one2, 
11 � p�2 p for j � i � 1 1decrease by one2, 

pji � d . (13.10)
p�p � 11 � p�211 � p2 for j � i 1no change2, 
0  for  j � i � 1, i, i � 1 1other changes2. 

Here we have assumed that individuals are chosen at random to die, because we 
did not want to impose two bouts of selection on the population per generation. 
Other choices are equally plausible, however. You could impose viability selec­
tion on the death probabilities instead of (or in addition to) fertility selection on 
the birth probabilities. 

In Chapter 14, we shall derive several important results using the Moran 
model, including the probability of fixation (or loss) and the time until fixation 
(or loss). These analytical results assume that there are only two types of indi­
viduals, so that we can count the number of one type and infer the number of 
the other. You can explore the Moran with more than two types by running 
simulations akin to Figure 13.10 by developing appropriate rules for who gives 
birth and who dies. 

13.6 Cancer Development 

The above examples are well-known and provide good background for how sto­
chastic models can be constructed. In this section, we develop another exam­
ple and model the occurrence of retinoblastoma, a cancer of the eye. This 
example will help illustrate how stochasticity can be incorporated into models 
investigating a wide variety of problems in biology. 

Retinoblastoma is the most common eye cancer among children, with a 
worldwide incidence of about 5 in 100,000 children (Knudson 1971, 1993). The 
genetics of retinoblastoma are highly unusual. The mutation responsible for 
heritable cases of retinoblastoma occurs at the RB-1 gene on the long arm of 
chromosome 13 (Lohmann 1999). RB-1 is a tumour suppressor gene, and muta­
tions in this gene disrupt control of the cell cycle. At a cellular level, the RB-1 
mutation is recessive; the cell cycle is normal as long as there is one wild-type 
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allele in the cell. At an individual level, however, the mutation is dominant with 
a penetrance � of about 95%, meaning that about 95% individuals born with one 
mutant and one wild-type allele develop eye cancer (Knudson 1971, 1993). 

How can a heterozygous individual get cancer when heterozygous cells are 
normal? The resolution of this paradox lies in the fact that somatic mutations 
occur sporadically during development, causing some cells in the eye to lose 
heterozygosity. It is those few mutant cells that lose their one copy of the wild-
type allele that are responsible for retinoblastoma. Loss of heterozygosity 
(LOH) can occur by several mechanisms during mitosis (Lohmann 1999), 
including gene deletion, chromosome loss, mitotic recombination, and point 
mutations. Understanding the development of retinoblastoma requires a sto­
chastic model, because the chance timing of mutational events determines 
whether cancer develops, as well as its severity. 

Figure 13.11 illustrates the development of the vertebrate retina. The single-
celled zygote undergoes five binary cell divisions to reach the 32-celled blastula 
stage. Experiments performed at this stage in Xenopus indicate that only nine 
of these blastomere cells (a through i ) contribute to the retina of each eye 
(Huang and Moody 1993). These cells then undergo a series of n cell divisions. 
Averaged over the 32 blastomere cells, n must be �41 to account for the 
approximately 1014 cells in the human body (Moffett et al. 1993). The retina is 
composed of �1.5 � 108 cells (Bron et al. 1997; Dreher et al. 1992), but only 
three of the seven major retinal cell types (horizontal, amacrine, and Müller 
cells) appear to have the potential to proliferate into retinoblastoma in RB-1 
homozygous mutant cells (Chen et al. 2004). Based on counts of these three 
cell types (Dreher et al. 1992; Van Driel et al. 1990), the total number of retinal 
cells that have the potential to cause retinoblastoma in one fully formed eye, 
C, is �2 � 107. 

The experiments of Huang and Moody (1993) also indicate that different 
fractions of retinal cells descend from each blastomere cell (see inset table in 
Figure 13.11). We will call these fractions fa through fi. For example, the cell 
D1.1.1 (marked as “a”) contributes 49.7% of the cells in the left retina. The 
exact cell fate is determined later in development, so each blastomere con­
tributes to the different cell types in the retina (Huang and Moody 1993). We 
incorporate these observations by letting fy C equal the number of susceptible 
cells contributed by the blastomere cell y to the left retina. 

To model stochastic mutation, we assume that mutations occur during DNA 
replication (i.e., at discrete points in time). Whether a daughter cell produced 
by a heterozygous parent cell is mutant represents a random variable with two 
possible outcomes (a Bernoulli trial): with probability � it is mutant, and with 
probability 1 � � it remains heterozygous. Unfortunately, we do not know 
exactly when each progenitor cell divides in the development of the retina. As 
a preliminary map of development, we considered Figure 13.12. Phase 1 con­
sists of the five cell divisions leading to the blastula. In phase 2, cell divisions 
produce all of the cell types in the body, and we assume that only one daugh­
ter cell per division remains in the lineage leading to the retina. In phase 3, the 
stem cells of the retina proliferate, with all daughter cells contributing to the 
retina. The number of divisions in phase 3, my, is chosen to ensure that 
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Figure 13.11: Development of the retina. Development from the zygote (top left), through 
the blastula stage (top center), to the eye (bottom center) is illustrated (http://webvision. 
med.utah.edu). Percentages indicate the fraction of retinal cells of the left eye derived from 
each of the blastomeres marked a through i (Huang and Moody 1993). 

blastomere y contributes the appropriate number of susceptible cells to the 
fully developed retina, fy C. (For a more precise calculation, we allow a fraction 
py of the cells to undergo an additional cell division to get exactly fy C cells.) 

The bulk of mutations causing a loss of heterozygosity are likely to happen 
when there are many cells (i.e., many Bernoulli trials), which occurs when the 

(http://webvision
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Figure 13.12: A cell-lineage map leading to the eye. With time proceeding from left to right, lines connect parent cells to 
daughter cells; solid lines indicate lineages that contribute to the pool of susceptible retina cells, while dashed lines indicate 
lineages that do not contribute to the retina. Phase 1 consists of the five cell divisions from the zygote to the blastula. 
Phase 2 consists of the cell divisions between the blastula and the stem cells that generate the retina. Phase 3 consists of the 
proliferation stage during which the retina develops from a series of binary divisions. The exact details in phases 2 and 3 
are not known. 

eye is nearly fully developed (phase 3 of Figure 13.12). Thus, we might expect 
that the exact number of cell divisions during phase 3, my, would be much 
more critical than the number in phase 2, n � my. 

