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Chapter One

Introduction to Kähler Manifolds

by Eduardo Cattani

INTRODUCTION

This chapter is intended to provide an introduction to the basic results on the topology

of compact Kähler manifolds that underlie and motivate Hodge theory. Although we

have tried to define carefully the main objects of study, we often refer to the literature

for proofs of the main results. We are fortunate in that there are several excellent books

on this subject and we have freely drawn from them in the preparation of these notes,

which make no claim of originality. The classical references remain the pioneering

books by Weil [34], Chern [6], Morrow and Kodaira [17, 19], Wells [35], Kobayashi

[15], Demailly [8], and Griffiths and Harris [10]. In these notes we refer most often to

two superb recent additions to the literature: Voisin’s two-volume work [30, 31] and

Huybrechts’ book [13].

We assume from the outset that the reader is familiar with the basic theory of

smooth manifolds at the level of [1], [18], or [28]. The book by Bott and Tu [2] is

an excellent introduction to the algebraic topology of smooth manifolds.

This chapter consists of five sections which correspond, roughly, to the five lectures

in the course given during the Summer School at ICTP. There are also two appendices.

The first collects some results on the linear algebra of complex vector spaces, Hodge

structures, nilpotent linear transformations, and representations of sl(2,C) and serves

as an introduction to many other chapters in this volume. The second is due to Phillip

Griffiths and contains a new proof of the Kähler identities by reduction to the symplec-

tic case.

There are many exercises interspersed throughout the text, many of which ask the

reader to prove or complete the proof of some result in the notes.

I am grateful to Loring Tu for his careful reading of this chapter.
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1.1 COMPLEX MANIFOLDS

1.1.1 Definition and Examples

Let U ⊂ Cn be an open subset and f : U → C. We say that f is holomorphic if

and only if it is holomorphic as a function of each variable separately; i.e., if we fix

zℓ = aℓ, ℓ 6= j, then the function f(a1, . . . , zj , . . . , an) is a holomorphic function of

zj . A map F = (f1, . . . , fn) : U → Cn is said to be holomorphic if each component

fk = fk(z1, . . . , zn) is holomorphic. If we identify Cn ∼= R2n, and set zj = xj + iyj ,
fk = uk + ivk, j, k = 1, . . . , n, then the functions uk, vk are C∞ functions of the

variables x1, y1, . . . , xn, yn and satisfy the Cauchy–Riemann equations:

∂uk
∂xj

=
∂vk
∂yj

;
∂uk
∂yj

= −∂vk
∂xj

. (1.1.1)

Conversely, if (u1, v1, . . . , un, vn) : R2n → R2n is a C∞ map satisfying the Cauchy–

Riemann equations (1.1.1), then the map (u1 + iv1, . . . , un + ivn) is holomorphic. In

other words, a C∞ map F : U ⊂ R2n → R2n defines a holomorphic map Cn → Cn if

and only if the differential DF of F , written in terms of the basis

{∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn} (1.1.2)

of the tangent space Tp(R2n) and the basis {∂/∂u1, . . . , ∂/∂un, ∂/∂v1, . . . , ∂/∂vn}
of TF (p)(R2n) is of the form

DF (p) =

(
A −B
B A

)
(1.1.3)

for all p ∈ U . Thus, it follows from Exercise A.1.4 in Appendix A that F is holomor-

phic if and only if DF (p) defines a C-linear map Cn → Cn.

EXERCISE 1.1.1 Prove that a 2n × 2n matrix is of the form (1.1.3) if and only if it

commutes with the matrix J :

J :=

(
0 −In
In 0

)
, (1.1.4)

where In denotes the n× n identity matrix.

DEFINITION 1.1.2 A complex structure on a topological manifold M consists of a

collection of coordinate charts (Uα, φα) satisfying the following conditions:

(1) The sets Uα form an open covering of M .

(2) There is an integer n such that each φα : Uα → Cn is a homeomorphism of Uα
onto an open subset of Cn. We call n the complex dimension of M .

(3) If Uα ∩ Uβ 6= ∅, the map

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) (1.1.5)

is holomorphic.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 
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EXAMPLE 1.1.3 The simplest example of a complex manifold is Cn or any open

subset of Cn. For any p ∈ Cn, the tangent space Tp(Cn) ∼= R2n is identified, in the

natural way, with Cn itself.

EXAMPLE 1.1.4 Since GL(n,C), the set of nonsingularn×nmatrices with complex

coefficients, is an open set in Cn
2

, we may view GL(n,C) as a complex manifold.

EXAMPLE 1.1.5 The basic example of a compact complex manifold is complex pro-

jective space which we will denote by Pn. Recall that

Pn :=
(
Cn+1 \ {0}

)
/C∗ ,

where C∗ acts by componentwise multiplication. Given z ∈ Cn+1 \ {0}, let [z] be its

equivalence class in Pn. The sets

Ui := {[z] ∈ Pn : zi 6= 0} (1.1.6)

are open and the maps

φi : Ui → Cn ; φi([z]) =

(
z0
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)
(1.1.7)

define local coordinates such that the maps

φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj) (1.1.8)

are holomorphic.

In particular, if n = 1, P1 is covered by two coordinate neighborhoods (U0, φ0),
(U1, φ1) with φi(Ui) = C. The coordinate change φ1 ◦ φ−1

0 : C∗ → C∗ is given by

φ1 ◦ φ−1
0 (z) = φ1([(1, z)]) =

1

z
.

Thus, this is the usual presentation of the sphere S2 as the Riemann sphere, where we

identify U0 with C and denote the point [(0, 1)] by∞.

EXERCISE 1.1.6 Verify that the map (1.1.8) is holomorphic.

EXAMPLE 1.1.7 To each point [z] ∈ Pn we may associate the line spanned by z
in Cn+1; hence, we may regard Pn as the space of lines through the origin in Cn+1.

This construction may then be generalized by considering k-dimensional subspaces in

Cn. In this way one obtains the Grassmann manifold G(k, n). To define a complex

manifold structure on G(k, n), we consider first of all the open set in Cnk,

V (k, n) = {W ∈M(n× k,C) : rank(W ) = k}.

The Grassmann manifold G(k, n) may then be viewed as the quotient space

G(k, n) := V (k, n)/GL(k,C) ,
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where GL(k,C) acts by right multiplication. Thus, W,W ′ ∈ V (k, n) are in the

same GL(k,C)-orbit if and only if the column vectors of W and W ′ span the same

k-dimensional subspace Ω ⊂ Cn.

Given an index set I = {1 ≤ i1 < · · · < ik ≤ n} and W ∈ V (k, n), we consider

the k × k matrix WI consisting of the I-rows of W and note that if W ∼W ′ then, for

every index set I , det(WI) 6= 0 if and only if det(W ′
I) 6= 0. We then define

UI := {[W ] ∈ G(k, n) : det(WI) 6= 0}. (1.1.9)

This is clearly an open set in G(k, n) and the map

φI : UI → C(n−k)k ; φI([W ]) =WIc ·W−1
I ,

where Ic denotes the (n−k)-tuple of indices complementary to I . The map φI defines

coordinates in UI and one can easily verify that given index sets I and J , the maps

φI ◦ φ−1
J : φJ(UI ∩ UJ)→ φI(UI ∩ UJ) (1.1.10)

are holomorphic.

EXERCISE 1.1.8 Verify that the map (1.1.10) is holomorphic.

EXERCISE 1.1.9 Prove that both Pn and G(k, n) are compact.

The notion of a holomorphic map between complex manifolds is defined in a way

completely analogous to that of a smooth map between C∞ manifolds; i.e., if M and

N are complex manifolds of dimension m and n respectively, a map F : M → N is

said to be holomorphic if for each p ∈ M there exist local coordinate systems (U, φ),
(V, ψ) around p and q = F (p), respectively, such that F (U) ⊂ V and the map

ψ ◦ F ◦ φ−1 : φ(U) ⊂ Cm → ψ(V ) ⊂ Cn

is holomorphic. Given an open set U ⊂ M we will denote by O(U) the ring of holo-

morphic functions f : U → C and by O∗(U) the nowhere-zero holomorphic functions

on U . A map between complex manifolds is said to be biholomorphic if it is holomor-

phic and has a holomorphic inverse.

The following result shows a striking difference between C∞ and complex mani-

folds:

THEOREM 1.1.10 If M is a compact, connected, complex manifold and f : M → C
is holomorphic, then f is constant.

PROOF. The proof uses the fact that the maximum principle1 holds for holomorphic

functions of several complex variables (cf. [30, Theorem 1.21]) as well as the principle

of analytic continuation2 [30, Theorem 1.22]. �

1If f ∈ O(U), where U ⊂ Cn is open, has a local maximum at p ∈ U , then f is constant in a

neighborhood of p.
2If U ⊂ Cn is a connected, open subset and f ∈ O(U) is constant on an open subset V ⊂ U , then f

is constant on U .
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KÄHLER MANIFOLDS BY E. CATTANI

hodge˙book˙13feb˙edited March 16, 2014 6x9

5

Given a holomorphic map F = (f1, . . . , fn) : U ⊂ Cn → Cn and p ∈ U , we can

associate to F the C-linear map

DF (p) : Cn → Cn ; DF (p)(v) =

(
∂fi
∂zj

(p)

)
· v,

where v is the column vector (v1, . . . , vn)
T ∈ Cn. The Cauchy–Riemann equations

imply that if we regard F as a smooth map F̃ : U ⊂ R2n → R2n then the matrix of the

differentialDF̃ (p) is of the form (1.1.3) and, clearly,DF (p) is nonsingular if and only

if DF̃ (p) is nonsingular. In that case, by the inverse function theorem, F̃ has a local

inverse G̃ whose differential is given by (DF̃ (p))−1. By Exercise 1.1.1, the inverse of

a nonsingular matrix of the form (1.1.3) is of the same form. Hence, it follows that G̃
is holomorphic and, consequently, F has a local holomorphic inverse. Thus we have:

THEOREM 1.1.11 (Holomorphic inverse function theorem) Let F : U → V be a

holomorphic map between open subsets U, V ⊂ Cn. If DF (p) is nonsingular for

p ∈ U then there exist open sets U ′, V ′ such that p ∈ U ′ ⊂ U and F (p) ∈ V ′ ⊂ V
and such that F : U ′ → V ′ is a biholomorphic map.

The fact that we have a holomorphic version of the inverse function theorem means

that we may also extend the implicit function theorem or, more generally, the rank

theorem:

THEOREM 1.1.12 (Rank theorem) Let F : U → V be a holomorphic map between

open subsets U ⊂ Cn and V ⊂ Cm. If DF (q) has rank k for all q ∈ U then,

given p ∈ U , there exist open sets U ′, V ′ such that p ∈ U ′ ⊂ U , F (p) ∈ V ′ ⊂ V ,

F (U ′) ⊂ V ′, and biholomorphic maps φ : U ′ → A, ψ : V ′ → B, where A and B are

open sets of the origin in Cn and Cm, respectively, so that the composition

ψ ◦ F ◦ φ−1 : A→ B

is the map (z1, . . . , zn) ∈ A 7→ (z1, . . . , zk, 0, . . . , 0).

PROOF. We refer to [1, Theorem 7.1] or [28] for a proof in the C∞ case which can

easily be generalized to the holomorphic case. �

Given a holomorphic map F : M → N between complex manifolds and p ∈ M ,

we may define the rank of F at p as

rankp(F ) := rank(D(ψ ◦ F ◦ φ−1)(φ(p))) , (1.1.11)

for any local-coordinates expression of F around p.

EXERCISE 1.1.13 Prove that rankp(F ) is well defined by (1.1.11); i.e., it is indepen-

dent of the choices of local coordinates.

We then have the following consequence of the rank theorem:
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THEOREM 1.1.14 Let F : M → N be a holomorphic map, let q ∈ F (M) and let

X = F−1(q). Suppose rankx(F ) = k for all x in an open set U containing X . Then,

X is a complex manifold and

codim(X) := dimM − dimX = k .

PROOF. The rank theorem implies that given p ∈ X there exist local coordinates

(U, φ) and (V, ψ) around p and q, respectively, such that ψ(q) = 0 and

ψ ◦ F ◦ φ−1(z1, . . . , zn) = (z1, . . . , zk, 0, . . . , 0).

Hence

φ(U ∩X) = {z ∈ φ(U) : z1 = · · · = zk = 0}.

Hence (U ∩X, p ◦ φ), where p denotes the projection onto the last n− k coordinates

in Cn, defines local coordinates on X . It is easy to check that these coordinates are

holomorphically compatible. �

DEFINITION 1.1.15 We will say that N ⊂ M is a complex submanifold if we may

cover M with coordinate patches (Uα, φα) such that

φα(N ∩ Uα) = {z ∈ φα(U) : z1 = · · · = zk = 0},

for some fixed k. In this case, as we saw above, N has the structure of an (n − k)-
dimensional complex manifold.

PROPOSITION 1.1.16 There are no compact complex submanifolds of Cn of dimen-

sion greater than 0.

PROOF. Suppose M ⊂ Cn is a submanifold. Then, each of the coordinate func-

tions zi restricts to a holomorphic function on M . But, if M is compact, it follows

from Theorem 1.1.10 that zi must be locally constant. Hence, dimM = 0. �

Remark. The above result means that there is no chance for a Whitney embedding

theorem in the holomorphic category. One of the major results of the theory of complex

manifolds is the Kodaira embedding theorem (Theorem 1.3.14) which gives necessary

and sufficient conditions for a compact complex manifold to embed in Pn.

EXAMPLE 1.1.17 Let f : Cn → C be a holomorphic function and suppose Z =
f−1(0) 6= ∅. Then we say that 0 is a regular value for f if rankp(f) = 1 for all p ∈ Z;

i.e., for each p ∈ X there exists some i = 1, . . . , n, such that ∂f/∂zi(p) 6= 0. In

this case, Z is a complex submanifold of Cn and codim(Z) = 1. We call Z an affine

hypersurface. More generally, given F : Cn → Cm, we say that 0 is a regular value

if rankp(F ) = m for all p ∈ F−1(0). In this case F−1(0) is either empty or is a

submanifold of Cn of codimensionm.
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EXAMPLE 1.1.18 Let P (z0, . . . , zn) be a homogeneous polynomial of degree d. We

set

X := {[z] ∈ Pn : P (z0, . . . , zn) = 0}.
We note that while P does not define a function on Pn, the zero locus X is still well

defined since P is a homogeneous polynomial. We assume now that the following

regularity condition holds:
{
z ∈ Cn+1 :

∂P

∂z0
(z) = · · · = ∂P

∂zn
(z) = 0

}
= {0}; (1.1.12)

i.e., 0 is a regular value of the map P |Cn+1\{0}. Then X is a hypersurface in Pn.

To prove this we note that the requirements of Definition 1.1.15 are local. Hence,

it is enough to check that X ∩ Ui is a submanifold of Ui for each i, in fact, that it is an

affine hypersurface. Consider the case i = 0 and let f : U0
∼= Cn → C be the function

f(u1, . . . , un) = P (1, u1, . . . , un). Set u = (u1, . . . , un) and ũ = (1, u1, . . . , un).
Suppose [ũ] ∈ U0 ∩X and

∂f

∂u1
(u) = · · · = ∂f

∂un
(u) = 0.

Then
∂P

∂z1
(ũ) = · · · = ∂P

∂zn
(ũ) = 0.

But, since P is a homogeneous polynomial of degree d, it follows from the Euler iden-

tity that

0 = d · P (ũ) =
∂P

∂z0
(ũ).

Hence, by (1.1.12), we would have ũ = 0, which is impossible. Hence 0 is a regular

value of f and X ∩ U0 is an affine hypersurface.

EXERCISE 1.1.19 Let P1(z0, . . . , zn), . . . , Pm(z0, . . . , zn) be homogeneous poly-

nomials. Suppose that 0 is a regular value of the map

(P1, . . . , Pm) : Cn+1\{0} → Cm.

Prove that

X = {[z] ∈ Pn : P1([z]) = · · · = Pm([z]) = 0}
is a codimension-m submanifold of Pn. X is called a complete intersection submani-

fold.

EXAMPLE 1.1.20 Consider the Grassmann manifold G(k, n) and let I1, . . . , I(nk)
de-

note all strictly increasing k-tuples I ⊂ {1, . . . , n}. We then define

p : G(k, n)→ PN−1 ; p([W ]) = [(det(WI1 ), . . . , det(WIN ))].

Note that the map p is well defined since W ∼ W ′ implies that W ′ = W ·M with

M ∈ GL(k,C), and then for any index set I , det(W ′
I) = det(M) det(WI). We leave

it to the reader to verify that the map p, which is usually called the Plücker map, is

holomorphic.
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EXERCISE 1.1.21 Consider the Plücker map p : G(2, 4) → P5 and suppose that the

index sets I1, . . . , I6 are ordered lexicographically. Show that p is a 1:1 holomorphic

map from G(2, 4) onto the subset

X = {[z0, . . . , z5] : z0z5 − z1z4 + z2z3 = 0}. (1.1.13)

Prove that X is a hypersurface in P5. Compute rank[W ] p for [W ] ∈ G(2, 4).

EXAMPLE 1.1.22 We may define complex Lie groups in a manner completely anal-

ogous to the real, smooth case. A complex Lie group is a complex manifold G with

a group structure such that the group operations are holomorphic. The basic exam-

ple of a complex Lie group is GL(n,C). We have already observed that GL(n,C) is

an open subset of Cn
2

and the product of matrices is given by polynomial functions,

while the inverse of a matrix is given by rational functions on the entries of the matrix.

Other classical examples include the special linear group SL(n,C) and the symplectic

group Sp(n,C). We recall the definition of the latter. Let Q be a symplectic form (cf.

Definition B.1.1) on the 2n-dimensional real vector space V , then

Sp(VC, Q) := {X ∈ End(VC) : Q(Xu,Xv) = Q(u, v)}. (1.1.14)

We define Sp(V,Q) analogously. When V = R2n and Q is defined by the matrix

(1.1.4) we will denote these groups by Sp(n,C) and Sp(n,R). The choice of a sym-

plectic basis forQ, as in (B.1.2), establishes isomorphisms Sp(VC, Q) ∼= Sp(n,C) and

Sp(V,Q) ∼= Sp(n,R).

EXAMPLE 1.1.23 Let Q be a symplectic structure on a 2n-dimensional, real vector

space V . Consider the space

M = {Ω ∈ G(n, VC) : Q(u, v) = 0 for all u, v ∈ Ω}.

Let {e1, . . . , en, en+1, . . . , e2n} be a basis of V in which the matrix ofQ is as in (1.1.4).

Then if

Ω = [W ] =

[
W1

W2

]
,

where W1 and W2 are n× n matrices, we have that Ω ∈M if and only if

[
WT

1 ,W
T
2

]
·
(
0 −In
In 0

)
·
[
W1

W2

]
= WT

2 ·W1 −WT
1 ·W2 = 0.

Set I0 = {1, . . . , n}. Every element Ω ∈ M ∩ UI0 , where UI0 is as in (1.1.9), may be

represented by a matrix of the formΩ = [In, Z]
T withZT = Z . It follows thatM∩UI0

is an (n(n + 1)/2)-dimensional submanifold. Now, given an arbitrary Ω ∈ M , there

exists an elementX ∈ Sp(VC, Q) such thatX ·Ω = Ω0, whereΩ0 = span(e1, . . . , en).
Since the elements of Sp(VC, Q) act by biholomorphisms on G(n, VC), it follows that

M is an (n(n + 1)/2)-dimensional submanifold of G(n, VC). Moreover, since M is a

closed submanifold of the compact manifold G(k, n), M is also compact.
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We will also be interested in considering the open set D ⊂M consisting of

D = D(V,Q) := {Ω ∈M : i Q(w, w̄) > 0 for all 0 6= w ∈ Ω}. (1.1.15)

It follows that Ω ∈ D if and only if the Hermitian matrix

i ·
[
W̄T

1 , W̄
T
2

]
·
(
0 −In
In 0

)
·
[
W1

W2

]
= i(W̄T

2 ·W1 − W̄T
1 ·W2)

is positive definite. Note that, in particular,D ⊂ UI0 and that

D ∼= {Z ∈M(n,C) : ZT = Z ; Im(Z) = (1/2i)(Z − Z̄) > 0}, (1.1.16)

whereM(n,C) denotes the n × n complex matrices. If n = 1 then M ∼= C and D is

the upper half plane. We will call D the generalized Siegel upper half-space.

The elements of the complex lie group Sp(VC, Q) ∼= Sp(n,C) define biholomor-

phisms of G(n, VC) preservingM . The subgroup

Sp(V,Q) = Sp(VC, Q) ∩GL(V ) ∼= Sp(n,R)

preservesD.

EXERCISE 1.1.24 Prove that relative to the description ofD as in (1.1.16), the action

of Sp(V,Q) is given by generalized fractional linear transformations

(
A B
C D

)
· Z = (A · Z +B) · (C · Z +D)−1.

EXERCISE 1.1.25 Prove that the action of Sp(V,Q) on D is transitive in the sense

that given any two points Ω,Ω′ ∈ D, there exists X ∈ Sp(V,Q) such that X ·Ω = Ω′.

EXERCISE 1.1.26 Compute the isotropy subgroup

K := {X ∈ Sp(V,Q) : X · Ω0 = Ω0},

where Ω0 = [In, i In]
T .

EXAMPLE 1.1.27 Let TΛ := C/Λ, where Λ ⊂ Z2 is a rank-2 lattice in C; i.e.,

Λ = {mω1 + nω2 ; m,n ∈ Z},

where ω1, ω2 are complex numbers linearly independent over R. TΛ is locally diffeo-

morphic to C and since the translations by elements in Λ are biholomorphisms of C,

TΛ inherits a complex structure relative to which the natural projection

πΛ : C→ TΛ

is a local biholomorphic map.
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It is natural to ask whether, for different lattices Λ, Λ′, the complex tori TΛ, TΛ′

are biholomorphic. Suppose F : TΛ → TΛ′ is a biholomorphism. Then, since C is the

universal covering of TΛ, there exists a map F̃ : C→ C such that the diagram

C F̃−−−−→ C

πΛ

y
yπΛ’

C/Λ F−−−−→ C/Λ′

commutes. In particular, given z ∈ C, λ ∈ Λ, there exists λ′ ∈ Λ′ such that

F̃ (z + λ) = F̃ (z) + λ′.

This means that the derivative F̃ ′ must be Λ-periodic and, hence, it defines a holo-

morphic function on C/Λ which, by Theorem 1.1.10, must be constant. This implies

that F̃ must be a linear map and, after translation if necessary, we may assume that

F̃ (z) = µ · z, µ = a + ib ∈ C. Conversely, any such linear map F̃ induces a bi-

holomorphic map C/Λ → C/F̃ (Λ). In particular, if {ω1, ω2} is a Z-basis of Λ then

Im(ω2/ω1) 6= 0 and we may assume without loss of generality that Im(ω2/ω1) > 0.

Setting τ = ω2/ω1 we see that TΛ is always biholomorphic to a torus Tτ associated

with a lattice

{m+ nτ ; m,n ∈ Z}

with Im(τ) > 0.

Now, suppose the tori TΛ, TΛ′ are biholomorphic and let {ω1, ω2} (resp. {ω′
1, ω

′
2})

be a Z-basis of Λ (resp. Λ′) as above. We have

µ · ω1 = m11ω
′
1 +m21ω

′
2 ; µ · ω2 = m12ω

′
1 +m22ω

′
2 , mij ∈ Z.

Moreover, m11m22 −m12m21 = 1, since F is biholomorphic and therefore F̃ (Λ) =
Λ′. Hence

τ =
ω1

ω2
=

m11ω
′
1 +m21ω

′
2

m12ω′
1 +m22ω′

2

=
m11 +m21τ

′

m12 +m22τ ′
.

Consequently, Tτ ∼= Tτ ′ if and only if τ and τ ′ are points in the upper half plane

congruent under the action of the group SL(2,Z) by fractional linear transformations.

We refer to Section 4.2 for a fuller discussion of this example.

Remark. Note that while all differentiable structures on the torus S1×S1 are equiva-

lent, there is a continuous moduli space of different complex structures. This is one of

the key differences between real and complex geometry and one which we will study

using Hodge theory.
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1.1.2 Holomorphic Vector Bundles

We may extend the notion of a smooth vector bundle to complex manifolds and holo-

morphic maps.

DEFINITION 1.1.28 A holomorphic vector bundle E over a complex manifold M is

a complex manifold E together with a holomorphic map π : E →M such that

(1) for each x ∈M , the fiber Ex = π−1(x) is a complex vector space of dimension

d (the rank of E);

(2) there exist an open covering {Uα} of M and biholomorphic maps

Φα : π
−1(Uα)→ Uα × Cd

such that

(a) p1(Φα(x)) = x for all x ∈ U , where p1 : Uα × Cd → Uα denotes projec-

tion on the first factor; and

(b) for every x ∈ Uα, the map p2 ◦ Φ|Ex
: Ex → Cd is an isomorphism of

complex vector spaces.