Our goal is to characterize the probability that retinoblastoma occurs and in 
what form: in one eye or both, and with multiple tumors per eye or only one. If 
we carried out a Bernoulli trial for every daughter cell illustrated in Figure 13.12, 
however, simulating development would be quite slow. We can speed up the 
process by simulating mutations among the x(t) daughter cells produced at cell 
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(a) 

division t by the parent cells that remain heterozygous. The number of these 
daughter cells that lose the wild-type allele is a random variable drawn from a 
Binomial distribution with probability � and a number of trials equal to x(t). 
The daughter cells that remain heterozygous then produce x(t � 1) daughter 
cells, and the process continues. All mutant cells and their descendents are kept 
track of separately, as these are assumed to remain mutant. We used this 
method to generate the histograms in Figure 13.13, replicating the process of 
development 100 times and using a mutation rate of � � 3.74�10�8 per daugh­
ter cell (as estimated below). Figure 13.13a illustrates the total number of 
homozygous mutant cells that developed within the left eye of each simulated 
“individual.” Many of these mutant cells descended from the same mutation. 
Figure 13.13b illustrates the number of independent mutations that led to the 
observed number of mutant cells in the left eye. 

These two histograms tell an interesting story. In the second histogram, the 
number of mutational events closely follows a Poisson distribution, as expected 
if mutations occur independently at a small rate in a large number of Bernoulli 
trials (recall that the Poisson distribution is an excellent approximation to
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Figure 13.13: A stochastic model of mutation 
leading to retinoblastoma. Simulations were 
based on the exact sequence of cell replication (b) 
described in Figure 13.12 and replicated 100 µ = 3.74 10−8 

Poisson expectation 

Observed 

35% 

times. Starting with a heterozygous zygote, the 30% 
number of cells that lose the wild-type allele in 

25%the tth round of cell division was drawn randomly 
from a binomial distribution with parameters x(t) 
(the number of daughter cells) and � (the muta­

20% 

15%tion rate). (a) A histogram of the total number of 
mutant cells per eye. (b) A histogram of the num­
ber of distinct mutational events leading to the 

10% 

5%cancerous cells in an eye. Curves illustrate a 
Poisson distribution with the same mean as 
the observed distribution. � � 3.74 � 10�8 0 1 2 3 4 5 6 7 8 9, 
C � 2 � 107 , n � 41. Number of independent mutations (“hits”) 
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the binomial distribution in this case). Technically, the LOH (loss of heterozy­
gosity) mutations do not occur independently, because the descendants of a 
LOH mutation cannot have a further LOH mutation. Nevertheless, because 
most mutations happen late in development when there are many cells, there 
is little opportunity for further mutation. The first histogram is decidedly not 
Poisson and has “fat tails” (leptokurtosis). That is, there is a much higher prob­
ability of observing many LOH cells, or none, than expected based on the mean 
number of LOH cells. 

The great variability in outcomes observed in our model is typical of a jack­
pot distribution. A jackpot distribution is one where there is a small chance 
of getting a very large outcome (akin to the small chance of winning a lot­
tery). Such a distribution arises naturally when modeling mutation in a 
growing population of cells, because there is a small chance that a mutation 
happens early and is carried by many descendent cells. Although our model 
incorporates more developmental details, the results are fundamentally simi­
lar to a model developed by Luria and Delbruck (1943). These authors carried 
out a series of experiments growing bacteria in liquid culture and afterwards 
exposing the cells to a novel environment (a bacteriophage). They then 
counted up the number of resistant cells and observed a jackpot distribution— 
some cultures contained many resistant cells while most had few. Luria and 
Delbruck then used a mathematical model of mutation to demonstrate that 
mutations must have occurred during the growth of the population, before 
exposure to the novel environment, and not in response to the novel envi­
ronment—only then is a jackpot distribution expected. This result became a 
cornerstone of modern genetics. The Luria-Delbruck model also forms the 
basis for an important method used to calculate mutation rates, known as the 
fluctuation test. 

The results of Figure 13.13b can be used to predict the form of retinoblas­
toma. The probability that an eye is not affected is estimated by the height of 
the bar at 0: p0 � 0.18. Using this estimate, we can calculate the probability 
of observing no retinoblastoma, retinoblastoma in one eye (unilateral), and 
retinoblastoma in both eyes (bilateral) among individuals that inherit the RB-1 
mutant allele. Assuming that the two eyes represent independent sampling 
events, each with a probability p0 of being unaffected, these probabilities are 
given by the binomial distribution: 

2P1no retinoblastoma2 � p0 � 0.032,

P(unilateral retinoblastoma) � 2p0(1 � p0) � 0.295,

P(bilateral retinoblastoma) � (1 � p0)

2 � 0.672.


Furthermore, there is a pretty high probability, 46%, that an eye contains 
multiple tumors (summing the bars from 2 onward in Figure 13.13b). 

Even with the fairly complicated model of development illustrated in 
Figure 13.12, we can make some general predictions using the probability theory 
introduced in Primer 3. To do so, we need to derive formulas for the values of 
p0, p1, and p2�, rather than estimating them from simulations. Calculating p0 is 
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the most straightforward, so we focus only on p0 and on the questions that can 
be answered with this quantity. 

If S is the total number of daughter cells produced throughout the develop­
ment of one eye, then the probability that none of these are mutant is 

p0 � (1 � �)S (13.11) 

(Definition P3.4 with k � 0), where � is the mutation rate per daughter cell. 
Equation (13.11) provides us with a way to relate the mutation rate to the 
penetrance of the mutation (i.e., to the probability that an individual is not 
affected). To calculate S, we count the number of daughter cells ever pro­
duced that contribute to the susceptible population of retinal cells in one 
eye. Using Figure 13.12, S is very nearly 4 � 107, almost all of which arise in 
Phase 3. 