We call E the total space of the bundle and M its base. The covering {Uα} is

called a trivializing cover of M and the biholomorphisms {Φα} local trivializations.

When d = 1 we often refer to E as a line bundle.

We note that as in the case of smooth vector bundles, a holomorphic vector bundle

may be described by transition functions, i.e., by a covering of M by open sets Uα
together with holomorphic maps

gαβ : Uα ∩ Uβ → GL(d,C)

such that

gαβ · gβγ = gαγ (1.1.17)

on Uα ∩ Uβ ∩ Uγ . The maps gαβ are defined by the following commutative diagram:

π−1(Uα ∩ Uβ)
Φβ

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

Φα

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

(Uα ∩ Uβ)× Cd
(id,gαβ) // (Uα ∩ Uβ)× Cd.

(1.1.18)

In particular, a holomorphic line bundle over M is given by a collection {Uα, gαβ},
where Uα is an open cover of M and the {gαβ} are nowhere-zero holomorphic func-

tions defined on Uα ∩ Uβ , i.e., gαβ ∈ O∗(Uα ∩ Uβ) satisfying the cocycle condition

(1.1.17).

EXAMPLE 1.1.29 The product M × Cd with the natural projection may be viewed

as vector bundle of rank d over the complex manifoldM . It is called the trivial bundle

over M .
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EXAMPLE 1.1.30 We consider the tautological line bundle over Pn. This is the bun-

dle whose fiber over a point in Pn is the line in Cn+1 defined by that point. More

precisely, let

T := {([z], v) ∈ Pn × Cn+1 : v = λz, λ ∈ C},
and let π : T → Pn be the projection to the first factor. Let Ui be as in (1.1.6). Then

we can define

Φi : π
−1(Ui)→ Ui × C

by

Φi([z], v) = ([z], vi).

The transition functions gij are defined by the diagram (1.1.18) and we have

Φi ◦ Φ−1
j ([z], 1) = Φi([z], (z0/zj , . . . , 1, . . . , zn/zj)) = ([z], zi/zj),

with the 1 in the jth position. Hence,

gij : Ui ∩ Uj → GL(1,C) ∼= C∗

is the map [z] 7→ zi/zj . It is common to denote the tautological bundle as O(−1).
EXERCISE 1.1.31 Generalize the construction of the tautological bundle over projec-

tive space to obtain the universal rank-k bundle over the Grassmann manifold G(k, n).
Consider the space

U := {(Ω, v) ∈ G(k, n)× Cn : v ∈ Ω}, (1.1.19)

where we regard Ω ∈ G(k, n) as a k-dimensional subspace of Cn. Prove that U may be

trivialized over the open sets UI defined in Example 1.1.7 and compute the transition

functions relative to these trivializations.

Let π : E → M be a holomorphic vector bundle and suppose F : N → M is a

holomorphic map. Given a trivializing cover {(Uα,Φa)} ofE with transition functions

gαβ : Uα ∩ Uβ → GL(d,C), we define

hαβ : F
−1(Uα) ∩ F−1(Uβ)→ GL(d,C) ; hαβ := gαβ ◦ F. (1.1.20)

It is easy to check that the functions hαβ satisfy the cocycle condition (1.1.17) and,

therefore, define a holomorphic vector bundle over N denoted by F ∗(E), and called

the pull-back bundle. Note that we have a commutative diagram:

F ∗(E)
F̄−−−−→ E

π*

y
yπ

N
F−−−−→ M.

(1.1.21)

If L and L′ are line bundles and gLαβ , gL
′

αβ are their transition functions relative to a

common trivializing cover, then the functions

hαβ = gLαβ · gL
′

αβ

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 
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satisfy (1.1.17) and define a new line bundle which we denote by L⊗ L′.
Similarly, the functions

hαβ = (gLαβ)
−1

also satisfy (1.1.17) and define a bundle, called the dual bundle of L and denoted by

L∗ or L−1. Clearly L ⊗ L∗ is the trivial line bundle over M . The dual bundle of the

tautological bundle is called the hyperplane bundle over Pn and denoted byH orO(1).
Note that the transition functions of H are gHij ∈ O∗(Ui ∩ Uj) defined by

gHij ([z]) := zj/zi. (1.1.22)

We may also extend the notion of sections to holomorphic vector bundles:

DEFINITION 1.1.32 A holomorphic section of a holomorphic vector bundle π : E →
M over an open set U ⊂M is a holomorphic map

σ : U → E

such that

π ◦ σ = id|U . (1.1.23)

The sections of E over U form an O(U)-module which will be denoted by O(U,E).
The local sections over U of the trivial line bundle are precisely the ring O(U).

If π : L → M is a holomorphic line bundle and gαβ are the transition functions

associated to a trivializing covering (Uα,Φα), then a section σ : M → L may be de-

scribed by a collection of holomorphic functions fα ∈ O(Uα) defined by

σ(x) = fα(x)Φ
−1
α (x, 1).

Hence, for x ∈ Uα ∩ Uβ we must have

fα(x) = gαβ(x) · fβ(x). (1.1.24)

EXAMPLE 1.1.33 Let M = Pn and let Ui = {[z] ∈ Pn : zi 6= 0}. Let P ∈
C[z0, . . . , zn] be a homogeneous polynomial of degree d. For each i = 0, . . . , n define

fi([z]) =
P (z)

zdi
∈ O(Ui).

In Ui ∩ Uj , we then have

zdi · fi([z]) = P (z) = zdj · fj([z]),

and therefore

fi([z]) = (zj/zi)
d · fj([z]).

This means that we can consider the polynomial P (z) as defining a section of the line

bundle over Pn with transition functions

gij = (zj/zi)
d ,
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that is, of the bundleHd = O(d). In fact, it is possible to prove that every global holo-

morphic section of the bundleO(d) is defined, as above, by a homogeneous polynomial

of degree d. The proof of this fact requires Hartogs’ theorem [13, Proposition 1.1.14]

from the theory of holomorphic functions of several complex variables. We refer to

[13, Proposition 2.4.1].

We note that, on the other hand, the tautological bundle has no nontrivial global

holomorphic sections. Indeed, suppose σ ∈ O(Pn,O(−1)) and let ℓ denote the global

section ofO(1) associated to a nonzero linear form ℓ. Then, the map

[z] ∈ Pn 7→ ℓ([z])σ([z])

defines a global holomorphic function on the compact complex manifold Pn, hence

it must be constant. If that constant is nonzero then both σ and ℓ are nowhere zero

which would imply that both O(−1) and O(1) are trivial bundles. Hence σ must be

identically zero.

Note that given a section σ : M → E of a vector bundle E, the zero locus {x ∈
M : σ(x) = 0} is a well-defined subset of M . Thus, we may view the projective

hypersurface defined in Example 1.1.18 by a homogeneous polynomial of degree d as

the zero locus of a section of O(d).

Remark. The discussion above means that one should think of sections of line bundles

as locally defined holomorphic functions satisfying a suitable compatibility condition.

Given a compact, connected, complex manifold, global sections of holomorphic line

bundles (when they exist) often play the role that global smooth functions play in the

study of smooth manifolds. In particular, one uses sections of line bundles to define em-

beddings of compact complex manifolds into projective space. This vague observation

will be made precise later in the chapter.

Given a holomorphic vector bundle π : E →M and a local trivialization

Φ: π−1(U)→ U × Cd,

we may define a basis of local sections of E over U (a local frame) as follows. Let

e1, . . . , ed denote the standard basis of Cd and for x ∈ U set

σj(x) := Φ−1(x, ej); j = 1, . . . , d.

Then σj(x) ∈ O(U,E) and for each x ∈ U , the vectors σ1(x), . . . , σd(x) are a basis

of the d-dimensional vector space Ex (they are the image of the basis e1, . . . , ed by a

linear isomorphism). In particular, if τ : U → M is a map satisfying (1.1.23) we can

write

τ(x) =

d∑

j=1

fj(x)σj(x)

and τ is holomorphic (resp. smooth) if and only if the functions fj ∈ O(U) (resp.

fj ∈ C∞(U)).
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KÄHLER MANIFOLDS BY E. CATTANI

hodge˙book˙13feb˙edited March 16, 2014 6x9

15

Conversely, supposeU ⊂M is an open set and let σ1, . . . , σd ∈ O(U,E) be a local

frame, i.e., holomorphic sections such that for each x ∈ U , we have σ1(x), . . . , σd(x)
is a basis of Ex. Then we may define a local trivialization

Φ: π−1(U)→ U × Cd

by

Φ(v) := (π(v), (λ1, . . . , λd)),

where v ∈ π−1(U) and

v =

d∑

j=1

λj σj(π(v)).

1.2 DIFFERENTIAL FORMS ON COMPLEX MANIFOLDS

1.2.1 Almost Complex Manifolds

Let M be a complex manifold and (Uα, φα) coordinate charts covering M . Since

the change-of-coordinate maps (1.1.5) are holomorphic, the matrix of the differential

D(φβ ◦ φ−1
α ) is of the form (1.1.3). This means that the map

Jp : Tp(M)→ Tp(M)

defined by

J

(
∂

∂xj

)
:=

∂

∂yj
; J

(
∂

∂yj

)
:= − ∂

∂xj
(1.2.1)

is well defined. We note that J is a smooth (1, 1) tensor on M such that J2 = −I and

therefore, for each p ∈M , then Jp defines a complex structure on the real vector space

Tp(M) (cf. (A.1.4)).

DEFINITION 1.2.1 An almost complex structure on a C∞ (real) manifold M is a

(1, 1) tensor J such that J2 = −I . An almost complex manifold is a pair (M,J)
where J is an almost complex structure on M . The almost complex structure J is said

to be integrable if M has a complex structure inducing J .

If (M,J) is an almost complex manifold then Jp is a complex structure on TpM
and therefore by Proposition A.1.2, M must be even-dimensional. Note also that

(A.1.10) implies that if M has an almost complex structure then M is orientable.

EXERCISE 1.2.2 Let M be an orientable (and oriented) two-dimensional manifold

and let 〈 , 〉 be a Riemannian metric on M . Given p ∈ M let v1, v2 ∈ Tp(M) be a

positively oriented orthonormal basis. Prove that Jp : Tp(M)→ Tp(M) defined by

Jp(v1) = v2 ; Jp(v2) = −v1
defines an almost complex structure on M . Show, moreover, that if 〈〈 , 〉〉 is a Rie-

mannian metric conformally equivalent to 〈 , 〉, then the two metrics define the same

almost complex structure.
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The discussion above shows that if M is a complex manifold then the operator

(1.2.1) defines an almost complex structure. Conversely, the Newlander–Nirenberg

theorem gives a necessary and sufficient condition for an almost complex structure J
to arise from a complex structure. This is given in terms of the Nijenhuis torsion of J :

EXERCISE 1.2.3 Let J be an almost complex structure on M . Prove that

N(X,Y ) = [JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ] (1.2.2)

is a (1, 2) tensor satisfying N(X,Y ) = −N(Y,X). The tensor N is called the torsion

of J .

EXERCISE 1.2.4 Let J be an almost complex structure on a two-dimensional mani-

fold M . Prove that N(X,Y ) = 0 for all vector fields X and Y on M .

THEOREM 1.2.5 (Newlander–Nirenberg [20]) Let (M,J) be an almost complex man-

ifold, then M has a complex structure inducing the almost complex structure J if and

only if N(X,Y ) = 0 for all vector fields X and Y on M .

PROOF. We refer to [34, Proposition 2], [30, Section 2.2.3] for a proof in the special

case when M is a real analytic manifold. �

Remark. Note that assuming the Newlander–Nirenberg theorem, it follows from Ex-

ercise 1.2.4 that the almost complex structure constructed in Exercise 1.2.2 is inte-

grable. We may explicitly construct the complex structure onM by using local isother-

mal coordinates. Thus, a complex structure on an oriented, two-dimensional manifold

M is equivalent to a Riemannian metric up to conformal equivalence.

In what follows we will be interested in studying complex manifolds; however, the

notion of almost complex structures gives a very convenient way to distinguish those

properties of complex manifolds that depend only on having a (smoothly varying) com-

plex structure on each tangent space. Thus, we will not explore in depth the theory of

almost complex manifolds except to note that there are many examples of almost com-

plex structures which are not integrable, that is, do not come from a complex structure.

One may also ask which even-dimensional orientable manifolds admit almost complex

structures. For example, in the case of a sphere S2n, it was shown by Borel and Serre

that only S2 and S6 admit almost complex structures. This is related to the fact that

S1, S3, and S7 are the only parallelizable spheres. We point out that while it is easy to

show that S6 has a nonintegrable almost complex structure, it is still unknown whether

S6 has a complex structure.

1.2.2 Tangent and Cotangent Space

Let (M,J) be an almost complex manifold and p ∈ M . Let Tp(M) denote the tan-

gent space of M . Then Jp defines a complex structure on Tp(M) and therefore, by

Proposition A.1.2, the complexification Tp,C(M) := Tp(M)⊗R C decomposes as

Tp,C(M) = T ′
p(M)⊕ T ′′

p (M),
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where T
′′

p (M) = T ′
p(M) and T ′

p(M) is the i-eigenspace of Jp acting on Tp,C(M).
Moreover, by Proposition A.1.3, the map v ∈ Tp(M) 7→ v− iJp(v) defines an isomor-

phism of complex vector spaces (Tp(M), Jp) ∼= T ′
p(M).

If J is integrable, then given holomorphic local coordinates {z1, . . . , zn} around p,

we may consider the local coordinate frame (1.1.2) and, given (1.2.1), we have that the

above isomorphism maps

∂/∂xj 7→ ∂/∂xj − i ∂/∂yj.

We set

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
;

∂

∂z̄j
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
. (1.2.3)

Then, the vectors ∂/∂zj are a basis of the complex subspace T ′
p(M).

Remark. Given local coordinates (U, {z1, . . . , zn}) on M , a function f : U → C is

holomorphic if the local coordinates expression f(z1, . . . , zn) satisfies the Cauchy–

Riemann equations. This is equivalent to the condition

∂

∂z̄j
(f) = 0

for all j. Moreover, in this case, ∂
∂zj

(f) coincides with the partial derivative of f with

respect to zj . This justifies the choice of notation. However, we point out that it makes

sense to consider ∂
∂zj

(f) even if f is only a C∞ function.

We will refer to T ′
p(M) as the holomorphic tangent space3 of M at p. We note

that if {z1, . . . , zn} and {w1, . . . , wn} are local complex coordinates around p then the

change of basis matrix from the basis {∂/∂zj} to the basis {∂/∂wk} is given by the

matrix of holomorphic functions (
∂wk
∂zj

)
.

Thus, the complex vector spaces T ′
p(M) define a holomorphic vector bundle T h(M)

over M , the holomorphic tangent bundle.

EXAMPLE 1.2.6 Let M be an oriented real surface with a Riemannian metric. Let

(U, x, y) be positively oriented, local isothermal coordinates on M ; i.e., the coordinate

vector fields ∂/∂x, ∂/∂y are orthogonal and of the same length. Then z = x + iy
defines complex coordinates on M and the vector field ∂/∂z = 1

2 (∂/∂x − i ∂/∂y)
is a local holomorphic section of the holomorphic tangent bundle of M .

We can now characterize the tangent bundle and the holomorphic tangent bundle of

Pn:

3This construction makes sense even if J is not integrable. In that case, we may replace the coordinate

frame (1.1.2) by a local frame {X1, . . . ,Xn, Y1, . . . , Yn} such that J(Xj) = Yj and J(Yj) = −Xj .
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THEOREM 1.2.7 The tangent bundle TPn is equivalent to the bundle

Hom(T , E/T ),
whereE = Pn×Cn+1 is the trivial bundle of rank n+1 on Pn and T is the tautological

bundle defined in Example 1.1.30. The holomorphic tangent bundle may be identified

with the subbundle

HomC(T , E/T ).
PROOF. We work in the holomorphic case; the statement about the smooth case

follows identically. Consider the projection π : Cn+1 \ {0} → Pn. Given λ ∈ C∗, let

Mλ denote multiplication by λ in Cn+1 \{0}. Then, for every v ∈ Cn+1 \{0}we may

identify T ′(Cn+1 \ {0}) ∼= Cn+1 and we have the following commutative diagram of

C-linear maps

Cn+1 Mλ //

π∗,v $$❏
❏❏

❏❏
❏❏

❏❏
❏ Cn+1

π∗,λvzzttt
tt
tt
tt
t

T[v](Pn).

Now, the map π∗,v : Cn+1 → T ′
[v](P

n) is surjective and its kernel is the line L = C · v.

Hence we get a family of C-linear isomorphisms

pv : Cn+1/L→ T ′
[v](P

n); v ∈ L, v 6= 0

with the relation

pv = λ pλv.

We can now define a map

Θ : HomC(T , E/T )→ T hPn.

Let

ξ ∈ HomC(T , E/T )[z] = HomC(T[z], (E/T )[z]) ∼= HomC(L,Cn+1/L);

then we set

Θ(ξ) := pv(ξ(v)) for any v ∈ L, v 6= 0.

Note that this is well defined since

pλv(ξ(v)) = λ−1pv(λ ξ(v)) = pv(ξ(v)).

Alternatively one may define

Θ(ξ) =
d

dt

∣∣∣
t=0

(γ(t)),

where γ(t) is the holomorphic curve through [z] in Pn defined by

γ(t) := [v + tξ(v)].

One then has to show that this map is well defined. It is straightforward, though tedious,

to verify that Θ is an isomorphism of vector bundles. �
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EXERCISE 1.2.8 Prove that

T (G(k, n)) ∼= Hom(U , E/U),

T h(G(k, n)) ∼= HomC(U , E/U),
where U is the universal bundle over G(k, n) defined in Exercise 1.1.31 and E is the

trivial bundle E = G(k, n)× Cn.

As seen in Appendix A, a complex structure on a vector space induces a complex

structure on the dual vector space. Thus, the complexification of the cotangent space

T ∗
p,C(M) decomposes as

T ∗
p,C(M) := T 1,0

p (M)⊕ T 0,1
p (M) ; T 0,1

p (M) = T 1,0
p (M).

Given local holomorphic coordinates {z1, . . . , zn}, zj = xj + iyj , the 1-forms dzj :=
dxj + i dyj , dz̄j = dxj − i dyj are the dual coframe to ∂/∂z1, . . . , ∂/∂z̄n and con-

sequently, dz1, . . . , dzn are a local holomorphic frame of the holomorphic bundle

T 1,0(M).
The complex structure on T ∗

p (M) induces a decomposition of the kth exterior prod-

uct (cf. (A.1.12)): ∧
k(T ∗

p,C(M)) =
⊕

a+b=k

∧
p
a,b(M),

where

∧
p
a,b(M) =

a times︷ ︸︸ ︷
T 1,0
p (M) ∧ · · · ∧ T 1,0

p (M)∧
b times︷ ︸︸ ︷

T 0,1
p (M) ∧ · · · ∧ T 0,1

p (M) . (1.2.4)

In this way, the smooth vector bundle
∧
k(T ∗

C(M)) decomposes as a direct sum of C∞

vector bundles ∧
k(T ∗

C(M)) =
⊕

a+b=k

∧
a,b(M). (1.2.5)

We will denote by Ak(U) (resp. Aa,b(U)) the C∞(U)-module of local sections of the

bundle
∧
k(T ∗

C(M)) (resp.
∧
a,b(M)) over U . We then have

Ak(U) =
⊕

a+b=k

Aa,b(U). (1.2.6)

Note that given holomorphic coordinates {z1, . . . , zn}, the local differential forms

dzI ∧ dz̄J := dzi1 ∧ · · · ∧ dzia ∧ dz̄j1 ∧ · · · ∧ dz̄jb ,

where I (resp. J) runs over all strictly increasing index sets 1 ≤ i1 < · · · < ia ≤ n
of length a (resp. 1 ≤ j1 < · · · < jb ≤ n of length b) are a local frame for the bundle∧
a,b(M).

We note that the bundles
∧
k,0(M) are holomorphic bundles of rank

(
n
k

)
. We de-

note them by ΩkM to emphasize that we are viewing them as holomorphic, rather than

smooth, bundles. We denote the O(U)-module of holomorphic sections by Ωk(U). In

particular, ΩnM is a holomorphic line bundle over M called the canonical bundle and

usually denoted by KM .
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EXAMPLE 1.2.9 Let M = P1. Then as we saw in Example 1.1.5, M is covered by

two coordinate neighborhoods (U0, φ0), (U1, φ1). The coordinate change is given by

the map φ1 ◦ φ−1
0 : C∗ → C∗:

w = φ1 ◦ φ−1
0 (z) = φ1([(1, z)]) = 1/z.

This means that the local sections dz, dw of the holomorphic cotangent bundle are

related by

dz = −(1/w)2 dw.
It follows from (1.1.18) that g01[(z0, z1)] = −(z0/z1)2. Hence KP1 ∼= O(−2) = T 2.

EXERCISE 1.2.10 Find the transition functions for the holomorphic cotangent bundle

of Pn. Prove that KPn ∼= O(−n− 1) = T n+1.

1.2.3 De Rham and Dolbeault Cohomologies

We recall that if U ⊂ M is an open set in a smooth manifold M and Ak(U) denotes

the space of C-valued differential k-forms on U , then there exists a unique operator,

the exterior differential,

d : Ak(U)→ Ak+1(U) ; k ≥ 0

satisfying the following properties:

(1) d is C-linear.

(2) For f ∈ A0(U) = C∞(U), df is the 1-form on U which acts on a vector field

X by df(X) := X(f).

(3) Given α ∈ Ar(U), β ∈ As(U), the Leibniz property holds:

d(α ∧ β) = dα ∧ β + (−1)r α ∧ dβ. (1.2.7)

(4) d ◦ d = 0.

It follows from (2) above that if {X1, . . . , Xm} is a local frame on U ⊂ M and

{ξ1, . . . , ξm} is the dual coframe, then given f ∈ C∞(U) we have

df =

m∑

i=1

Xi(f) ξi .

In particular, if M is a complex manifold and (U, {z1, . . . , zn}) are local coordinates,

then for a function f ∈ C∞(U) we have

df =
n∑

j=1

∂f

∂xj
dxj +

n∑

j=1

∂f

∂yj
dyj =

n∑

j=1

∂f

∂zj
dzj +

n∑

j=1

∂f

∂z̄j
dz̄j . (1.2.8)
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The properties of the operator d imply that for each open set U in M we have a com-

plex:

C →֒ C∞(U)
d→ A1(U)

d→ · · · d→ A2n−1(U)
d→ A2n(U). (1.2.9)

The quotients

Hk
dR(U,C) :=

ker{d : Ak(U)→ Ak+1(U)}
d(Ak−1(U))

(1.2.10)

are called the de Rham cohomology groups of U . The elements in

Zk(U) := ker{d : Ak(U)→ Ak+1(U)}

are called closed k-forms and the elements in Bk(U) := d(Ak−1(U)) exact k-forms.

We note that if U is connected then H0
dR(U,C) ∼= C. Unless there is the possibility

of confusion we will drop the subscript since, in this chapter, we will only consider de

Rham cohomology.

EXERCISE 1.2.11 Prove that the set of closed forms is a subring of the ring of dif-

ferential forms and that the set of exact forms is an ideal in the ring of closed forms.

Deduce that the de Rham cohomology

H∗(U,C) :=
⊕

k≥0

Hk(U,C) (1.2.11)

inherits a ring structure

[α] ∪ [β] := [α ∧ β]. (1.2.12)

This is called the cup product on cohomology.

If F : M → N is a smooth map, then given an open set V ⊂ N , F induces maps

F ∗ : Ak(V )→ Ak(F−1(V ))

which commute with the exterior differential; i.e., F ∗ is a map of complexes. This

implies that F ∗ defines a map between de Rham cohomology groups,

F ∗ : Hk(V,C)→ Hk(F−1(V ),C),

which satisfies the chain rule (F ◦ G)∗ = G∗ ◦ F ∗. Since (id)∗ = id, it follows that

if F : M → N is a diffeomorphism then F ∗ : Hk(N,C) → Hk(M,C) is an isomor-

phism. In fact, the de Rham cohomology groups are a (smooth) homotopy invariant:

DEFINITION 1.2.12 Let f0, f1 : M → N be smooth maps. Then f0 is (smoothly)

homotopic to f1 if there exists a smooth map

H : R×M → N

such that H(0, x) = f0(x) and H(1, x) = f1(x) for all x ∈M .
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THEOREM 1.2.13 Let f0, f1 : M → N be smoothly homotopic maps. Then

f∗
0 = f∗

1 : H
k(N,C)→ Hk(M,C).