Using equation (13.11), the probability of being free of symptoms in both 
2eyes is given by p0 � 11 � �22S. One minus this quantity gives the probability 

of getting a tumor in at least one eye (the penetrance): � � 1 � (1 � �)2S. We 
can rearrange this equation to solve for the mutation rate: � � 1 � (1 � �)1/(2S). 
Given the observed penetrance, � � 0.95, and S � 4 � 107, the estimated muta­
tion rate is � � 3.74 � 10�8 per daughter cell produced, as used above. 

Is this estimated mutation rate per daughter cell reasonable? The observed 
mutation rate at RB-1 is 8 � 10�6 per individual generation (Knudson 1993). 
The number of cell divisions within humans has been estimated as �179 divi­
sions from zygote to zygote (averaged across sexes and assuming a generation 
time of 25 years; Vogel and Rathenberg 1975). Thus, the observed mutation 
rate corresponds to a mutation rate of 4.47 � 10�8 per cell division, which is 
reasonably close to our estimated mutation rate of 3.74 � 10�8. 

We can also use equation (13.11) to predict the form of retinoblastoma: 

2P1no retinoblastoma2 � p0 � 11 � �22S , 
P(unilateral retinoblastoma) � 2p0(1 � p0) � 2(1 � �)S (1 � (1 � �)S), 
P(bilateral retinoblastoma) � (1 � p0)

2 � (1 � (1 � �)S)2. 

Using � � 3.74 � 10�8, these calculations predict that, of individuals initially 
carrying the RB-1 mutation, 5% should be symptom free, 35% should develop 
unilateral retinoblastoma, and 60% should develop bilateral retinoblastoma. 
These predictions are consistent with observations (Knudson 1971) and with 
the simulation results presented above. Interestingly, these results depend only 
on � and S. 

Our model of retinoblastoma could be improved by taking into account a 
more sophisticated version of development than illustrated in Figure 13.12. Yet 
our model provides insight into which details matter most. As mentioned ear­
lier, the exact number of cell divisions during phases 1 and 2 has a negligible 
influence on the number of mutations that arise. In fact, our results were nearly 
unchanged when we replaced Figure 13.12 with a simple series of binary cell 
divisions. While our results are not sensitive to events during phases 1 and 2, 



591 Probabilistic Models 

they would be sensitive to events late in development, including the exact 
number of cells in the retina (C) and the extent of cell births and deaths in 
phase 3. 

13.7 Cellular Automata—A Model of Extinction 
and Recolonization 

In previous models, we ignored the spatial location of individuals. Space often 
matters, however, because individuals tend to interact and breed locally and 
might not migrate over long distances relative to the range of the species. For 
example, HIV is highly spatially structured in different tissues within an 
infected individual (Frost et al. 2001). Only by accounting for this structure do 
models generate reasonable predictions for the level of genetic variability 
observed in HIV and the ability of HIV to respond to antiretroviral drugs. 
Although some models of spatially structured populations are analytically 
tractable (see Chapter 15 as well as examples in Nisbet and Gurney (1982) and 
Renshaw (1991)), many are not. Numerical analysis of spatial models has thus 
played an important role in biology. 

A commonly used type of spatial model is a cellular automaton. An automaton 
is a machine or robot that carries out a series of instructions. A cellular automa­
ton is an array of automata arranged in a lattice or grid, where each automaton 
is assigned its own position or cell. Typically, the grid lies in one or two dimen­
sions, and cell shapes are uniform (as in the square grid illustrated in Figure 
13.14). But the exact size and shape of a cellular automaton is flexible. One of the 
more famous cellular automata is the game of life, invented by John H. Conway 
to mimic births and deaths in a spatially arranged population (Gardner 1983). 

To simulate a biological process on a cellular automaton, you must first 
specify the initial states of each cell and the instructions that each automaton 

Cell 

(b) (c) 

(a) 

(A) 

(C) (B) 

10 x 10 Grid 

Figure 13.14: A cellular automaton. Each cell in 
this 10 � 10 grid is either inhabited or empty and 
can receive migrants from n nearest neighbor 
cells. Allowing migration from only the vertical 
and horizontal nearest neighbors, the light grey 
cells are potential sources of migrants to the focal 
cells: (a) a center cell (n � 4), (b) an edge cell 
(n � 3), (c) a corner cell (n � 2). Allowing 
migration from the vertical, horizontal, and 
diagonal nearest neighbors, the dark gray cells 
are potential sources of migrants to the focal cells: 
(A) a center cell (n � 8), (B) an edge cell (n � 5), 
(C) a corner cell (n � 3). 
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must use to determine their state in the next time step. The instructions to be 
carried out typically depend on the states of the surrounding cells. For exam­
ple, the original game of life was played on a square grid, with each cell being 
dead (0) or alive (1). The number of live cells in the eight cells surrounding a 
given focal cell was then counted (n). If n was two, the state of the focal cell 
(alive or dead) remained unchanged. If n was three, the focal cell was set to 1 
(alive) regardless of what it was before. In all other cases, the focal cell was set 
to 0. These cases roughly describe survival, birth, and death in the presence of 
local reproduction and competition. The exact rules were not chosen to portray 
growth in any particular species, per se, but to generate interesting spatial 
patterns, without exploding or imploding too rapidly. 

In the game of life, the rules for updating the cells are deterministic, but 
stochastic rules are commonly used in cellular automaton models. As an exam­
ple, we develop a cellular automaton model of extinction and recoloniza­
tion (see Problems 5.12 and 5.13). In the nonspatial model, a fraction of 
patches, p(t), is occupied at time step t. Of the 1 � p(t) unoccupied sites, a frac­
tion m p(t) are recolonized from occupied patches. Subsequently, each occupied 
site suffers a risk of extinction e through catastrophic events such as fire or dis­
ease. The resulting recursion equation for the deterministic model is (see 
Problem 5.12) 

p(t � 1) � (1 � e)(p(t) � m p(t) (1 � p(t))). (13.12) 

To be more realistic, we model a spatial version of this model, where each 
cell in a 10 � 10 square grid represents a patch (empty or occupied) and where 
extinction and recolonization are stochastic events. Recolonization of an 
empty patch at position {i,j} occurs with probability m fi,j, where m is the recol­
onization rate per patch and fi,j is the number of neighboring patches that are 
occupied. This process is repeated for each unoccupied cell in the grid. In our 
simulations, we considered the neighborhood size to consist of the eight near­
est cells (Figure 13.14A). We run into a problem, however, when we consider 
cells on the edge of the grid, which don’t have eight neighbors. There are two 
approaches for handling the edges of a grid. First, the grid can be “wrapped 
around” to make a torus (a donut shape), so that, for example, a cell on the left 
edge can receive migrants from cells on the right edge. This procedure ensures 
that the edge cells and the central cells follow the same rules and is thought to 
represent populations larger than the grid size more accurately. The second 
approach assumes that the environment outside of the habitat is inhospitable, 
so that edge and corner cells really have fewer neighbors (Figure 13.14). We 
used this second approach in our simulations. 