PROOF. We refer to [2, Section 4] for a proof of this important result. �

COROLLARY 1.2.14 (Poincaré lemma) Let U ⊂ M be a contractible open subset.

Then Hk(U,C) vanishes for all k ≥ 1.

PROOF. The result follows from Theorem 1.2.13 since in a contractible open set

the identity map is homotopic to a constant map. �

Hence, if U is contractible, the sequence

0→ C →֒ C∞(U)
d→ A1(U)

d→ · · · d→ A2n−1(U)
d→ A2n(U)→ 0 (1.2.13)

is exact.

The exterior differential operator is not of pure bidegree relative to the decomposi-

tion (1.2.6). Indeed, it follows from (1.2.8) that

d(Aa,b(U)) ⊂ Aa+1,b(U)⊕Aa,b+1(U). (1.2.14)

We remark that statement (1.2.14) makes sense for an almost complex manifold (M,J)
and, indeed, its validity is equivalent to the integrability of the almost complex structure

J ; see [16, Theorem 2.8]. We write d = ∂ + ∂̄, where ∂ (resp. ∂̄) is the component of

d of bidegree (1, 0) (resp. (0, 1)). From d2 = 0 we obtain

∂2 = ∂̄2 = 0 ; ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0. (1.2.15)

EXERCISE 1.2.15 Generalize the Leibniz property to the operators ∂ and ∂̄.

PROPOSITION 1.2.16 Let M be a complex manifold and U ⊂ M an open subset.

Then

ker{∂̄ : Ap,0(U)→ Ap,1(U)} = Ωp(U). (1.2.16)

PROOF. We may assume that (U, {z1, . . . , zn} is a coordinate neighborhood. Let

α ∈ Ap,0(U) and write α =
∑

I fI dzI , where I runs over all increasing index sets

{1 ≤ i1 < · · · < ip ≤ n}. Then

∂̄α =
∑

I

n∑

j=1

∂fI
∂z̄j

dz̄j ∧ dzI = 0 .

This implies that ∂fI/∂z̄j = 0 for all I and all j. Hence fI ∈ O(U) for all I and α is

a holomorphic p-form. �
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It follows then from (1.2.15) and (1.2.16) that, for each p, 0 ≤ p ≤ n, we get a

complex

0→ Ωp(U) →֒ Ap,0(U)
∂̄→ Ap,1(U)

∂̄→ · · · ∂̄→ Ap,n−1(U)
∂̄→ Ap,n(U)→ 0

called the Dolbeault complex. Its cohomology spaces are denoted by Hp,q

∂̄
(U) and

called the Dolbeault cohomology groups.

EXERCISE 1.2.17 Let α ∈ Ap,q(U). Prove that ∂α = ∂̄ᾱ. Deduce that a form α
is ∂-closed if and only if ᾱ is ∂̄-closed. Similarly for ∂-exact forms. Conclude that via

conjugation, the study of ∂-cohomology reduces to the study of Dolbeault cohomology.

Given a = (a1, . . . , an) ∈ Cn and ε = (ε1, . . . , εn) ∈ (R>0 ∪∞)n, we denote by

∆ε(a) = {z ∈ Cn : |zi − ai| < εi}

the n-dimensional polydisk. For n = 1, a = 0, ε = 1 we set ∆ = ∆1(0), the unit

disk, and ∆∗ = ∆ \ {0}, the punctured unit disk. The following result is known as the

∂̄-Poincaré lemma:

THEOREM 1.2.18 If q ≥ 1 and α is a ∂̄-closed (p, q)-form on a polydisk ∆ε(a), then

α is ∂̄-exact; i.e.,

Hp,q

∂̄
(∆ε(a)) = 0 ; q ≥ 1 .

PROOF. We refer to [10, Chapter 0] or [13, Corollary 1.3.9] for a proof. �

Hence, if U = ∆ε(a) is a polydisk we have exact sequences:

0→ Ωp(U) →֒ Ap,0(U)
∂̄→ Ap,1(U)

∂̄→ · · · ∂̄→ Ap,n(U)→ 0. (1.2.17)

Remark. Both the De Rham and Dolbeault cohomology groups may be realized as

the sheaf cohomology groups of a constant sheaf. This is discussed in detail in Chap-

ter 2. This will show, in particular, that even though our definition of the de Rham

cohomology uses the differentiable structure, it is, in fact, a topological invariant. On

the other hand, the Dolbeault cohomology groups depend essentially on the complex

structure. This observation is at the core of Hodge theory.

1.3 SYMPLECTIC, HERMITIAN, AND KÄHLER STRUCTURES

In this section we will review the basic notions of Hermitian and Kähler metrics on

complex manifolds. We begin by recalling the notion of a symplectic structure:

DEFINITION 1.3.1 A symplectic structure on a 2d-dimensional manifold M is a

closed 2-form ω ∈ ∧2(M) such that Ω = ωd/d! is nowhere vanishing.
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Thus, if ω is a symplectic structure on M , at each p ∈ M , the form ωp defines a

symplectic structure Qp on Tp(M) (see Definition B.1.1). A symplectic manifold is a

manifoldM endowed with a symplectic structure ω.

The simplest example of a symplectic manifold is given by R2d with coordinates

denoted by {x1, . . . , xd, y1, . . . , yd} and the 2-form

ω0 =

d∑

j=1

dxj ∧ dyj .

The classical Darboux theorem asserts that, locally, every symplectic manifold is sym-

plectomorphic to (R2d, ω0):

THEOREM 1.3.2 (Darboux theorem) Let (M,ω) be a symplectic manifold. Then for

each p ∈M there exists an open neighborhood U and local coordinates ϕ : U → R2d

such that ω|U = ϕ∗(ω0).

PROOF. We refer to [23, Theorem 6.1] for a proof. �

In what follows we will be particularly interested in symplectic structures on a

complex manifold M compatible with the complex structure J :

DEFINITION 1.3.3 Let M be a complex manifold and J its complex structure. A

Riemannian metric g on M is said to be a Hermitian metric if and only if for each p ∈
M , the bilinear form gp on the tangent space Tp(M) is compatible with the complex

structure Jp (cf. (B.2.1)).

We recall from (B.2.2) in the second appendix to this chapter that given a symmet-

ric bilinear form compatible with the complex structure we may define a J-invariant

alternating form. Thus, given a Hermitian metric on M we may define a differential

2-form ω ∈ A2(M,C) by

ω(X,Y ) := g(JX, Y ), (1.3.1)

where we also denote by g the bilinear extension of g to the complexified tangent space.

By Theorem B.2.1, we have

ω ∈ A1,1(M) and ω̄ = ω. (1.3.2)

We also recall that Theorem B.2.1 implies that every formω as in (1.3.2) defines a sym-

metric (1, 1) tensor on M compatible with J and a Hermitian form H on the complex

vector space (Tp(M), J).
We express these objects in local coordinates: let (U, {z1, . . . , zd}) be local com-

plex coordinates on M . Then (1.3.2) implies that we may write

ω :=
i

2

d∑

j,k=1

hjk dzj ∧ dz̄k ; hkj = h̄jk. (1.3.3)
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Hence ω(∂/∂zj, ∂/∂z̄k) = (i/2)hjk from which it follows that

ω(∂/∂xj, ∂/∂xk) = − Im(hjk).

Moreover, we have

g(∂/∂xj, ∂/∂xk) = ω(∂/∂xj, ∂/∂yk) = Re(hjk).

Hence g is positive definite if and only if the Hermitian matrix (hjk) is positive definite.

We may then restate Definition 1.3.3 by saying that a Hermitian structure is a (1, 1) real

form ω as in (1.3.3) such that the matrix (hjk) is positive definite. By abuse of notation

we will say that, in this case, the 2-form ω is positive.

1.3.1 Kähler Manifolds

DEFINITION 1.3.4 A Hermitian metric on a manifoldM is said to be a Kähler metric

if and only if the 2-form ω is closed. We will say that a complex manifold is Kähler if

and only if it admits a Kähler structure and refer to ω as a Kähler form.

EXERCISE 1.3.5 Let (M,ω) be a Kähler manifold. Show that there are local coframes

χ1, . . . , χd in A1,0(U) such that

ω =
i

2

d∑

j=1

χj ∧ χ̄j .

Clearly, every Kähler manifold M is symplectic. Moreover, if {z1, . . . , zd} are

local coordinates on M and ω is a Kähler form on M then

ωd = d!

(
i

2

)n
det((hij))

d∧

j=1

(dzj ∧ dz̄j)

= d! det((hij))
d∧

j=1

(dxj ∧ dyj),

since dzj ∧ dz̄j = (2/i)dxj ∧ dyj .

EXERCISE 1.3.6 Prove that ωd/d! is the volume element of the Riemannian metric

g defined by the Kähler form ω (see Exercise 1.4.3).

Thus we have a necessary condition for a compact complex manifold to be Kähler:

PROPOSITION 1.3.7 If M is a compact Kähler manifold, then

dimH2k(M,R) > 0

for all k = 0, . . . , d.
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PROOF. Indeed, this is true of all compact symplectic manifolds as the forms ωk,

k = 1, . . . , d induce nonzero de Rham cohomology classes. Suppose, otherwise, that

ωk = dα. Then

ωd = d(ωd−k ∧ α).
But then it would follow from the Stokes theorem that

∫

M

ωd = 0,

which contradicts the fact that ωd is a nonzero multiple of the volume element. �

Remark. As we will see below, the existence of a Kähler metric on a manifold imposes

many other topological restrictions beyond those satisfied by symplectic manifolds.

The earliest examples of compact symplectic manifolds with no Kähler structure are

due to Thurston [25]. We refer to [32] for further details.

EXAMPLE 1.3.8 The affine space Cd with the form

ω =
i

2

d∑

j=1

dzj ∧ dz̄j

is a Kähler manifold. The form ω gives the usual symplectic structure on R2d.

The following theorem may be seen as a generalization of Darboux’s theorem to

Kähler manifolds:

THEOREM 1.3.9 Let M be a complex manifold and g a Kähler metric on M . Then,

given p ∈ M , there exist local coordinates (U, {z1, . . . , zd}) around p such that

zj(p) = 0 and

ω =
i

2

d∑

j=1

hjk dzj ∧ dz̄k ,

where the coefficients hjk are of the form

hjk(z) = δjk +O(||z||2). (1.3.4)

PROOF. We refer to [30, Proposition 3.14] for a proof. �

EXAMPLE 1.3.10 We will construct a Kähler form on Pn. We will do this by ex-

hibiting a positive, real, closed (1, 1)-form on Pn. The resulting metric is called the

Fubini–Study metric on Pn.

Given z ∈ Cn+1 we denote by

||z||2 = |z0|2 + · · ·+ |zn|2.
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Let Uj ⊂ Pn be the open set (1.1.6) and let ρj ∈ C∞(Uj) be the positive function

ρj([z]) :=
||z||2
|zj |2

, (1.3.5)

and define ωj ∈ A1,1(Uj) by

ωj :=
−1
2πi

∂∂̄ log(ρj). (1.3.6)

Clearly, ωj is a real, closed (1, 1)-form. Moreover, on Uj ∩ Uk we have

log(ρj)− log(ρk) = log |zk|2 − log |zj |2 = log(zkz̄k)− log(zj z̄j).

Hence, since ∂∂̄(log(zj z̄j)) = 0, we have ωj = ωk on Uj ∩ Uk. Thus, the forms ωj
piece together to give a global, real, closed (1, 1)-form ω on Pn. We write

ω =
−1
2πi

∂∂̄ log(||z||2). (1.3.7)

It remains to show that ω is positive. We observe first of all that the expression

(1.3.7) shows that if A is a unitary matrix and µA : Pn → Pn is the biholomorphic map

µA([z]) := [A · z], then µ∗
A(ω) = ω. Hence, since given any two points [z], [z′] ∈ Pn

there exists a unitary matrix such that µa([z]) = [z′], it suffices to prove that ω is pos-

itive definite at just one point, say [1, 0, . . . , 0] ∈ U0. In the coordinates {u1, . . . , un}
in U0, we have ρ0(u) = 1 + ||u||2 and therefore

∂̄(log ρ0(u)) = ρ−1
0 (u)

n∑

k=1

uk ∂̄ūk = ρ−1
0 (u)

n∑

k=1

uk dūk ,

ω =
i

2π
ρ−2
0 (u)

(
ρ0(u)

n∑

j=1

duj ∧ dūj +
( n∑

j=1

ūjduj

)
∧
( n∑

j=1

ukdūk

))
.

Hence, at the origin, we have

ω =
i

2π

n∑

j=1

duj ∧ dūj,

which is a positive form.

The function log(ρj) in the above proof is called a Kähler potential. As the follow-

ing result shows, every Kähler metric may be described by a (local) potential.

PROPOSITION 1.3.11 Let M be a complex manifold and ω a Kähler form on M .

Then for every p ∈M there exists an open set U ⊂M and a real function v ∈ C∞(U)
such that ω = i ∂∂̄(v).
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PROOF. Since dω = 0, it follows from the Poincaré lemma that in a neighborhood

U ′ of p, we have ω = dα, where α ∈ A1(U ′,R). Hence, we may write α = β + β̄,

where β ∈ A1,0(U ′,R). Now, we can write

ω = dα = ∂β + ∂̄β + ∂β̄ + ∂̄β̄ ,

but, since ω is of type (1, 1) it follows that

ω = ∂̄β + ∂β̄ and ∂β = ∂̄β̄ = 0.

We may now apply the ∂̄-Poincaré lemma to conclude that there exists a neighborhood

U ⊂ U ′ around p where β̄ = ∂̄f for some (C-valued) C∞ function f on U . Hence

ω = ∂̄∂f̄ + ∂∂̄f = ∂∂̄(f − f̄) = 2i ∂∂̄(Im(f)).

�

THEOREM 1.3.12 Let (M,ω) be a Kähler manifold and suppose N ⊂ M is a com-

plex submanifold. Then (N,ω|N ) is a Kähler manifold.

PROOF. Let g denote the J-compatible Riemannian metric on M associated with

ω. Then g restricts to a Riemannian metric onN , compatible with the complex structure

on N , and whose associated 2-form is ω|N . Since d(ω|N ) = (dω)|N = 0, it follows

that N is a Kähler manifold as well. �

It follows from Theorem 1.3.12 that a necessary condition for a compact complex

manifold M to have an embedding in Pn is that there exists a Kähler metric on M .

Moreover, as we shall see below, for a submanifold of projective space, there exists a

Kähler metric whose associated cohomology class satisfies a suitable integrality condi-

tion.

1.3.2 The Chern Class of a Holomorphic Line Bundle

The construction of the Kähler metric in Pn may be further understood in the context

of Hermitian metrics on (line) bundles. We recall that a Hermitian metric on a C-vector

bundle π : E →M is given by a positive-definite Hermitian form

Hp : Ep × Ep → C

on each fiber Ep, which is smooth in the sense that given sections σ, τ ∈ Γ(U,E), the

function

H(σ, τ)(p) := Hp(σ(p), τ(p))

is C∞ on U . Using partitions of unity, one can prove that every smooth vector bundle

E has a Hermitian metric H .

In the case of a line bundle L, the Hermitian form Hp is completely determined by

the valueHp(v, v) on a nonzero element v ∈ Lp. In particular, if {(Uα,Φα)} is a cover

of M by trivializing neighborhoods of L and σα ∈ O(Uα, L) is the local frame

σα(x) = Φ−1
α (x, 1) ; x ∈ Uα,
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then a Hermitian metric H on L is determined by the collection of positive functions

ρα := H(σα, σα) ∈ C∞(Uα).

We note that if Uα ∩ Uβ 6= ∅ then we have σβ = gαβ · σα and, consequently, the

functions ρα satisfy the compatibility condition

ρβ = |gαβ|2ρα. (1.3.8)

In particular, if L is a holomorphic line bundle then the transition functions gαβ are

holomorphic and as in Example 1.3.10, we have

∂∂̄ log(ρα) = ∂∂̄ log(ρβ)

on Uα ∩ Uβ and therefore the form

1

2πi
∂∂̄ log(ρα) (1.3.9)

is a global, real, closed (1, 1)-form on M . The cohomology class

[(1/2πi) ∂∂̄ log(ρα)] ∈ H2(M,R) (1.3.10)

is called the Chern class of the vector bundle L and denoted by c(L). The factor 1/2π
is chosen so that the Chern class is actually an integral cohomology class:

c(L) ∈ H2(M,Z). (1.3.11)

Recall that if gαβ are the transition functions for a bundle L then the functions g−1
αβ

are the transition functions of the dual bundle L∗. In particular, if ρα are a collection of

positive C∞ functions defining a Hermitian metric on L then the functions ρ−1
α define

a Hermitian metric H∗ on L∗. We call H∗ the dual Hermitian metric. We then have

c(L∗) = −c(L). (1.3.12)

DEFINITION 1.3.13 A holomorphic line bundle L → M over a compact Kähler

manifold is said to be positive if and only if there exists a Hermitian metric H on L for

which the (1, 1)-form (1.3.10) is positive. We say that L is negative if its dual bundle

L∗ is positive.

We note that in Example 1.3.10 we have

|zk|2 ρk([z]) = |zj|2 ρj([z])

on Uj ∩ Uk. Hence

ρk([z]) =

∣∣∣∣
zj
zk

∣∣∣∣
2

ρj([z])

and, by (1.3.8), it follows that the functions ρj define a Hermitian metric on the tauto-

logical bundleO(−1). Hence, taking into account the sign change in (1.3.6), it follows
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that the Kähler class of the Fubini–Study metric agrees with the Chern class of the

hyperplane bundleO(1). Thus,

c(O(1)) = [ω] =

[
i

2π
∂∂̄ log(||z||2)

]
(1.3.13)

and the hyperplane bundle O(1) is a positive line bundle. Moreover, if M ⊂ Pn is a

complex submanifold then the restriction of O(1) to M is a positive line bundle over

M . We can now state the following theorem:

THEOREM 1.3.14 (Kodaira embedding theorem) A compact complex manifold M
may be embedded in Pn if and only if there exists a positive holomorphic line bundle

π : L→M .

We refer to [30, Theorem 7.11], [19, Theorem 8.1], [10], [35, Theorem 4.1], and

[13, Section 5.3] for various proofs of this theorem.

Remark. The existence of a positive holomorphic line bundle π : L → M implies

that M admits a Kähler metric whose Kähler class is integral. Conversely, any integral

cohomology class represented by a closed (1, 1)-form is the Chern class of a line bundle

(cf. [6, Section 6]), hence a compact complex manifold M may be embedded in Pn if

and only if it admits a Kähler metric whose Kähler class is integral.

Recall (see [10, Section 1.3]) that Chow’s theorem asserts that every analytic sub-

variety of Pn is algebraic. When this result is combined with the Kodaira embedding

theorem, we obtain a characterization of complex projective varieties as those compact

Kähler manifolds admitting a Kähler metric whose Kähler class is integral.

1.4 HARMONIC FORMS—HODGE THEOREM

1.4.1 Compact Real Manifolds

Unless otherwise specified, throughout Section 1.4.1 we will let M denote a compact,

oriented, real, n-dimensional manifold with a Riemannian metric g. We recall that the

metric on the tangent bundle TM induces a dual metric on the cotangent bundle T ∗M
such that the dual coframe of a local orthonormal frame X1, . . . , Xn in Γ(U, TM) is

also orthonormal. We will denote the dual inner product by 〈 , 〉.

EXERCISE 1.4.1 Verify that this metric on T ∗M is well defined; i.e., it is indepen-

dent of the choice of local orthonormal frames.

We extend the inner product to the exterior bundles
∧
r(T ∗M) by the specification

that the local frame

ξI := ξi1 ∧ · · · ∧ ξir ,
where I runs over all strictly increasing index sets {1 ≤ i1 < · · · < ir ≤ n}, is

orthonormal.
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EXERCISE 1.4.2 Verify that this metric on
∧
rT ∗M is well defined; i.e., it is inde-

pendent of the choice of local orthonormal frames, by proving that

〈α1 ∧ · · · ∧ αr, β1 ∧ · · · ∧ βr〉 = det(〈αi, βj〉),

where αi, βj ∈ A1(U).
Hint: use the Cauchy–Binet formula for determinants.

Recall that given an oriented Riemannian manifold, the volume element is defined

as the unique n-form Ω ∈ An(M) such that

Ω(p)(v1, . . . , vn) = 1

for any positively oriented orthonormal basis {v1, . . . , vn} of Tp(M). If ξ1, . . . , ξn ∈
A1(U) is a positively oriented orthonormal coframe then

Ω|U = ξ1 ∧ · · · ∧ ξn.

EXERCISE 1.4.3 Prove that the volume element may be written as

Ω =
√
G dx1 ∧ · · · ∧ dxn ,

where {x1, . . . , xn} are positively oriented local coordinates, G = det(gij), and

gij := g(∂/∂xi, ∂/∂xj).

We now define the Hodge ∗-operator. Let β ∈ Ar(M). Then ∗β ∈ An−r(M) is

given by (∗β)(p) = ∗(β(p)), where the ∗ operator on
∧
rT ∗
p is defined as in (B.1.3).

Therefore, for every α ∈ Ar(M),

α ∧ ∗β = 〈α, β〉Ω. (1.4.1)

We extend the definition to Ar(M,C) by linearity.

EXERCISE 1.4.4 Suppose α1, . . . , αn ∈ T ∗
p (M) is a positively oriented orthonormal

basis. Let I = {1 ≤ i1 < · · · < ir ≤ n} be an index set and Ic its complement. Prove

that

∗(αI) = sign(I, Ic) αIc , (1.4.2)

where sign(I, Ic) is the sign of the permutation {I, Ic}.

EXERCISE 1.4.5 Prove that ∗ is an isometry and that ∗2 acting on Ar(M) equals

(−1)r(n−r) I .

Suppose now that M is compact. We can then define an L2 inner product on the

space of r-forms on M by

(α, β) :=

∫

M

α ∧ ∗β =

∫

M

〈α(p), β(p)〉 Ω ; α, β ∈ Ar(M). (1.4.3)
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PROPOSITION 1.4.6 The bilinear form (•, •) is a positive-definite inner product on

Ar(M).

PROOF. First of all we check that (•, •) is symmetric:

(β, α) =

∫

M

β ∧ ∗α = (−1)r(n−r)
∫

M

∗(∗β) ∧ ∗α =

∫

M

∗α ∧ ∗(∗β) = (α, β).

Now, given 0 6= α ∈ Ar(M), we have

(α, α) =

∫

M

α ∧ ∗α =

∫

M

〈α, α〉 Ω > 0

since 〈α, α〉 is a nonnegative function which is not identically zero. �

PROPOSITION 1.4.7 The operator δ : Ar+1(M)→ Ar(M), defined by

δ := (−1)nr+1 ∗ d ∗, (1.4.4)

is the formal adjoint of d; that is,

(dα, β) = (α, δβ) for all α ∈ Ar(M), β ∈ Ar+1(M). (1.4.5)

PROOF.

(dα, β) =

∫

M

dα ∧ ∗β =

∫

M

d(α ∧ ∗β)− (−1)r
∫

M

α ∧ d ∗ β

= −(−1)r(−1)r(n−r)
∫

M

α ∧ ∗(∗ d ∗ β) =

∫

M

α ∧ ∗δβ

= (α, δβ).

�

Remark. Note that if dimM is even then δ = − ∗ d ∗ independently of the degree of

the form. Since we will be interested in applying these results in the case of complex

manifolds which, as real manifolds, are even-dimensional, we will make that assump-

tion from now on.

We now define the Laplace–Beltrami operator of (M, g) by

∆: Ar(M)→ Ar(M) ; ∆α := dδα+ δdα.

PROPOSITION 1.4.8 The operators d, δ, ∗ and ∆ satisfy the following properties:

(1) ∆ is self-adjoint; i.e., (∆α, β) = (α,∆β).

(2) [∆, d] = [∆, δ] = [∆, ∗] = 0.

(3) ∆α = 0 if and only if dα = δα = 0.
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PROOF. We leave the first two items as exercises. Note that given operatorsD1, D2,

the bracket [D1, D2] = D1 ◦D2−D2 ◦D1. Thus, (2) states that the Laplacian ∆ com-

mutes with d, δ, and ∗.
Clearly, if dα = δα = 0 then we have ∆α = 0. Conversely, suppose α ∈ Ar(M)

and ∆α = 0. Then

0 = (∆α, α) = (dδα+ δdα, α) = (δα, δα) + (dα, dα).