Next, we consider extinction. For each occupied site on the grid, we choose 
a random number uniformly between 0 and 1. If the random number is less 
than e, the population goes extinct, otherwise the site remains occupied. 

Simulations of this extinction-recolonization model are illustrated in 
Figure 13.15 (the Mathematica code used to generate the figure is available on 
the book website). Colonization causes the spread of populations to adjacent 
cells and generates clusters of occupied cells. Extinction, however, causes sites 
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(a) t = 0 t = 1 t = 2 t = 3 t = 4 

t = 10 t = 20 t = 30 t = 40 t = 50 

t = 100 t = 200 t = 300 t = 400 t = 500 

(b) t = 0 t = 1 t = 2 t = 3 t = 4 

t = 10 t = 20 t = 30 t = 40 t = 50 

t = 100 t = 200 t = 300 t = 400 t = 500 

(c) t = 0 t = 1 t = 2 t = 3 t = 4 

t = 10 t = 20 t = 30 t = 40 t = 50 

t = 100 t = 200 t = 300 t = 400 t = 500 

Figure 13.15: Simulations of the extinction-recolonization model. Occupied (black) and 
empty (clear) patches are shown on a 10 � 10 grid of sites. The simulations are run for 500 
generations, and a snapshot of the metapopulation is shown at several intermediate time 
points. (a) m � 0.05, e � 0.16, initial fraction of filled sites � 10%, final fraction of filled 
sites � 41%, (b) m � 0.05, e � 0.16, initial fraction of filled sites � 100%, final fraction of 
filled sites � 36%, (c) m � 0.03, e � 0.16, initial fraction of filled sites � 100%, final frac­
tion of filled sites � 0% (extinction). 

that were previously occupied (black) to become empty (clear). Over time, the 
grid approaches a balance between filled and empty sites that is roughly the 
same whether 10% of sites were initially filled (Figure 13.15a) or 100% (Figure 
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Coalescent theory 

describes the probability 

that alleles in a sample 

descend from the same 

ancestral allele at time t 

in the past. 

13.15b). Eventually, however, the ensemble of populations goes extinct, but 
this takes many generations (t � 23,343 and 31,282 generations in the simula­
tions of Figures 13.15a and 13.15b, respectively). In contrast, if we reduce the 
migration rate or increase the extinction rate, extinction happens much more 
rapidly, on average (e.g., t � 144 in the simulations of Figure 13.15c). 

The main advantage of cellular automaton models is that they allow us 
to explore the dynamics of a population arranged over space, so that we can 
determine how summary statistics such as the mean extinction time of a 
species depend on the spatial arrangement and connectedness of populations. 

13.8 Looking Backward in Time—Coalescent Theory 

In all of the stochastic models considered so far, we imagine time running for­
ward. While this is natural, there are some problems for which it is faster and 
easier to imagine time running backwards. This isn’t as crazy as it seems. For 
example, when you draw your family tree, you start with yourself in the present 
and go backward in time through your parents, grandparents, etc. This example 
provides a good explanation for why you might want to run time backwards. To 
draw your family tree forward in time, you would have to start with every indi­
vidual alive in, say, 1700 A.D. Then you would figure out who gave birth to 
whom, and draw every generation to the present day. Having traced every fam­
ily lineage to the present, you would then throw out almost all of this informa­
tion, keeping only those lineages that led to you. Ridiculous. Working backward 
in time thus makes sense when you are interested in a focal individual living in 
the present and in the historical processes leading up to that individual. 

Here we explore a model based on the assumptions of the Wright-Fisher 
model, but that is run backward in time. The analysis of this model has led to 
an important new branch of mathematical biology known as coalescent theory. 
We begin in the present (t � 0), focusing on a certain number of alleles (n) sam­
pled from a population of N individuals. To simplify the situation, we assume 
that the population is haploid, but all of the following results apply to a ran­
domly mating diploid population as long as we replace N with 2N, the number 
of alleles in a diploid population of N individuals. 

In the current generation (t � 0), there is a different individual alive for each 
of the n alleles. For now, we do not keep track of whether the alleles encode the 
same DNA sequences, but rather only whether the alleles are carried by differ­
ent individuals. In the previous generation (t � 1), there is some chance that 
two of the alleles descended from the exact same parent allele, meaning that 
there were only n � 1 different parent alleles that gave birth to the n alleles 
sampled today (Figure 13.16). This event, whereby n offspring alleles descended 
from only n � 1 parent alleles, is known as a coalescent event, and represents two 
lineages coming together (“coalescing”) into one. If we predict that the alleles 
in our sample are likely to have coalesced in the recent past, then these alleles 
should be closely related and similar to one another. Conversely, alleles that 
are predicted to coalesce in the distant past should be less similar. Coalescent 
theory has had such a great impact because it predicts the relatedness among 
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Figure 13.16: Descent of alleles from parents to 
offspring. The probability that two focal alleles 
(shaded circles) were born from the same parent 
allele is 1/N (top); this is called a coalescent 
event. Otherwise, the two focal alleles were 
born from different parent alleles (bottom). In 
Figures 13.16–13.18, time runs from the present 
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samples of individuals, predictions that can be tested using the DNA sequences 
carried by these individuals (Felsenstein 2004; Hudson and Kaplan 1995; 
Rosenberg and Nordborg 2002). 

Our first aim is to describe the chance that a coalescent event happens t gen­
erations in the past, starting with a sample of only two alleles. The time in the 
past at which these two alleles coalesce, T2, is the random variable of interest, 
and we seek the probability distribution for T2. Given that all individuals in the 
population reproduce simultaneously (as in the Wright-Fisher model), what is 
the probability that two alleles descend from the same parent allele? The first 
sampled allele must have had some parent (with probability equal to one), but 
the second sampled allele could have had the same parent (with probability 
1/N) or a different parent (with probability 1 � 1/N). Thus, the probability that 
there was a coalescent event in the previous generation (t � 1) is 1/N. If the 
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Figure 13.17: A decision tree for the coalescent model. Given two sampled alleles (shaded 
circles), there are two possibilities: the alleles share the same parent in the previous 
generation (coalesce) or they remain distinct. Once the two alleles coalesce, the coalescent

process is over, and we no longer trace their history. The probability of one particular

outcome is calculated as the product of the probabilities along the path to that outcome.

For example, the probability of a coalescent at time t � 3 is given by (1 � 1/N) 

(1 � 1/N) (1/N).


alleles coalesced, we know how related the sampled alleles are: they are siblings. 
If the alleles did not coalesce, then we are right back to where we started: 
with two alleles (now at t � 1), which may or may not have descended from 
the same ancestral allele at t � 2. And, again, the probability that they are 
descended from the same ancestral allele at t � 2 is 1/N, in which case the alle­
les represent cousins. We can write all of these possibilities in the form of a 
decision tree (Figure 13.17). 

From this decision tree, we can calculate the probability that the sampled 
alleles coalesce at generation t, counted backward in time. The probability of 
coalescence in the current generation is zero, P(T2 � 0) � 0, because we know 
we sampled two different alleles. We have already figured out that the proba­
bility of coalescence at time t � 1 is P(T2 � 1) � 1/N. The probability that the 
coalescent event occurs at time t � 2 is P(T2 � 2) � (1 � 1/N) 1/N, which equals 
the probability that the alleles had not coalesced at time t �1 (contributing the 
1 � 1/N term) but did coalesce at time t � 2. In general, the probability that 
the two alleles coalesce t generations in the past is given by 

P1T2 � t2 � a1 � 
1 b t � 1 1 

. (13.13)
N N 

Expression (13.13) is what we are after—it is the probability distribution for 
the time to coalescence for two alleles, T2. A comparison of equation (13.13) 
with Definition (P3.7) reveals that the waiting time for the coalescence of two 
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alleles has a geometric probability distribution with parameter p � 1/N. As a 
result, we can immediately use the properties of the geometric distribution to 
infer that the mean time until coalescence of two alleles in a haploid popula­
tion of size N is E[T2] � 1/p or N generations. Thus, the larger the population, 
the less likely it is that our two sampled individuals are close relatives. We 
also know that a geometric random variable has a variance (1 � p)/p2 (see 
Table P3.2), from which we can calculate the variance in coalescent times as 
N (N � 1). Thus, the exact time of coalescence is extremely variable. 

If it takes N generations, on average, for a sample of two alleles to coalesce, 
you might think that it would take an incredibly long time for a sample of n 
alleles to coalesce into one allele. Our next aim is to find the probability distri­
bution for the time, Mn, until the most recent common ancestor (MRCA) of n 
alleles sampled from a population of size N. The random variable Mn can be 
viewed as the sum of several independent random variables representing the 
time until each coalescent event: the time until the n sampled alleles coalesce 
into n � 1 alleles, plus the time that the n � 1 alleles coalesce into n � 2 alleles, 
etc., until only one allele remains. Defining Ti as the time until i alleles coalesce 
into i � 1 alleles, Mn � Tn � Tn�1� . . .  �T2. We have already calculated the 
probability distribution for T2; now we need to find the probability distribution 
for Ti when there are more than two alleles. 

When there are i sampled alleles, the probability that none of them coalesce 
in the previous generation is given by the probability that each allele descends 
from different parents. The first allele must descend from some parent allele 
(probability � 1), the second allele must descend from a different parent allele 
from the first (probability � 1 � 1/N), the third allele must descend from a dif­
ferent parent allele than either the first or the second (probability � 1 � 2/N), etc. 
Writing p(i) as the probability that there is at least one coalescent event in the 
preceding generation, the probability that there is not a coalescent event, 1 � p(i), 
is the probability that all i alleles descended from different parent alleles: 

1 � p1i2 � a1 � 
1 b a1 � 

2 b Á a1 � 
i � 1 b . (13.14)

N N N 

Standard coalescent theory makes the assumption that the population size 
N is large relative to the sample size i, and then approximates (13.14) using a 
Taylor series (Recipe P1.2, Primer 1). Assuming 1/N to be small and ignoring 
terms that are O(1/N2), equation (13.14) becomes 

1 � p1i2 L 1 � 
1 

� 
2 

Á � 
i � 1 

N N N 

1 i � 1 

� 1 � 
N a j (13.15) 

j � 1 

i 1i � 12 
� 1 � ,

2N 

where Rule A1.18 is used to evaluate the sum. Therefore, the probability of at 
least one coalescent event is p(i) � i (i � 1)/(2N), which is sometimes written 
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using the binomial coefficient as p(i) L 12i 2>N (see Box P3.1). Technically, p(i) 
describes the probability of one or more coalescent events in the preceding genera­
tion, but it is very unlikely that more than one coalescent event occurs when the 
population size is much larger than the sample size (N >> i). In this case, the prob­
ability that i alleles are descended from i � 1 alleles is very nearly equal to p(i). 

Following the same logic leading up to equation (13.13), the probability that 
it takes t generations for i alleles to coalesce into i � 1 alleles (represented by 
the random variable Ti) is 

P(Ti � t) � (1 � p(i))t�1 p(i). (13.16) 

Again, this is a geometric distribution, now with parameter p(i). As a result, the 
mean time until i alleles coalesce to i � 1 alleles is 1/p(i), or 2N/(i (i � 1)) 
generations. 