Hence dα = δα = 0. �

DEFINITION 1.4.9 A form α ∈ Ar(M) is said to be harmonic if ∆α = 0 or, equiv-

alently, if α is closed and coclosed, i.e., dα = δα = 0.

EXERCISE 1.4.10 Let M be a compact, connected, oriented, Riemannian manifold.

Show that the only harmonic functions on M are the constant functions.

EXERCISE 1.4.11 Let α ∈ Ar(M) be closed. Show that ∗α is closed if and only if

α is harmonic.

The following result shows that harmonic forms are very special within a given de

Rham cohomology class:

PROPOSITION 1.4.12 A closed r-form α is harmonic if and only if ||α||2 is a local

minimum within the de Rham cohomology class of α. Moreover, in any given de Rham

cohomology class there is at most one harmonic form.

PROOF. Let α ∈ Ar(M) be such that ||α||2 is a local minimum within the de

Rham cohomology class of α. Then, for every β ∈ Ar−1(M), the function ν(t) :=
||α+ t dβ||2 has a local minimum at t = 0. In particular,

ν′(0) = 2(α, dβ) = 2(δα, β) = 0 for all β ∈ Ar−1(M).

Hence, δα = 0 and α is harmonic. Now, if α is harmonic, then

||α+ dβ||2 = ||α||2 + ||dβ||2 + 2(α, dβ) = ||α||2 + ||dβ||2 ≥ ||α||2

and equality holds only if dβ = 0. This proves the uniqueness statement. �

Hodge’s theorem asserts that, in fact, every de Rham cohomology class contains a

(unique) harmonic form. More precisely, we have the following theorem:

THEOREM 1.4.13 (Hodge theorem) Let M be a compact Riemannian manifold and

letHr(M) denote the vector space of harmonic r-forms on M . Then

(1) Hr(M) is finite-dimensional for all r;

(2) we have the following decomposition of the space of r-forms:

Ar(M) = ∆(Ar(M))⊕Hr(M)

= dδ(Ar(M))⊕ δd(Ar(M))⊕Hr(M)

= d(Ar−1(M))⊕ δ(Ar+1(M))⊕Hr(M).
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The proof of this fundamental result involves the theory of elliptic differential oper-

ators on a manifold. We refer to [10, Chapter 0], [33, Chapter 6], and [35, Chapter 4].

Since d and δ are formal adjoints of each other it follows that

(ker(d), Im(δ)) = (ker(δ), Im(d)) = 0

and, consequently, if α ∈ Zr(M) and we write

α = dβ + δγ + µ ; β ∈ Ar−1(M), γ ∈ Ar+1(M), µ ∈ Hr(M),

then

0 = (α, δγ) = (δγ, δγ)

and therefore δγ = 0. Hence, [α] = [µ]. By the uniqueness statement in Proposi-

tion 1.4.12 we get

Hr(M,R) ∼= Hr(M). (1.4.6)

COROLLARY 1.4.14 Let M be a compact, oriented, n-dimensional manifold. Then

Hr(M,R) is finite-dimensional for all r.

COROLLARY 1.4.15 (Poincaré duality) LetM be a compact, oriented, n-dimensional

manifold. Then the bilinear pairing

∫

M

: Hr(M,R)×Hn−r(M,R)→ R (1.4.7)

that maps (α, β) 7→
∫
M
α ∧ β is nondegenerate. Hence

(
Hn−r(M,R)

)∗ ∼= Hr(M,R).

PROOF. We may assume without loss of generality that M is a Riemannian man-

ifold. Then, the Hodge star operator commutes with the Laplacian and defines an

isomorphism:

Hr(M) ∼= Hn−r(M).

Hence if 0 6= α ∈ Hr(M) we have ∗α ∈ Hn−r(M) and

∫

M

α ∧ ∗α = (α, α) 6= 0.

�

EXERCISE 1.4.16 Prove that the pairing (1.4.7) is well defined.
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1.4.2 The ∂̄-Laplacian

Let (M,J, ω) be a compact Kähler manifold and, as before, let g denote the associated

Riemannian metric. Consider the L2 inner product (•, •) onA∗(M) defined in (1.4.3).

Let ∗ be the corresponding star operator and δ = − ∗ d ∗ the adjoint of d. We extend

these operators linearly to A∗(M,C). It follows from (B.2.4) that

∗(Ap,q(M)) ⊂ An−q,n−p(M). (1.4.8)

We write

δ = − ∗ d ∗ = − ∗ ∂̄ ∗ − ∗ ∂ ∗,
and set

∂∗ := − ∗ ∂̄ ∗ ; ∂̄∗ := − ∗ ∂ ∗ . (1.4.9)

Note that ∂̄∗ is indeed the conjugate of ∂∗ and that ∂∗ is pure of type (−1, 0) and that

∂̄∗ is pure of type (0,−1) (see Exercise B.2.3).

EXERCISE 1.4.17 Let M be a compact, complex, n-dimensional manifold and α ∈
A2n−1(M,C). Prove that

∫

M

∂α =

∫

M

∂̄α = 0.

PROPOSITION 1.4.18 The operator ∂∗ := −∗ ∂̄ ∗ (resp. ∂̄∗ := −∗∂ ∗) is the formal

adjoint of ∂ (resp. ∂̄) relative to the Hermitian extension (•, •)h of (•, •) toA∗(M,C).

PROOF. Given Exercise 1.4.17 and the Leibniz property for the operators ∂, ∂̄, the

proof of the first statement is analogous to that of Proposition 1.4.7. The details are left

as an exercise. �

We can now define Laplace–Beltrami operators:

∆∂ = ∂∂∗ + ∂∗∂ ; ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄. (1.4.10)

The operators ∆∂ and ∆∂̄ are of bidegree (0, 0); i.e., they map forms of bidegree (p, q)
to forms of the same bidegree. In particular, if α ∈ Ak(U) is decomposed according

to (1.2.6) as

α = αk,0 + αk−1,1 + · · ·+ α0,k ,

then ∆∂̄(α) = 0 if and only if ∆∂̄(α
p,q) = 0 for all p, q. The operators ∆∂ and ∆∂̄ are

elliptic and, consequently, the Hodge theorem remains valid for them. Thus if we set

Hp,q
∂̄

(M) := {α ∈ Ap,q(M) : ∆∂̄(α) = 0}, (1.4.11)

we have

Hp,q

∂̄
(M) ∼= Hp,q

∂̄
(M). (1.4.12)
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1.5 COHOMOLOGY OF COMPACT KÄHLER MANIFOLDS

1.5.1 The Kähler Identities

DEFINITION 1.5.1 Let (M,ω) be an n-dimensional, compact, Kähler manifold. We

define

Lω : Ak(M)→ Ak+2(M) ; Lω(α) = ω ∧ α . (1.5.1)

Let Λω be the adjoint of Lω relative to the inner product on (•, •).

EXERCISE 1.5.2 Prove that for α ∈ Ak(M), then Λωα = (−1)k ∗ Lω ∗ α.

If there is no chance of confusion we will drop the subscript ω. It is clear, however,

that the Lefschetz operators L and Λ depend on the choice of a Kähler form ω. We

extend these operators linearly to Ak(M,C). It is easy to check that Λ is then the

adjoint of L relative to the Hermitian extension of (•, •) to Ak(M,C).

The following result describes the Kähler identities which describe the commuta-

tion relations among the differential operators d, ∂, ∂̄ and the Lefschetz operators.

THEOREM 1.5.3 (Kähler identities) Let (M,ω) be a compact, Kähler manifold.

Then the following identities hold:

(1) [∂, L] = [∂̄, L] = [∂∗,Λ] = [∂̄∗,Λ] = 0.

(2) [∂̄∗, L] = i∂ ; [∂∗, L] = −i∂̄ ; [∂̄,Λ] = i∂∗ ; [∂,Λ] = −i∂̄∗

One of the standard ways to prove these identities makes use of the fact that they are

of a local nature and only involve the coefficients of the Kähler metric up to first order.

On the other hand, Theorem 1.3.9 asserts that a Kähler metric agrees with the standard

Hermitian metric on Cn up to order two. Thus, it suffices to verify the identities in

that case. This is done by a direct computation. This is the approach in [10] and

[30, Proposition 6.5]. In Appendix B we describe a conceptually simpler proof due

to Phillip Griffiths that reduces Theorem 1.5.3 to similar statements in the symplectic

case. Since, by Darboux’s theorem, a symplectic manifold is locally symplectomorphic

to R2n with the standard symplectic structure, the proof reduces to that case.

A remarkable consequence of the Kähler identities is the fact that on a compact

Kähler manifold, the Laplacians ∆ and ∆∂̄ are multiples of each other:

THEOREM 1.5.4 Let M be a compact Kähler manifold. Then

∆ = 2∆∂̄ . (1.5.2)

PROOF. Note first of all that Theorem 1.5.3(2) yields

i(∂∂̄∗ + ∂̄∗∂) = ∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ − ∂Λ∂ = 0.
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Therefore,

∆∂ = ∂∂∗ + ∂∗∂ = i ∂[Λ, ∂̄] + i [Λ, ∂̄]∂

= i (∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂)
= i

(
([∂,Λ]∂̄ + Λ∂∂̄)− ∂∂̄Λ + Λ∂̄∂ − (∂̄[Λ, ∂] + ∂̄∂Λ)

)

= i
(
Λ(∂∂̄ + ∂̄∂) + (∂∂̄ + ∂̄∂)Λ− i (∂̄∂̄∗ + ∂̄∗∂̄)

)

= ∆∂̄ .

These two identities together yield (1.5.2). �

1.5.2 The Hodge Decomposition Theorem

Theorem 1.5.4 has a remarkable consequence: suppose α ∈ Hk(M,C) is decomposed

according to (1.2.6) as

α = αk,0 + αk−1,1 + · · ·+ α0,k ;

then since ∆ = 2∆∂̄ , the form α is ∆∂̄ -harmonic and consequently, the components

αp,q are ∆∂̄ -harmonic and hence, ∆-harmonic as well. Therefore, if we set for p+ q =
k,

Hp,q(M) := Hk(M,C) ∩Ap,q(M), (1.5.3)

we get

Hk(M,C) ∼=
⊕

p+q=k

Hp,q(M). (1.5.4)

Moreover, since ∆ is a real operator, it follows that

Hq,p(M) = Hp,q(M). (1.5.5)

If we combine these results with the Hodge theorem we get the following result:

THEOREM 1.5.5 (Hodge decomposition theorem) Let M be a compact Kähler man-

ifold and let Hp,q(M) be the space of de Rham cohomology classes in Hp+q(M,C)
that have a representative of bidegree (p, q). Then,

Hp,q(M) ∼= Hp,q

∂̄
(M) ∼= Hp,q(M) (1.5.6)

and

Hk(M,C) ∼=
⊕

p+q=k

Hp,q(M). (1.5.7)

Moreover, Hq,p(M) = Hp,q(M).

Remark. In view of Definition A.4.1, Theorem 1.5.5 may be restated as follows: the

subspaces (H(M,C))p,q ∼= Hp,q

∂̄
(M) define a Hodge structure of weight k on de

Rham cohomology groupsHk(M,R).
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We will define hp,q = dimC H
p,q(M). These are the so-called Hodge numbers

of M . Note that the Betti numbers bk, that is, the dimensions of the kth cohomology

space, are given by

bk =
∑

p+q=k

hp,q. (1.5.8)

In particular, the Hodge decomposition theorem implies a new restriction on the

cohomology of a compact Kähler manifold:

COROLLARY 1.5.6 The odd Betti numbers of a compact Kähler manifold are even.

PROOF. This assertion follows from (1.5.8) together with the fact that hp,q = hq,p.

�

Remark. The examples constructed by Thurston in [25] of complex symplectic man-

ifolds with no Kähler structure are manifolds which do not satisfy Corollary 1.5.6.

Remark. As pointed out in Exercise 1.2.11, the de Rham cohomologyH∗(M,C) is

an algebra under the cup product. We note that the Hodge decomposition (1.5.7) is

compatible with the algebra structure in the sense that

Hp,q ∪Hp′,q′ ⊂ Hp+p′,q+q′ . (1.5.9)

This additional topological restriction for a compact, complex, symplectic manifold to

have a Kähler metric has been successfully exploited by Voisin [32] to obtain remark-

able examples of non-Kähler, symplectic manifolds.