Given the above results, the time until the most recent common ancestor of 
n alleles, Mn, is given by the sum of several geometrically distributed random 
variables, Ti, each with their own parameter p(i). Unfortunately, the probabil­
ity distribution for a random variable given by the sum of different geometric 
random variables is not known in any simple form. Nevertheless, we can derive 
the expected (or mean) time until the MRCA for n alleles: E[Mn] � E[Tn � 

Tn�1 � . . .  � T2] as E[Mn] � E[Tn] � E[Tn�1] � . . .  � E[T2], because the expecta­
tion of a sum equals the sum of the expectations (Table P3.1). Therefore, the 
expected time until the MRCA of n alleles is 

2N 2N
E3Mn4 � 

n1n � 12 � 1n � 121n � 22 � . . . � N 
(13.17) 

n 1 n � 1 
� 2N a i 1i � 12 � 2N

n 
. 

i � 2 

The last sum in (13.17) can be evaluated by induction (see Problem 13.8). 
Result (13.17) is pretty amazing. The average time until the MRCA of all n 

alleles in a sample is less than twice the average time until the ancestor of only 
two alleles, no matter how large the sample. When there are lots of alleles, not 
much time passes before a coalescent event takes places because there are many 
pairs of alleles that could potentially coalesce. 

Now that we have described the probability distribution for coalescent 
times, we can simulate these coalescent events to give us a better feeling for the 
ways in which a sample of alleles are likely to be related. To carry out these sim­
ulations starting with n alleles, we draw a random number from a geometric 
distribution with parameter p(n) to get the time frame over which there remain 
n distinct alleles within the population. At this randomly drawn time, a coa­
lescent event occurs, and we join together the branches for two alleles. We then 
repeat the process for the remaining n � 1 alleles, until we reach the MRCA. 
We carried out this coalescent simulation starting with a sample of ten alleles 
in Figure 13.18, repeating the process four times to illustrate the variability in 
tree length and tree shape. Notice that coalescent events occur more rapidly 
near the present (t � 0) because there are more pairs of alleles that can potentially 
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(a) (b) 

MRCA 
MRCA 

15000 12500 10000 7500 5000 2500 0 15000 12500 10000 7500 5000 2500 0 

Past

PresentTime 
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(c) (d) 

MRCA 

15000 12500 10000 7500 5000 2500 15000 12500 10000 7500 5000 2500 

MRCA 

0 0 

Figure 13.18: Coalescent simulations. Independent simulations of the coalescent process are illustrated in each panel. Starting 
at the present (t � 0, far right) with a sample of n � 10 alleles in a population of size N � 10,000, the time until a coalescent 
event was determined by randomly drawing times from the geometric distribution given by equation (13.16). At that point, 
two branches were randomly merged. The process was repeated until only one lineage remained (the most recent common 
ancestor, MRCA). 

coalesce and that the final coalescent event between two alleles is, on average, 
the longest one. 

The coalescent thus provides us with a description of the types of phyloge­
netic trees expected under the null model of a population of constant size in the 
absence of selection. While this description is interesting in and of itself, the real 
value of coalescent theory is that mutation can be overlaid on top of the phy­
logenies to describe patterns expected within a sample of DNA sequences. Each 
time a mutation occurs, it alters the DNA sequence in that individual and all of 
its descendants. 

If mutations occur continuously over time at a constant rate, mutations can 
be imagined as raining down on the phylogenies drawn in Figure 13.18. The 
total number of mutations would then follow a Poisson distribution with a 
mean equal to the mutation rate times the total amount of time represented by 
all of the branches on the tree. For shorter trees (e.g., Figure 13.18a), we would 
thus expect fewer mutations and less genetic variability among the sampled 
sequences than in longer trees (e.g., Figure 13.18b). 
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Alternatively, if mutations occur only at discrete points in time (e.g., at 
meiosis), then the total number of mutations that occur in the history of a sam­
ple would follow a binomial distribution with parameters equal to the muta­
tion rate and the total number of events (meioses) throughout all of the 
branches in the tree. Fortunately, because the binomial distribution converges 
upon a Poisson distribution when events are rare and when there are a large 
numbers of trials (see section P3.3.6 and Appendix 5), it makes little difference 
whether we model mutations as arising continually over time or at specific 
points in the life cycle (e.g., meiosis). Here, we assume that mutation is a con­
tinuous process, as is more common in coalescent theory. 

To give you a flavor of the sorts of results that can be generated using coa­
lescent theory, we will illustrate how to calculate two important quantities: 
(i) the probability that two sampled alleles are genetically identical and (ii) the 
number of segregating sites in a sample of n alleles. Throughout, we assume 
that mutations occur at rate � per generation per sequence and that each muta­
tion is unique (i.e., changes a different base pair within the sequence). 

Let us consider the first question—what is the probability that two sampled 
alleles are identical? This question is impossible to answer without knowing 
how related the alleles are. Fortunately, the probability distribution (13.13) tells 
us the probability that the two alleles last shared a common ancestor at time t 
in the past, P(coalescence at time t). But how do we rewrite the probability that 
the alleles are identical using this information? The answer is to use the law of 
total probability (Rule P3.8). Because the coalescent times represent a set of 
mutually exclusive events, we can rewrite the probability that the two alleles 
are identical by summing the conditional probability that the alleles are iden­
tical given their coalescent time, over all coalescent times: 

P1alleles identical2 
q 

� a P1alleles identical ƒcoalescence at time t2P1coalescence at time t2. 
t � 1 

The benefit of this expression is that we have now broken down the probabil­
ity into pieces that are easier to calculate. The probability of coalescence at time 
t is given by (13.13): P(coalescence at time t) � (1 � 1/N)t�1 (1/N). And P(alle­
les identical | coalescence at time t) equals the probability that no mutations 
occur along either of the two branches leading from the common ancestor to 
the two sequences, amounting to a total branch length of 2t if they coalesced 
at time t. The probability of no mutations in this time period is given by the 
probability of drawing no events (k � 0) from a Poisson distribution with an 
expected number of mutations of 2�t (see Definition P3. 6). This probability is 
P(alleles identical | coalescence at time t) � e�2�t. Summing over all coalescent 
times, the probability that the two sequences are identical is 

q 

�2 � t a1 �P1alleles identical2 � a e
1 b t � 1 1 
N Nt � 1 

1 
� . (13.18a)

1 � (e 2� � 1) N 



601 Probabilistic Models 

The sum in the first line of (13.18a) can be interpreted as a constant (here 
e�2�) raised to the power of the random variable (here t), and averaged over its 
probability distribution (here the geometric distribution). This sum defines the 
moment generating function of a distribution (see Appendix 5). Thus, rather 
than having to simplify this summation from scratch, we can use the moment 
generating function of the geometric distribution (see Table P3.2 with z � �2�) 
to obtain the second line in (13.18a). 

Equation (13.18a) can be simplified further by assuming that the mutation rate 
is small but that N� is not small. First, (13.18a) is rewritten in terms of � � 2N�, 
the expected number of differences between two sequences in a haploid popula­
tion (see Problem 13.9), by replacing N with �/(2�). Next, the limit of (13.18a) is 
taken as the mutation rate goes to zero but � is held constant (see Appendix 2). 
The probability of identity given by (13.18a) is then very nearly equal to 

P1alleles identical2 � 
1 � 

1
2N� 

. (13.18b) 

This result makes qualitative sense. Two alleles will be more similar when 
P(alleles identical) is near one, which requires a low mutation rate and/or a 
small population size, so that the average coalescent time is short. 

Next let us consider the second question—how many nucleotide sites in the 
DNA are likely to vary within a sample of n alleles? Any mutation that occurs 
in the history of the sample since the most recent common ancestor will cause 
a nucleotide difference between some individuals in the sample. We refer to 
this polymorphic nucleotide as a segregating site. Thus the number of segregat­
ing sites in the sample is equal to the number of mutations that occur over all 
of the branches of the tree. The number of segregating sites, S, is a random vari­
able because mutations occur randomly over the tree and the length of the tree 
is determined by the random coalescence times. In general we might attempt 
to derive the probability distribution for S, but here we focus only on its 
expected value (i.e., the mean number of segregating sites, E[S]). Again, it 
would be impossible to calculate the number of segregating sites without 
knowing how much time has passed along the lineages leading to the present 
day sample from their most recent common ancestor. To proceed, we condition 
on the total length of a tree, L, summed over all branches and use the law of 
total expectation (Rule P3.9) to rewrite E[S] as 

E3S4 � a E3S ƒL � l4 P1L � l2. (13.19) 
l 

Equation (13.19) decomposes our problem into smaller pieces that can be 
evaluated. 

The term E[S | L � l ] is the expected number of segregating sites given that 
the total tree length is l generations, which will be a Poisson random variable 
with mean � l. Plugging this result into equation (13.19), the expected number 
of segregating sites becomes E3S4 � �g l P1L � l2, or just E[S] � � E[L] (see

l 
Definition P3.2). 
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Finally, we need to calculate E[L]. We already know that the coalescent 
time when there are i distinct alleles is geometrically distributed with mean 
2N/(i (i � 1)) generations. The sum of the branch lengths within a phylogenetic 
tree while there are i alleles is thus, on average, 2N/(i (i � 1)) multiplied by i, 
the number of branches in the tree during this period. Summing over all pos­
sible numbers of branches, i, the mean total length of a tree, E[L], is 

n n n � 1 

E3L4 � a i i 1i 
2
� 

N 
12 � 2N a 1i � 

1
12 � 2N a 

1 
i 
. (13.20) 

i � 2 i � 2 i � 1 

The expected number of segregating sites within a sample is therefore given by 

n � 1 n � 1 

E3S4 � � E3L4 � 2N� a 
1 

� � a 
1

.
i ii � 1 i � 1 

Interestingly, both the probability of identity and the expected number of 
segregating sites depend on the same quantity � � 2N�, which measures the 
expected difference between two sequences under the Wright-Fisher model in 
a haploid population (see Problem 13.9). (In a diploid population, � � 4N�.) 
The fact that these quantities should be related to one another was used by 
Tajima (1983) to test the null hypothesis that genes have been evolving neu­
trally, without selection (Tajima’s D statistic). 

The power of coalescent theory is that one can obtain the expected values 
of various properties (like the number of segregating sites) and compare them 
against data. You might wonder, however, whether it is reasonable to assume 
that the Wright-Fisher model is correct. Indeed, one way to think about coa­
lescent theory is that it provides us with a null hypothesis that should hold if 
the history of the sample involved nothing other than neutral sampling in a 
population of constant size. If the patterns within the sampled sequences do 
not match these expectations, then we infer that some other process is hap­
pening. This other process might have been selection, but it might also have 
been changes to the population size and/or migration. Although it is difficult 
to extend coalescent theory to describe selection (see Krone and Neuhauser 
1997; Neuhauser and Krone 1997), the theory has been extended in various 
ways to account for changing population size, migration, founder events, etc. 
(Felsenstein 2004; Hudson and Kaplan 1995; Rosenberg and Nordborg 2002). 

13.9 Concluding Message 

In this chapter we have described how many of the classic deterministic mod­
els introduced in Chapter 3 can be extended to incorporate stochasticity. 
Discrete-time models of exponential and logistic growth were extended in sec­
tion 13.2 to allow for variation in family size. Continuous-time models of pop­
ulation growth were extended in section 13.3, using a birth-death model that 
allows for replication and death at random points in time. Population-genetic 
models of allele frequency change were extended in section 13.4 using the clas­
sic Wright-Fisher model (where reproduction is simultaneous) and in section 
13.5 using the Moran model (where only one individual reproduces at a time). 
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In addition to these classic models, we developed three other stochastic 
models, chosen to illustrate different ways in which chance events can be mod­
eled. The model of retinoblastoma, a cancer of the eye, describes the stochastic 
way in which mutations arise during development. The cellular automaton 
model of extinction-recolonization describes the stochastic way in which pop­
ulations spread over space, as well as the stochastic nature of extinction. 
Finally, the coalescent model describes the stochastic way in which individuals 
are related to one another. In each of these models, chance plays a key role in 
determining the outcome, as we explored through the use of probability the­
ory (Primer 3) and simulation. In the next two chapters, we describe methods 
of analyzing such stochastic models that allow us to draw more general con­
clusions than are possible from simulations alone. 

Problems 

Problem 13.1: In the text, we considered an environment that varies over time between 

a good state and a bad state, where the probability of being in either state at time 

t � 1 is given by 

Pg1t � 12 pgg pgb Pg1t2¢ ≤ � ¢ ≤ ¢ ≤
Pb1t � 12 pbg pbb Pb1t2

Generalize this model by allowing three states: good (g), bad (b), and recovering


(r). Assume that if the environment is bad, it either remains bad or enters the


recovering state, that if the environment is recovering, it either continues to


recover or enters the good state, and that if the environment is good, it either


remains good or turns bad. No other transitions are possible. Write down the


matrix equation describing these transition probabilities.