Let M be a compact, n-dimensional Kähler manifold and X ⊂ M a complex

submanifold of codimension k. We may define a linear map:

∫

X

: H2(n−k)(M,C)→ C ; [α] 7→
∫

X

α|X . (1.5.10)

This map defines an element in (H2(n−k)(M,C))∗ and, therefore, by Corollary 1.4.15,

a cohomology class ηX ∈ H2k(M,C) defined by the property that for all [α] ∈
H2(n−k)(M,C), ∫

M

α ∧ ηX =

∫

X

α|X . (1.5.11)

The class ηX is called the Poincaré dual of X and one can show that

ηX ∈ Hk,k(M) ∩H2k(M,Z). (1.5.12)

One can also prove that the construction of the Poincaré dual may be extended to sin-

gular analytic subvarieties (cf. [10, 13]).

The following establishes a deep connection between the algebraic and analytic

aspects of a smooth projective variety[12].
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HODGE CONJECTURE Let M be a smooth, projective manifold. Then

Hk,k(M,Q) := Hk,k(M) ∩H2k(M,Q)

is generated, as a Q-vector space, by the Poincaré duals of analytic subvarieties of M .

The Hodge conjecture is one of the remaining six Clay millennium problems [7].

It should be pointed out that all natural generalizations of the Hodge conjecture to

compact Kähler manifolds fail; see [36, 29].

1.5.3 Lefschetz Theorems and Hodge–Riemann Bilinear Relations

Let (M,ω) be a compact Kähler manifold and let

A∗(M,C) :=
2n⊕

k=0

Ak(M,C).

We can consider the operators L and Λ acting on A∗(M,C) and define a semisimple

linear map Y : A∗(M,C)→ A∗(M,C) by

Y :=

2n∑

k=0

(k − n)πk,

where πk : A∗(M,C) → Ak(M,C) is the natural projection. Clearly L and Y are

defined pointwise and, because of Exercise 1.5.2, so is Λ. Thus, it follows from Corol-

lary B.2.5 that the operators {L,Λ, Y } define an sl2-triple.

We will now show how the Kähler identities imply that the Laplace–Beltrami oper-

ator ∆ commutes with these operators and consequently, we get a (finite-dimensional)

sl2-representation on the space of harmonic formsH∗(M).

THEOREM 1.5.7 Let (M,ω) be a Kähler manifold. Then, ∆ commutes with L, Λ,

and Y .

PROOF. Clearly [∆, L] = 0 if and only if [∆∂ , L] = 0. We have

[∆∂ , L] = [∂∂∗ + ∂∗∂, L]

= ∂∂∗L− L∂∂∗ + ∂∗∂L− L∂∗∂
= ∂ ([∂∗, L] + L∂∗)− L∂∂∗ + ([∂∗, L] + L∂∗) ∂ − L∂∗∂
= −i∂∂̄ − i∂̄∂
= 0.

The identity [∆,Λ] = 0 follows by taking adjoints and [∆, Y ] = 0 since ∆ preserves

the degree of a form. �

We can now define an sl2-representation on the de Rham cohomology of a compact

Kähler manifold:
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THEOREM 1.5.8 The operators L, Y , and Λ define a real representation of sl(2,C)
on the de Rham cohomology H∗(M,C). Moreover, these operators commute with the

Weil operators of the Hodge structures on the subspacesHk(M,R).

PROOF. This is a direct consequence of Theorem 1.5.7. The last statement follows

from the fact that L, Y , and Λ are of bidegree (1, 1), (0, 0) and (−1,−1), respectively.

�

COROLLARY 1.5.9 (Hard Lefschetz theorem) Let (M,ω) be an n-dimensional, com-

pact Kähler manifold. For each k ≤ n the map

Lkω : H
n−k(M,C)→ Hn+k(M,C) (1.5.13)

is an isomorphism.

PROOF. This follows from the results in Section A.3, in particular, Exercise A.3.7.

�

We note, in particular, that for j ≤ k ≤ n, the maps

Lj : Hn−k(M,C)→ Hn−k+2j(M,C)

are injective. This observation together with the hard Lefschetz theorem imply further

cohomological restrictions on a compact Kähler manifold:

THEOREM 1.5.10 The Betti and Hodge numbers of a compact Kähler manifold sat-

isfy

(1) bn−k = bn+k; hp,q = hq,p = hn−q,n−p = hn−p,n−q;

(2) b0 ≤ b2 ≤ b4 ≤ · · · ;

(3) b1 ≤ b3 ≤ b5 ≤ · · · .
In both cases the inequalities continue up to, at most, the middle degree.

DEFINITION 1.5.11 Let (M,ω) be a compact, n-dimensional Kähler manifold. For

each index k = p+ q ≤ n, we define the primitive cohomology spaces

Hp,q
0 (M) := ker{Ln−k+1

ω : Hp,q(M)→ Hn−q+1,n−p+1(M)}, (1.5.14)

Hk
0 (M,C) :=

⊕

p+q=k

Hp,q
0 (M). (1.5.15)

From Proposition A.3.9, we now have the following theorem:

THEOREM 1.5.12 (Lefschetz decomposition) Let (M,ω) be an n-dimensional, com-

pact Kähler manifold. For each k = p+ q ≤ n, we have

Hk(M,C) = Hk
0 (M,C)⊕ Lω(Hk−2(M,C)), (1.5.16)

Hp,q(M) = Hp,q
0 (M)⊕ Lω(Hp−1,q−1(M)). (1.5.17)
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The following result, whose proof may be found in [13, Proposition 1.2.31], relates

the Hodge star operator with the sl2-action.

PROPOSITION 1.5.13 Let α ∈ Pk(M,C). Then

∗Lj(α) = (−1)k(k+1)/2 j!

(n− k − j)! · L
n−k−j(C(α)), (1.5.18)

where C is the Weil operator in Ak(M,C).

DEFINITION 1.5.14 Let (M,ω) be an n-dimensional, compact, Kähler manifold. Let

k be such that 0 ≤ k ≤ n. We define a bilinear form

Qk = Q : Hk(M,C)×Hk(M,C)→ C,

Qk(α, β) := (−1)k(k−1)/2

∫

M

α ∧ β ∧ ωn−k. (1.5.19)

EXERCISE 1.5.15 Prove that Q is well defined; i.e., it is independent of our choice

of representative in the cohomology class.

THEOREM 1.5.16 (Hodge–Riemann bilinear relations) The bilinear form Q satisfies

the following properties:

(1) Qk is symmetric if k is even and skew symmetric if k is odd.

(2) Q(Lωα, β) + Q(α,Lωβ) = 0; we say that Lω is an infinitesimal isomorphism

of Q.

(3) Q(Hp,q(M), Hp′,q′(M)) = 0 unless p′ = q and q′ = p.

(4) If 0 6= α ∈ Hp,q
0 (M) then

Q(Cα, ᾱ) > 0. (1.5.20)

PROOF. The first statement is clear. For the second note that the difference between

the two terms is the preceding sign which changes as we switch from k + 2 to k. The

third assertion follows from the fact that the integral vanishes unless the bidegree of the

integrand is (n, n) and, for that to happen, we must have p′ = q and q′ = p.

Therefore, we only need to show the positivity condition (4). Let α ∈ Hp,q
0 (M). It

follows from Proposition 1.5.13 that

(−1)k(k+1)/2 ωn−k ∧ ᾱ = ∗−1(n− k)!C(ᾱ).

On the other hand, on Hk(M), we have C2 = (−1)kI = ∗2 and therefore

Q(Cα, ᾱ) =

∫

M

α ∧ ∗ᾱ = (α, α)h > 0.

�
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Properties (3) and (4) in Theorem 1.5.16 are called the first and second Hodge–

Riemann bilinear relations. In view of Definition A.4.7 we may say that the Hodge–

Riemann bilinear relations amount to the statement that the Hodge structure in the

primitive cohomology Hk
0 (M,R) is polarized by the intersection form Q defined by

(1.5.19).

EXAMPLE 1.5.17 Let X = Xg denote a compact Riemann surface of genus g. Then

we know that H1(X,Z) ∼= Z2g . The Hodge decomposition in degree 1 is of the form

H1(X,C) = H1,0(X)⊕H1,0(X),

where H1,0(X) consists of the 1-forms on X which, locally, are of the form f(z) dz,

with f(z) holomorphic. The form Q on H1(X,C) is alternating and given by

Q(α, β) =

∫

X

α ∧ β.

The Hodge–Riemann bilinear relations then take the form Q(H1,0(X), H1,0(X)) = 0
and, since H1,0

0 (X) = H1,0(X),

iQ(α, ᾱ) = i

∫

X

α ∧ ᾱ > 0

if α is a nonzero form in H1,0(X). Note that, locally,

iα ∧ ᾱ = i|f(z)|2dz ∧ dz̄ = 2|f(z)|2dx ∧ dy,

so both bilinear relations are clear in this case. We note that it follows that H1,0(X)
defines a point in the complex manifold D = D(H1(X,R), Q) defined in Exam-

ple 1.1.23.

EXAMPLE 1.5.18 Suppose now that (M,ω) is a compact, connected, Kähler surface

and let us consider the Hodge structure in the middle cohomologyH2(X,R). We have

the Hodge decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X) ; H0,2(X) = H2,0(X).

Moreover,H2,0
0 (X) = H2,0(X), while

H1,1(X) = H1,1
0 (X)⊕ LωH0,0(X) = H1,1

0 (X)⊕ C · ω

and

H1,1
0 (X) = {α ∈ H1,1(X) : [ω ∧ α] = 0}.

The polarization form on H2(X,R) is given by

Q(α, β) = −
∫

X

α ∧ β
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and the second Hodge–Riemann bilinear relation is equivalent to the following state-

ments ∫

X

α ∧ ᾱ > 0, if 0 6= α ∈ H2,0(X),

∫

X

ω2 > 0,

∫

X

β ∧ β̄ < 0, if 0 6= β ∈ H1,1
0 (X).

We note that the first two statements are easy to verify, but that is not the case with

the last one. We point out that the integration form I(α, β) = −Q(α, β) has index

(+, · · · ,+,−) in H1,1(X) ∩ H2(X,R); i.e., I is a hyperbolic symmetric bilinear

form. Such forms satisfy the reverse Cauchy–Schwarz inequality: if I(α, α) ≥ 0, then

I(α, β)2 ≥ I(α, α) · I(β, β) (1.5.21)

for all β ∈ H1,1(X) ∩H2(X,R).

The inequality (1.5.21) is called Hodge’s inequality and plays a central role in the

study of algebraic surfaces. Via Poincaré duals it may be interpreted as an inequal-

ity between intersection indexes of curves in an algebraic surface or, in other words,

about the number of points where two curves intersect. If the ambient surface is an

algebraic torus, X = C∗ × C∗, then a curve is the zero locus of a Laurent polyno-

mial in two variables and a classical result of Bernstein–Kushnirenko–Khovanskii says

that, generically on the coefficients of the polynomials, the intersection indexes may

be computed combinatorially from the Newton polytope of the defining polynomials

(see Khovanskii’s appendix in [4] for a full account of this circle of ideas). This rela-

tionship between the Hodge inequality, and combinatorics led Khovanskii and Teissier

[24] to give (independent) proofs of the classical Alexandrov–Fenchel inequality for

mixed volumes of polytopes using the Hodge inequality, and set the basis for a fruitful

interaction between algebraic geometry and combinatorics. In particular, motivated by

problems in convex geometry, Gromov [11] stated a generalization of the hard Lef-

schetz theorem, Lefschetz decomposition and Hodge–Riemann bilinear relations to the

case of mixed Kähler forms. We give a precise statement in the case of the hard Lef-

schetz theorem and refer to [26, 27, 9, 5] for further details.

Kähler classes are real, (1, 1) cohomology classes satisfying a positivity condition

and define a cone K ⊂ H1,1(M) ∩H2(M,R). We have the following theorem:

THEOREM 1.5.19 (Mixed hard Lefschetz theorem) LetM be a compact Kähler man-

ifold of dimension n. Let ω1, . . . , ωk ∈ K, 1 ≤ k ≤ n. Then the map

Lω1 · · ·Lωk
: Hn−k(M,C)→ Hn+k(M,C)

is an isomorphism.
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As mentioned above, this result was originally formulated by Gromov who proved

it in the (1, 1) case (note that the operators involved preserve the Hodge decomposi-

tion). Later, Timorin [26, 27] proved it in the linear algebra case and in the case of

simplicial toric varieties. Dinh and Nguyên [9] proved it in the form stated above. In

[5] the author gave a proof in the context of variations of Hodge structure which unifies

those previous results as well as similar results in other contexts [14, 3].
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