Problem 13.2: Here you will simulate the model of exponential growth with environ­

mental and demographic stochasticity when the environment is correlated 

from year to year. As in Figure 13.4, assume that there are good (Rg � 1.5) and bad 

(Rb � 0.5) environments. Now, if the current environment is good, assume that it 

remains good with probability 0.85, while if the current environment is bad it 

remains bad with probability 0.65: 

Pg1t � 12 0.85 0.35 Pg1t2¢ ≤ � ¢ ≤ ¢ ≤
Pb1t � 12 0.15 0.65 Pb1t2

These numbers were chosen so that, over the long run, the environment is good


70% of the time as in Figure 13.4, but now the environment has a higher proba­


bility of remaining in the same state for several years in a row (given by the diag­


onal elements). (a) Generate figures for these simulations as in Figure 13.4. (b)


Simulate the model 100 times and count how often the population goes extinct


within 30 generations. [Hint: Use the state of the environment in the previous


generation and the transition matrix to obtain the probability that the envi­


ronment will be good in the next time step, p. Use this p value as we did in


Figure 13.4.]
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Problem 13.3: Alter the birth-death model of population growth to allow death rates to 

depend on the current population size, i, rather than birth rates. (a) Determine the 

transition probabilities (see equation (13.3) for density-dependent birth rates). (b) 

According to your answer to (a), at what population size is there the lowest prob­

ability of dying per time? Does this make sense? 

Problem 13.4: The Wright-Fisher model can be extended to describe a population of N 

diploid individuals rather than N haploid individuals if it is assumed that alleles 

can come from any parent and are united at random in the offspring. (a) Write 

down the equivalent to equation (13.4) for a diploid population with N individu­

als. (b) Write down the equivalent to equation (13.13) for a diploid population 

with N individuals. (c) Infer the average time to coalescence for a pair of alleles 

drawn from a diploid population. (d) Explain why your answer for the diploid 

model differs from the expected coalescence time of N generations for a haploid 

population. 

Problem 13.5: (a) For the Moran model (13.8), write pji in the form of a transition prob­

ability matrix for a population of size N � 4. Confirm that the columns sum to 

one. (b) Repeat for a population of any size N by filling in the “—” entries in the 

matrix 

— — — Á —

— — — Á —
• — — — — µ .
Á 

Á Á Á Á Á 

— — — Á — 

The transition probability matrix for the Moran model is tridiagonal, with zeros 

everywhere except the entries on, immediately above, or immediately below the 

diagonal. 

Problem 13.6: Modify equations (13.9) for the Moran model of allele frequency change 

to take into account mutation. Assume that mutations occur only during repro­

duction (births) and that there is a probability � that allele A mutates to a and a 

probability � that allele a mutates to A. 

Problem 13.7: In Figure 13.19, we show an empty cell (A) surrounded by cells in a cellu­

lar automaton (dark cells are occupied, white cells are empty). A monsoon causes 

the top left cell to go extinct in the current generation. What is the probability that 

the central cell is recolonized at the next time step if (a) the eight nearest neighbors 

serve as a migrant source and extinction occurs before migration, (b) the eight near­

est neighbors serve as a migrant source and migration occurs before extinction, and 

(c) the four nearest neighbors serve as a migrant source and extinction occurs before 

migration. [Define m and e as in the derivation of (13.12) in the text.] 
nProblem 13.8: Prove that g i �21>1i 1i � 122 � 1n � 12>n, which was needed to derive 

the average time until the most recent common ancestor of a sample of n alleles, 

Figure 13.19: Recolonization from neighboring 
sites 

(A) 
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nequation (13.17). (a) Calculate and simplify the sum g i � 21>1i 1i � 122 for n � 2, 
n3, and 4. The resulting pattern suggests that g i � 21>1i 1i � 122 � 1n � 12>n. 

n � 1(b) Assume that this equation holds true for n � 1, so that g i � 2 1>1i1i � 122 �


1n � 22>1n � 12. Show that you can add 1/(n (n � 1)) to both sides of the equa­


tion to prove that the equation also holds true for n. Because the equation is cor­


rect for n � 2 and remains true every time n is increased by one, you have proven

nby induction that g i � 21>1i 1i � 122 � 1n � 12>n. 

Problem 13.9: Calculate the average number of differences between two sequences, E[D], 

using coalescent theory when mutations occur continuously over time at a rate � 

per generation per sequence length. (a) Rewrite E[D] in terms of E[D | coalescence 

at time t] using the law of total expectation (Rule P3.9). (b) Calculate E[D | coales­

cence at time t]. (c) Use the probability distribution for coalescent times, P(coales­

cence at time t) � (1 � 1/N)t�1 1/N, as well as your answers to parts (a) and (b) to 

determine the average number of differences between two sequences, E[D]. 

Further Reading 

For more information on the mathematical underpinnings of stochastic models, see 

•	 Taylor, H. M., and S. Karlin. 1998. An Introduction to Stochastic Modeling. Academic 

Press, San Diego. 

•	 Allen, L.J.S. 2003. An Introduction to Stochastic Processes with Applications to Biology. 

Pearson/prentice Hall, Upper Saddle River, N.J. 

For more examples of stochastic models in ecology, see 

•	 Renshaw, E. 1991. Modelling Biological Populations in Space and Time. Cambridge 

University Press, Cambridge. 

•	 Nisbet, R. M., and W.S.C. Gurney. 1982. Modelling Fluctuating Populations. Wiley, 

Chichester. 

•	 Hubbell, S. P. 2001. The Unified Neutral theory of Biodiversity and Biogeography. Princeton 

University Press, Princeton, N.J. 

For more examples of stochastic models in evolution, see 

•	 Ewens, W. J. 1979. Mathematical Population Genetics. Springer-Verlag, Berlin. 

•	 Crow, J. F., and M. Kimura. 1970. An Introduction to Population Genetics Theory. Harper 

& Row, New York. 
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